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Overview 

This paper is a process of exploratory data analysis with data clustering. I was given 

primary research data from the United States Census Bureau. The foremost purpose for 

collecting this data was to gather information concerning employment, but a secondary 

purpose was to collect information on the demographics of the population (Census, 2020). 

The universe, Ω, from 2020, is a population of civilian noninstitutional Americans 

living in housing units, as well as members of the military living externally from the base or 

with their families on post. All data has at least one civilian adult per household. The 

domain is nine noncash income sources: food stamps, school lunch programs, employer-

provided group health insurance, employer-provided pensions, personal health insurance, 

Medicaid, Medicare, or military health care, and energy assistance. The data also contains 

other characteristics including age, sex, and race (Census, 2020). 

A probability sample was used to collect 54,000 households, which were 

interviewed monthly for four consecutive months one year and then again for the same 

duration one year later. They were scientifically selected on the basis of their area of 

residence in order to be representative of the population (Census, 2020). This was verified 

by Figure 1 below. 

 

Exploratory Data Analysis 

After loading the libraries and data that I thought I would need, I first verified the 

government’s claim concerning the representativeness of the sample (Census, 2020). 

Figure 1 shows that the sample is, in fact, representative of the population because of the 

uniform frequency distribution by region of residence. 
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Figure 1 

Frequency Distribution of Census Sample by Region 

 

 

Figure 2 

Frequency Distribution of Census Sample by Metropolitan Area Size 
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The frequency distribution of Figure 2 shows that there is a skew toward larger 

metropolitan cities. This is also expected and likely representative of the population, given 

the definition of a larger metropolitan city.  

The sample is 91,500 rows by 134 columns. 133 columns belong to probability 

space 𝑛 ≥ 0, 𝑛 ∈ ℤ ;  (Ω, ℋ, ℤ) where ℤ is the set of integers and ℋ is a sigma algebra. A 

topological space (Φ, τ) bisects universe Ω. Some 133 columns contain discrete data, and 

the remaining column contains categorical data (Census, 2020). 

After viewing the data dictionary provided by the Census Bureau (Census 2020), we 

can see that the entirety of (Ω, ℋ, ℤ) ∉ (Φ, τ). In order to do exploratory data analysis, we 

must delete all data that is outside the universe. It turns out that approximately 65% of the 

data included in the sample is either outside universe Ω or it is a subset of Ω ∉ (Φ, τ). The 

entirety of this 65% of the data was deleted. The remaining subset of 𝑛 ≥ 0, 𝑛 ∈

ℤ ;  (Ω, ℋ, ℤ) ∈ (Φ, τ) is 91,500 rows by 53 columns. Figure A1 in the Appendix contains a 

table of the mean, standard deviations, min, max, and interquartile range values for 

(Ω, ℋ, ℤ) ∈ (Φ, τ) (Mukhiya and Ahmed, 2020). 

We can see that, concerning the isolated the data (Ω, ℋ, ℤ) ∈ (Φ, τ), there are no 

subsets with nonzero numbers. All data is numerical and discrete. Outliers can be shown in 

the boxplots provided in Figure 3.  The majority of outliers are apparent in the subsets 

called “Living Quarters (H_LVQRT) and the number of residents per household 

(H_NUMPER). Remember, we already deleted over half of the data to isolate (Ω, ℋ, ℤ) ∈

(Φ, τ). Thus, to maintain the representativeness of the sample, we will leave the outliers 

untreated.  
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Figure 3 

Outlier Tests by Column for Sample (𝛺, ℋ, ℤ) ∈ (𝛷, 𝜏)  

 

 

Additional abnormalities exist. One such abnormality is that the sample includes a 

higher proportion of individuals who are very poor, making less than $2,500 per year, and 

individuals who are relatively wealthy, making more than $100,000 per year, as shown by 

points “0” and “41” in Figure 4. It can be assumed that a more uniform distribution could 

potentially be shown if group 41 were broken into smaller groups. All other groups were 

divided into increments of $2,500. 

A heatmap was generated to locate potential correlations in the probability space 

(Ω, ℋ, ℤ) in order to study predictability (Mukhiya and Ahmed, 2020). Due to the size of 

(Ω, ℋ, ℤ), the heatmap is somewhat hard to read, but it is provided in the Appendix. I 

created scatterplots to understand some of the correlations revealed in the heatmap 

(Mukhiya and Ahmed, 2020).  
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Figure 4 

Frequency Distribution of Sample (𝛺, ℋ, ℤ) ∈ (𝛷, 𝜏) 𝑏𝑦 𝐼𝑛𝑐𝑜𝑚𝑒 

 

Figure 5 

Correlation of Subsets 𝐻𝐻𝑆𝑇𝐴𝑇𝑈𝑆 ∈ (𝛺, ℋ, ℤ) 𝑎𝑛𝑑 𝐻𝑅𝐻𝑇𝑌𝑃𝐸 ∈ (𝛺, ℋ, ℤ) 
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One such scatterplot, Figure 5, implies a positive correlation between primary 

family households and other primary household classifiers in another column. This is a 

good sign, as it implies that isolating the data (Ω, ℋ, ℤ) ∈ (Φ, τ) did not create 

incompleteness to the point of destroying correlations and neighborhoods. 

As stated before, our dataset is large and multidimensional. In order to attempt to 

understand the variances of (Ω, ℋ, ℤ) ∈ (Φ, τ), I ran Principal Component Analysis (PCA). 

PCA is a dimensionality reduction tool that simplifies complex and redundant data so that it 

can be analyzed. In other words, it finds projections of ỹ𝑛 ∈ 𝑦𝑛 ∈ (Ω, ℋ, ℤ) ∈ (Φ, τ) 

(Deisenroth et all, 2020). The covariance matrix “M” of our data is:  

 

𝑀 =
1

𝑁
∑ 𝑦𝑛𝑦𝑛

𝑇

𝑁

𝑛=1

 

 

Where 𝑦𝑛
𝑇 is the transpose matrix of 𝑦𝑛. 

The projection matrix of 𝑦𝑛 can be defined as: 

 

𝐵: = [𝑏1, … 𝑏𝑀] ∈ ℝ𝐷𝑀 

 

Where the columns of “B” are orthogonal such that 𝑏𝑖
𝑇𝑏𝑗 = 0 if and only if 𝑖 ≠ 𝑗 and 

𝑏𝑖
𝑇𝑏𝑖 = 1. We can then find the M-dimensional subspace 𝑈 ⊆ ℝ𝐷 , dim(𝑈) = 𝑀 < 𝐷, which 

is the space onto which we will try to project the data, denoted as ỹ𝑛 ∈ 𝑈 (Deisenroth et all, 

2020).  
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The scree plot in Figure 6 reveals that we can use PCA to group or cluster all of 

(Ω, ℋ, ℤ) ∈ (Φ, τ) such that it is projected onto a metric or normed space because reducing 

the dimensionality by this method maintains 69 percent of the data. This is usually 

acceptable for analysis; however, we have already deleted 65 percent of the data prior to 

this 69 percent reduction (Deisenroth et all, 2020; Gut, 2013; Mukhiya and Ahmed, 2020). 

As shown in Figure 6, the relationship between the data in PC1 and PC2 is not completely 

linear. Thus, a nonlinear clustering algorithm must be used. 

 

Figure 6 

Principal Component Analysis of (𝛺, ℋ, ℤ) ∈ (𝛷, 𝜏) 

  

 

T-Distributed Stochastic Neighbor Embedding (TSNE) was used to generate a 

nonlinear cluster group for (Ω, ℋ, ℤ) ∈ (Φ, τ). TSNE is a dimension reduction technique 

that preserves local neighborhood structure and can help when PCA does not work or 

when the triangle property is violated (VanderMaaten, 2008).  
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TSNE maintains nearest neighbors by constructing a lower dimensional map and 

converting pair-wise Euclidean distances between points into a probability density 

function ℙ(𝑗|𝑖) where “j” is a neighbor point of “i” and 𝑖, 𝑗 ∈ (Ω, ℋ, ℤ) (Deisenroth et all, 

2020; VanderMaaten, 2008). In other words, TSNE maps ℙ(𝑖) to 𝑃(𝑖) as shown below: 

 

ℙ(𝑗|𝑖) =

𝑒𝑥𝑝(−||𝑥𝑖 − 𝑥𝑗||2

2𝜎𝑖
2

∑  𝑒𝑥𝑝(−||𝑥𝑖 − 𝑥𝑗||2
𝑘≠1

2𝜎𝑖
2

  →   𝑃(𝑗|𝑖) =
(1 + ||𝑦𝑖 − 𝑦𝑗||2)−1

∑ (1 + ||𝑦𝑖 − 𝑦𝑗||2)−1
𝑘≠1

 

The algorithm then uses Kullback-Leibler divergence loss function to find the 

gradient descent and quantify the differences between the two probability distributions 

ℙ(𝑗|𝑖) and P(j|i) for each datum in order to cluster the data (Gut, 2013; VanderMaaten, 

2008). The formula for Kullback-Leibler divergence is as follows:  

 

𝐾𝐿(ℙ||𝑃) = ∑ ∑ ℙ𝑖𝑗𝑙𝑜𝑔
ℙ𝑖𝑗

𝑃𝑖𝑗
𝑗≠1𝑖

 

 

Thus, high-dimensional similarities belong to ℙ(𝑗|𝑖) and lower-dimensional 

similarities belong to 𝑃(𝑗|𝑖). Figure 7 shows that the data clusters nicely, as expected. The 

“perplexity” value is the vector denoting how many neighbors should be considered in the 

grouping. As expected, the higher perplexity values created data that clustered together. 

The blue group and red group are ℙ(𝑗|𝑖) and 𝑃(𝑗|𝑖) respectively, and the kernel is chosen 

adaptively to achieve the desired perplexity (number of neighbors) (VanderMaaten, 2008). 
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Figure 7 

T-Distributed Stochastic Neighbor Embedding of (𝛺, ℋ, ℤ) ∈ (𝛷, 𝜏) 𝑤𝑖𝑡ℎ 𝑉𝑎𝑟𝑖𝑜𝑢𝑠 𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 
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Findings 

The combination of exploratory data analysis and dimension reduction led to some 

inferences, some of which were unexpected. There is a strong positive correlation between 

the status of the house (owned, rented, or no-cash rent) and whether or not the house is a 

public housing project owned by a housing authority or public agency. Similarly, there is a 

strong correlation between whether the house is owned or rented and the question 

pertaining to rent assistance from the government. This is to be expected, as people who 

live in public housing are not homeowners. Additionally, there is a strong negative 

correlation between the presence of a home loan or mortgage and whether the house is 

owned or rented. This indicates that the majority of the people surveyed either rent or they 

live in a house that is paid off or not borrowed against.  

Concerning unemployment itself, we can see from the data that 2.1 percent of the 

sample indicated that they had a disability that prohibited them from working. These 

individuals collecting disability income received a median amount of $9,000 per year or a 

mode value of $14,400 per year.  In addition, 2.5 percent of the sample indicated that they 

were receiving unemployment insurance. 

There is a significant overlap in subsets HHUNDER18 ∩ H_NUMPER ∈ (Ω, ℋ, ℤ) and 

HUNDER18𝐶 ∩ H_NUMPER ∈ (Ω, ℋ, ℤ) where HHUNDER18 is the number of households 

that had a child age younger than 18 and HUNDER18𝐶  is the complement of households 

that had a child under age 18 (so, households that did not have such a child.) As shown in 

Figure 8, the subsets nearly overlap. This is unexpected and shows a potential underlying 

pattern of familial structure in the United States where people tend to have the same 

quantity of children at the same age that their parents did. 
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Figure 8 

A Comparison of 𝐻𝐻𝑈𝑁𝐷𝐸𝑅18 ∩ 𝐻_𝑁𝑈𝑀𝑃𝐸𝑅 ∈ (𝛺, ℋ, ℤ) and 𝐻𝑈𝑁𝐷𝐸𝑅18𝐶 ∩

𝐻_𝑁𝑈𝑀𝑃𝐸𝑅 ∈ (𝛺, ℋ, ℤ): Top chart shows overlap in red. Both charts show only 

𝐻𝑈𝑁𝐷𝐸𝑅18𝐶 ∩ 𝐻_𝑁𝑈𝑀𝑃𝐸𝑅 ∈ (𝛺, ℋ, ℤ) in blue 
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The majority of people in the sample lived alone. Similarly, the majority of people in 

the sample live in a house, apartment or flat. Far fewer live in other residential situations: 

hotels, mobile homes, or otherwise. Most people included in the sample make $150,000 or 

more annually, a figure that could be used to define the “middle class.” There is a large 

portion of people who do not make any income. The results of the residential situation data 

subset implies that the majority of people who do not have an income are likely living with 

another person who does have an income (for example, a spouse). Also applicable to the 

data, most of the interviewees identified as married couples. This is contradictory to the 

data subset for household size, which had a modality of one. 

 

Subsequent Actions 

Obviously, the situation in the United States has potentially become drastically 

different than when this census was taken, given that immediately afterward the country 

began mitigation programs for the Covid-19 pandemic. It could prove truly fascinating to 

compare the results of the 2020 census with the next sample. In addition, it would be 

interesting to compare this census sample with the previous one. Both activities could 

show or predict some potential otherwise-unexpected trend changes in the population. 

I was able to obtain a TSNE cluster graph of the entire dataset that would show 

groups that the heatmap did not find. Unfortunately, my computer does not have the 19 GB 

of RAM necessary to add color to show the separate subsets in the data. (However, I 

included a picture of the single-color graph in Figure 9). It would be nice to try this again in 

the future or look for a shortcut that might not be so calculation-heavy for my computer. 
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The clustering of the data would be useful for comparison with datasets from future and 

past censuses, in order to search for trends. 

 

Figure 9 

TSNE Clustering of Entire Dataset  

 

 



15 

References 

Census (2020). Current Population Survey: 2020 Annual Social and Economic (ASEC) 

Supplement. https://www2.census.gov/programs-

surveys/cps/techdocs/cpsmar20.pdf 

Deisenroth et all (2020). Mathematics for Machine Learning. Cambridge University Press. 

Gut, A. (2013). Probability: A Graduate Course. Second Ed. Springer Science+Business 

Media. 

Mukhiya, S. K., & Ahmed, U. (2020). Hands-on exploratory data analysis with Python. Packt 

Publishing.  

VanderMaaten, L. (2008). Visualizing Data Using t-SNE. Journal of Machine Learning 

Research. 

 

 



16 

Appendix 

 

Figure A1 

Mean, Standard Deviation, Minimum Value, Maximum Value and Interquartile Range Values 

for (𝛺, ℋ, ℤ) ∈ (𝛷, 𝜏) 

 count mean std min 25% 50% 75% max 

GEDIV 91500.0 5.382656 2.497849 1.0 3.0 5.0 8.0 9.0 

HRHTYPE 91500.0 2.124678 2.519624 0.0 0.0 1.0 4.0 10.0 

HEFAMINC 91500.0 7.260481 6.691254 -1.0 -1.0 9.0 14.0 16.0 

H_TENURE 91500.0 1.035268 0.724797 0.0 1.0 1.0 2.0 3.0 

H_LIVQRT 91500.0 1.262612 1.155883 1.0 1.0 1.0 1.0 12.0 

H1TELAVL 91500.0 0.004066 0.127460 0.0 0.0 0.0 0.0 4.0 

H_NUMPER 91500.0 1.726328 1.730261 0.0 0.0 1.0 3.0 16.0 

HANN_YN 91500.0 1.303257 0.943277 0.0 0.0 2.0 2.0 2.0 

HCHCARE_YN 91500.0 0.353093 0.729884 0.0 0.0 0.0 0.0 2.0 

HCOV 91500.0 0.764590 0.662614 0.0 0.0 1.0 1.0 3.0 

HCSPVAL 91500.0 135.069093 1417.263625 0.0 0.0 0.0 0.0 99999.0 

HCSP_YN 91500.0 1.298962 0.942371 0.0 0.0 2.0 2.0 2.0 

HDIS_YN 91500.0 1.307956 0.944245 0.0 0.0 2.0 2.0 2.0 

HDIVVAL 91500.0 890.436448 11112.500978 0.0 0.0 0.0 0.0 1009999.0 

HDIV_YN 91500.0 1.196546 0.914546 0.0 0.0 2.0 2.0 2.0 

HDST_YN 91500.0 1.275355 0.937024 0.0 0.0 2.0 2.0 2.0 

HED_YN 91500.0 1.286831 0.939701 0.0 0.0 2.0 2.0 2.0 

HENGAST 91500.0 1.300339 0.942664 0.0 0.0 2.0 2.0 2.0 

HFINVAL 91500.0 107.550852 2548.150986 0.0 0.0 0.0 0.0 500000.0 

HFIN_YN 91500.0 1.311038 0.944867 0.0 0.0 2.0 2.0 2.0 

HFOODSP 91500.0 1.263071 0.933994 0.0 0.0 2.0 2.0 2.0 

HH5TO18 91500.0 0.357049 0.811811 0.0 0.0 0.0 0.0 9.0 

HHINC 91500.0 17.656907 16.770146 0.0 0.0 14.0 37.0 41.0 

HHSTATUS 91500.0 0.906219 0.809742 0.0 0.0 1.0 1.0 3.0 

HH_HI_UNIV 91500.0 1.012404 1.015949 0.0 0.0 1.0 1.0 3.0 

HINC_FR 91500.0 1.311016 0.944862 0.0 0.0 2.0 2.0 2.0 
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 count mean std min 25% 50% 75% max 

HINC_SE 91500.0 1.261552 0.933607 0.0 0.0 2.0 2.0 2.0 

HINC_UC 91500.0 1.304973 0.943633 0.0 0.0 2.0 2.0 2.0 

HINC_WC 91500.0 1.316055 0.945856 0.0 0.0 2.0 2.0 2.0 

HINC_WS 91500.0 0.825202 0.687839 0.0 0.0 1.0 1.0 2.0 

HINT_YN 91500.0 0.865366 0.725062 0.0 0.0 1.0 1.0 2.0 

HMCAID 91500.0 1.780230 1.377420 0.0 0.0 3.0 3.0 3.0 

HNUMFAM 91500.0 0.764579 0.657651 0.0 0.0 1.0 1.0 9.0 

HOI_YN 91500.0 1.304984 0.943636 0.0 0.0 2.0 2.0 2.0 

HPAW_YN 91500.0 1.314831 0.945617 0.0 0.0 2.0 2.0 2.0 

HPENVAL 91500.0 2251.072918 16761.612545 0.0 0.0 0.0 0.0 1065075.0 

HPEN_YN 91500.0 1.243891 0.928917 0.0 0.0 2.0 2.0 2.0 

HPRIV 91500.0 1.095191 1.048788 0.0 0.0 1.0 2.0 3.0 

HPUB 91500.0 1.464929 1.273205 0.0 0.0 1.0 3.0 3.0 

HRNT_YN 91500.0 1.270492 0.935845 0.0 0.0 2.0 2.0 2.0 

HSSI_YN 91500.0 1.294492 0.941406 0.0 0.0 2.0 2.0 2.0 

HSSVAL 91500.0 4491.124678 10645.758429 0.0 0.0 0.0 0.0 126080.0 

HSS_YN 91500.0 1.115126 0.883374 0.0 0.0 1.0 2.0 2.0 

HSUR_YN 91500.0 1.306383 0.943924 0.0 0.0 2.0 2.0 2.0 

HUNDER15 91500.0 0.362328 0.834027 0.0 0.0 0.0 0.0 10.0 

HUNDER18 91500.0 0.439301 0.930660 0.0 0.0 0.0 0.0 10.0 

HUNITS 91500.0 1.162557 1.427268 0.0 0.0 1.0 1.0 5.0 

HVET_YN 91500.0 1.298230 0.942215 0.0 0.0 2.0 2.0 2.0 

NOW_HCOV 91500.0 0.774699 0.677095 0.0 0.0 1.0 1.0 3.0 

NOW_HMCAID 91500.0 1.787246 1.378774 0.0 0.0 3.0 3.0 3.0 

NOW_HPRIV 91500.0 1.112951 1.062489 0.0 0.0 1.0 2.0 3.0 

NOW_HPUB 91500.0 1.467934 1.274434 0.0 0.0 1.0 3.0 3.0 

GTCBSASZ 91500.0 3.667574 2.616627 0.0 0.0 4.0 6.0 7.0 

 

 

 

 

 



18 

Figure A2 

Heatmap of (𝛺, ℋ, ℤ) ∈ (𝛷, 𝜏) 

 


