
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/238077046

A Gentle Introduction to the Boundary Element Method in Matlab/Freemat

Conference Paper · October 2008

CITATIONS

15
READS

14,607

2 authors:

Some of the authors of this publication are also working on these related projects:

The Boundary Element Method in Matlab View project

Modern Methods of Mathematics Education View project

Stephen Kirkup

University of Central Lancashire

684 PUBLICATIONS 612 CITATIONS

SEE PROFILE

Javad Yazdani

University of Central Lancashire

287 PUBLICATIONS 749 CITATIONS

SEE PROFILE

All content following this page was uploaded by Stephen Kirkup on 14 April 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/238077046_A_Gentle_Introduction_to_the_Boundary_Element_Method_in_MatlabFreemat?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/238077046_A_Gentle_Introduction_to_the_Boundary_Element_Method_in_MatlabFreemat?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Boundary-Element-Method-in-Matlab?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Modern-Methods-of-Mathematics-Education?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Kirkup?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Kirkup?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Central_Lancashire?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Kirkup?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Javad-Yazdani-2?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Javad-Yazdani-2?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Central_Lancashire?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Javad-Yazdani-2?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephen-Kirkup?enrichId=rgreq-d1febc76e9ea39c9be47b8352c3a5a5d-XXX&enrichSource=Y292ZXJQYWdlOzIzODA3NzA0NjtBUzo5NzMwOTMwODIyNzU5NEAxNDAwMjExNzU1Njky&el=1_x_10&_esc=publicationCoverPdf

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 1

Abstract—The Boundary Element Method is developed

in its most simple form; for the solution of Laplace’s

equation in an interior domain with a straight line

approximation to the boundary. The direct and indirect

approaches to the boundary element method are

included. The methods are developed in Freemat, a

language similar to Matlab.

 The codes for the solution of Laplace’s equation in a

general domain with a general (Robin) boundary

condition are developed. The codes are applied to a

typical test problem. The codes are made available as

open source (BEMLAP-MAT package) and can be

downloaded from this paper or from the websites listed

below
2
. The overall package is expected to become a

teaching aid in the MSc course
3
 that is presently being

developed by the authors.

I. INTRODUCTION

The boundary element method (BEM) is an important

computational analysis technique that engineers and

scientists can apply to a range of problems There are a

number of textbooks on the BEM
1,2

. The purpose of this

article and the accompanying software is to meet the

needs of scientists and engineers who are somewhat

unfamiliar with the BEM, but have an understanding of

numerical methods and computer programming, or

would like to apply the BEM to appropriate engineering

problems with minimal fuss.

The application of the boundary element method to an

appropriate scientific or engineering problem essentially

requires a mesh of the boundary of the domain only, and

the determination of the boundary condition on the

surface. The computational solution then yields the

approximate solution at selected points in the domain.

1School of Science and Technology, East Lancashire Institute of Higher

Education, Blackburn College UK.
2 www.east-lancashire-research.org.uk
2www.kirkup.info/opensource
3www.elihe.ac.uk

The BEM is generally more efficient to apply and

execute than competing methods, such as the finite

element or finite difference methods. Hence the

application of the BEM presents an attractive option to

scientists and engineers. The authors are developing an

MSc and this package is expected to act as a teaching

aid on one of the modules in that course

On the other hand the underlying mathematical

derivation and numerical analysis is extremely involved.

Unfortunately, most textbooks on the BEM concentrate

on the mathematics underlying the BEM, considering

the ranges of integral equation formulation, ranges of

element types, ranges of method derivation. In this

article the elegance of the solution method is not lost in

a mass of mathematical derivation and analysis. A

simple notation is used to assist in the understanding of

the development of the BEM.

In this work, the so-called direct and indirect

boundary element methods for the solution of the

interior Laplace equation are developed. Laplace’s

equation is the most straightforward problem to which

the BEM can be applied. Laplace’s equation also models

a number of physical phenomena, such as steady state

heat conduction and electrostatics. There is substantial

recent research on the application of the BEM to

Laplace’s equation
3-10

.

Over recent decades, Matlab
11

 has become an

increasingly important language for scientific

computation. Freemat
12

 is a freely available alternative

compiler for Matlab. All codes are developed in

Freemat, but they can be also used in the Matlab

environment. Matlab/Freemat is based on Matrix

arithmetic, allowing an economy of coding and naturally

allows parallel processing, if it is available.

II. THE BOUNDARY ELEMENT METHOD

Over recent decades, the boundary element method

(BEM) has received much attention from researchers

and has become an important technique in the

computational solution of a number of physical

Stephen Kirkup
1
 and Javad Yazdani

1

A Gentle Introduction to the Boundary Element

Method in Matlab/Freemat

http://www.east-lancashire-research.org.uk/
http://www.kirkup.info/opensource
http://www.elihe.ac.uk/

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 2

problems and has therefore become a widely-used

technique in engineering analysis. In common with the

better-known finite element method (FEM) and finite

difference method (FDM), the boundary element method

is essentially a method for solving partial differential

equations (PDEs) and can only be employed when the

physical problem can be expressed as such. As with the

other methods mentioned, the boundary element method

is a numerical method and hence it is an important

subject of research amongst the numerical analysis

community. However, the potential advantages of the

BEM have seemed so considerable that the strongest

impetus behind its development has come from the

engineering community, in its enthusiasm to obtain

flexible and efficient computer-based solutions to a

range of engineering problems. The boundary element

method has found application in such diverse topics as

stress analysis, potential flow, electromagnetics, fracture

mechanics and acoustics.

The boundary element method is derived through the

discretisation of an integral equation that is

mathematically equivalent to the original partial

differential equation. The essential re-formulation of the

PDE that underlies the BEM consists of an integral

equation that is defined on the boundary of the domain

and an integral that relates the boundary solution to the

solution at points in the domain. The former is termed a

boundary integral equation (BIE) and the BEM is often

referred to as the boundary integral equation method or

boundary integral method. Over the last four decades

the term boundary element method has become more

popular. The other terms are still used in the literature

however, particularly when authors wish to refer to the

overall derivation and analysis of the methods, rather

than their implementation or application.

An integral equation re-formulation can only be

derived for certain classes of PDE. Hence the BEM is

not widely applicable when compared to the near-

universal adaptability of the finite element and finite

difference method. However, in the cases in which the

boundary element method is applicable, it often results

in a numerical method that is easier to use and more

computationally efficient than the competing methods.

The advantages in the boundary element method arise

from the fact that only the boundary (or boundaries) of

the domain of the PDE requires sub-division. (In the

finite element method or finite difference method the

whole domain of the PDE requires discretisation.) Thus

the dimension of the problem is effectively reduced by

one. For example an equation governing a three-

dimensional region is transformed into one over its

surface.

In cases where the domain is exterior to the boundary,

as it is in potential flow past an obstacle, or the

electrostatic field produced by charged surfaces in the

open, the extent of the domain is infinite and hence the

advantages of the BEM are even more striking; the

equation governing the infinite domain is reduced to an

equation over the (finite) boundary.

It is through the subdivision or meshing of the

boundary into panels of some standard shape, and the

approximation of functions on the boundary by low

degree polynomials that the integral equations are

converted into matrix-vector form. The solution of the

discrete form of the integral equation leads to the

approximate determination of the otherwise unknown

boundary functions. Following this, the solution at any

point in the domain can be found through numerical

integration over the boundary.

Returning to the comparison with the FEM, the

dimensions of the matrices in the BEM are expected to

be much smaller for the given expectation of accuracy,

since the BEM requires a mesh of the surface only,

whereas the FEM requires a mesh of the full domain; for

a given problem the FEM needs more elements.

However the matrices that arise in the FEM are sparse

and structured, making them amenable to special

methods of solution, whereas the matrices that arise in

the BEM are dense and have no particular apparent

structure.

Apart from using the simplest governing equation, we

are also considering only the simplest dimensional

space- 2D. We also use the simplest elements; flat

(straight line) panels with the surface functions

approximated by a constant on each panel. An empirical

analysis of the boundary element method with respect to

Laplace’s equation is given in the first author’s previous

work
13

.

III. THE INTERIOR LAPLACE EQUATION

The Laplace equation is the simplest elliptic partial

differential equation. It is one of the equations of

potential theory and they have been received extensive

mathematical analysis. It also serves as model elliptic

equations for learning, implementing and testing

numerical methods. In this article we are using the

Laplace equation in order to motivate our understanding

of the properties and practice of the boundary element

method.

The boundary element method in this paper is

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 3

developed to solve the two-dimensional Laplace

Equation

0
)()(

2

2

2

2

yx

pp
)(Dp

or in the shorthand form:

02
p)(Dp (1)

in an interior domain D, with an enclosing boundary S,

as illustrated in figure 1.

Fig 1. Illustration of the domain.

A boundary condition is determined on S. For this work

we assume that the boundary condition is of the

following general Robin or mixed form

)()()()()(ppppp f
n

ba
p

)(Sp , (2)

where)(pa ,)(pb and)(pf are real-valued functions

defined on S only and pn is the unit outward normal to

the boundary at p (assumed to be unique). The general

boundary condition includes the Dirichlet (essential)

boundary condition (0)(,1)(pp ba) and Neumann

(derivative) boundary condition (1)(,0)(pp ba).

Together, the governing partial differential equation

within a domain (eg (1)) and the boundary condition (2)

is called a boundary value problem (BVP). The solution

to such a problem is principally the determination of φ

(at points) in the domain D, whether by analytic or

numerical methods.

IV. INTEGRAL EQUATION REFORMULATION

The first stage in the development of a boundary

element method from a boundary value problem (like

(1)-(2)) is to rewrite the partial differential equation as

an integral equation. Traditionally, there have been two

ways of doing this; the direct method and the indirect

method. In this section we will go through the stages for

developing the integral equation formulations..

Green’s function

In order to do this it is useful to introduce an influence

function; a function that determines the effect at a point

q of a unit source at a point p, this function is also often

known as a Green’s function. For the two-dimensional

Laplace equation (1), the Green’s function is known to

be

|)ln(|
2

1
),(qpqpG . (3)

The Green’s function has the property

)(2
qpqpG

where δ is the Dirac delta function.

Laplace Integral Operators

As a further set of building blocks, it is also useful to

define the set of Laplace integral operators:

qdSGL)(),()(}{ qqpp (4a),

q

q

dS
n

G
M)(

),(
)(}{ q

qp
p (4b),

q

q

t

dS
w

G

dSG
w

M

)(
),(

)(),();(}{

q
qp

qqpwp

(4c)

q

q

dS
n

G

w
N)(

),(
);(}{ q

qp
wp

(4d)

where Γ is the whole or any part of S, ζ is any real-

valued function, defined on Γ.

When pєΓ, then we have the more particular form of

M
t
 and N:

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 4

q

p

q

p

p

t

dS
n

G

dSG
n

M

)(
),(

)(),();(}{

q
qp

qqpnp

(4e)

q

qp

p dS
n

G

n
N)(

),(
);(}{ q

qp
np

(4f)

Note that the derivative
pn

cannot always be taken

directly inside the integral in (4f), if we did then the

integral can be hypersingular, and therefore not defined

in the normal sense, when q=p. N is therefore not a true

integral operator, but belongs to the more general class

of pseudo-differential operators. For convenience, we

will continue to refer to L,M,M
t
and N as integral

operators, but we will also keep the special case on N in

mind.

Applying L and N to any function ζ, any boundary Γ

and any vector np gives rise to a continuous function in

space. However the operators M and M
t
 have jump

discontinuities at the boundary:

)(}{)(
2

1
)(}{lim 0 ppnp MM p

(5a)

);(}{

)(
2

1
);(}{lim 0

p

t

pp

t

M

M

np

pnnp

(5b)

where pεΓ and Γ is smooth at p.

Direct Method

The following equation arises as a result of Green’s

second theorem

)()(}{)(}{ ppp SS LvM (pεD). (6a)

where
pn

v
)(p

. For points on S we apply the limit

(5a) in equation (6a):

)(
2

1
)(}{)(}{ ppp SS LvM (pεS). (6b)

Given these equations, the method of solution would

involve solving (6b) with the boundary condition (2) in

order to find approximations to φ and v on the boundary

and then use equation (6a) to compute φ at any chosen

points in the domain.

However, there is one notable case when this method

will not work as well. In the case of a pure Dirichlet

boundary condition, (6a) is effectively a Fredholm

integral equation of the first kind. It is well known that

the numerical solution of first kind equations is not as

efficient as it is for the equivalent second kind equation

(which equation (6b) would otherwise be) [14].

We can easily introduce another equation, using the

Laplace integral operators, that will be useful to us.

Differentiating equation (6a) with respect to a vector w,

gives:

)();(}{);(}{ pwpwp
w

vMN S

t

S (pεD).

(7a)

For points p near the boundary, with np being the unique

unit outward normal at p, then (7a) becomes

)();(}{);(}{ pnpnp
p

pS

t

pS
n

vMN (pεD)

(7b)

Moving the point p to the surface and applying the

limit (5b) gives rise to the following equation on the

surface:

)(
2

1
);(}{);(}{ pnpnp vvMN pS

t

pS

(8)

One disadvantage in using equation (8) as a basis for

solving the Laplace equation, is that it now contains the

hypersingular operator N. The other disadvantage is that

if we wish to solve the Neumann problem using

equation (8) then we have to solve over the operator N,

which leads to a similar loss of efficiency that is found

in solving first kind equations.

In order to avoid the problems with the Dirichlet

problem with equation (6b) and the Neumann problem

with equation (8), a hybrid equation is proposed:

)())}
2

1
({()()}

2

1
{(pp vIMLNIM t

.

(9)

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 5

For suitable weighting parameter μ, equation (9) forms a

suitable basis for solving the Robin BVP and the special

cases of the Dirichlet and Neumann BVPs.

Once approximations to φ and v are found on the

boundary from equation (8) with the boundary condition

(2), we can use equation (6a) to determine and

approximation to φ for any point (p) in the domain.

Indirect Method

The alternative or indirect approach to obtaining an

integral reformulation of the PDE involves writing the

solution φ as a layer potential. The most obvious way of

doing this is to write

)(}{)(pp SL (pεDUS)

(10a)

where ζ is a density function defined on S.

It is possible to solve the Dirichlet problem from

equation (10a). This would normally involve finding ζ

on S by solving the integral equation (10a). However,

the same equation cannot be used for the Neumann

problem and, what is more, it requires solution to be

carried out over the first kind operator L.

By differentiating the equation (10a) with respect to

any vector w, we obtain

);}({)}({)(wppp
tML

ww
 (pεD)

(10b)

As p approaches the boundary and we take w=np. and

on the boundary equation (10b) becomes

)(
2

1
);}({

)}({)()(

pnp

ppp

p

t

pp

M

L
n

v
n

 (pεS)

(10c)

where the jump discontinuity (5b) has been included.

Equation (10c) relates v on S to ζ. Hence equation

(10c) can be used as a basis for solving the Neumann

problem. It is a second kind equation and so it is very

suitable as a basis for solution.

We do not have a more general solution method. To do

this let us introduce a hybrid single- and double-layer

potential:

)}({)}({ pp ML (pεD)

(11a)

where ζμ is a density function that depends on the choice

of μ.

By allowing the point p approach the boundary S,

equation (11a) becomes:

)(
2

)}({)}({ ppp ML . (pεS)

(11b)

For μ≠0 equation (11b) is a suitable equation to solve

the Dirichlet problem since it is always a second-kind

integral equation. However, for the Neumann and more

general Robin problem it is useful to introduce another

equation that is the outcome of differentiating equation

(11a), firstly with respect to any vector w:

)}({)}({)(ppp M
w

L
ww

 .

(pεD)

(11c)

Allowing p to approach the boundary and w becomes

the unit outward normal to the boundary there gives the

following equations:

)(
2

)}({)}({)(

p

ppp M
n

L
nn ppp

 .

(pεS)

(11d)

Using the operator notation, this give

)(
2

)}({)}({)(pppp NMv t
 . (pεS)

(11e)

Substituting the expressions for φ and v in equation

(11a) and (11b) into the general Robin boundary

condition (2) gives the following boundary integral

equation:

)()()})
2

1
((

))
2

1
(({

pp fNIM

IML

t

(11e)

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 6

Equation (11e) is most suitable for the solution of the

classes of boundary conditions considered.

The indirect boundary element method involves

solving (11e) to return an approximation to ζμ on the

boundary. Equation (11a) can then be employed to

compute an approximation to φ in the domain D.

V. THE DISCRETE OPERATORS

There is a variety of techniques for deriving the system

of linear equations from a given integral equation. In

general, a method can be derived by replacing the

integrals in an integral equation by a quadrature formula

or by a weighted residual method such as the Galerkin

method. Many methods for solving integral equations

can be used to develop a particular boundary element

method [15]. Of all the methods the method of

collocation is one of the most straightforward and most

popular and it is the one that we will be using in this

paper.

Collocation

The application of collocation to a boundary integral

equation requires that the boundary is represented by a

set of panels. For example a two dimensional boundary

can be approximated by a set of straight lines, as

illustrated in figure 2.

Fig 2. Illustration of the boundary divided into panels.

In order to complete the discretisation of the integral

equations, the boundary functions also need to be

approximated on each panel. It is the characteristics of

the panel and the representation of the boundary

function on the panel that together define the element in

the boundary element method. By representing the

boundary functions by a characteristic form on each

panel, the boundary integral equations can be simplified

into a linear system of equations. Most simply, the

boundary functions can be approximated by a constant

on each panel. The collocation (or representative) point

is at the centre of the panel (C
-1

collocation). The overall

process is that of discretising the integral operators and

the methods for carrying this out are covered in (for the

more general Helmholtz equation) [16].

Let the ΔSj (for j = 1, 2, .., n) be the n panels that

represent an approximation to S in the boundary element

method. We may write
n

j

jSSS
1

~
.

(12)

Following from equation (4a), we may write:

)(}{

),()(),(

)(),()(),()(}{

1

1 ~1 ~

~

p

qpqqp

qqpqqpp

j

j

S

n

j

j

n

j S

qj

n

j S

q

S

qq

S

S

Le

dSGdSG

dSGdSGL

(13a)

where in the final expression we have made the

approximation j)(q (a constant) on the j
th
 panel

and e is the unit function. A similar discretisation can be

applied to the other integral operators:

)(}{)(}{
1

pp
jS

n

j

jS MeM

 (13b)

)(}{)(}{
1

pp
jS

t
n

j

jS

t eMM ,

(13c)

and

)(}{)(}{
1

pp
jS

n

j

jS NeN .

(13d)

For any point p,)(}{ p
jSLe ,)(}{ p

jSMe ,

)(}{ p
jS

teM and)(}{ p
jSNe are termed the discrete

Laplace integral operators.

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 7

Simplifying the integrands

Writing G(p,q) as G(r) where r=|r| and r=q-p, the

Green’s function (3) can be written as follows:

)ln(
2

1
)(rrG .

(14)

The derivatives of G with respect to r:

r
rG

r

1

2

1
)(,

(15)

and

22

2 1

2

1
)(

r
rG

r
.

(16)

The normal derivatives of G:

qq n

r

r

G

n

G
,

(17)

pp n

r

r

G

n

G
,

(18)

and

)(
2

222

qpqpqp n

r

n

r

r

G

nn

r

r

G

nn

G
 .

(19)

The normal derivatives of r:

rn

r q

q

nr.
,

(20)

rn

r p

p

nr.
,

(21)

and

).(
12

qp

qp

qp n

r

n

r

rnn

r
nn .

(22)

Evaluating the integrals

In most cases of evaluating the discrete integrals in

(13a-d), the integrand is continuous and can be

approximated most efficiently by Gaussian quadrature.

For the case in which p lies on the element of

integration, the integral can be evaluated by a simple

formulae. Let the element Δ have length a+b with the

point p lying a distance a from one end and a distance b

from the other, as illustrated in the figure 3.

 a b

 p

Figure 3. A general element with the collocation point

p lying on the element.

In the case illustrated in figure 3 we can derive the

following expressions:

)loglog(
2

1
)(}{ bbaabaLe p

(23a)

0)(}{ pMe

(23b)

0)(}{ peM t

(23c)

)
11

(
2

1
)(}{

ba
Ne p

(23d)

VI. PARALLEL METHODS FOR APPROXIMATING THE

DISCRETE LAPLACE OPERATORS

We develop a potentially parallel method by avoiding

loops and using the in-built matrix/vector operations in

Matlab or Freemat. By doing this we are effectively

making each loop independent and therefore can be

carried out in parallel.

Firstly, we need to set up a general purpose Gaussian

quadrature rule (Gauss-Legendre). The routine gl.m sets

up an 8 point rule for integration over the interval [0,1].

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 8

gl.m
 % function [wts,pts,n]=gl()

% Sets up a Gauss-Legendre Quadrature
% for integration over [0,1]
% with n=8 weights (wts) and points (pts)

 function [wts,pts,n]=gl()
 n=8;
 wts= [5.061426814519E-02
 0.111190517227
 0.156853322939
 0.181341891689
 0.181341891689
 0.156853322939
 0.111190517227
 5.061426814519E-02];
 pts= [1.985507175123E-02
 0.101666761293
 0.237233795042
 0.408282678752
 0.591717321248
 0.762766204958
 0.898333238707
 0.980144928249];

As a most useful building block, it would be helpful to

have a routine for evaluating the four Laplace integral

operators, That is for any point p, we wish to

compute)(}{ p
jSLe ,)(}{ p

jSMe ,)(}{ p
jS

teM and

)(}{ p
jSNe . Given that many of the intermediate steps

for computing the operators are similar, it is more

efficient to compute them simultaneously. The operators

needed depend on the formulation used hence the

routine has the facility for setting the required operators.

The routine for doing this is l2lc.m. The method

follows the formulas given in section V. Given the

routine will be called many times, its efficiency is one of

the critical factors in the efficiency of the overall

boundary element method. In l2lc.m, loops are avoided

completely (replaced by vector operations) so that any

available parallelism can be taken advantage of.

l2lc.m

% function
[l,m,mt,n]=l2lc(p,vecp,qa,qb,lponq,needl,needm,needmt,needn)
% Returns the discrete Laplace operators for the observation point p,
% the derivatve at the observation point (if applicable) vecp, the
% coordinates of the edges of the element qa and qb, lponq states
whether
% p lies on the element (true) or not (false), and
needl,needm,needmt,needn
% state whether the discrete operators l,m,mt and n are needed (if
any
% operator is not needed then a corresponding zero is returned.

function [l,m,mt,n]=
l2lc(p,vecp,qa,qb,lponq,needl,needm,needmt,needn)

 oo2pi=0.5/pi;

 qbma=qb-qa;
 qlen=norm(qbma);
 pmqa=p-qa;
 pmqb=p-qb;
 normq(1)=-qbma(2)/qlen;
 normq(2)=qbma(1)/qlen;
 pqalen=norm(pmqa);
 pqblen=norm(pmqb);
 dnpdq=vecp*normq';

 l=0;
 m=0;
 mt=0;
 n=0;

 if (lponq)
 l=(qlen-(pqalen*log(pqalen)+pqblen*log(pqblen)))*oo2pi;
 m=0;
 mt=0;
 n=-(1/pqalen+1/pqblen)*oo2pi;
 continue
 else

 [w,x,npoints]=gl();

 onesnp=ones(1,npoints);

 delta=qbma'*x;

 qasame=[qa(1).*onesnp; qa(2).*onesnp];
 psame=[p(1)*onesnp; p(2)*onesnp];

 q=qasame+delta;
 rr=psame-q;
 srr=rr.^2;

 srr1=srr(1,1:npoints);
 srr2=srr(2,1:npoints);
 sr=srr1+srr2;
 r=sqrt(sr);

 if (needl)
 g=-oo2pi*log(r);
 l=qlen*(w*g');
 end

 if (needm|needmt|needn)
 rnqr=-normq*rr;
 rnq=rnqr./r;
 rnpr=vecp*rr;
 rnp=rnpr./r;
 gr=-oo2pi/r;
 wgr=(w.*gr);
 end

 if (needm)
 m=qlen*(wgr*rnq');
 end

 if (needmt)
 mt=qlen*(wgr*rnp');
 end

 if (needn)
 rnprnq=rnp.*rnq;
 dnpnq=vecp*normq';
 dnpnqsame=dnpnq*onesnp;
 rnpnq=-(dnpnqsame+rnprnq)./r;
 grr=oo2pi/sr;
 wgrr=w.*grr;
 n=qlen*(wgr*rnpnq'+wgrr*rnprnq');
 end

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 9

 __

VII. DEFINING THE BOUNDARY

A method is required for defining the boundary as a set

of panels. The easiest way of showing how this may be

done is by example. Figure 4 shows a square of

dimension 0.1 divided into 32 panels.

Figure 4. A square divided into 32 panels.

The description in the following Matlab/Freemat code

(square.m) involves listing the coordinates of the

vertices of the panels in vertpts and lists the indices of

the edges of each element in elemvert.

square.m

% function [vertpts,elemvert]=square
% Returns a list of edges of the panels that make up the square
% in vertpts and the list of elements that make up the boundary
% are defined by the indices of the two vertices in elemvert.
% Note that the vertices of each element in elemvert must be
% defined in the clockwise direction.

function [vertpts,elemvert]=square

 vertpts=[0.00000000000 0.00000000000;
 0.00000000000 0.01250000000;
 0.00000000000 0.02500000000;
 0.00000000000 0.03750000000;
 0.00000000000 0.05000000000;
 0.00000000000 0.06250000000;
 0.00000000000 0.07500000000;
 0.00000000000 0.08750000000;

 0.00000000000 0.10000000000;
 0.01250000000 0.10000000000;
 0.02500000000 0.10000000000;
 0.03750000000 0.10000000000;
 0.05000000000 0.10000000000;
 0.06250000000 0.10000000000;
 0.07500000000 0.10000000000;
 0.08750000000 0.10000000000;

 0.10000000000 0.10000000000;
 0.10000000000 0.08750000000;

 0.10000000000 0.07500000000;
 0.10000000000 0.06250000000;
 0.10000000000 0.05000000000;
 0.10000000000 0.03750000000;
 0.10000000000 0.02500000000;
 0.10000000000 0.01250000000;

 0.10000000000 0.00000000000;
 0.08750000000 0.00000000000;
 0.07500000000 0.00000000000;
 0.06250000000 0.00000000000;
 0.05000000000 0.00000000000;
 0.03750000000 0.00000000000;
 0.02500000000 0.00000000000;
 0.01250000000 0.00000000000];

 elemvert=[1:32; 2:33]
 elemvert(2,32)=1

VIII. MATRICES IN THE BOUNDARY ELEMENT

METHOD

The boundary element method is derived by applying

an integral equation method to the appropriate boundary

integral equation. The most straightforward method to

apply is that of collocation.

The initial development of the application of

collocation to give expressions for the discrete Laplace

operators is given in Section V. To continue the

development, approximations to the (unknown)

boundary functions – whether that be φ and/or v in the

direct method, or ζ in the indirect method – are obtained

by replacing the boundary integral equation by a matrix-

vector equation and then solving it. Approximations to φ

in the domain can then be found by direct integration.

In the collocation method, the general point p in the

boundary integral equation (e.g. equations (9) for the

direct method or equation (11e) for the indirect method),

takes the value of every central point on each panel; the

collocation points: p=pS1, pS2,…, pSn.

For illustration, let us apply the collocation method to

boundary integral equation (10a) (for pεS):

)(}{)(pp SL (pεS)

(24)

Following the development in equation (13a), the

following discrete form of equation (24) is obtained:

)(}{)(}{)(
1

ppp
jS

n

j

jS LeL .

Allowing p to take the value of pSi, a collocation points

gives the following:

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 10

)(}{)(}{)(
1

iSS

n

j

jiSSSi j
LeL ppp .

Let us now introduce the notation:

)(
iSiS p ,)(

iSiS vv p ,)(
iSiS p ,

nS

S

S

S

:

:

2

1

,

nS

S

S

S

v

v

v

v

:

:

2

1

,

Sn

S

S

S

:

:

2

1

,

)(}{][
iSSijSS j

Le pL ,

)(}{][
iSSijSS j

Me pM ,

)(}{][
iSS

t

ijSS
j

eM pM
t

,

)(}{][
iSSijSS j

Ne pN ,

Returning to the integral equation (24): by applying the

collocation method it is then replaced by the following

equation:

SSSS
L ,

Which can be solved for the Dirichlet case to return an

approximation to ζ on S. (Although basing the BEM on

this first kind equation is not advised; this is meant to be

purely illustrative.)

Usually, the objective is to find the solution φ in the

domain. Returning to our illustrative boundary integral

equation (10a) (for pεD):

)(}{)(pp SL (pεD)

(25)

For points p in the domain, we can approximate φ(p) as

before

)(}{)(}{)(
1

ppp
jS

n

j

jS LeL ,

except in its application, an approximation to ζ (the

values of the ζi) has been obtained.

Let the solution be sought at the m domain points p =

pD1, pD2, …., pDm

)(}{)(}{)(
1

iDS

n

j

jiDSDi j
LeL ppp .

Let us now introduce the notation:

)(DiiD p ,)(
iDiD vv p ,)(

iDiD p ,

mD

D

D

D

:

:

2

1

,

nD

D

D

D

v

v

v

v

:

:

2

1

,

)(}{][
iDSijDS j

Le pL ,

)(}{][
iDSijDS j

Me pM ,

)(}{][
iDS

t

ijDS
j

eM pM
t

,

)(}{][
iDSijDS j

Ne pN .

Returning back to the example integral equation (24),

using this notation, approximations to the solution at

the domain points can be determined by the following

matrix-vector multiplication:

SDSD
L .

It can be observed that there is a general case in

evaluating the required matrices; it is given a set of

points and a description of the boundary, a method for

evaluating the matrix components is required. The

routine for doing this is lbem2.m.

lbem2.m
% function [L,M,Mt,N] = lbem2(m,p,vecp,n,vertpts,elemvert,p_on,
needL,needM,needMt,needN)
% Sets up the matrices required in the boundary element method
% for m (observation) points p with a vector (derivative) direction of
% vecp at the points p. The boundary is made up of n elements;
vertpts lists the coordinates
% of the edges of the elements and elemvert lists the pairs of vertices
% that define each element. p_on idicates whether the point p(i) lies
on the ith panel.
% needL,needM,needMt,needN indicate which matrices are needed
by being set to true.

function [L,M,Mt,N] =lbem2(m,p,vecp,n,vertpts,elemvert,p_on,
needL,needM,needMt,needN)

 [qa,qb]=vertices(n,vertpts,elemvert);

 for (i=1:n)
 for (j=1:n)

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 11

[L(i,j),M(i,j),Mt(i,j),N(i,j)]=l2lc(p(i,:),vecp(i,:),qa(j,:),qb(j,:),p_on&i==j,nee
dL,needM,needMt,needN);
 end
 end

Drawn from this general case is the special case in

which the points lie at the centres of the elements that

define the boundary. This special case is implemented

by the routine lbem2_on.m.

lbem2_on.m

% function [L,M,Mt,N]
=lbem2(n,vertpts,elemvert,p_on,needL,needM,needMt,needN)
% Sets up the matrices required in the boundary element method
% for a boundary made up of n elements. vertpts lists the coordinates
% of the edges of the elements and elemvert lists the pairs of vertices
% that define each element.needL,needM,needMt,needN indicate
which matrices
% are needed by being set to true.

function [L,M,Mt,N] =lbem2_on(n,vertpts,elemvert,
needL,needM,needMt,needN)

 [qa,qb]=vertices(n,vertpts,elemvert);

 p=(qa+qb)/2;

 qbma=qb-qa;

 for(i=1:n)
 qlen(i)=norm(qbma(i,:));
 end

 for (i=1:n)
 normp(i,1)=-qbma(i,2)/qlen(i);
 normp(i,2)=qbma(i,1)/qlen(i);
 end

 [L,M,Mt,N]=lbem2(n,p,normp,n,vertpts,elemvert,true,
needL,needM,needMt,needN)

IX. BOUNDARY ELEMENT METHOD

Having, developed all the building blocks we may now

complete the coding for the boundary element methods.

In section IV, two classes of boundary integral equation

were introduced and these lead to two classes of

boundary element method; the direct method and the

indirect method.

Direct Method

For the chosen integral equation (9), the discrete

analogue for collocation points on S is as follows:

[MSS+½I+µNSS] φS = [LSS+µ(M
t
SS-½I)] vS

(25)

with the general Robin boundary condition

iiiii fv for i=1..n .

(26)

The solution of this kind of system is not a standard

utility in Matlab/Freemat. Hence we introduce the

routing gls.m that carries out row operations to rewrite

a system like the above as a standard linear system and

then solve by the inbuilt Matlab/Freemat matrix-vector

solution method.

gls.m

% gls returns the solution x,y to a problem of the form
% A x = B y +c
% where A and B are n by n real matrices and c is a n-vector
% under the condition(s)
%
% {\alpha}_i x_i + {\beta}_i y_i = f_i for i=1..n.
%
% Clearly only one of {\alpha}_i or {\beta}_i can be zero for each i.
%
% The method employed involves forming a linear system of the form
Cz=d
% where the n by n matrix C and the vector d can be determined from
A,B
% and the {\alpha}_i and {\beta}_i. A standard LU factorisation
% solution method is then employed to return a solution. From this the
actual
% solutions x,y can be determined.

function [x,y]=gls(A,B,c,n,alpha,beta,F)
 gamma=norm(B,inf)/norm(A,inf);
 test=abs(beta)>abs(gamma*alpha);

 for (i=1:n)
 if (test(i))
 Fob=F(i)/beta(i);
 aob=alpha(i)/beta(i);
 for (j=1:n)
 c(j)=c(j)+Fob*B(j,i);
 B(j,i)=-aob*B(j,i);
 end
 else
 Foa=F(i)/alpha(i);
 boa=beta(i)/alpha(i);
 for (j=1:n)
 c(j)=c(j)-Foa*A(j,i);
 A(j,i)=-boa*A(j,i);
 end
 end
 end

 A=A-B;
 y=A\c;

 for (i=1:n)
 if (test(i))
 x(i)=(F(i)-alpha(i)*y(i))/beta(i);
 else
 x(i)=(F(i)-beta(i)*y(i))/alpha(i);
 end
 end

 for (i=1:n)
 if (test(i))

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 12

 temp=x(i);
 x(i)=y(i);
 y(i)=temp;
 end
 end
 x=x';

Once the solution on the boundary is found to (25),

(26), the solution at any domain point can be found

through integrating over the boundary using equation

(6a).

Matlab/Freemat routine libem2.m returns the solution

in the domain and on the boundary using the direct

method.

libem2.m

% function [phi_D,phi_S,v_S] =
libem2(n_D,p_D,n_S,vertpts_S,elemvert_S,alpha_S,beta_S,f_S)
% Returns the solution phi_D at the n_D domain points p_D and at the
collocation points.
% The boundary is made up of n elements; vertpts lists the
coordinates
% of the edges of the elements and elemvert lists the pairs of vertices
% that define each element. alpha_S, beta_S and f_S determine the
Robin boundary condition.

function [phi_D,phi_S,v_S]
=libem2(n_D,p_D,n_S,vertpts_S,elemvert_S,alpha_S,beta_S,f_S)

% calculate phi_S, v_S, phi and v on the boundary
% calculate L_SS, M_SS, Mt_SS and N_SS, the discrete form of the
operators for the collocation points
 [L_SS,M_SS,Mt_SS,N_SS]
=lbem2_on(n_S,vertpts_S,elemvert_S,true,true,true,true);
 M_SSplus=M_SS+eye(n_S)/2;
 Mt_SSminus=Mt_SS-eye(n_S)/2;
 mu=norm(M_SSplus)/norm(N_SS);
 for (i=1:n_S)
 zero_S(i)=0.0;
 end
 [phi_S,v_S]=
 gls(M_SSplus+mu*N_SS,L_SS+mu*Mt_SSminus,zero_S,n_S,
alpha_S,beta_S,f_S);

% calculate phi_S, v_S, phi and v on the boundary
% calculate L_DS, M_DS, the discrete form of the operators for the
domain points
% dummy values set to vecp_D, since it is not used
 for (i=1:n_D)
 vecp_D(i,1)=1;
 vecp_D(i,2)=0;
 end
 [L_DS,M_DS,Mt_DS,N_DS]
=lbem2(n_D,p_D,vecp_D,n_S,vertpts_S,elemvert_S,false,true,true,fal
se,false);

 phi_D=L_DS*v_S-M_DS*phi_S;

Indirect Method

For the chosen integral equation (11e), the discrete

analogue for collocation points on S is as follows:

{(LSS+µ(MSS-½I))Dα+((M
t
SS+½I)+µNSS)Dβ}ζµ=f

(27)

where the general Robin boundary condition is included

such that Dα and Dβ are diagonal matrices with

diagonal components αi and βi respectively.

 The solution of equation (27) gives ζµ, the discrete

equivalent of the layer potential ζµ on the boundary. The

solution in the domain and on the boundary can then be

found by direct integration using equations (11a) and

(11b). The Matlab/Freemat routine libem2_indirect.m

carries out the same function as libem2, but uses the

direct method.

libem2_indirect.m

% function [phi_D,phi_S,v_S] =
libem2_indirect(n_D,p_D,n_S,vertpts_S,elemvert_S,alpha_S,beta_S,f
_S)
% Returns the solution phi_D at the n_D domain points p_D and at the
collocation points.
% The boundary is made up of n elements; vertpts lists the
coordinates
% of the edges of the elements and elemvert lists the pairs of vertices
% that define each element. alpha_S, beta_S and f_S determine the
Robin boundary condition.

function [phi_D,phi_S,v_S]
=libem2_indirect(n_D,p_D,n_S,vertpts_S,elemvert_S,alpha_S,beta_S,
f_S)

% calculate the boundary density function sigma
% calculate L_SS, M_SS, Mt_SS and N_SS, the discrete form of the
operators for the collocation points
 [L_SS,M_SS,Mt_SS,N_SS]
=lbem2_on(n_S,vertpts_S,elemvert_S,true,true,true,true);
 Mt_SSplus=Mt_SS+eye(n_S)/2;
 M_SSminus=M_SS-eye(n_S)/2;
 mu=norm(Mt_SSplus)/norm(N_SS);
 matrix1=L_SS+mu*M_SSminus;
 matrix2=Mt_SSplus+mu*N_SS;
 for (i=1:n_S)
 matrix(i,:)=alpha_S(i)*matrix1(i,:)+beta_S(i)*matrix2(i,:);
 end
 sigma=matrix\f_S';

% calculate the solution on the boundary (often not necessary)
 phi_S= (L_SS+mu*(M_SS-eye(n_S)/2))*sigma;
 v_S=(Mt_SS+eye(n_S)/2+mu*N_SS)*sigma;

% calculate L_DS, M_DS, the discrete form of the operators for the
domain points
% dummy values set to vecp_D, since it is not used
 for (i=1:n_D)
 vecp_D(i,1)=1;
 vecp_D(i,2)=0;
 end
 [L_DS,M_DS,Mt_DS,N_DS]
=lbem2(n_D,p_D,vecp_D,n_S,vertpts_S,elemvert_S,false,true,true,fal
se,false);

% calculate the solution at the domain points

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 13

 phi_D=(L_DS+mu*M_DS)*sigma;

Weighting parameter

The value of the weighting parameter µ is arbitrary

from the mathematical point of view. However, from the

computational point of view, we need to avoid the

equation becoming close to a first kind equation (that is

if µ is small for the Dirichlet boundary condition) and

we also want to avoid similar issues arising if we solve

over something close to the N operator (that is if µ is

large for the Neumann boundary condition).

The “size” or norm of the relevant matrices must also

be taken into account when choosing a value for µ. A

reasonable choice would therefore seem to be to choose

a value of µ that balances the relevant matrices and

therefore the relative contribution from the two

underlying formulations. Out of the four matrices in the

boundary solution, only NSS has the property such that

its norm is inversely proportional to the size of the

panels; the norms of the other matrices stay

approximately the same as the boundary panels become

smaller. Hence in libem2 and libem2_indirect the

underlying contributions from the two integral equations

are balanced through applying the following values for

µ:

SS

SS
t

N

IM
2

1

 for the direct method and

SS

SS

N

IM
2

1

 for the indirect method.

X. TEST PROBLEM AND RESULTS

Finally the direct and indirect boundary element

methods are applied to a test problems and the results

are observed. The test problem consists of a square with

vertices (0,0), (0.1,0), (0.1, 0.1) and (0.1,0), as

illustrated already in figure 4. The boundary condition is

defined as illustrated in figure 5. A computational

solution is sought at the points (0.025,0.025),

(0.025,0.075), (0.075,0.075), (0.075,0.025) and

(0.05,0.05), also illustrated in Figure 5.

 v = 0

 φ = 10 φ = 20

 v=0

Figure 5. Boundary conditions and points where the

solution is sought.

The exact solution to Laplace’s equation in the domain

for the problem described in figures 4 and 5 is

φ=10+100x, so at the two points on the left φ=12.5, at

the point in the middle φ=15 and at the two points on the

right φ=17.5.

 The program for computing the solution using the

direct method is listed.

interiorsquaretest.m

% function [phi_D,phi_S,v_S] = interiorsquaretest
% Returns the solution phi_D, the solution at the domain points, phi_S
and v_S,
% the solution on the boundary. The boundary is defined internally by
% calling 'square' and the points are defined by calling 'points'.
function [phi_D,phi_S,v_S]= interiorsquaretest
[vertpts,elemvert]=square
% boundary condition
a(1:8)=1;
a(9:16)=0;
a(17:24)=1;
a(25:32)=0;
b(1:8)=0;
b(9:16)=1;
b(17:24)=0;
b(25:32)=1;
F(1:8)=10;
F(9:16)=0;
F(17:24)=20;
F(25:32)=0;

% interior points
points=[0.025, 0.025; 0.025, 0.075; 0.05, 0.05; 0.075, 0.025; 0.075,
0.075];

% computer phi_D, phi at the interior points and phi_S,v_S, phi and v
on the boundary

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 14

[phi_D, phi_S,v_S] =libem2(5,points,32,vertpts,elemvert,a,b,F);

For the indirect method we have the following program.

interiorsquaretest_indirect.m

% function [phi_D,phi_S,v_S] = interiorsquaretest_indirect
% Returns the solution phi_D, the solution at the domain points, phi_S
and v_S,
% the solution on the boundary. The boundary is defined internally by
% calling 'square' and the points are defined by calling 'points'.
function [phi_D,phi_S,v_S]= interiorsquaretest_indirect
[vertpts,elemvert]=square
% boundary condition
a(1:8)=1;
a(9:16)=0;
a(17:24)=1;
a(25:32)=0;
b(1:8)=0;
b(9:16)=1;
b(17:24)=0;
b(25:32)=1;
F(1:8)=10;
F(9:16)=0;
F(17:24)=20;
F(25:32)=0;

% interior points
points=[0.025, 0.025; 0.025, 0.075; 0.05, 0.05; 0.075, 0.025; 0.075,
0.075];

% computer phi_D, phi at the interior points and phi_S,v_S, phi and v
on the boundary
[phi_D,phi_S,v_S]

=libem2_indirect(5,points,32,vertpts,elemvert,a,b,F);

The results from the two methods are given in table 1.

TABLE I

COMPUTED AND EXACT RESULTS FOR SQUARE

point exact direct indirect

(0.025,0.025

)

12.5 12.4709 12.4891

(0.025,0.075

)

12.5 12.4709 12.4891

(0.05,0.05) 15 15.0008 14.9939

(0.075,0.025

)

17.5 17.5306 17.4927

(0.075,0.075

)

17.5 17.5306 17.4927

REFERENCES

[1] L Wrobel. The Boundary Element Method:

Applications in Thermo-Fluids & Acoustics Vol. 1.

John Wiley and Sons, 2002.

[2] M.H. Aliabadi, The Boundary Element Method:

Vol. 2.

 Applications in Solids and Structures, John Wiley

and Sons Ltd, 2002

[3] R. Cunderlik , K. Mikula, and M. Mojzes, 3D BEM

Application to Neumann Geodetic BVP using the

collocation with linear basis functions. Proceedings

of ALGORITMY, Conference on Scienti c

Computing, pp. 268-275, 2002.

 Available:

http://www.iam.fmph.uniba.sk/amuc/_contributed/a

lgo2002/cunderlik/cunderlik.pdf

[4] R. Cunderlik , K. Mikula, AND M. Mojzes, A

comparison of the variational solution to the

Neumann geodetic boundary value problem with

the geopotential model EGM-96. Contributions to

Geophysics and Geodesy 34(3), 2004,

 Available: http://www.math.sk/mikula/cmm.pdf

[5] Guror R, Olsen B, Kroese A, Cook F, Kumar S

(2004). Evaluation of critical components of non-

ceramic insulators in-service: role of defective

interfaces, Power Systems Engineering Research

Center, Arizona State University.

Available:

http://www.pserc.org/cgi-

pserc/getbig/publicatio/reports/2004report/psercrep

ort.pdf

[6] P. Lazic, H. Stefancic, H. Abraham ,The Robin

Hood method: a novel numerical method for

electrostatic problems based on a non-local charge

transfer , Journal of Computational Physics

Volume 213 , Issue 1 Pages: 117 - 140 ,2006

 Available:

http://arxiv.org/PS_cache/physics/pdf/0411/041119

2v1.pdf

[7] B. Lim, K, L. Venkatachalam, A, Jahangir, S. B.

Johnson, S. J. Asirvatham, Concurrent Application

of Charge Using a Novel Circuit Prevents Heat-

Related Coagulum Formation During

Radiofrequency Ablation, Journal of

Cardiovascular Electrophysiology , pp1-8.

[8] F. Seydou, T. Seppanen, O. Ramahi, O. Numerical

solution of 3D Laplace and Helmholtz equations for

parallel scatterers , Antennas and Propagation

Society International Symposium,IEEE Volume

2B, Issue , 3-8 July 2005 Page(s): 97 - 100 vol. 2B ,

2005.

[9] A. VanderWyst, A. Christlieb, M. Sussman, I. D.

http://www.iam.fmph.uniba.sk/amuc/_contributed/algo2002/cunderlik/cunderlik.pdf
http://www.iam.fmph.uniba.sk/amuc/_contributed/algo2002/cunderlik/cunderlik.pdf
http://www.math.sk/mikula/cmm.pdf
http://www.pserc.org/cgi-pserc/getbig/publicatio/reports/2004report/psercreport.pdf
http://www.pserc.org/cgi-pserc/getbig/publicatio/reports/2004report/psercreport.pdf
http://www.pserc.org/cgi-pserc/getbig/publicatio/reports/2004report/psercreport.pdf
http://arxiv.org/PS_cache/physics/pdf/0411/0411192v1.pdf
http://arxiv.org/PS_cache/physics/pdf/0411/0411192v1.pdf
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10402/33057/01551945.pdf?arnumber=1551945
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10402/33057/01551945.pdf?arnumber=1551945
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10402/33057/01551945.pdf?arnumber=1551945
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10402/33057/01551945.pdf?arnumber=1551945
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10402/33057/01551945.pdf?arnumber=1551945
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10402/33057/01551945.pdf?arnumber=1551945

www.boundary-element-method.com

Report AR-08-14, East Lancashire Institute of Higher Education, Blackburn, UK. Page 15

Boyd, Simulation of Charge and Mass Distributions

of Indium Droplets Created by Field Emission,

American Institute of Aeronautics and Astronautics

 Available:

http://hpcc.engin.umich.edu/CFD/research/NGPD/P

ublications/AIAA-06-3560.pdf

[10] S. M. Kirkup, DC capacitor simulation by the

boundary element method, Communications in

Numerical Methods in Engineering 23(9), 855 -

869, (2007).

 Available:

http://www.east-lancashire-

research.org.uk/AR/07/AR0702.pdf

[11] Matlab

Available: http://www.mathworks.com

[12] Freemat

Available : http://freemat.sourceforge.net

[13] S. M. Kirkup and D. J. Henwood, An empirical

error analysis of the boundary element method

applied to Laplace's equation, Applied

Mathematical Modelling, Volume 18, Issue 1 , pp

32-38. 1994.

 Available: http://www.kirkup.info/papers

[14] L. M. Delves and J. L. Mohamed (1985).

Computational Methods for Integral Equations,

Cambridge University Press.

[15] C. A. Brebbia. The Boundary Element Method for

Engineers. John Wiley and Sons, 1978.

[16] S. M. Kirkup. Fortran Codes for Computing the

Discrete Helmholtz Integral Operators, Advances in

Computational Mathematics, 9, pp391-409, 1998.

 Available: www.kirkup.info/papers

__

Received May 2008, published June 2008.

This article is published electronically on the www.east-

lancashire-research.org.uk website.

Contact email: Stephen Kirkup:

s.kirkup@blackburn.ac.uk

View publication statsView publication stats

http://hpcc.engin.umich.edu/CFD/research/NGPD/Publications/AIAA-06-3560.pdf
http://hpcc.engin.umich.edu/CFD/research/NGPD/Publications/AIAA-06-3560.pdf
http://www.east-lancashire-research.org.uk/AR/07/AR0702.pdf
http://www.east-lancashire-research.org.uk/AR/07/AR0702.pdf
http://www.mathworks.com/
http://freemat.sourceforge.net/
http://www.kirkup.info/papers
http://www.kirkup.info/papers
http://www.east-lancashire-research.org.uk/
http://www.east-lancashire-research.org.uk/
mailto:s.kirkup@blackburn.ac.uk
https://www.researchgate.net/publication/238077046

