
 

 

Derivation of the Black Scholes Formula (With Commentary) 

Jessica Chipera, MBA 

 

The Black Scholes Model has been the industry standard in options valuation ever since it was first 

derived. Ever wonder where it came from? Let’s see. 

 

Let’s start with  

𝑓 = (𝑡, 𝑊𝑡) 

Where: 

t = time 

W = Brownian Motion at time index t where t ≤ T and t > 0. 

 

Brownian Motion is a physics concept that relates to the random movement of microscopic particles. It 

has been applied to finance to describe the “random walk theory” first developed by Louis Bachelier 

(1870 to 1946) as part of his PhD dissertation “The Theory of Speculation.” It was later also used by 

Black, Scholes, and Merton when developing the formula that we explore in this paper.  

 

We must note that stocks do not, in fact, move in a random walk. There are lots of factors that influence 

the movement of prices of securities, most of which are nonrandom. As of yet, mathematicians have 

had a hard time modeling exactly the movement of securities. One would argue this could be because 

investors are partially influenced by psychology, IE: behavioral economics. Indeed, the price change of 

securities seems to be both random and predictable simultaneously. 

 

For now, lets assume Brownian Motion applies.  

 

Recall the rules of stochastic calculus and differential form: 
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(𝑑𝑡2) = 0 

(𝑑𝑡)(𝑑𝑊𝑡) = 0 

(𝑑𝑊𝑡
2) = 𝑑𝑡 

 

Therefore, f from time t → T can be written as: 

𝑑𝑓 = 𝑓𝑡𝑑𝑡 + 𝑓𝑤𝑑𝑊𝑡 + 𝑓𝑤𝑡(𝑑𝑡)(𝑑𝑊𝑡) +
1

2
𝑓𝑡𝑡(𝑑𝑡2) +

1

2
𝑓𝑤𝑤(𝑑𝑊𝑡

2) 

 

Using the rules of stochastic calculus, simplify to: 

𝑑𝑓 = 𝑓𝑡𝑑𝑡 + 𝑓𝑤𝑑𝑊𝑡 +
1

2
𝑓𝑤𝑤(𝑑𝑡) 

 

This can be rewritten in integral form: 

𝑓(𝑇, 𝑊𝑇) − 𝑓(𝑡, 𝑊𝑡) = ∫ 𝑓𝑡

𝑇

𝑡

𝑑𝑡 + ∫ 𝑓𝑤

𝑇

𝑡

𝑑𝑡𝑊𝑡 +
1

2
∫ 𝑓𝑤𝑤(𝑑𝑡)

𝑇

𝑡

 

 

This is the differential of a time-dependent function of the variable. Let’s take it and apply it to wealth 

management by using Itô’s Lemma (2) function: 

𝑌(𝑇, 𝑊𝑇) − 𝑌(𝑡, 𝑊𝑡) = ∫ 𝑏𝑡

𝑇

𝑡

𝑑𝑊𝑡 

 

Where: 

b = a series of investments made from t → T, indexed by t 

Y = wealth accumulated as a consequence of this series of investments. 

 

Therefore: 

𝐸[𝑌(𝑇, 𝑊𝑇) − 𝑌(𝑡, 𝑊𝑡)] = ∫ 𝑏𝑡

𝑇

𝑡

𝑑𝑊𝑡 

 

And because of the law of iterated expectations and the definition of an integral, 

𝐸[𝑌(𝑇, 𝑊𝑇) − 𝑌(𝑡, 𝑊𝑡)] = ∫ 𝑏𝑡

𝑇

𝑡

𝑑𝑊𝑡 = 0 
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So why would anyone invest if the expected value is 0? We have not yet factored in the drift term. This 

also implies that all the capital appreciation will be garnered from the drift term. 

 

So, let’s look at the drift. 

𝑌(𝑇, 𝑊𝑇) − 𝑌(𝑡, 𝑊𝑡) = ∫ 𝑎𝑡

𝑇

𝑡

𝑑𝑡 + ∫ 𝑏𝑡𝑑𝑊𝑡

𝑇

𝑡

 

 

Now the expected value of the investment outcome becomes the drift term. We can easily express this 

in differential form: 

 

𝑑𝑌𝑡 = 𝑎𝑡𝑑𝑡 + 𝑏𝑡𝑑𝑊𝑡 

 

The first term (𝑎𝑡𝑑𝑡) is the drift term, the second (𝑏𝑡𝑑𝑊𝑡) is the diffusion coefficient, and 

the series (𝑑𝑌𝑡) is an Itô process.  

 

The differential from time t → T can be written as a Taylor series expansion: 

𝑑𝑓 = 𝑓𝑡𝑑𝑡 + 𝑓𝑦𝑑𝑌𝑡 + 𝑓𝑦𝑡(𝑑𝑡)(𝑑𝑌𝑡) +
1

2
𝑓𝑡𝑡(𝑑𝑡2) +

1

2
𝑓𝑦𝑦(𝑑𝑌𝑡

2) 

 

Let’s substitute it in: 

𝑑𝑓 = 𝑓𝑡𝑑𝑡 + 𝑓𝑦(𝑎𝑡𝑑𝑡 + 𝑏𝑡𝑑𝑊𝑡) + 𝑓𝑦𝑡(𝑑𝑡)(𝑎𝑡𝑑𝑡 + 𝑏𝑡𝑑𝑊𝑡) +
1

2
𝑓𝑡𝑡(𝑑𝑡2) +

1

2
𝑓𝑦𝑦(𝑑𝑌𝑡

2) 

 

Simplify: 

𝑑𝑓 = 𝑓𝑦(𝑎𝑡𝑑𝑡 + 𝑏𝑡𝑑𝑊𝑡) +
1

2
𝑓𝑦𝑦((𝑎𝑡𝑑𝑡 + 𝑏𝑡𝑑𝑊𝑡)2) 

 

Substitute in the squared wealth differential: 

𝑑𝑓 = 𝑓𝑡𝑑𝑡 + 𝑓𝑦(𝑎𝑡𝑑𝑡 + 𝑏𝑡𝑑𝑊𝑡) +
1

2
𝑓𝑦𝑦((𝑎𝑡𝑑𝑡 + 𝑏𝑡𝑑𝑊𝑡)2) + 2((𝑎𝑡)(𝑏𝑡)(𝑑𝑡)(𝑑𝑊𝑡)) + (𝑏𝑡)2(𝑑𝑊𝑡)2) 

 

Simplify: 
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𝑑𝑓 = 𝑓𝑡𝑑𝑡 + 𝑓𝑦𝑑𝑡 + 𝑓𝑦(𝑎𝑡𝑑𝑡 + 𝑏𝑡𝑑𝑊𝑡) +
1

2
𝑓𝑦𝑦(𝑏𝑡

2𝑑𝑡) 

 

Substitute new terms for drift and volatility: 

𝑑𝑌𝑡 = 𝑎𝑡𝑌𝑡𝑑𝑡 + 𝛽𝑡𝑌𝑡𝑑𝑊𝑡 

 

Where: 

𝑎𝑡 = 𝑎𝑡𝑌𝑡 

𝑏𝑡 = 𝛽𝑡𝑌𝑡 

 

Rewrite as: 

𝑑𝑌𝑡

𝑌𝑡
= 𝑎𝑡𝑑𝑡 + 𝛽𝑡𝑑𝑊𝑡 

 

Substitute new terms for drift and volatility again, for the sake of simplicity and common notation: 

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 

 

Where: 

𝜇 = 𝑎𝑡   

𝜎 = 𝛽𝑡   

𝑆𝑡 = 𝑌𝑡 

 

You may or may not recognize this as Geometric Brownian motion, a special Itô process that has time-

varying drift and volatility terms. The Black Scholes model assumes the underlying asset follows this 

process when in a hedged portfolio. 

 

Further assumptions: 

a) Unrestricted short selling 

b) No dividends, taxes, or arbitrage opportunities 

c) Continuous trading 
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These assumptions are not true in actuality. As we know, there are indeed restrictions on short-selling. 

Many stocks pay dividends, and taxes are an inevitability. Arbitrage opportunities exist (or else Warren 

Buffet wouldn’t have ever made any money.) Also, stocks are not traded continuously.  

 

Why are we making these assumptions if we know they’re not true? We are attempting to remove 

noise from our calculations. We can add this stuff back in later. 

 

𝑑𝐻 = (𝑑𝑆)(𝑃) + (𝑄)((𝑑𝐷(𝑆, 𝑇 − 𝑡)) 

 

Where: 

P = Units of underlying asset 

S = Asset price 

Q = Units of derivative asset 

H = Value of hedged portfolio 

 

The function to value the derivative resembles the wealth function from Itô’s Lemma (2). The 

derivative price and wealth are both time-dependent functions of an Itô process. The derivative’s price 

is a time-dependent function of Geometric Brownian motion. Therefore, we can solve using Itô’s 

Lemma (1): 

𝑑𝐷(𝑆, 𝑇 − 𝑡) = 𝐷𝑠𝑑𝑆 + 𝐷𝑡𝑑𝑡 + 𝐷𝑠𝑡(𝑑𝑆)(𝑑𝑇) +
1

2
𝐷𝑠𝑠(𝑑𝑆2) +

1

2
𝐷𝑡𝑡(𝑑𝑡2) 

 

Since we assume it follows Brownian Motion: 

𝑑𝑆 = 𝑆(𝜇𝑑𝑡 + σ𝑆𝑑𝑊𝑡) 

 

And 

(𝑑𝑆)2 = (𝜇𝑆𝑑𝑡 + σ𝑆𝑑𝑊𝑡)2 = (𝜇𝑆𝑑𝑡)2 + 2(𝜇𝑆2σ(𝑑𝑡)(𝑑𝑊𝑡)) + (σ𝑆𝑑𝑊𝑡)2 

 

Which simplifies to: 

(𝑑𝑆)2 = 𝜎2𝑆2𝑑𝑡 
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Make the substitutions: 

𝑑𝐷(𝑆, 𝑇 − 𝑡) = 𝐷𝑠(𝜇𝑆𝑑𝑡 + σ𝑆𝑑𝑊𝑡) − 𝐷𝑇−𝑡𝑑𝑡 +
1

2
𝐷𝑠𝑠(𝜎2𝑆2𝑑𝑡) 

𝑑𝐻 = (𝑑𝑆)(𝑃) + (𝑄)(𝐷𝑠𝑑𝑆 − 𝐷𝑇−𝑡𝑑𝑡 +
1

2
𝐷𝑠𝑠𝜎2𝑆2𝑑𝑡) 

 

When: 

𝐷𝑡 = −𝐷𝑇−𝑡 

 

Written more simply: 

𝛥𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐻𝑒𝑑𝑔𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 = (𝑈𝑛𝑖𝑡𝑠 𝑜𝑓 𝐴𝑠𝑠𝑒𝑡)(Δ𝐴𝑠𝑠𝑒𝑡 𝑃𝑟𝑖𝑐𝑒) + (𝑈𝑛𝑖𝑡𝑠 𝑜𝑓 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒)(Δ𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑖𝑐𝑒) 

 

Returning to the math, we can make a variable substitution and eliminate the randomness of Geometric 

Brownian motion by constructing (at least temporarily) a risk-free portfolio: 

𝑑𝐻 = (𝑑𝑆)(−𝑄𝐷𝑠) + 𝑄(𝐷𝑠ds − 𝐷𝑇−𝑡𝑑𝑡 +
1

2
𝐷𝑠𝑠𝜎2𝑆2𝑑𝑡) 

 

Simplify to: 

𝑑𝐻 = 𝑄(−𝐷𝑇−𝑡𝑑𝑡 +
1

2
𝐷𝑠𝑠𝜎2𝑆2𝑑𝑡) 

 

So at time t: 

𝐻 = (−𝑄𝐷𝑠)(𝑆) + 𝑄(𝐷)(𝑆, 𝑇 − 𝑡) 

 

What does this mean for the return of the portfolio? Since we eliminated the randomness associated 

with Geometric Brownian motion, there is no risk. However, since we removed randomness and risk, 

we also removed market compensation for risk, μ.  

 

Recall the Capital Asset Pricing Model (CAPM): 

𝜇 = 𝑟𝑓 + 𝛽(𝐸[𝑟𝑚]) − 𝑟𝑓) 

 



 Derivation of the Black Scholes Formula 

 

Chipera, 7 

To satisfy the no-arbitrage assumption, portfolio return must be equivalent to the risk-free rate: 

𝑑𝐻

𝐻
=

(𝑄)(−𝐷𝑇−𝑡𝑑𝑡 +
1
2 𝐷𝑠𝑠𝜎2𝑆2𝑑𝑡)

(𝑄)(−𝐷𝑠𝑆 + 𝐷(𝑆, 𝑇 − 𝑡))
= 𝑟𝑑𝑡 

 

Simplify: 

𝑑𝐻

𝐻
=

(−𝐷𝑇−𝑡𝑑𝑡 +
1
2

𝐷𝑠𝑠𝜎2𝑆2𝑑𝑡)

(−𝐷𝑠𝑆 + 𝐷(𝑆, 𝑇 − 𝑡))
= 𝑟𝑑𝑡 

𝑑𝐻

𝐻
=

(−𝐷𝑇−𝑡𝑑𝑡 +
1
2

𝐷𝑠𝑠𝜎2𝑆2)

(−𝐷𝑠𝑆 + 𝐷(𝑆, 𝑇 − 𝑡))
= 𝑟 

 

𝐷𝑇−𝑡 +
1

2
𝐷𝑠𝑠𝜎2𝑆2 = 𝑟(−𝐷𝑠𝑆 + 𝐷(𝑆, 𝑇 − 𝑡)) 

0 = −𝑟𝐷(𝑆, 𝑇 − 𝑡) + 𝑟𝐷𝑠𝑆 − 𝐷𝑇−𝑡 +
1

2
𝐷𝑠𝑠𝜎2𝑆2 

 

The portfolio we have constructed is riskless. Thus, the differential equation follows the same law of 

motion that a derivative would satisfy and market participants don’t require compensation for risk in 

this case. To find the value of the derivative today we must discount the expected value of the 

derivative at the expected rate of return of the underlying asset. 

 

We are making the assumption that removing randomness makes the portfolio “risk free.” However, 

that’s not exactly true. There are in fact, many risks that can affect a portfolio lacking randomness, 

obviously. 

  

For now, let’s go with the assumption that this is a “riskless” portfolio: 

 

𝐷 = 𝑆𝑡, 𝑇 − 𝑡) = 𝑒𝜇(𝑇−𝑡)𝐸𝑡[𝐷(𝑆𝑇 , 0)] 

 

And: 

𝐷 = 𝑆𝑡, 𝑇 − 𝑡) = 𝑒𝜇(𝑇−𝑡)Ê𝑡[𝐷(𝑆𝑇 , 0)] 
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Where: 

Ê = the risk-neutral expected value of the derivative. Since the portfolio is riskless, it can be 

discounted at the risk-free rate. 

 

Because of the definition of expected value, we know: 

Ê𝑇[𝐷(𝑆𝑇 , 0)] = ∫ 𝐷
𝑋

(𝑆𝑇 , 0)𝑑Ĝ(𝑠) 

 

Where: 

X = Support 

 

To integrate, we must make variable substitutions and transformations to arrive at standard normal 

distribution, of which we will take the natural log to make lognormal distribution. Why lognormal? 

Because securities move in percentages. Also because of the definition of a differential equation. 

 

Lognormal distribution makes sense, but this is one of the biggest flaws with the Black Scholes model. 

It assumes that stocks follow a Gaussian curve, but that simply is not true. During “normal market 

conditions” this is a close approximation. However, during turbulent markets, there seems to be an 

opportunity for arbitrage due to the movement of stocks no longer being lognormal. 

 

In addition, as we discovered during the 2020 pandemic, the probability of a futures contract having a 

negative price is, in fact, greater than zero. This creates a problem, as addressed in one of my previous 

papers, because the natural log of a negative price is an imaginary number. Securities must have real 

number valuations, so this creates an issue for any holder of an options contract on a futures contract 

with a negative price. The probability of this event repeating is also greater than zero, as a negative 

futures contract price is possible whenever the commodity must be stored. When storage runs out, the 

futures contract can turn negative. 

 

Let’s set that aside for a moment and return to the Black Scholes derivation: 
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Using Itô’s Lemma (2) we can solve for the transformed differential: 

𝑑𝑙𝑛(𝑆𝑡) = (𝜇 −
𝜎2

𝑡
) 𝑑𝑡 + 𝜎𝑑𝑊𝑡 

 

Rewrite in integral form: 

𝑙𝑛(𝑆𝑇) − ln(𝑆𝑡) = ∫ (𝜇 −
𝜎2

𝑡
)

𝑇

𝑡

𝑑𝑡 + ∫ 𝜎2𝑑𝑊𝑡

𝑇

𝑡

 

 

Solve using the laws of logarithms: 

𝑙𝑛 (
𝑆𝑇

𝑆𝑡
) ~𝑁 (∫ (𝜇 −

𝜎2

𝑡

𝑇

𝑡

) 𝑑𝑡, ∫ 𝜎2𝑑𝑡
𝑇

𝑡

) 

𝑙𝑛 (
𝑆𝑇

𝑆𝑡
) ~𝑁 ((𝜇 −

𝜎2

𝑡
) (𝑇 − 𝑡) , 𝜎(𝑇 − 𝑡)) 

𝑆𝑇

𝑆𝑡
~𝐿𝑜𝑔𝑛(𝑒

(𝜇−
𝜎2

2
)(𝑇−𝑡)+

𝜎2

2
(𝑇−𝑡)

, …) 

𝑆𝑇

𝑆𝑡
~𝐿𝑜𝑔𝑛(𝑒𝜇(𝑇−𝑡), …) 

 

Since we are under the conditions of risk-neutrality established by our portfolio to satisfy our no-

arbitrage assumption, μ=r where r (the risk-free rate) is an appropriate U.S. Treasury bond. 

𝑒𝜇(𝑇−𝑡) = 𝑒𝑟(𝑇−𝑡) 

 

The risk-free bond price today is a function of time with a payoff of $1 can be written as: 

𝐵(𝑡, 𝑇) = 𝑒−𝑟(𝑇−𝑡) 

𝑟(𝑡, 𝑇) = −ln (𝐵(𝑡, 𝑇)) 

 

So, let’s make the substitutions into our risk-neutral log return functions: 

(𝜇 −
𝜎2

2
) (𝑇 − 𝑡) = (𝑟 −

𝜎2

2
) (𝑇 − 𝑡) = −[𝑙𝑛(𝐵(𝑡, 𝑇) +

1

2
𝜎2(𝑇 − 𝑡)] 

𝐸 [𝑙𝑛 (
𝑆𝑇

𝑆𝑡
)] = −(𝑙𝑛(𝐵(𝑡, 𝑇) +

1

2
𝜎2(𝑇 − 𝑡)) 
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𝑣𝑎𝑟 [𝑙𝑛 (
𝑆𝑇

𝑆𝑡
)] = 𝜎2(𝑇 − 𝑡) 

 

Therefore: 

𝑙𝑛 (
𝑆𝑇

𝑆𝑡
) ~𝑁(−[𝑙𝑛 (𝐵(𝑡, 𝑇) +

1

2
𝜎2(𝑇 − 𝑡)] , 𝜎2(𝑇 − 𝑡) 

 

And: 

Ĝ(𝑆) = Ĥ(𝑆𝑇 ≤ S) = Ĥ(𝑙𝑛 (
𝑆𝑇

𝑆𝑡
) ≤ (𝑙𝑛 (

𝑆𝑇

𝑆𝑡
)) 

 

 Now we can standardize this and convert into a standard normal distribution: 

Ĥ(𝑧 ≤
𝑙𝑛 (

𝑆𝑇
𝑆𝑡

) + [𝑙𝑛(𝐵(𝑡, 𝑇)) +
1
2

𝜎2(𝑇 − 𝑡)]

𝜎√(𝑇 − 𝑡)
) = 𝜙[

𝑙𝑛 (
𝑆𝑇
𝑆𝑡

) + [𝑙𝑛(𝐵(𝑡, 𝑇)) +
1
2

𝜎2(𝑇 − 𝑡)]

𝜎√(𝑇 − 𝑡)
] 

 

Where: 

𝜙 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑁𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

Simplify, to get the risk-neutral cumulative distribution function in terms of the standard normal 

distribution: 

𝜙(
𝑙𝑛 (

𝐵(𝑡, 𝑇)𝑆
𝑆𝑡

) +
1
2 𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
) 

 

We now have everything we need to derive the Black Scholes formula. Let’s go straight into deriving 

the call price as a discounted risk-normal expected value of the payoff: 

𝐶(𝑆𝑡, 𝑇 − 𝑡) = 𝐵(𝑡, 𝑇)Ê𝑡[𝑚𝑎𝑥(𝑆𝑡 − 𝑋, 0)] 

 

The support for the region is given by the payoff of the call, between the strike price and infinity, so 

because of the definition of expected value: 
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𝐶(𝑆𝑡, 𝑇 − 𝑡) = 𝐵(𝑡, 𝑇) ∫ (𝑆 − 𝑋)𝑑
∞

𝑋

Ĝ(𝑆) 

𝐶(𝑆𝑡, 𝑇 − 𝑡) = 𝐵(𝑡, 𝑇) ∫ 𝑆𝑑
∞

𝑋

Ĝ(𝑆) − 𝐵(𝑡, 𝑇)𝑋 ∫ 𝑑Ĝ(𝑆)
∞

𝑋

 

 

The second integral is easy to compute: 

𝐵(𝑡, 𝑇)𝑋 ∫ 𝑑Ĝ(𝑆)
∞

𝑋

= 𝐵(𝑡, 𝑇)𝑋[Ĝ(∞) − Ĝ(𝑋)] 

 

The price of a security clearly must be less than infinity. We can substitute ϕ for the risk-neutral 

cumulative distribution function, so: 

𝐵(𝑡, 𝑇)𝑋 ∫ 𝑑Ĝ(𝑆)
∞

𝑋

= 𝐵(𝑡, 𝑇)𝑋[1 − 𝜙 (
𝑙𝑛 (

𝐵(𝑡, 𝑇)𝑋
𝑆𝑡

) +
1
2 𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
)] 

 

Because standard distribution is symmetrical, we can conclude: 

𝐵(𝑡, 𝑇)𝑋 ∫ 𝑑Ĝ(𝑆)
∞

𝑋

= 𝐵(𝑡, 𝑇)𝑋[𝜙 (
𝑙𝑛 (

𝑆𝑡

𝐵(𝑡, 𝑇)𝑋
) +

1
2

𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
)] 

 

Now let’s solve the first integral: 

𝐵(𝑡, 𝑇) ∫ 𝑆𝑑
∞

𝑋

Ĝ(𝑆) 

𝑧 =
𝑙𝑛 (

𝐵(𝑡, 𝑇)𝑋
𝑆𝑡

) +
1
2 𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
 

𝑆 =
𝑆𝑡

𝐵(𝑡, 𝑇)
(𝑒𝑧𝜎√(𝑇−𝑡)−

1
2

𝜎2(𝑇−𝑡)
) 

 

Rewrite, making substitutions: 

𝜙(𝑧) = ∫
1

√2𝜋
𝑒

−𝑤2

2 𝑑𝑤, 𝑑𝜙(𝑧) =
1

√2𝜋
𝑒

−𝑧2

2 𝑑𝑧
𝑧

−∞
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Where: 

𝜙(𝑧) = Ĝ(𝑆) 

𝑑𝜙(𝑧) = 𝑑Ĝ(𝑆) 

 

Solve the new limits of integration: 

𝑆 = 𝑋 ⇒ 𝑧 =
𝑙𝑛 (

𝐵(𝑡, 𝑇)𝑋
𝑆𝑡

) +
1
2

𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
 

𝑆 = ∞ ⇒ 𝑧 = ∞ 

 

Rewrite the integral in terms of z. 

𝐵(𝑡, 𝑇) ∫
𝑆𝑡

𝐵(𝑡, 𝑇)

∞

𝑙𝑛(
𝐵(𝑡,𝑇)𝑋

𝑆𝑡
)+

1
2

𝜎2(𝑇−𝑡)

𝜎√(𝑇−𝑡)

𝑒
𝑧𝜎√(𝑇−𝑡)−1

2
𝜎2(𝑇−𝑡)

𝑑𝜙(𝑧) 

 

The function of bond returns cancels, which leaves us with a slightly smaller mess: 

𝑆𝑡 ∫ 𝑒
𝑧𝜎√(𝑇−𝑡)−1

2
𝜎2(𝑇−𝑡)

∞

𝑙𝑛(
𝐵(𝑡,𝑇)𝑋

𝑆𝑡
)+

1
2

𝜎2(𝑇−𝑡)

𝜎√(𝑇−𝑡)

1

√2𝜋
𝑒

−𝑧2

2 𝑑𝑧 

 

Regroup the mess and factor: 

𝑆𝑡 ∫
1

√2𝜋
𝑒

𝑧𝜎√(𝑇−𝑡)−1
2

𝜎2(𝑇−𝑡)−𝑧2

2
𝑑𝑧

∞

𝑙𝑛(
𝐵(𝑡,𝑇)𝑋

𝑆𝑡
)+

1
2

𝜎2(𝑇−𝑡)

𝜎√(𝑇−𝑡)

 

𝑆𝑡 ∫
1

√2𝜋
𝑒

(−1
2

(𝑧2−2𝑧𝜎√(𝑇−𝑡)+𝜎2(𝑇−𝑡)))
𝑑𝑧

∞

𝑙𝑛(
𝐵(𝑡,𝑇)𝑋

𝑆𝑡
)+

1
2

𝜎2(𝑇−𝑡)

𝜎√(𝑇−𝑡)
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𝑆𝑡 ∫
1

√2𝜋
𝑒

(−1
2

(𝑧−𝜎√(𝑇−𝑡))
2

)

𝑑𝑧
∞

𝑙𝑛(
𝐵(𝑡,𝑇)𝑋

𝑆𝑡
)+

1
2

𝜎2(𝑇−𝑡)

𝜎√(𝑇−𝑡)

 

 

Recognize that we have a perfect square (thank God!), and make one variable substitution: 

𝑦 = 𝑧 − 𝜎√(𝑡 − 𝑡), 𝑧 = 𝑦 + 𝜎√(𝑇 − 𝑡), 𝑑𝑦 = 𝑑𝑧 

 

Solve for our new limits of integration: 

𝑧 =
𝑙𝑛 (

𝐵(𝑡, 𝑇)𝑋
𝑆𝑡

) +
1
2 𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
⇒ 𝑦 =

𝑙𝑛 (
𝐵(𝑡, 𝑇)𝑋

𝑆𝑡
) +

1
2 𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
− 𝜎√(𝑇 − 𝑡) 

 

So: 

𝑆𝑡 ∫
1

√2𝜋
𝑒−

1
2

𝑦2

𝑑𝑦
∞

𝑙𝑛(
𝐵(𝑡,𝑇)𝑋

𝑆𝑡
)+

1
2

𝜎2(𝑇−𝑡)

𝜎√(𝑇−𝑡)
 − 𝜎√(𝑇−𝑡)

 

𝑧 = ∞ ⇒ 𝑦 = ∞ 

 

Therefore, because of the definition of standard normal distribution: 

𝑆𝑡(𝜙(∞) −  𝜙 (
𝑙𝑛 (

𝐵(𝑡, 𝑇)𝑋
𝑆𝑡

) +
1
2 𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
) − 𝜎√(𝑇 − 𝑡))) 

 

Obviously, infinity in the standard normal deviation is just one. 

𝑆𝑡(1 −  𝜙 (
𝑙𝑛 (

𝐵(𝑡, 𝑇)𝑋
𝑆𝑡

) +
1
2 𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
) − 𝜎√(𝑇 − 𝑡))) 

 

Once again, since standard normal distribution is symmetrical, so: 
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𝑆𝑡( 𝜙 (
𝑙𝑛 (

𝑆𝑡

𝐵(𝑡, 𝑇)𝑋
) +

1
2 𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
)) 

 

Substitute that in for the first integral and rewrite: 

𝐶(𝑆𝑡,𝑇 − 𝑡) = 𝑆𝑡𝜙 (
𝑙𝑛 (

𝑆𝑡

𝐵(𝑡, 𝑇)𝑋
) +

1
2 𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
) − 𝐵(𝑡, 𝑇)𝑋𝜙 (

𝑙𝑛 (
𝑆𝑡

𝐵(𝑡, 𝑇)𝑋
) −

1
2 𝜎2(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
) 

 

Simplify to a form we all recognize: 

 

𝑽𝑪𝒂𝒍𝒍 = 𝑺𝒆−𝒓(𝑻−𝒕)𝑵(𝒅𝟏) − 𝑲𝒆−𝒓(𝑻−𝒕)𝑵(𝒅𝟐) 

 

Where: 

K = 𝐵(𝑡, 𝑇)𝑋 = Strike price of the option 

r = Risk free rate of return (%) 

T – t = Time to expiration, in years 

S = Price of the underlying security, whether a stock or a futures contract 

b = dividend yield of the underlying (%) 

𝑑1 =
𝑙𝑛 (

𝑆𝑡
𝐾 ) + 𝑏 +

𝜎2

2
(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
 

𝑑2 =
𝑙𝑛 (

𝑆𝑡
𝐾 ) − 𝑏

𝜎2

2
(𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)
=  𝑑1 − 𝜎√(𝑇 − 𝑡) 

 

Now that we have seen the math, I don’t need to go through it again. I will just write down the 

simplified formula for the price of a put: 

 

𝑽𝑷𝒖𝒕 = −𝑺𝒆−𝒓(𝑻−𝒕)𝑵(−𝒅𝟏) − 𝑲𝒆−𝒓(𝑻−𝒕)𝑵(𝒅𝟐) 


