
International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013), pp.191-202

http://dx.doi.org/10.14257/ijunesst.2013.6.5.17

ISSN: 2005-4246 IJUNESST

Copyright ⓒ 2013 SERSC

Introducing Agility in Cloud Based Software Development through
ASD

Sukhpal Singh1 and Inderveer Chana2
1, 2Thapar University, Patiala

ssgill@thapar.edu, inderveer@thapar.edu

Abstract
Cloud based development is a challenging task for several software engineering projects,

especially for those which need change along with reusability. The present scenario of cloud
computing is allowing new professional models to use agile software development. The
expected upcoming trend of computing is assumed to be cloud computing as it ensures a lot of
payback like no principal outflow, speed of application deployment, shorter time to market,
lower cost of operation, and change at any level, reusability and easier maintenance for the
tenants. Until Adaptive Cloud Development Model is considered a fundamental capability,
predictable demand cannot be delivered to cloud users. This paper extends the traditional
agile process model named Adaptive Software Development (ASD) and integrates interaction
with the cloud provider to facilitate acceptance of cloud computing. In this paper, Adaptive
Cloud Development Model has been proposed. Using the agile based cloud computing
proposed approach, development cost can be minimized and customer satisfaction and
reusability can be improved.

Keywords: Adaptive, Agile software development, Agility, Cloud based software
development, Cloud computing, Reusability, Software engineering, Software reuse

1. Introduction

Agile software development is a group of software development methods based on
iterative and incremental development, where requirements and solutions evolve through
collaboration between self-organizing, cross-functional teams [1]. It promotes adaptive
planning, evolutionary development and delivery, a time-boxed iterative approach, and
encourages rapid and flexible response to change [4]. It is a conceptual framework that
promotes foreseen interactions throughout the development cycle. Adaptive Software
Development is a software development process that grew out of rapid application
development work by Jim High smith and Sam Bayer [7]. ASD embodies the principle that
continuous adaptation of the process to the work at hand is the normal state of affairs [2].
ASD replaces the traditional waterfall cycle with a repeating series of speculating,
collaborate, and learn cycles. This dynamic cycle provides for continuous learning and
adaptation to the emerging state of the project. The characteristics of an ASD life cycle are
mission focused, feature based, iterative, time boxed, risk driven, and change tolerance [5]. In
Section 2 the related work has been described. The challenges of cloud computing platform
for software are analyzed in Section 3. The Section 4 the Adaptive Cloud Development
Model has been discussed. The experimental results explained in Section 5. The Section 6
concludes the whole work and provides future work.

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

192 Copyright ⓒ 2013 SERSC

2. Related Work
The word speculates refers to the paradox of planning – it is more likely to assume that all

stakeholders are comparably wrong for certain aspects of the project’s mission, while trying
to define it [8, 9]. Collaboration refers to the efforts for balancing the work based on
predictable parts of the environment (planning and guiding them) and adapting to the
uncertain surrounding mix of changes caused by various factors – technology, requirements,
stakeholders, software vendors, etc., [3, 19]. The learning cycles, challenging all stakeholders,
are based on the short iterations with design, build and testing. During these iterations the
knowledge is gathered by making small mistakes based on false assumptions and correcting
those mistakes, thus leading to greater experience and eventually mastery in the problem
domain [6, 10]. Reusable architectures can be developed from reusable architectural patterns
[11] as in FIM architecture [12] which operates at three different levels of reuse: Federation,
domain and application. Paulisch F. and Siemens AG focuses on how non-functional property
reusability relates to the software architecture of a system. K.S. J. and Dr. Vasantha R.
presented a suggested software process model for reuse based software development
approach [17, 18]. A common ground for agile software development was defined in 2001,
when 17 experienced and recognized software development “gurus”, inventors and
practitioners of different agile software development methods gathered together. Participants
agreed and signed The Manifesto for Agile Software Development [3].

Figure 1. Cloud Computing and its Services [13]

Cloud computing is the use of computing resources (hardware and software) that are
delivered as a service over a network (typically the Internet). The name comes from the use of
a cloud-shaped symbol as an abstraction for the complex infrastructure it contains in system
diagrams as shown in Figure 1. Cloud computing entrusts remote services with a user's data,
software and computation [13]. We had conducted a survey on the number of approaches
existing for Agile Software Development [14, 9], Cloud Based Development and Reusability
[11] individually, but the proposed model combines both Agile Software Development and
Cloud computing along with Reusability into a single approach for achieving efficient
classification, storage and retrieval of software components and improve cloud customer
satisfaction . Presently there is no such approach as presented in proposed model which
combines Agile Software and Component based Development [15].

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

Copyright ⓒ 2013 SERSC 193

3. Analysis
In the rapidly changing computing environment with cloud platform, software

development is going to be very challenging. The software development process will involve
heterogeneous platforms, distributed web services, multiple enterprises geographically
dispersed all over the world.

Figure 2. Evolution of Software Engineering

Existing software process models and framework activities are not going to be adequate
unless interaction with cloud providers is included [16]. Requirement changes of a SW are the
major cause of increased complexity, schedule and budget slippage.

Figure 3. Variation in Cost [21]

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

194 Copyright ⓒ 2013 SERSC

Table 1. 12 Principles of Agile Software Development [1]
Agile Software Development Principles

1. Satisfy the customer
2. Welcome changing requirements
3. Deliver working software frequently
4. Motivate individuals
5. Interact frequently with stakeholders
6. Communicate face to face

7. Measure by working software
8. Maintain constant pace
9. Sustain technical excellence and good
design
10. Keep it simple
11. Empower self-organizing teams
12. Reflect and adjust continuously

Incorporating changes at a later stage of SDLC increases cost of the project has been
described in Figure 2. Adding number of programmers at a later stage does not solve the
schedule problem as an increased coordination requirement slows down the project further [4,
1]. The cost of change according to feedback will be increased from requirement to
maintenance phase shown in Figure 3 (Scoot W. Ambler, 2006). It is very important that
requirements gathering, planning and design of the SW is done involving all the parties from
the beginning. That’s why several agile process models like Adaptive Software Development
(ASD), Extreme Programming (XP), Scrum, Crystal and Adaptive etc. have been introduced
in mid 1990s to accommodate continuous changes in requirements during the development of
the software. These agile process models have shorter development cycles where small pieces
of work are “time boxed”, developed and released for customer feedback, verification and
validation iteratively [2, 5]. One time-box takes a few weeks to maximize a month of time
[17]. The agile process model is communication intensive as customer satisfaction is given
the utmost importance [10].

Figure 4. Emergence of Agile Software Development

Manifesto for Agile Software Development is followed by 12 principles has been
described in Table 1. In this paper we assume, that these principles are important to consider
for software development process to be recognized as agile [20]. We do not question their
validity or sufficiency and accept them as it is. We use these principles as a base for
identifying possible bottlenecks in different agile software development methods [1]. Dr.
Dobb’s Journal (DDJ) 2008 Project Success Survey described that agile teams have an
average success rate of 70% compared with 66% of traditional/waterfall teams has been

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

Copyright ⓒ 2013 SERSC 195

summarized in Figure 4. Agile teams produce higher quality work, are quicker to deliver, are
more likely to deliver the right functionality, and more likely to provide greater ROI than
traditional teams. There are different features in software project but all of them are never
used has been summarized in Figure 5.

Figure 5. Usefulness of Development of Software

The project success rate is increasing now, according to a survey conducted by Standish
Group the success rate was 16% in 1994, 28 % in 2001 and it has been reached to 31 % in the
year 2003. The result of conducting the survey has been described in Figure 6 according to
different CHAOS reports.

Figure 6. Success Rate of Software Project

Based on this analysis the there is need of agile software development for cloud
computing, it will also incorporate reusability in the development as a component based
development.

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

196 Copyright ⓒ 2013 SERSC

4. Adaptive Cloud Development (ACD) Model
Innovative software engineering is required to leverage all the benefits of cloud computing

and mitigate its challenges strategically to push forward its advances. Here we propose an
extended version of Adaptive Software Development (ASD), an agile process model for
cloud computing platform and name it Adaptive Cloud Development Model [Figure 7]. A
model capable of developing cloud based applications with agile software development and
incorporating reusability by retrieving the components from the agile repository by using
pattern matching algorithms and various retrieval methods. There are some different 6
retrieval methods are available for the classification of components in the software library.
This model will help to make searching faster based on classification of components and
develop the cloud based application according to cloud customer requirements to improve
customer satisfaction as compared to traditional software development approach. The flow
chart of proposed Adaptive Cloud Development Model is shown in Figure 8.

Figure 7. Adaptive Cloud Development (ACD) Model

4.1. Cloud Speculation

During cloud speculation, the cloud application is stated and adaptive cycle
development of cloud project is conducted. It uses project instigation- the cloud
customer mission statement, cloud application constrictions (e.g., delivery dates or
cloud user details) and simple requirements to describe the set of release cycles
(software increments) that will be essential for cloud development. Cloud speculator
started to develop a project plan basis on cloud user demands.

4.2. Cloud Collaboration

Motivated software developers and cloud collaborator work together in the way that
multiplies their talent and creative output beyond their absolute numbers. This cloud
collaborative approach is a periodic subject in all agile models. It is not simply

Cloud

Collaboration

Cloud
Learning

Cloud

Speculation

Cloud

Component
Repository

Software developer
and Cloud Learner

Software developer
and Cloud collaborator Software developer

and Cloud Speculator

Software increment
release

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

Copyright ⓒ 2013 SERSC 197

communication among software developers and cloud collaborator, effective
communication and coordination is also a part of the ACD. It requires a solidified team
for actual collaboration to happen. It is not a rejection of individualism, because
individual creativity plays an important role in collaborative thinking. Cloud
collaborator and software developer working together must trust on one another to 1)
disapprove without acrimony; 2) contribution without offense; 3) work as harder as they
do; 4) have the skill set to contribute to the work at hand; and 5) communicate
difficulties or anxieties in a way that leads to effective action.

4.3. Cloud Learning

As participants of Adaptive Cloud Development (ACD) team, cloud learner start to
develop the components that are part of an adaptive cycle, the emphasis is on learning
as much as it is in progress toward a completed cycle. Cloud learning will help cloud
learner as well as software developers to improve their level of real understanding. The
ACD team learns in three ways:

4.3.1. Learner Group: The cloud learner, cloud user and cloud customer provide
feedback on software increments that are being delivered. This provides the indication
of level of cloud customer satisfaction.

4.3.2. Learner Reviews: ACD team members review the software components that are
developed, improving quality and learning as they proceed.

4.3.3. Cloud postmortem: The ACD team becomes introspective, addressing its own
performance and process.

4.4. Cloud Component Repository

The approved developed components to the agile cloud development model will be
stored in cloud component repository and retrieved it at a later stage for other cloud
application development. There is some different storage and retrieval methods [22]
(Information retrieval methods, Operational semantics methods, Descriptive methods,
Denotational semantics methods, Topological methods and Structural methods) are
available for the classification of components in the software library. This model will
help to make searching faster based on classification of components.

Figure 8. Flowchart of Adaptive Cloud Development Model

Evolution of
Software

Development

Agile
Software

Development

Adaptive
Software

Development

Cloud
Applications

Adaptive
Cloud

Development
Model

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

198 Copyright ⓒ 2013 SERSC

5. Results and Discussion
Table 2 sums up how the principles of the Agile Manifesto (Table 1) support the

framework of different aspects of software development (Analysis and requirement
gathering, Design and architecture, Implementation, Testing, Project management and
Customer satisfaction) along with cloud computing. The result of the improved agile
method has been described in the Table 2.

Table 2. Phases of Agile Manifesto Principles with Adaptive Cloud
Development Model

Principles/Phases 1 2 3 4 5 6 7 8 9 10 11 12
Analysis and
Requirement
Gathering

++

+/-

++

++

++

+

+

++

Design and
Architecture

++ +/- ++ ++ ++ ++ ++

Implementation ++ +/- ++ ++ ++ ++ +
Testing +/- + + + +
Project
Management

++ + ++ + ++ +

Customer
Satisfaction

 ++ + ++ + +/- +

Abbreviation + means that a principle supports the mentioned issue, ++ means strong

support and +/- means that a principle can either support or not support the mentioned issue.
An empty cell that a principle does not address mentioned issues.

Table 3. Assessment of the Adaptive Cloud Development Model
Design Criteria Phase supporting Criteria Remarks
Supporting Commonality
(C)

Domain investigation Recommended C & V
methods

Reachable via internet User Interface design and
deployment

UI design for browser and
Deployment for internet
access

Providing Whole
Functionality

Domain investigation Technique to scope SaaS

Supporting Multitenant
Access

Database Design Architectural consideration

High Reusability Domain Analysis Proposed C & V methods
High customer
satisfaction

Architectural Design Architectural consideration
for these quality concerns

High Quality Architectural Design
Reduce Time to market Software Reuse White and black box reuse
Reduce cost Component based

development
Product line Architecture

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

Copyright ⓒ 2013 SERSC 199

With Adaptive Cloud Development Model, the level of cloud customer satisfaction has
been increased as compared to traditional agile development. The services provided by cloud
provider will easily change according to requirements of cloud user. The evaluation of
Adaptive Cloud Development Model has been summarized in Table 3 and the roles of various
members of the adaptive cloud development model are described in Table 4.

Table 4. Separation of Roles Adaptive Cloud Development Model

Development Phases Roles Description
Requirement

Gathering
Cloud Provider, Software

Developer
Elicitation, Resource

accounting
Analysis Cloud Speculator, Software

Developer
Software Architecture,

Planning
Design Cloud Speculator, Software

Developer
Interface Design,

Estimation
Coding Cloud Collaborator, Software

Developer
Construction,

Implementations
Testing Cloud Learner Integration and System

Testing
Deployment Cloud Learner, Cloud Provider Operation and

Maintenance

6. Advantage of Proposed Approach
Essence of Adaptive Software Development is rapid software development with

reduced overheads. This proposed Adaptive Cloud Development model will help to 1)
developing application quickly 2) improve customer satisfaction 3) reduces cost 4)
improves reusability 4) reduce time to market and make searching faster based on
classification of components and introducing reusability in Agile Software
Development. It will be accepted widely if pattern based architecture designing, design
patterns, UML based analysis and designing is incorporated. The six important ways
Adaptive Cloud Development Model enhances cloud based development:

 Adaptive cloud development model provides an unlimited number of tested and
staged cloud based applications.

 It turns agile development into a truly parallel activity by software reuse.

 It encourages innovation and experimentation, if a feature or a story looks
interesting, a team can spawn a development instance quickly to code it and test
it out.

 It makes more development platforms and external services available.

 It eases code branching and merging.

 It enhances continuous integration and delivery of cloud based components.

7. Conclusion

In this paper, we have presented an Adaptive Cloud Development Model. The objective is
to minimize the complexity, cost, time to market and increase quality, reusability, resource
utilization and cloud customer satisfaction. Adaptive Software Development is encouraging
future of the software industry and is capable of fulfilling the requirements of the cloud

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

200 Copyright ⓒ 2013 SERSC

industry. Thus, at times it compromises with quality and is incapable of providing reusability
of its cloud based developed components. Adaptive Software Development offers some
particular solutions whereas Reuse and Cloud based Development believes in generalized
solutions to satisfy the demands of cloud customer. Cloud computing is a standard shift over
the traditional way of developing and deploying software. This will make software
engineering more challenging as cloud customer has to relate to a third party called the cloud
provider. The amount of effort required for evolving software will diminish but
communication and coordination requirement will be added to the cloud provider which
makes software development project more difficult. The main objective of this paper is that
the leading software process models should incorporate this new dimension of interaction of
the cloud provider and separate roles namely software engineers, cloud speculator, cloud
collaborator and cloud learner. A new Adaptive Cloud Development Model is proposed in
this paper which includes the expected communication requirement with the cloud provider,
cloud speculator, cloud collaborator and cloud learner which will diminish all the challenges
of software development on a cloud computing platform and make it more beneficial to
develop and deploy software on the cloud computing platform. Cloud based software
engineering and agile development is an open research area in fast growth.

8. Future Work

Future scope of this work is to analyze and to incorporate risk factors in Adaptive Cloud
Development systematically and find critical success factors of the Adaptive Cloud
Development process and also identify various risk factors using risk analysis of introducing
reusability in agile cloud development and offer a model that will help us to achieve
reusability in Adaptive Cloud Development. Reusability can also be automated in agile cloud
development using an automated tool. The automated model will reduce the development cost
as well as increase the reusability and customer satisfaction to a large extent.

References
[1] K. Beck, “Manifesto for Agile Software Development”, Agile Alliance, (2012) June 14.
[2] Adaptive Software Development: A Collaborative Approach to Managing Complex Systems, Highsmith,

J.A., New York: Dorset House, 392pp, ISBN 0-932633-40-4, (2000).
[3] Agile Project Management: Creating Innovative Products, Addison-Wesley, Jim Highsmith, ISBN 0-321-

21977-5, (2004) March.
[4] O. Salo, “Enabling Software Process Improvement in Agile Software Development Teams and

Organizations”, ESPOO 2006, VTT Publications 618, pp149 +app.96 pp.
[5] A. Manifesto, http://www.agilemanifesto.org, last accessed: (2012) May 8.
[6] A. Murauskaite and V. Adomauskas, “Bottlenecks in Agile Software Development using Theory of

Constraints (TOC) Principles”, Master’s Thesis, Gothenburg, Sweden, (2008).
[7] S. Cronholm, “Using Agile Methods? Expected Effects”, 17th International Conference on Information

Systems Development (ISD 2008), Paphos, Cyprus, (2008) August 25-27.
[8] X. Ge, R. F. Paige, F. A. C. Polack, H. Chivers and P. J. Brooke, “Agile Development of Secure Web

Applications”, Proceedings of the 6th International Conference on Web Engg., (2006), pp. 305-312.
[9] R. S. Pressman, “Software Engineering”, 7th edition, McGraw Hill Education, (2009).
[10] J. H. Chuang, “Potential-Based Approach for Shape Matching and Recognition”, Pattern Recognition, vol.

29, (1996), pp. 463-470.
[11] H. Gomma and G. A. Farrukh, “Composition of Software Architectures from Reusable Architecture

Patterns”, Foundations of Software Engineering, Proceedings of 3rd International Workshop on Software
Architecture, Orlando, Florida, US, (1998), pp. 45-48.

[12] K. S. J. and V. R., “A New Process Model for Reuse based Software Development Approach”, Proceedings
of the World Congress on Engineering, London U.K, vol. 1, (2008) July.

[13] A. Monaco, (7 June 2012 [last update]), “A View Inside the Cloud”, The institute.ieee.org (IEEE). Retrieved,
(2012) August 21.

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

Copyright ⓒ 2013 SERSC 201

[14] D. Turk, R. France and B. Rumpe, “Limitations of Agile Software Processes”, 3rd International Conference
on XP and Agile Processes in Software Engineering (XP 2002), (2002) May.

[15] B. Prasad Rimal, A. Jukan, D. Katsaros and Y. Goeleven, “Architectural Requirements for Cloud Computing
Systems: An Enterprise Cloud Approach”, Springer Science Business Media B.V. 2010, J Grid Computing,
vol. 9, (2011), pp. 3-26.

[16] R. Guha, “Impact of Web 2.0 and Cloud Computing Platform on Software Engineering”, 2010 International
Symposium on Electronic System Design, pp. 213-218.

[17] F. Paulisch and A. G. Siemens, “Software Architecture and Reuse – an Inherent Conflict?”, 3rd International
Conference on Software Reuse, (1994) November, pp. 214.

[18] www.win.tue.nl/~mchaudro/cbse2007/managing%20CBSE%20and %20reuse.pdf.
[19] D. Garlen, R. Allen and J. Ockerbloom, “Architectural Mismatch: Why Reuse is So Hard”, IEEE Software,

vol. 12, no. 6, (1995) November, pp. 17-26.
[20] M. A. Awed, “A Comparison between Agile and Traditional Software Development Methodologies”,

Available at: http://pds10.egloos.com/pds/200808/13/85/A_comparision_between_Agile_and_Traditional_
SW_development_methodologies.pdf, (2008).

[21] K. Jochen, “Agile Portfolio Management”, [E-book] Microsoft Press, Available at Books24x7
http://library.books24x7.com/toc.asp?bokid= 27540.

[22] S. Singh and I. Chana, “Enabling Reusability in Agile Software Development”, International Journal of
Computer Applications, (0975 – 8887), vol. 50, no. 13, (2012) July, pp. 33-40.

Authors

Sukhpal Singh obtained his B.Tech. (Computer Science and

Engineering) Degree from G.N.D.E.C. Ludhiana (Punjab) in 2010. He
joined the Department of Computer Sci. & Eng. at North West Institute
of Engineering and Technology, Moga (Punjab) in 2010. He obtained the
Degree of Master of Engineering in Software Engineering from Thapar
University, Patiala in 2013. Presently he is pursuing Ph.D. (Cloud
Computing) degree from Thapar University, Patiala. His research
interests include Image Compression, Software Engineering, Cloud
Computing, Operating System and Database. He is an active member of
ACM and IEEE.

Dr. Inderveer Chana is Ph.D in Computer Science with
specialization in Grid Computing and M.E. in Software Engineering from
Thapar University and B.E. in Computer Science and Engineering. She
joined Thapar University in 1997 as Lecturer and has over fourteen years
of experience. She is presently working as Associate Professor in
Computer Science and Engineering Department of Thapar University.
Her research interests include Grid computing and Cloud Computing and
other areas of interest are Software Engineering and Software Project
Management. She has more than 50 research publications in reputed
journals and conferences. She is currently supervising eight Ph.D.
candidates in the area of Grid and Cloud Computing. More than 23
Master’s theses have been completed so far under her supervision.

International Journal of u- and e- Service, Science and Technology

Vol.6, No.5 (2013)

202 Copyright ⓒ 2013 SERSC

	Introducing Agility in Cloud Based Software Development through ASD
	Abstract

