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CHAPTER 2

Introduction to Computer Vision

The previous chapter introduced the basics of how machine learning works. You saw
how to get started with programming using neural networks to match data to labels,
and from there how to infer the rules that can be used to distinguish items. A logical
next step is to apply these concepts to computer vision, where we will have a model
learn how to recognize content in pictures so it can “see” what’s in them. In this chap‐
ter you’ll work with a popular dataset of clothing items and build a model that can
differentiate between them, thus “seeing” the difference between different types of
clothing.

Recognizing Clothing Items
For our first example, let’s consider what it takes to recognize items of clothing in an
image. Consider, for example, the items in Figure 2-1.

Figure 2-1. Examples of clothing

There are a number of different clothing items here, and you can recognize them. You
understand what is a shirt, or a coat, or a dress. But how would you explain this to
somebody who has never seen clothing? How about a shoe? There are two shoes in
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this image, but how would you describe that to somebody? This is another area where
the rules-based programming we spoke about in Chapter 1 can fall down. Sometimes
it’s just infeasible to describe something with rules.

Of course, computer vision is no exception. But consider how you learned to recog‐
nize all these items—by seeing lots of different examples, and gaining experience with
how they’re used. Can we do the same with a computer? The answer is yes, but with
limitations. Let’s take a look at a first example of how to teach a computer to recog‐
nize items of clothing, using a well-known dataset called Fashion MNIST.

The Data: Fashion MNIST
One of the foundational datasets for learning and benchmarking algorithms is the
Modified National Institute of Standards and Technology (MNIST) database, by Yann
LeCun, Corinna Cortes, and Christopher Burges. This dataset is comprised of images
of 70,000 handwritten digits from 0 to 9. The images are 28 × 28 grayscale.

Fashion MNIST is designed to be a drop-in replacement for MNIST that has the
same number of records, the same image dimensions, and the same number of classes
—so, instead of images of the digits 0 through 9, Fashion MNIST contains images of
10 different types of clothing. You can see an example of the contents of the dataset in
Figure 2-2. Here, three lines are dedicated to each clothing item type.

Figure 2-2. Exploring the Fashion MNIST dataset
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It has a nice variety of clothing, including shirts, trousers, dresses, and lots of types of
shoes. As you may notice, it’s monochrome, so each picture consists of a certain
number of pixels with values between 0 and 255. This makes the dataset simpler to
manage.

You can see a closeup of a particular image from the dataset in Figure 2-3.

Figure 2-3. Closeup of an image in the Fashion MNIST dataset

Like any image, it’s a rectangular grid of pixels. In this case the grid size is 28 × 28,
and each pixel is simply a value between 0 and 255, as mentioned previously. Let’s
now take a look at how you can use these pixel values with the functions we saw
previously.

Neurons for Vision
In Chapter 1, you saw a very simple scenario where a machine was given a set of X
and Y values, and it learned that the relationship between these was Y = 2X – 1. This
was done using a very simple neural network with one layer and one neuron.

If you were to draw that visually, it might look like Figure 2-4.

Each of our images is a set of 784 values (28 × 28) between 0 and 255. They can be
our X. We know that we have 10 different types of images in our dataset, so let’s con‐
sider them to be our Y. Now we want to learn what the function looks like where Y is
a function of X.
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Figure 2-4. A single neuron learning a linear relationship

Given that we have 784 X values per image, and our Y is going to be between 0 and 9,
it’s pretty clear that we cannot do Y = mX + c as we did earlier.

But what we can do is have several neurons working together. Each of these will learn
parameters, and when we have a combined function of all of these parameters work‐
ing together, we can see if we can match that pattern to our desired answer
(Figure 2-5).

Figure 2-5. Extending our pattern for a more complex example

The boxes at the top of this diagram can be considered the pixels in the image, or our
X values. When we train the neural network we load these into a layer of neurons—
Figure 2-5 shows them just being loaded into the first neuron, but the values are
loaded into each of them. Consider each neuron’s weight and bias (m and c) to be
randomly initialized. Then, when we sum up the values of the output of each neuron
we’re going to get a value. This will be done for every neuron in the output layer, so
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neuron 0 will contain the value of the probability that the pixels add up to label 0,
neuron 1 for label 1, etc.

Over time, we want to match that value to the desired output—which for this image
we can see is the number 9, the label for the ankle boot shown in Figure 2-3. So, in
other words, this neuron should have the largest value of all of the output neurons.

Given that there are 10 labels, a random initialization should get the right answer
about 10% of the time. From that, the loss function and optimizer can do their job
epoch by epoch to tweak the internal parameters of each neuron to improve that 10%.
And thus, over time, the computer will learn to “see” what makes a shoe a shoe or a
dress a dress.

Designing the Neural Network
Let’s now explore what this looks like in code. First, we’ll look at the design of the
neural network shown in Figure 2-5:

model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation=tf.nn.relu),
    keras.layers.Dense(10, activation=tf.nn.softmax)
])

If you remember, in Chapter 1 we had a Sequential model to specify that we had
many layers. It only had one layer, but in this case, we have multiple layers.

The first, Flatten, isn’t a layer of neurons, but an input layer specification. Our
inputs are 28 × 28 images, but we want them to be treated as a series of numeric val‐
ues, like the gray boxes at the top of Figure 2-5. Flatten takes that “square” value (a
2D array) and turns it into a line (a 1D array).

The next one, Dense, is a layer of neurons, and we’re specifying that we want 128 of
them. This is the middle layer shown in Figure 2-5. You’ll often hear such layers
described as hidden layers. Layers that are between the inputs and the outputs aren’t
seen by a caller, so the term “hidden” is used to describe them. We’re asking for 128
neurons to have their internal parameters randomly initialized. Often the question I’ll
get asked at this point is “Why 128?” This is entirely arbitrary—there’s no fixed rule
for the number of neurons to use. As you design the layers you want to pick the
appropriate number of values to enable your model to actually learn. More neurons
means it will run more slowly, as it has to learn more parameters. More neurons
could also lead to a network that is great at recognizing the training data, but not so
good at recognizing data that it hasn’t previously seen (this is known as overfitting,
and we’ll discuss it later in this chapter). On the other hand, fewer neurons means
that the model might not have sufficient parameters to learn.
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It takes some experimentation over time to pick the right values. This process is typi‐
cally called hyperparameter tuning. In machine learning, a hyperparameter is a value
that is used to control the training, as opposed to the internal values of the neurons
that get trained/learned, which are referred to as parameters.

You might notice that there’s also an activation function specified in that layer. The
activation function is code that will execute on each neuron in the layer. TensorFlow
supports a number of them, but a very common one in middle layers is relu, which
stands for rectified linear unit. It’s a simple function that just returns a value if it’s
greater than 0. In this case, we don’t want negative values being passed to the next
layer to potentially impact the summing function, so instead of writing a lot of
if-then code, we can simply activate the layer with relu.

Finally, there’s another Dense layer, which is the output layer. This has 10 neurons,
because we have 10 classes. Each of these neurons will end up with a probability that
the input pixels match that class, so our job is to determine which one has the highest
value. We could loop through them to pick that value, but the softmax activation
function does that for us.

So now when we train our neural network, the goal is that we can feed in a 28 × 28-
pixel array and the neurons in the middle layer will have weights and biases (m and c
values) that when combined will match those pixels to one of the 10 output values.

The Complete Code
Now that we’ve explored the architecture of the neural network, let’s look at the com‐
plete code for training one with the Fashion MNIST data:

import tensorflow as tf
data = tf.keras.datasets.fashion_mnist

(training_images, training_labels), (test_images, test_labels) = data.load_data()

training_images  = training_images / 255.0
test_images = test_images / 255.0

model = tf.keras.models.Sequential([
            tf.keras.layers.Flatten(input_shape=(28, 28)),
            tf.keras.layers.Dense(128, activation=tf.nn.relu),
            tf.keras.layers.Dense(10, activation=tf.nn.softmax)
        ])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(training_images, training_labels, epochs=5)
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Let’s walk through this piece by piece. First is a handy shortcut for accessing the data:

data = tf.keras.datasets.fashion_mnist

Keras has a number of built-in datasets that you can access with a single line of code
like this. In this case you don’t have to handle downloading the 70,000 images—split‐
ting them into training and test sets, and so on—all it takes is one line of code. This
methodology has been improved upon using an API called TensorFlow Datasets, but
for the purposes of these early chapters, to reduce the number of new concepts you
need to learn, we’ll just use tf.keras.datasets.

We can call its load_data method to return our training and test sets like this:

(training_images, training_labels), 
(test_images, test_labels) = data.load_data()

Fashion MNIST is designed to have 60,000 training images and 10,000 test images.
So, the return from data.load_data will give you an array of 60,000 28 × 28-pixel
arrays called training_images, and an array of 60,000 values (0–9) called
training_labels. Similarly, the test_images array will contain 10,000 28 × 28-pixel
arrays, and the test_labels array will contain 10,000 values between 0 and 9.

Our job will be to fit the training images to the training labels in a similar manner to
how we fit Y to X in Chapter 1.

We’ll hold back the test images and test labels so that the network does not see them
while training. These can be used to test the efficacy of the network with hitherto
unseen data.

The next lines of code might look a little unusual:

training_images  = training_images / 255.0
test_images = test_images / 255.0

Python allows you to do an operation across the entire array with this notation. Recall
that all of the pixels in our images are grayscale, with values between 0 and 255.
Dividing by 255 thus ensures that every pixel is represented by a number between 0
and 1 instead. This process is called normalizing the image.

The math for why normalized data is better for training neural networks is beyond
the scope of this book, but bear in mind when training a neural network in Tensor‐
Flow that normalization will improve performance. Often your network will not
learn and will have massive errors when dealing with non normalized data. The Y =
2X – 1 example from Chapter 1 didn’t require the data to be normalized because it
was very simple, but for fun try training it with different values of X and Y where X is
much larger and you’ll see it quickly fail!
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Next we define the neural network that makes up our model, as discussed earlier:

model = tf.keras.models.Sequential([
            tf.keras.layers.Flatten(input_shape=(28, 28)),
            tf.keras.layers.Dense(128, activation=tf.nn.relu),
            tf.keras.layers.Dense(10, activation=tf.nn.softmax)
        ])

When we compile our model we specify the loss function and the optimizer as before:

 model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

The loss function in this case is called sparse categorical cross entropy, and it’s one of
the arsenal of loss functions that are built into TensorFlow. Again, choosing which
loss function to use is an art in itself, and over time you’ll learn which ones are best to
use in which scenarios. One major difference between this model and the one we cre‐
ated in Chapter 1 is that instead of us trying to predict a single number, here we’re
picking a category. Our item of clothing will belong to 1 of 10 categories of clothing,
and thus using a categorical loss function is the way to go. Sparse categorical cross
entropy is a good choice.

The same applies to choosing an optimizer. The adam optimizer is an evolution of the
stochastic gradient descent (sgd) optimizer we used in Chapter 1 that has been shown
to be faster and more efficient. As we’re handling 60,000 training images, any perfor‐
mance improvement we can get will be helpful, so that one is chosen here.

You might notice that a new line specifying the metrics we want to report is also
present in this code. Here, we want to report back on the accuracy of the network as
we’re training. The simple example in Chapter 1 just reported on the loss, and we
interpreted that the network was learning by looking at how the loss was reduced. In
this case, it’s more useful to us to see how the network is learning by looking at the
accuracy—where it will return how often it correctly matched the input pixels to the
output label.

Next, we’ll train the network by fitting the training images to the training labels over
five epochs:

model.fit(training_images, training_labels, epochs=5)

Finally, we can do something new—evaluate the model, using a single line of code.
We have a set of 10,000 images and labels for testing, and we can pass them to the
trained model to have it predict what it thinks each image is, compare that to its
actual label, and sum up the results:

model.evaluate(test_images, test_labels)
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Training the Neural Network
Execute the code, and you’ll see the network train epoch by epoch. After running the
training, you’ll see something at the end that looks like this:

58016/60000 [=====>.] - ETA: 0s - loss: 0.2941 - accuracy: 0.8907
59552/60000 [=====>.] - ETA: 0s - loss: 0.2943 - accuracy: 0.8906
60000/60000 [] - 2s 34us/sample - loss: 0.2940 - accuracy: 0.8906

Note that it’s now reporting accuracy. So in this case, using the training data, our
model ended up with an accuracy of about 89% after only five epochs.

But what about the test data? The results of model.evaluate on our test data will look
something like this:

10000/1 [====] - 0s 30us/sample - loss: 0.2521 - accuracy: 0.8736

In this case the accuracy of the model was 87.36%, which isn’t bad considering we
only trained it for five epochs.

You’re probably wondering why the accuracy is lower for the test data than it is for the
training data. This is very commonly seen, and when you think about it, it makes
sense: the neural network only really knows how to match the inputs it has been
trained on with the outputs for those values. Our hope is that, given enough data, it
will be able to generalize from the examples it has seen, “learning” what a shoe or a
dress looks like. But there will always be examples of items that it hasn’t seen that are
sufficiently different from what it has to confuse it.

For example, if you grew up only ever seeing sneakers, and that’s what a shoe looks
like to you, when you first see a high heel you might be a little confused. From your
experience, it’s probably a shoe, but you don’t know for sure. This is a similar concept.

Exploring the Model Output
Now that the model has been trained, and we have a good gage of its accuracy using
the test set, let’s explore it a little:

classifications = model.predict(test_images)
print(classifications[0])
print(test_labels[0])

We’ll get a set of classifications by passing the test images to model.predict. Then
let’s see what we get if we print out the first of the classifications and compare it to the
test label:

[1.9177722e-05 1.9856788e-07 6.3756357e-07 7.1702580e-08 5.5287035e-07
 1.2249852e-02 6.0708484e-05 7.3229447e-02 8.3050705e-05 9.1435629e-01]
9
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You’ll notice that the classification gives us back an array of values. These are the val‐
ues of the 10 output neurons. The label is the actual label for the item of clothing, in
this case 9. Take a look through the array—you’ll see that some of the values are very
small, and the last one (array index 9) is the largest by far. These are the probabilities
that the image matches the label at that particular index. So, what the neural network
is reporting is that there’s a 91.4% chance that the item of clothing at index 0 is label 9.
We know that it’s label 9, so it got it right.

Try a few different values for yourself, and see if you can find anywhere the model
gets it wrong.

Training for Longer—Discovering Overfitting
In this case, we trained for only five epochs. That is, we went through the entire train‐
ing loop of having the neurons randomly initialized, checked against their labels, hav‐
ing that performance measured by the loss function, and then updated by the
optimizer five times. And the results we got were pretty good: 89% accuracy on the
training set and 87% on the test set. So what happens if we train for longer?

Try updating it to train for 50 epochs instead of 5. In my case, I got these accuracy
figures on the training set:

58112/60000 [==>.] - ETA: 0s - loss: 0.0983 - accuracy: 0.9627
59520/60000 [==>.] - ETA: 0s - loss: 0.0987 - accuracy: 0.9627
60000/60000 [====] - 2s 35us/sample - loss: 0.0986 - accuracy: 0.9627

This is particularly exciting because we’re doing much better: 96.27% accuracy. For
the test set we reach 88.6%:

[====] - 0s 30us/sample - loss: 0.3870 - accuracy: 0.8860

So, we got a big improvement on the training set, and a smaller one on the test set.
This might suggest that training our network for much longer would lead to much
better results—but that’s not always the case. The network is doing much better with
the training data, but it’s not necessarily a better model. In fact, the divergence in the
accuracy numbers shows that it has become overspecialized to the training data, a
process often called overfitting. As you build more neural networks this is something
to watch out for, and as you go through this book you’ll learn a number of techniques
to avoid it.

Stopping Training
In each of the cases so far, we’ve hardcoded the number of epochs we’re training for.
While that works, we might want to train until we reach the desired accuracy instead
of constantly trying different numbers of epochs and training and retraining until we
get to our desired value. So, for example, if we want to train until the model is at 95%
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accuracy on the training set, without knowing how many epochs that will take, how
could we do that?

The easiest approach is to use a callback on the training. Let’s take a look at the upda‐
ted code that uses callbacks:

import tensorflow as tf

class myCallback(tf.keras.callbacks.Callback):
  def on_epoch_end(self, epoch, logs={}):
    if(logs.get('accuracy')>0.95):
      print("\nReached 95% accuracy so cancelling training!")
      self.model.stop_training = True

callbacks = myCallback()
mnist = tf.keras.datasets.fashion_mnist

(training_images, training_labels), 
(test_images, test_labels) = mnist.load_data()

training_images=training_images/255.0
test_images=test_images/255.0

model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation=tf.nn.relu),
     tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

model.compile(optimizer='adam', 
               loss='sparse_categorical_crossentropy', 
               metrics=['accuracy'])

 model.fit(training_images, training_labels, epochs=50, 
           callbacks=[callbacks])

Let’s see what we’ve changed here. First, we created a new class called myCallback.
This takes a tf.keras.callbacks.Callback as a parameter. In it, we define the
on_epoch_end function, which will give us details about the logs for this epoch. In
these logs is an accuracy value, so all we have to do is see if it is greater than .95 (or
95%); if it is, we can stop training by saying self.model.stop_training = True.

Once we’ve specified this, we create a callbacks object to be an instance of the
myCallback function.

Now check out the model.fit statement. You’ll see that I’ve updated it to train for 50
epochs, and then added a callbacks parameter. To this, I pass the callbacks object.

When training, at the end of every epoch, the callback function will be called. So at
the end of each epoch you’ll check, and after about 34 epochs you’ll see that your
training will end, because the training has hit 95% accuracy (your number may be
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slightly different because of the initial random initialization, but it will likely be quite
close to 34):

56896/60000 [====>..] - ETA: 0s - loss: 0.1309 - accuracy: 0.9500
58144/60000 [====>.] - ETA: 0s - loss: 0.1308 - accuracy: 0.9502
59424/60000 [====>.] - ETA: 0s - loss: 0.1308 - accuracy: 0.9502
Reached 95% accuracy so cancelling training!

Summary
In Chapter 1 you learned about how machine learning is based on fitting features to
labels through sophisticated pattern matching with a neural network. In this chapter
you took that to the next level, going beyond a single neuron, and learned how to cre‐
ate your first (very basic) computer vision neural network. It was somewhat limited
because of the data. All the images were 28 × 28 grayscale, with the item of clothing
centered in the frame. It’s a good start, but it is a very controlled scenario. To do bet‐
ter at vision, we might need the computer to learn features of an image instead of
merely the raw pixels.

We can do that with a process called convolutions. You’ll learn how to define convolu‐
tional neural networks to understand the contents of images in the next chapter.
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