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Abstract—The Boundary Element Method is developed 

in its most simple form; for the solution of Laplace’s 

equation in an interior domain with a straight line 

approximation to the boundary. The direct and indirect 

approaches to the boundary element method are 

included. The methods are developed in Freemat, a 

language similar to Matlab. 

 The codes for the solution of Laplace’s equation in a 

general domain with a general (Robin) boundary 

condition are developed. The codes are applied to a 

typical test problem. The codes are made available as 

open source (BEMLAP-MAT package) and can be 

downloaded from this paper or from the websites listed 

below
2
. The overall package is expected to become a 

teaching aid in the MSc course
3
 that is presently being 

developed by the authors. 

I. INTRODUCTION 

The boundary element method (BEM) is an important 

computational analysis technique that engineers and 

scientists can apply to a range of problems There are a 

number of textbooks on the BEM
1,2

. The purpose of this 

article and the accompanying software is to meet the 

needs of scientists and engineers who are somewhat 

unfamiliar with the BEM, but have an understanding of 

numerical methods and computer programming, or 

would like to apply the BEM to appropriate engineering 

problems with minimal fuss. 

The application of the boundary element method to an 

appropriate scientific or engineering problem essentially 

requires a mesh of the boundary of the domain only, and 

the determination of the boundary condition on the 

surface. The computational solution then yields the 

approximate solution at selected points in the domain. 

 

 

 
1School of Science and Technology, East Lancashire Institute of Higher 

Education, Blackburn College UK.  
2 www.east-lancashire-research.org.uk 
2www.kirkup.info/opensource 
3www.elihe.ac.uk 

 

The BEM is generally more efficient to apply and 

execute than competing methods, such as the finite 

element or finite difference methods. Hence the 

application of the BEM presents an attractive option to 

scientists and engineers. The authors are developing an 

MSc and this package is expected to act as a teaching 

aid on one of the modules in that course 

On the other hand the underlying mathematical 

derivation and numerical analysis is extremely involved. 

Unfortunately, most textbooks on the BEM concentrate 

on the mathematics underlying the BEM, considering 

the ranges of integral equation formulation, ranges of 

element types, ranges of method derivation. In this 

article the elegance of the solution method is not lost in 

a mass of mathematical derivation and analysis. A 

simple notation is used to assist in the understanding of 

the development of the BEM. 

In this work, the so-called direct and indirect 

boundary element methods for the solution of the 

interior Laplace equation are developed. Laplace’s 

equation is the most straightforward problem to which 

the BEM can be applied. Laplace’s equation also models 

a number of physical phenomena, such as steady state 

heat conduction and electrostatics. There is substantial 

recent research on the application of the BEM to 

Laplace’s equation
3-10

.  

Over recent decades, Matlab
11

 has become an 

increasingly important language for scientific 

computation. Freemat
12

 is a freely available alternative 

compiler for Matlab. All codes are developed in 

Freemat, but they can be also used in the Matlab 

environment. Matlab/Freemat is based on Matrix 

arithmetic, allowing an economy of coding and naturally 

allows parallel processing, if it is available.  

II.  THE BOUNDARY ELEMENT METHOD 

Over recent decades, the boundary element method 

(BEM) has received much attention from researchers 

and has become an important technique in the 

computational solution of a number of physical 

Stephen Kirkup
1
 and Javad Yazdani

1
 

A Gentle Introduction to the Boundary Element 

Method in Matlab/Freemat 

http://www.east-lancashire-research.org.uk/
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problems and has therefore become a widely-used 

technique in engineering analysis. In common with the 

better-known finite element method (FEM) and finite 

difference method (FDM), the boundary element method 

is essentially a method for solving partial differential 

equations (PDEs) and can only be employed when the 

physical problem can be expressed as such. As with the 

other methods mentioned, the boundary element method 

is a numerical method and hence it is an important 

subject of research amongst the numerical analysis 

community. However, the potential advantages of the 

BEM have seemed so considerable that the strongest 

impetus behind its development has come from the 

engineering community, in its enthusiasm to obtain 

flexible and efficient computer-based solutions to a 

range of engineering problems. The boundary element 

method has found application in such diverse topics as 

stress analysis, potential flow, electromagnetics, fracture 

mechanics and acoustics. 

The boundary element method is derived through the 

discretisation of an integral equation that is 

mathematically equivalent to the original partial 

differential equation. The essential re-formulation of the 

PDE that underlies the BEM consists of an integral 

equation that is defined on the boundary of the domain 

and an integral that relates the boundary solution to the 

solution at points in the domain. The former is termed a 

boundary integral equation (BIE) and the BEM is often 

referred to as the boundary integral equation method or 

boundary integral method. Over the last four decades 

the term boundary element method has become more 

popular. The other terms are still used in the literature 

however, particularly when authors wish to refer to the 

overall derivation and analysis of the methods, rather 

than their implementation or application. 

An integral equation re-formulation can only be 

derived for certain classes of PDE. Hence the BEM is 

not widely applicable when compared to the near-

universal adaptability of the finite element and finite 

difference method. However, in the cases in which the 

boundary element method is applicable, it often results 

in a numerical method that is easier to use and more 

computationally efficient than the competing methods. 

The advantages in the boundary element method arise 

from the fact that only the boundary (or boundaries) of 

the domain of the PDE requires sub-division. (In the 

finite element method or finite difference method the 

whole domain of the PDE requires discretisation.) Thus 

the dimension of the problem is effectively reduced by 

one. For example an equation governing a three-

dimensional region is transformed into one over its 

surface. 

In cases where the domain is exterior to the boundary, 

as it is in potential flow past an obstacle, or the 

electrostatic field produced by charged surfaces in the 

open, the extent of the domain is infinite and hence the 

advantages of the BEM are even more striking; the 

equation governing the infinite domain is reduced to an 

equation over the (finite) boundary. 

It is through the subdivision or meshing of the 

boundary into panels of some standard shape, and the 

approximation of functions on the boundary by low 

degree polynomials that the integral equations are 

converted into matrix-vector form. The solution of the 

discrete form of the integral equation leads to the 

approximate determination of the otherwise unknown 

boundary functions. Following this, the solution at any 

point in the domain can be found through numerical 

integration over the boundary. 

Returning to the comparison with the FEM, the 

dimensions of the matrices in the BEM are expected to 

be much smaller for the given expectation of accuracy, 

since the BEM requires a mesh of the surface only, 

whereas the FEM requires a mesh of the full domain; for 

a given problem the FEM needs more elements. 

However the matrices that arise in the FEM are sparse 

and structured, making them amenable to special 

methods of solution, whereas the matrices that arise in 

the BEM are dense and have no particular apparent 

structure. 

Apart from using the simplest governing equation, we 

are also considering only the simplest dimensional 

space- 2D. We also use the simplest elements; flat 

(straight line) panels with the surface functions 

approximated by a constant on each panel. An empirical 

analysis of the boundary element method with respect to 

Laplace’s equation is given in the first author’s previous 

work
13

.  

III. THE INTERIOR LAPLACE EQUATION 

The Laplace equation is the simplest elliptic partial 

differential equation. It is one of the equations of 

potential theory and they have been received extensive 

mathematical analysis. It also serves as model elliptic 

equations for learning, implementing and testing 

numerical methods. In this article we are using the 

Laplace equation in order to motivate our understanding 

of the properties and practice of the boundary element 

method. 

The boundary element method in this paper is 
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developed to solve the two-dimensional Laplace 

Equation 

 

0
)()(

2

2

2

2

yx

pp
   )( Dp  

or in the shorthand form: 

 

02
p     )( Dp     (1) 

in an interior domain D, with an enclosing boundary S, 

as illustrated in figure 1. 

 

 
 

Fig 1. Illustration of the domain. 

 

A boundary condition is determined on S. For this work 

we assume that the boundary condition is of the 

following general Robin or mixed form 

)()()()()( ppppp f
n

ba
p

    )( Sp ,    (2) 

where )(pa , )(pb and )(pf are real-valued functions 

defined on S only and pn is the unit outward normal to 

the boundary at p (assumed to be unique). The general 

boundary condition includes the Dirichlet (essential) 

boundary condition ( 0)(,1)( pp ba ) and Neumann 

(derivative) boundary condition ( 1)(,0)( pp ba ). 

Together, the governing partial differential equation 

within a domain (eg (1)) and the boundary condition (2) 

is called a boundary value problem (BVP). The solution 

to such a problem is principally the determination of φ 

(at points) in the domain D, whether by analytic or 

numerical methods. 

IV. INTEGRAL EQUATION REFORMULATION 

The first stage in the development of a boundary 

element method from a boundary value problem (like 

(1)-(2)) is to rewrite the partial differential equation as 

an integral equation. Traditionally, there have been two 

ways of doing this; the direct method and the indirect 

method. In this section we will go through the stages for 

developing the integral equation formulations.. 

 

Green’s function 

 

In order to do this it is useful to introduce an influence 

function; a function that determines the effect at a point 

q of a unit source at a point p, this function is also often 

known as a Green’s function. For the two-dimensional 

Laplace equation (1), the Green’s function is known to 

be 

 

|)ln(|
2

1
),( qpqpG .    (3) 

 

The Green’s function has the property 

 

)(2
qpqpG     

where δ is the Dirac delta function.  

 

Laplace Integral Operators 

 

As a further set of building blocks, it is also useful to 

define the set of Laplace integral operators: 

 

qdSGL )(),()(}{ qqpp     (4a), 
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G
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(4c) 

 

q

q

dS
n

G

w
N )(

),(
);(}{ q

qp
wp                

(4d) 

where Γ is the whole or any part of S,  ζ is any real-

valued function, defined on Γ. 

When pєΓ, then we have the more particular form of 

M
t
 and N: 



www.boundary-element-method.com   
 

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 4 
 

q

p

q

p

p

t

dS
n

G

dSG
n

M

)(
),(

)(),();(}{

q
qp

qqpnp

         

(4e) 

 

q

qp

p dS
n

G

n
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),(
);(}{ q

qp
np               

(4f) 

Note that the derivative 
pn

cannot always be taken 

directly inside the integral in (4f), if we did then the 

integral can be hypersingular, and therefore not defined 

in the normal sense, when q=p. N is therefore not a true 

integral operator, but belongs to the more general class 

of pseudo-differential operators. For convenience, we 

will continue to refer to L,M,M
t
and N as integral 

operators, but we will also keep the special case on N in 

mind. 

Applying L and N to any function ζ, any boundary Γ 

and any vector np gives rise to a continuous function in 

space. However the operators M and M
t
 have jump 

discontinuities at the boundary: 

 

)(}{)(
2

1
)(}{lim 0 ppnp MM p  

                                                                                      

(5a) 
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(5b) 

 

where pεΓ and Γ is smooth at p. 

 

Direct Method 

 

The following equation arises as a result of Green’s 

second theorem 

)()(}{)(}{ ppp SS LvM   (pεD).  (6a) 

 

where 
pn

v
)(p

. For points on S we apply the limit 

(5a) in equation (6a): 

)(
2

1
)(}{)(}{ ppp SS LvM  (pεS).  (6b) 

Given these equations, the method of solution would 

involve solving (6b) with the boundary condition (2) in 

order to find approximations to φ and v on the boundary 

and then use equation (6a) to compute φ at any chosen 

points in the domain.  

However, there is one notable case when this method 

will not work as well. In the case of a pure Dirichlet 

boundary condition, (6a) is effectively a Fredholm 

integral equation of the first kind. It is well known that 

the numerical solution of first kind equations is not as 

efficient as it is for the equivalent second kind equation 

(which equation (6b) would otherwise be) [14]. 

We can easily introduce another equation, using the 

Laplace integral operators, that will be useful to us. 

Differentiating equation (6a) with respect to a vector w, 

gives: 

)();(}{);(}{ pwpwp
w

vMN S

t

S   (pεD).  

(7a) 

For points p near the boundary, with np being the unique 

unit outward normal at p, then (7a) becomes 

)();(}{);(}{ pnpnp
p

pS

t

pS
n

vMN   (pεD)  

(7b) 

 

Moving the point p to the surface and applying the 

limit (5b) gives rise to the following equation on the 

surface: 

)(
2

1
);(}{);(}{ pnpnp vvMN pS

t

pS          

(8) 

One disadvantage in using equation (8) as a basis for 

solving the Laplace equation, is that it now contains the 

hypersingular operator N. The other disadvantage is that 

if we wish to solve the Neumann problem using 

equation (8) then we have to solve over the operator N, 

which leads to a similar loss of efficiency that is found 

in solving first kind equations. 

In order to avoid the problems with the Dirichlet 

problem with equation (6b) and the Neumann problem 

with equation (8), a hybrid equation is proposed: 

 

)())}
2

1
({()()}

2

1
{( pp vIMLNIM t

. 

(9) 
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For suitable weighting parameter μ, equation (9) forms a 

suitable basis for solving the Robin BVP and the special 

cases of the Dirichlet and Neumann BVPs. 

Once approximations to φ and v are found on the 

boundary from equation (8) with the boundary condition 

(2), we can use equation (6a) to determine and 

approximation to φ for any point (p) in the domain. 

 

Indirect Method 

 

The alternative or indirect approach to obtaining an 

integral reformulation of the PDE involves writing the 

solution φ as a layer potential. The most obvious way of 

doing this is to write 

 

)(}{)( pp SL (pεDUS) 

(10a) 

where ζ is a density function defined on S. 

It is possible to solve the Dirichlet problem from 

equation (10a). This would normally involve finding ζ 

on S by solving the integral equation (10a). However, 

the same equation cannot be used for the Neumann 

problem and, what is more, it requires solution to be 

carried out over the first kind operator L.  

By differentiating the equation (10a) with respect to 

any vector w, we obtain 

 

);}({)}({)( wppp
tML

ww
 (pεD) 

(10b) 

As p approaches the boundary and we take w=np. and 

on the boundary equation (10b) becomes 

 

)(
2

1
);}({

)}({)()(

pnp

ppp

p

t

pp

M

L
n

v
n

    (pεS) 

(10c) 

where the jump discontinuity (5b) has been included. 

Equation (10c) relates v on S to ζ. Hence equation 

(10c) can be used as a basis for solving the Neumann 

problem. It is a second kind equation and so it is very 

suitable as a basis for solution.  

We do not have a more general solution method. To do 

this let us introduce a hybrid single- and double-layer 

potential: 

 

)}({)}({ pp ML    (pεD) 

(11a) 

 

where ζμ is a density function that depends on the choice 

of μ. 

By allowing the point p approach the boundary S, 

equation (11a) becomes: 

)(
2

)}({)}({ ppp ML .   (pεS) 

(11b) 

 

For μ≠0 equation (11b) is a suitable equation to solve 

the Dirichlet problem since it is always a second-kind 

integral equation. However, for the Neumann and more 

general Robin problem it is useful to introduce another 

equation that is the outcome of differentiating equation 

(11a), firstly with respect to any vector w: 

 

)}({)}({)( ppp M
w

L
ww

 .        

(pεD) 

(11c) 

 

Allowing p to approach the boundary and w becomes 

the unit outward normal to the boundary there gives the 

following equations: 

 

)(
2
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p

ppp M
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L
nn ppp

 .   

(pεS) 

(11d) 

Using the operator notation, this give 

)(
2

)}({)}({)( pppp NMv t
 .   (pεS) 

(11e) 

Substituting the expressions for φ and v in equation 

(11a) and (11b) into the general Robin boundary 

condition (2) gives the following boundary integral 

equation: 
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Equation (11e) is most suitable for the solution of the 

classes of boundary conditions considered.  

The indirect boundary element method involves 

solving (11e) to return an approximation to ζμ on the 

boundary. Equation (11a) can then be employed to 

compute an approximation to φ in the domain D. 

V. THE DISCRETE OPERATORS 

There is a variety of techniques for deriving the system 

of linear equations from a given integral equation. In 

general, a method can be derived by replacing the 

integrals in an integral equation by a quadrature formula 

or by a weighted residual method such as the Galerkin 

method. Many methods for solving integral equations 

can be used to develop a particular boundary element 

method [15]. Of all the methods the method of 

collocation is one of the most straightforward and most 

popular and it is the one that we will be using in this 

paper. 

 

Collocation 

 

The application of collocation to a boundary integral 

equation requires that the boundary is represented  by a 

set of panels. For example a two dimensional boundary 

can be approximated by a set of straight lines, as 

illustrated in figure 2. 

 

 
Fig 2. Illustration of the boundary divided into panels. 

 

In order to complete the discretisation of the integral 

equations, the boundary functions also need to be 

approximated on each panel. It is the characteristics of 

the panel and the representation of the boundary 

function on the panel that together define the element in 

the boundary element method. By representing the 

boundary functions by a characteristic form on each 

panel, the boundary integral equations can be simplified 

into a linear system of equations. Most simply, the 

boundary functions can be approximated by a constant 

on each panel. The collocation (or representative) point 

is at the centre of the panel (C
-1

collocation). The overall 

process is that of discretising the integral operators and 

the methods for carrying this out are covered in (for the 

more general Helmholtz equation) [16].  

Let the ΔSj ( for j = 1, 2, .., n) be the n panels that 

represent an approximation to S in the boundary element 

method. We may write 
n

j

jSSS
1

~
.      

(12) 

 

Following from equation (4a), we may write: 
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(13a) 

 

where in the final expression we have made the 

approximation j)(q (a constant) on the j
th
 panel 

and e is the unit function. A similar discretisation can be 

applied to the other integral operators:  

 

)(}{)(}{
1

pp
jS

n

j

jS MeM  

 

 (13b) 
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(13c) 

and 
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(13d) 

 

For any point p, )(}{ p
jSLe , )(}{ p

jSMe , 

)(}{ p
jS

teM and )(}{ p
jSNe  are termed the discrete 

Laplace integral operators. 
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Simplifying the integrands 

 

Writing G(p,q) as G(r) where r=|r| and r=q-p, the 

Green’s function (3) can be written as follows: 

 

)ln(
2

1
)( rrG . 

(14) 

 

 

The derivatives of G with respect to r: 

 

r
rG

r

1

2

1
)( , 

(15) 

and 

22

2 1

2

1
)(

r
rG

r
. 

(16) 

 

The normal derivatives of G: 

 

qq n

r

r

G

n

G
, 

(17) 

 

pp n

r

r

G

n

G
, 

(18) 

and 

 

)(
2

222

qpqpqp n

r

n

r

r

G

nn

r

r

G

nn

G
 . 

(19) 

The normal derivatives of r: 

 

rn

r q

q

nr.
, 

(20) 

 

rn

r p

p

nr.
, 

(21) 

and 

).(
12

qp

qp

qp n

r

n

r

rnn

r
nn . 

(22) 

 

Evaluating the integrals 

 

In most cases of evaluating the discrete integrals in 

(13a-d), the integrand is continuous and can be 

approximated most efficiently by Gaussian quadrature. 

For the case in which p lies on the element of 

integration, the integral can be evaluated by a simple 

formulae. Let the element Δ have length a+b with the 

point p lying a distance a from one end and a distance b 

from the other, as illustrated in the figure 3. 

 

                              a                                       b 

 

                                                            p 

 

Figure 3. A general element with the collocation point 

p lying on the element. 

 

In the case illustrated in figure 3 we can derive the 

following expressions: 

 

)loglog(
2

1
)(}{ bbaabaLe p  

(23a) 

0)(}{ pMe  

(23b) 

0)(}{ peM t
 

(23c) 

)
11

(
2

1
)(}{

ba
Ne p  

(23d) 

VI. PARALLEL METHODS FOR APPROXIMATING THE 

DISCRETE LAPLACE OPERATORS 

 

We develop a potentially parallel method by avoiding 

loops and using the in-built matrix/vector operations in 

Matlab or Freemat. By doing this we are effectively 

making each loop independent and therefore can be 

carried out in parallel. 

Firstly, we need to set up a general purpose Gaussian 

quadrature rule (Gauss-Legendre). The routine gl.m sets 

up an 8 point rule for integration over the interval [0,1]. 
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gl.m 
   % function [wts,pts,n]=gl() 

% Sets up a Gauss-Legendre Quadrature 
%  for integration over [0,1] 
%  with n=8 weights (wts) and points (pts) 

 
       function [wts,pts,n]=gl() 
       n=8; 
       wts= [ 5.061426814519E-02   
              0.111190517227   
              0.156853322939   
              0.181341891689   
              0.181341891689   
              0.156853322939   
              0.111190517227   
              5.061426814519E-02]; 
       pts= [ 1.985507175123E-02  
              0.101666761293   
              0.237233795042   
              0.408282678752   
              0.591717321248   
              0.762766204958  
              0.898333238707   
              0.980144928249]; 

 

 

As a most useful building block, it would be helpful to 

have a routine for evaluating the four Laplace integral 

operators, That is for any point p, we wish to 

compute )(}{ p
jSLe , )(}{ p

jSMe , )(}{ p
jS

teM and 

)(}{ p
jSNe .  Given that many of the intermediate steps 

for computing the operators are similar, it is more 

efficient to compute them simultaneously. The operators 

needed depend on the formulation used hence the 

routine has the facility for setting the required operators. 

The routine for doing this is l2lc.m. The method 

follows the formulas given in section V. Given the 

routine will be called many times, its efficiency is one of 

the critical factors in the efficiency of the overall 

boundary element method. In l2lc.m, loops are avoided 

completely (replaced by vector operations) so that any 

available parallelism can be taken advantage of. 

 
l2lc.m 

 
% function 
[l,m,mt,n]=l2lc(p,vecp,qa,qb,lponq,needl,needm,needmt,needn) 
% Returns the discrete Laplace operators for the observation point p, 
%  the derivatve at the observation point (if applicable) vecp, the  
%  coordinates of the edges of the element qa and qb, lponq states 
whether 
%  p lies on the element (true) or not (false), and 
needl,needm,needmt,needn 
%  state whether the discrete operators l,m,mt and n are needed (if 
any 
%  operator is not needed then a corresponding zero is returned. 
 
function [l,m,mt,n]= 
l2lc(p,vecp,qa,qb,lponq,needl,needm,needmt,needn) 
    

   oo2pi=0.5/pi; 

   qbma=qb-qa; 
   qlen=norm(qbma); 
   pmqa=p-qa; 
   pmqb=p-qb; 
   normq(1)=-qbma(2)/qlen; 
   normq(2)=qbma(1)/qlen; 
   pqalen=norm(pmqa); 
   pqblen=norm(pmqb); 
   dnpdq=vecp*normq'; 
    
   l=0; 
   m=0; 
   mt=0; 
   n=0; 
    
       
   if (lponq) 
     l=(qlen-(pqalen*log(pqalen)+pqblen*log(pqblen)))*oo2pi; 
     m=0; 
     mt=0; 
     n=-(1/pqalen+1/pqblen)*oo2pi; 
     continue 
   else 
   
     [w,x,npoints]=gl(); 
      
     onesnp=ones(1,npoints); 
   
     delta=qbma'*x; 
      
     qasame=[qa(1).*onesnp; qa(2).*onesnp]; 
     psame=[p(1)*onesnp; p(2)*onesnp]; 
   
     q=qasame+delta; 
     rr=psame-q; 
     srr=rr.^2; 
      
     srr1=srr(1,1:npoints); 
     srr2=srr(2,1:npoints); 
     sr=srr1+srr2; 
     r=sqrt(sr); 
      
     if (needl) 
       g=-oo2pi*log(r); 
       l=qlen*(w*g'); 
     end 
   
     if (needm|needmt|needn) 
       rnqr=-normq*rr; 
       rnq=rnqr./r; 
       rnpr=vecp*rr; 
       rnp=rnpr./r; 
       gr=-oo2pi/r; 
       wgr=(w.*gr); 
     end  
       
     if (needm)   
       m=qlen*(wgr*rnq');  
     end 
     
     if (needmt) 
        mt=qlen*(wgr*rnp'); 
     end 
     
     if (needn) 
      rnprnq=rnp.*rnq; 
      dnpnq=vecp*normq'; 
      dnpnqsame=dnpnq*onesnp; 
      rnpnq=-(dnpnqsame+rnprnq)./r;    
      grr=oo2pi/sr; 
      wgrr=w.*grr; 
      n=qlen*(wgr*rnpnq'+wgrr*rnprnq'); 
   end 
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  __________________________________________ 

VII. DEFINING THE BOUNDARY 

A method is required for defining the boundary as a set 

of panels. The easiest way of showing how this may be 

done is by example. Figure 4 shows a square of 

dimension 0.1 divided into 32 panels. 

 

 
 

Figure 4. A square divided into 32 panels. 

 

The description in the following Matlab/Freemat  code 

(square.m) involves listing the coordinates of the 

vertices of the panels in vertpts and lists the indices of 

the edges of each element in elemvert. 

 

square.m 

 
% function [vertpts,elemvert]=square  
% Returns a list of edges of the panels that make up the square 
%  in vertpts and the list of elements that make up the boundary 
%  are defined by the indices of the two vertices in elemvert. 
% Note that the vertices of each element in elemvert must be 
%  defined in the clockwise direction. 
 
function [vertpts,elemvert]=square 
 
  vertpts=[0.00000000000 0.00000000000; 
           0.00000000000 0.01250000000; 
           0.00000000000 0.02500000000; 
           0.00000000000 0.03750000000; 
           0.00000000000 0.05000000000; 
           0.00000000000 0.06250000000; 
           0.00000000000 0.07500000000; 
           0.00000000000 0.08750000000; 
 
           0.00000000000 0.10000000000; 
           0.01250000000 0.10000000000; 
           0.02500000000 0.10000000000; 
           0.03750000000 0.10000000000; 
           0.05000000000 0.10000000000; 
           0.06250000000 0.10000000000; 
           0.07500000000 0.10000000000; 
           0.08750000000 0.10000000000; 
 
           0.10000000000 0.10000000000; 
           0.10000000000 0.08750000000; 

           0.10000000000 0.07500000000; 
           0.10000000000 0.06250000000; 
           0.10000000000 0.05000000000; 
           0.10000000000 0.03750000000; 
           0.10000000000 0.02500000000; 
           0.10000000000 0.01250000000; 
 
           0.10000000000 0.00000000000;  
           0.08750000000 0.00000000000; 
           0.07500000000 0.00000000000; 
           0.06250000000 0.00000000000; 
           0.05000000000 0.00000000000; 
           0.03750000000 0.00000000000; 
           0.02500000000 0.00000000000; 
           0.01250000000 0.00000000000]; 
            
           elemvert=[1:32; 2:33] 
           elemvert(2,32)=1 
 

 

VIII. MATRICES IN THE BOUNDARY ELEMENT 

METHOD 

The boundary element method is derived by applying 

an integral equation method to the appropriate boundary 

integral equation. The most straightforward method to 

apply is that of collocation.  

The initial development of the application of 

collocation to give expressions for the discrete Laplace 

operators is given in Section V. To continue the 

development, approximations to the (unknown) 

boundary functions – whether that be φ and/or v in the 

direct method, or ζ in the indirect method – are obtained 

by replacing the boundary integral equation by a matrix-

vector equation and then solving it. Approximations to φ 

in the domain can then be found by direct integration. 

In the collocation method, the general point p in the 

boundary integral equation (e.g. equations (9) for the 

direct method or equation (11e) for the indirect method), 

takes the value of every central point on each panel; the 

collocation points: p=pS1, pS2,…, pSn. 

For illustration, let us apply the collocation method to 

boundary integral equation (10a) (for pεS): 

 

)(}{)( pp SL (pεS) 

(24) 

Following the development in equation (13a), the 

following discrete form of equation (24) is obtained: 

 

)(}{)(}{)(
1

ppp
jS

n

j

jS LeL . 

 

Allowing p to take the value of pSi, a collocation points 

gives the following: 
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)(}{)(}{)(
1

iSS

n

j

jiSSSi j
LeL ppp . 

Let us now introduce the notation:  

 

)(
iSiS p , )(

iSiS vv p , )(
iSiS p , 

 

nS

S

S

S

:

:

2

1

,  

nS

S

S

S

v

v

v

v

:

:

2

1

,  

Sn

S

S

S

:

:

2

1

, 

 

)(}{][
iSSijSS j

Le pL , 

 

)(}{][
iSSijSS j

Me pM , 

 

)(}{][
iSS

t

ijSS
j

eM pM
t

, 

 

)(}{][
iSSijSS j

Ne pN , 

 

Returning to the integral equation (24): by applying the 

collocation method it is then replaced by the following 

equation: 

SSSS
L , 

Which can be solved for the Dirichlet case to return an 

approximation to ζ on S. (Although basing the BEM on 

this first kind equation is not advised; this is meant to be 

purely illustrative.) 

Usually, the objective is to find the solution φ in the 

domain. Returning to our illustrative boundary integral 

equation (10a) (for pεD): 

 

)(}{)( pp SL (pεD) 

(25) 

For points p in the domain, we can approximate φ(p) as 

before  

)(}{)(}{)(
1

ppp
jS

n

j

jS LeL , 

except in its application, an approximation to ζ (the 

values of the ζi) has been obtained.  

Let the solution be sought at the m domain points p = 

pD1, pD2, …., pDm 

)(}{)(}{)(
1

iDS

n

j

jiDSDi j
LeL ppp . 

Let us now introduce the notation:  

 

)( DiiD p , )(
iDiD vv p , )(

iDiD p , 

 

mD

D

D

D

:

:

2

1

,  

nD

D

D

D

v

v

v

v

:

:

2

1

,  

 

)(}{][
iDSijDS j

Le pL , 

 

)(}{][
iDSijDS j

Me pM , 

 

)(}{][
iDS

t

ijDS
j

eM pM
t

, 

 

)(}{][
iDSijDS j

Ne pN . 

 

Returning back to the example integral equation (24), 

using this notation, approximations to  the solution at 

the domain points can be determined by the following 

matrix-vector  multiplication: 

 

SDSD
L . 

 

It can be observed that there is a general case in 

evaluating the required matrices; it is given a set of 

points and a description of the boundary, a method for 

evaluating the matrix components is required. The 

routine for doing this is lbem2.m. 

 

lbem2.m 
% function [L,M,Mt,N] = lbem2(m,p,vecp,n,vertpts,elemvert,p_on, 
needL,needM,needMt,needN) 
% Sets up the matrices required in the boundary element method 
%  for m (observation) points p with a vector (derivative) direction of 
%  vecp at the points p. The boundary is made up of n elements; 
vertpts lists the coordinates 
%  of the edges of the elements and elemvert lists the pairs of vertices 
%  that define each element. p_on idicates whether the point p(i) lies 
on the ith panel. 
%  needL,needM,needMt,needN indicate which matrices are needed 
by being set to true. 
 
function [L,M,Mt,N] =lbem2(m,p,vecp,n,vertpts,elemvert,p_on, 
needL,needM,needMt,needN) 
   
  [qa,qb]=vertices(n,vertpts,elemvert); 
 
  for (i=1:n) 
    for (j=1:n) 
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[L(i,j),M(i,j),Mt(i,j),N(i,j)]=l2lc(p(i,:),vecp(i,:),qa(j,:),qb(j,:),p_on&i==j,nee
dL,needM,needMt,needN); 
    end 
  end 

 

 

Drawn from this general case is the special case in 

which the points lie at the centres of the elements that 

define the boundary. This special case is implemented 

by the routine lbem2_on.m. 

 

lbem2_on.m 

 
% function [L,M,Mt,N] 
=lbem2(n,vertpts,elemvert,p_on,needL,needM,needMt,needN) 
% Sets up the matrices required in the boundary element method 
%  for a boundary made up of n elements. vertpts lists the coordinates 
%  of the edges of the elements and elemvert lists the pairs of vertices 
%  that define each element.needL,needM,needMt,needN indicate 
which matrices 
%  are needed by being set to true. 
 
function [L,M,Mt,N] =lbem2_on(n,vertpts,elemvert, 
needL,needM,needMt,needN) 
 
  [qa,qb]=vertices(n,vertpts,elemvert); 
 
  p=(qa+qb)/2; 
   
  qbma=qb-qa; 
   
  for(i=1:n) 
    qlen(i)=norm(qbma(i,:)); 
  end 
 
  for (i=1:n) 
    normp(i,1)=-qbma(i,2)/qlen(i); 
    normp(i,2)=qbma(i,1)/qlen(i); 
  end 
    
  [L,M,Mt,N]=lbem2(n,p,normp,n,vertpts,elemvert,true, 
needL,needM,needMt,needN) 

   

IX. BOUNDARY ELEMENT METHOD 

Having, developed all the building blocks we may now 

complete the coding for the boundary element methods. 

In section IV, two classes of boundary integral equation 

were introduced and these lead to two classes of 

boundary element method; the direct method and the 

indirect method. 

 

Direct Method 

 

For the chosen integral equation (9), the discrete 

analogue for collocation points on S is as follows: 

 

[ MSS+½I+µNSS ] φS = [LSS+µ(M
t
SS-½I)] vS 

(25) 

 

with the general Robin boundary condition 

 

iiiii fv  for i=1..n . 

(26) 

 

The solution of this kind of  system is not a standard 

utility in Matlab/Freemat. Hence we introduce the 

routing gls.m that carries out row operations to rewrite 

a system like the above as a standard linear system and 

then solve by the inbuilt Matlab/Freemat matrix-vector 

solution method. 

 

gls.m 

 
% gls returns the solution x,y to a problem of the form 
%                                A x = B y +c 
% where A and B are n by n real matrices and c is a n-vector  
% under the condition(s) 
%                          
%             {\alpha}_i x_i + {\beta}_i y_i = f_i   for i=1..n. 
% 
% Clearly only one of {\alpha}_i or {\beta}_i can be zero for each i. 
% 
% The method employed involves forming a linear system of the form 
Cz=d  
% where the n by n matrix C and the vector d can be determined from 
A,B 
% and the {\alpha}_i and {\beta}_i. A standard LU factorisation  
% solution method is then employed to return a solution. From this the 
actual 
% solutions x,y can be determined. 
 
function [x,y]=gls(A,B,c,n,alpha,beta,F) 
   gamma=norm(B,inf)/norm(A,inf); 
   test=abs(beta)>abs(gamma*alpha); 
    
   for (i=1:n) 
      if (test(i)) 
         Fob=F(i)/beta(i); 
         aob=alpha(i)/beta(i); 
         for (j=1:n) 
           c(j)=c(j)+Fob*B(j,i); 
           B(j,i)=-aob*B(j,i); 
        end 
      else 
         Foa=F(i)/alpha(i); 
         boa=beta(i)/alpha(i); 
         for (j=1:n) 
            c(j)=c(j)-Foa*A(j,i); 
            A(j,i)=-boa*A(j,i); 
         end 
      end 
   end 
    
   A=A-B; 
   y=A\c; 
    
   for (i=1:n) 
      if (test(i)) 
         x(i)=(F(i)-alpha(i)*y(i))/beta(i); 
      else 
         x(i)=(F(i)-beta(i)*y(i))/alpha(i); 
      end 
   end 
    
   for (i=1:n) 
      if (test(i)) 
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         temp=x(i); 
         x(i)=y(i); 
         y(i)=temp; 
      end 
   end 
   x=x'; 

 

 

Once the solution on the boundary is found to (25), 

(26), the solution at any domain point can be found 

through integrating over the boundary using equation 

(6a). 

Matlab/Freemat routine libem2.m returns the solution 

in the domain and on the boundary using the direct 

method. 

 

libem2.m 

 
% function [phi_D,phi_S,v_S] = 
libem2(n_D,p_D,n_S,vertpts_S,elemvert_S,alpha_S,beta_S,f_S) 
% Returns the solution phi_D at the n_D domain points p_D and at the 
collocation points.  
% The boundary is made up of n elements; vertpts lists the 
coordinates 
% of the edges of the elements and elemvert lists the pairs of vertices 
% that define each element. alpha_S, beta_S and f_S determine the 
Robin boundary condition. 
 
function [phi_D,phi_S,v_S] 
=libem2(n_D,p_D,n_S,vertpts_S,elemvert_S,alpha_S,beta_S,f_S) 
 
% calculate phi_S, v_S, phi and v on the boundary 
% calculate L_SS, M_SS, Mt_SS and N_SS, the discrete form of the 
operators for the collocation points 
  [L_SS,M_SS,Mt_SS,N_SS] 
=lbem2_on(n_S,vertpts_S,elemvert_S,true,true,true,true); 
  M_SSplus=M_SS+eye(n_S)/2; 
  Mt_SSminus=Mt_SS-eye(n_S)/2; 
  mu=norm(M_SSplus)/norm(N_SS); 
  for (i=1:n_S) 
    zero_S(i)=0.0; 
  end 
   [phi_S,v_S]= 
  gls(M_SSplus+mu*N_SS,L_SS+mu*Mt_SSminus,zero_S,n_S, 
alpha_S,beta_S,f_S); 
 
% calculate phi_S, v_S, phi and v on the boundary 
% calculate L_DS, M_DS, the discrete form of the operators for the 
domain points 
% dummy values set to vecp_D, since it is not used 
  for (i=1:n_D) 
    vecp_D(i,1)=1; 
    vecp_D(i,2)=0; 
  end  
  [L_DS,M_DS,Mt_DS,N_DS] 
=lbem2(n_D,p_D,vecp_D,n_S,vertpts_S,elemvert_S,false,true,true,fal
se,false); 
 
  phi_D=L_DS*v_S-M_DS*phi_S; 

 

 

 

 

Indirect Method 

 

For the chosen integral equation (11e), the discrete 

analogue for collocation points on S is as follows: 

 

{(LSS+µ(MSS-½I))Dα+((M
t
SS+½I)+µNSS)Dβ}ζµ=f 

(27) 

 

where the general Robin boundary condition is included 

such that Dα  and Dβ are diagonal matrices with 

diagonal components αi and βi respectively. 

   The solution of equation (27) gives ζµ, the discrete 

equivalent of the layer potential ζµ on the boundary. The 

solution in the domain and on the boundary can then be 

found by direct integration using equations (11a) and 

(11b). The Matlab/Freemat routine libem2_indirect.m 

carries out the same function as libem2, but uses the 

direct method. 

 

libem2_indirect.m 

 
% function [phi_D,phi_S,v_S] = 
libem2_indirect(n_D,p_D,n_S,vertpts_S,elemvert_S,alpha_S,beta_S,f
_S) 
% Returns the solution phi_D at the n_D domain points p_D and at the 
collocation points.  
% The boundary is made up of n elements; vertpts lists the 
coordinates 
% of the edges of the elements and elemvert lists the pairs of vertices 
% that define each element. alpha_S, beta_S and f_S determine the 
Robin boundary condition. 
 
function [phi_D,phi_S,v_S] 
=libem2_indirect(n_D,p_D,n_S,vertpts_S,elemvert_S,alpha_S,beta_S,
f_S) 
 
% calculate the boundary density function sigma 
% calculate L_SS, M_SS, Mt_SS and N_SS, the discrete form of the 
operators for the collocation points 
  [L_SS,M_SS,Mt_SS,N_SS] 
=lbem2_on(n_S,vertpts_S,elemvert_S,true,true,true,true); 
  Mt_SSplus=Mt_SS+eye(n_S)/2; 
  M_SSminus=M_SS-eye(n_S)/2; 
  mu=norm(Mt_SSplus)/norm(N_SS); 
  matrix1=L_SS+mu*M_SSminus; 
  matrix2=Mt_SSplus+mu*N_SS; 
  for (i=1:n_S) 
    matrix(i,:)=alpha_S(i)*matrix1(i,:)+beta_S(i)*matrix2(i,:); 
  end 
  sigma=matrix\f_S'; 
 
% calculate the solution on the boundary (often not necessary) 
  phi_S= (L_SS+mu*(M_SS-eye(n_S)/2))*sigma; 
  v_S=(Mt_SS+eye(n_S)/2+mu*N_SS)*sigma; 
 
% calculate L_DS, M_DS, the discrete form of the operators for the 
domain points 
% dummy values set to vecp_D, since it is not used 
  for (i=1:n_D) 
    vecp_D(i,1)=1; 
    vecp_D(i,2)=0; 
  end  
  [L_DS,M_DS,Mt_DS,N_DS] 
=lbem2(n_D,p_D,vecp_D,n_S,vertpts_S,elemvert_S,false,true,true,fal
se,false); 
 
% calculate the solution at the domain points 
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  phi_D=(L_DS+mu*M_DS)*sigma; 

 

 
 

 

 

 

Weighting parameter 

 

The value of the weighting parameter µ is arbitrary 

from the mathematical point of view. However, from the 

computational point of view, we need to avoid the 

equation becoming close to a first kind equation (that is 

if µ is small for the Dirichlet boundary condition) and 

we also want to avoid similar issues arising if we solve 

over something close to the N operator (that is if µ is 

large for the Neumann boundary condition). 

The “size” or norm of the relevant matrices must also 

be taken into account when choosing a value for µ. A 

reasonable choice would therefore seem to be to choose 

a value of µ that balances the relevant matrices and 

therefore the relative contribution from the two 

underlying formulations. Out of the four matrices in the 

boundary solution, only NSS has the property such that 

its norm is inversely proportional to the size of the 

panels; the norms of the other matrices stay 

approximately the same as the boundary panels become 

smaller. Hence in libem2 and libem2_indirect the 

underlying contributions from the two integral equations 

are balanced through applying the following values for 

µ: 

 

SS

SS
t

N

IM
2

1

  for the direct method and 

 

SS

SS

N

IM
2

1

 for the indirect method. 

 

X. TEST PROBLEM AND RESULTS 

Finally the direct and indirect boundary element 

methods are applied to a test problems and the results 

are observed. The test problem consists of a square with 

vertices (0,0), (0.1,0), (0.1, 0.1) and (0.1,0), as 

illustrated already in figure 4. The boundary condition is 

defined as illustrated in figure 5. A computational 

solution is sought at the points (0.025,0.025), 

(0.025,0.075), (0.075,0.075), (0.075,0.025) and 

(0.05,0.05), also illustrated in Figure 5.  

 

 

 

                                  v = 0    

 

 

 

 

   φ = 10                                                  φ = 20 

 

 

 

               

          v=0                   

 

Figure 5. Boundary conditions and points where the 

solution is sought. 

 

The exact solution to Laplace’s equation in the domain 

for the problem described in figures 4 and 5 is 

φ=10+100x, so at the two points on the left φ=12.5, at 

the point in the middle φ=15 and at the two points on the 

right φ=17.5. 

  The program for computing the solution using the 

direct method is listed. 

 

interiorsquaretest.m 

 
% function [phi_D,phi_S,v_S] = interiorsquaretest 
% Returns the solution phi_D, the solution at the domain points, phi_S 
and v_S, 
% the solution on the boundary. The boundary is defined internally by 
% calling 'square' and the points are defined by calling 'points'. 
function [phi_D,phi_S,v_S]= interiorsquaretest 
[vertpts,elemvert]=square 
% boundary condition 
a(1:8)=1; 
a(9:16)=0; 
a(17:24)=1; 
a(25:32)=0; 
b(1:8)=0; 
b(9:16)=1; 
b(17:24)=0; 
b(25:32)=1; 
F(1:8)=10; 
F(9:16)=0; 
F(17:24)=20; 
F(25:32)=0; 
 
% interior points 
points=[ 0.025, 0.025; 0.025, 0.075; 0.05, 0.05; 0.075, 0.025; 0.075, 
0.075]; 
 
% computer phi_D, phi at the interior points and phi_S,v_S, phi and v 
on the boundary 
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[phi_D, phi_S,v_S] =libem2(5,points,32,vertpts,elemvert,a,b,F); 

 

 

 

 

 

 

For the indirect method we have the following program. 

 

interiorsquaretest_indirect.m 

 
% function [phi_D,phi_S,v_S] = interiorsquaretest_indirect 
% Returns the solution phi_D, the solution at the domain points, phi_S 
and v_S, 
% the solution on the boundary. The boundary is defined internally by 
% calling 'square' and the points are defined by calling 'points'. 
function [phi_D,phi_S,v_S]= interiorsquaretest_indirect 
[vertpts,elemvert]=square 
% boundary condition 
a(1:8)=1; 
a(9:16)=0; 
a(17:24)=1; 
a(25:32)=0; 
b(1:8)=0; 
b(9:16)=1; 
b(17:24)=0; 
b(25:32)=1; 
F(1:8)=10; 
F(9:16)=0; 
F(17:24)=20; 
F(25:32)=0; 
 
% interior points 
points=[ 0.025, 0.025; 0.025, 0.075; 0.05, 0.05; 0.075, 0.025; 0.075, 
0.075]; 
 
% computer phi_D, phi at the interior points and phi_S,v_S, phi and v 
on the boundary 
[phi_D,phi_S,v_S] 

=libem2_indirect(5,points,32,vertpts,elemvert,a,b,F); 

 

 

 

The results from the two methods are given in table 1. 

 

TABLE I 

COMPUTED AND EXACT RESULTS FOR SQUARE 

point exact direct indirect 

(0.025,0.025

) 

12.5 12.4709 12.4891 

(0.025,0.075

) 

12.5 12.4709 12.4891 

(0.05,0.05) 15 15.0008 14.9939 

(0.075,0.025

) 

17.5 17.5306 17.4927 

(0.075,0.075

) 

17.5 17.5306 17.4927 
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