4/29/23, 2:54 PM

MIT - Celestial Object Detector

CELESTIAL OBJECT DETECTOR
Jessica Chipera, MBA

Massachusetts Institute of Technology

Astronomy is a discipline with an abundance of vast datasets, and machine learning algorithms
are sometimes a necessity due to the labor intensity of analyzing all this data and deriving
insights and conclusions in a more manual fashion.

Problem Context

The detection of celestial objects observed through telescopes as being either a star, a galaxy or
a quasar, is an important classification scheme in astronomy. Stars have been known to
humanity since time immemorial, but the idea of the existence of whole galaxies of stars outside
our own galaxy (The Milky Way), was first theorized by the philosopher Immanuel Kant in 1755,
and conclusively observed in 1925 by the American astronomer Edwin Hubble. Quasars have
been a more recent discovery made possible significantly by the emergence of radio astronomy
in the 1950s.

Descriptions of these three celestial objects are provided below:
Star:

A star is an astronomical object consisting of a luminous plasma spheroid held together by the
force of its own gravity. The nuclear fusion reactions taking place at a star's core are exoergic
(there is a net release of energy) and are hence responsible for the light emitted by the star. The
closest star to Earth is, of course, the Sun. The next nearest star is Proxima Centauri, which is
around 4.25 light years away (a light year refers to the unit of distance travelled by light in one
year, around 9.46 trillion kilometers). Several stars are visible to us in the night sky, however

they are so far away they appear as mere points of light to us here on Earth.
Galaxy:

Galaxies are gravitationally bound groupings or systems of stars that additionally contain other
matter such as stellar remnants, interstellar gas, cosmic dust and even dark matter. Galaxies may
contain anywhere between the order of 108 to 1014 stars, which orbit the center of mass of the

galaxy.
Quasar:

Quasars, also called Quasi-stellar objects (abbv. QSO) are a kind of highly luminous "Active
Galactic Nucleus". Quasars emit an enormous amount of energy, because they have
supermassive black holes at their center. (A black hole is an astronomical object whose

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

1747

4/29/23, 2:54 PM

MIT - Celestial Object Detector
gravitational pull is so strong that not even light can escape from it if closer than a certain
distance from it) The gravitational pull of the black holes causes gas to spiral and fall into

"accretion discs" around the black hole, hence emitting energy in the form of electromagnetic
radiation.

Quasars were understood to be different from other stars and galaxies, because their spectral
measurements (which indicated their chemical composition) and their luminosity changes were
strange and initially defied explanation based on conventional knowledge - they were observed
to be far more luminous than galaxies, but also far more compact, indicating tremendous power
density. However, also crucially, it was the extreme "redshift" observed in the spectral readings
of Quasars that stood out and gave rise to the realization that they were separate entities from
other, less luminous stars and galaxies.

Note: In astronomy, redshift refers to an increase in wavelength, and hence decrease in
energy/frequency of any observed electromagnetic radiation, such as light. The loss of energy
of the radiation due to some factor is the key reason behind the observed redshift of that
radiation. Redshift is a specific example of what's called the Doppler Effect in Physics.

While redshift may occur for relativistic or gravitational reasons, the most significant reason for
redshift of any sufficiently-far astronomical object is that the universe is expanding - this causes

the radiation to travel a greater distance through the expanding space and hence lose energy.

For cosmological reasons, quasars are more common in the early universe, which is the part of
the observable universe that is furthest away from us here on earth. It is also known from
astrophysics (and attributed to the existence of "dark energy" in the universe) that not only is
the universe expanding, but the further an astronomical object is, the faster it appears to be
receding away from Earth (similar to points on an expanding balloon), and this causes the
redshift of far-away galaxies and quasars to be much higher than that of galaxies closer to
Earth.

This high redshift is one of the defining traits of Quasars, as we will see from the insights in this
case study.

Problem Statement

The objective of the project is to use the tabular features available to us about every
astronomical object, to predict whether the object is a star, a galaxy or a quasar, through the
use of supervised machine learning methods.

In this Jupyter notebook, | will use simple non-linear methods such as k-Nearest Neighbors and
Decision Trees to perform this classification.

Data Description

The source for this data is the Sloan Digital Sky Survey (SDSS), one of the most comprehensive

public sources of astronomical datasets available on the web today. SDSS has been one of the

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

2/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

most successful surveys in astronomy history, having created highly detailed three-dimensional
maps of the universe and curated spectroscopic and photometric information on over three
million astronomical objects in the night sky. SDSS uses a dedicated 2.5 m wide-angle optical
telescope which is located at the Apache Point Observatory in New Mexico, USA.

The following dataset consists of 250,000 celestial object observations taken by SDSS. Each
observation is described by 17 feature columns and 1 class column that identifies the real object
to be one of a star, a galaxy or a quasar.

objid = Object Identifier, the unique value that identifies the object in the image catalog used
by the CAS

u = Ultraviolet filter in the photometric system

ra = Right Ascension angle (at J2000 epoch)

dec = Declination angle (at J2000 epoch)

g = Green filter in the photometric system

r = Red filter in the photometric system

i = Near-Infrared filter in the photometric system

z = Infrared filter in the photometric system

run = Run Number used to identify the specific scan

rerun = Rerun Number to specify how the image was processed
camcol = Camera column to identify the scanline within the run
field = Field number to identify each field

specobjid = Unique ID used for optical spectroscopic objects (this means that 2 different
observations with the same spec_obj_ID must share the output class)

class = object class (galaxy, star, or quasar object)

redshift = redshift value based on the increase in wavelength

plate = plate ID, identifies each plate in SDSS

mjd = Modified Julian Date used to indicate when a given piece of SDSS data was taken

fiberid = fiber ID that identifies the fiber that pointed the light at the focal plane in each

observation

Imports

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

3/47

4/29/23, 2:54 PM

import numpy as np;
import pandas as pd;

import matplotlib.pyplot as plt;

import seaborn as sns;

import csv,json;
import os;

import warnings;

MIT - Celestial Object Detector

warnings.filterwarnings('ignore")

import random;
random.seed(1);
np.random.seed(1);

df_astro = pd.read_csv('D:/Skyserver250k.

df_astro.head()

objid
0 1237661976015274033
1 1237661362373066810
2 1237661360767238272
3 1237665440983416884

4 1237665531717812262

Some Quick EDA

df_astro.shape

(250000, 18)

This dataset has 250,000 rows and 18 columns.

ra

196.362072

206.614664

220.294728

206.315349

228.092653

dec

7.667016

45.924279

40.894575

27.438152

20.807371

csv')

u
19.32757
18.95918
17.75587
19.29195

19.19731

9

19.20759

17.09173

16.54700

19.12720

18.26143

r

19.16249

16.25019

16.67694

19.03992

17.89954

The dataset is quite voluminous, and has a high rows-to-columns ratio.

df_astro['class'].value_counts()

GALAXY 127117
STAR 96116
QSO 26767

Name: class, dtype: int64

df_astro.info()

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

19.07652

15.83413

16.77780

18.76714

17.76130

z

18.86196

15.55686

16.88097

18.73874

17.68726

ru

384

369

369

464

467

4/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 250000 entries, © to 249999
Data columns (total 18 columns):

Column Non-Null Count Dtype

@0 objid 250000 non-null int64

1 ra 250000 non-null float6e4
2 dec 250000 non-null float6e4
3 u 250000 non-null float6e4
4 g 250000 non-null float64
5 r 250000 non-null float64
6 i 250000 non-null float64
7 z 250000 non-null float64
8 run 250000 non-null int64

9 rerun 250000 non-null int64
10 camcol 250000 non-null int64
11 field 250000 non-null int64
12 specobjid 250000 non-null uinté64
13 class 250000 non-null object
14 redshift 250000 non-null float64
15 plate 250000 non-null int64
16 mjd 250000 non-null int64

17 fiberid 250000 non-null int64
dtypes: float64(8), int64(8), object(1l), uinte4(1)
memory usage: 34.3+ MB

Observations

As we can see above, apart from the class variable (the target variable) which is of the object
datatype and is categorical in nature, all the other predictor variables here are numerical in
nature, as they have int64 and float64 datatypes.

So this is a classification problem where the original feature set uses entirely numerical features.
Numerical datasets like this which are about values of measurements, are quite often found in
astronomy, and are ripe for machine learning problem solving, due to the affinity for numerical
calculations that computers have.

The above table also confirms what we found earlier, that there are 250,000 rows and 18
columns in the original dataset. Since every column here has the same number (250,000) of
non-null values, we can also conclude that there is no missing data in the table (due to the high
quality of the data source), and we can proceed without needing to worry about missing value
imputation techniques.

df_astro = df_astro.sample(n=50000)
df_astro.head()

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 5/47

4/29/23, 2:54 PM

240208

18744

207175

18669

189086

Checking for any missing values just in case

objid
1237674650999914544
1237678600235450515
1237667542289416372
1237663479798235382

1237670957325287503

df_astro.isnull().sum()

objid
ra
dec

u

N H- 5 00

run
rerun
camcol
field

specobjid

class

redshift

plate
mjd
fiberid

OO0 OO OO

dtype: int64

ra

174.290983

9.388044

147.349261

339.221808

24.841603

MIT - Celestial Object Detector

dec

0.595226

16.430042

20.509549

0.489051

-8.761315

Checking for duplicated data just in case
df_astro.duplicated().sum()

0

Class Description

Percentage class distribution of the target variable "class'

df_astro[‘class'].value_counts(1)*100

GALAXY
STAR
QSO

51.074
38.368
10.558

Name: class, dtype: float64

Observations

u

18.70026

19.49198

19.31644

18.97399

18.87783

More than 50% of the rows in this dataset are Galaxies.

9

18.45845

17.55909

17.96118

17.82409

17.88773

r

18.75494

16.55254

17.20228

17.24499

17.52882

v

.
|

19.05041

16.11508

16.74182

16.77777

17.37216

i

19.2082:

15.7431¢

16.4756(

16.6153¢

17.3136:

Over 38% of the instances are Stars, and just over 10% of the rows belong to the QSO (Quasar)

class.

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

6/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

As mentioned while giving the context for this problem statement, although they are among

the most luminous objects in interstellar space, quasars are very rare for astronomers to

observe. So it makes sense that they comprise the smallest percentage of the data points

present in the class variable.

This can hence be considered a somewhat imbalanced classification problem, but due to the

size of the dataset, even the smallest class (QSO - quasar) has over 25,000 examples. Even after

train-test splits, that should be enough training data for a machine learning algorithm to

understand the patterns leading to that classification.

Defining and Importing Stuff for Models

from sklearn
from sklearn.
from sklearn.

from sklearn.
from sklearn.
from sklearn.
from sklearn.
from sklearn.
from sklearn.
from sklearn

import tree;
tree import DecisionTreeClassifier;
ensemble import RandomForestClassifier;

model_selection import train_test_split, GridSearchCV, RandomizedSearchC\
metrics import recall_score, roc_curve, classification_report, confusion_
preprocessing import StandardScaler, LabelEncoder, OneHotEncoder;

compose import ColumnTransformer;

impute import SimplelImputer;

pipeline import Pipeline;

import metrics, model_selection;

le = LabelEncoder()
df_astro["class"] = le.fit_transform(df_astro["class"])
df_astro["class"] = df_astro["class"].astype(int)

df_astro[‘class']

240208
18744
207175
18669
189086

12026

101461
146611
152140
168265

2
0
0
(%]
2

oL NO -

1

Name: class, Length: 50000, dtype: int32

Statistical Summary

Since the predictor variables in this machine learning problem are all numerical, a statistical

summary is required so that we can understand some of the statistical properties of the features

of our dataset.

Set the format of the values in the table to be simple float numbers with 5 decimal
pd.set_option('display.float_format', lambda x: '%.5f' % x)

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

7/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

Let's view the statistical summary of the columns in the dataset
df_astro.describe().T

objid
ra

dec

run
rerun
camcol
field
specobjid
class
redshift
plate

mjd

fiberid

count

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

50000.00000

Observations:

mean

1237662592402716928.00000

178.38919

24.46484

18.63623

17.40655

16.88019

16.62614

16.46675

3985.58622

301.00000

3.41080

188.63092

2932821382617439744.00000

0.87294

0.16859

2604.78306

53927.35574

350.38148

std

7207093862089.52148

77.87886

20.08817

0.82798

0.98268

1.12646

1.20586

1.27357

1678.04277

0.00000

1.60723

142.56631

2500435815384516608.00000

0.93717

0.43125

2220.81942

1551.03867

215.46894

The maximum value of redshift is 6.4 and minimum value is 0.16.

1237645942905438464.!

0.

-19..

11.

109.

301.

1.

11.

299493525735630848.!

0.

-0.

266.!

51608.

1.

The mean of alpha (ra) is 178.3 and standard deviation is 77.87 whereas mean and standard
deviation of delta(dec) variable is 24.4 and 20.8.

The statistical summary of r,i and z variables are more or less similar, their range of values are

same. The dec and redshift features in the data have negative data points.

Number of unique values in each column
df_astro.nunique()

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

4/29/23, 2:54 PM MIT - Celestial Object Detector

objid 50000
ra 50000
dec 50000
u 44423
g 46340
r 46771
i 47078
z 47286
run 527
rerun 1
camcol 6
field 817
specobjid 50000
class 3
redshift 49713
plate 5726
mjd 2134
fiberid 996

dtype: inté64

The objid and specobjid columns are clearly unique IDs, that is why they have the same number
of values as the total number of rows in the dataset.

Since the objid and specobjid columns are unique IDs, they will not add any predictive power to
the machine learning model, and they can be removed.

df_astro.drop(columns=['objid', 'specobjid'], inplace=True)

Univariate Analysis

| will use a hist_box() function that provides both a boxplot and a histogram in the same visual,
with which we can perform univariate analysis on the columns of this dataset.

def hist_box(col):
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height _ratios': (¢
sns.set(style="darkgrid")
Adding a graph in each part
sns.boxplot(df_astro[col], ax=ax_box, showmeans=True)
sns.distplot(df_astro[col], ax=ax_hist)

ax_hist.axvline(df_astro[col].mean(), color='green', linestyle='--') # Green LlLine cc
ax_hist.axvline(df_astro[col].median(), color='orange', linestyle='-') # Orange L1ine
plt.show()

hist_box('redshift")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 9/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector
1 .m0 0 0 T TR Y *
' : redshift ' ' d
6
54
e
E‘
34
-
1]
o T T T T T T
1 2 3 4 5 6
redshift
In [20]: hist_box('ra')
ra
0006
0.005
0.004
&
o
8 o003
0.002
0001
P \ -II
400
In [21]: hist_box('dec")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

10/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

dec

0.035

0.030

0.025

0.020

Density

1

1
I
0 20
d

LU] + LR L R 1

0.015
0.010
0.005

0.000

40 80

ec

In [22]: hist_box('u")

0.8 1
07

06

05

Density

03

02

01

0.0

In [23]: hist_box('g")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 11/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

4 e

40D # AN
g
04
03

=z

e

8

02
01
0.0 ———
10 12
g9
In [24]: hist_box('i")
Ho M 4 0o L 44 U0 W + LI 2)
I
035
0.30
025
020
Z
8
o
0.15
0.10
0.05
0.00 o
10 25 30
i
In [25]: hist_box('r")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

12/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

,_..............* IIIII +.., . R Al . .

r

035

0.30

025

Density

0.15

0.10

0.05

0.00

n [26]: hist_box('z")

4 00N

e ¢ BN *

0.30

025

0.20

Density

0.15

0.10

0.05

0.00

10.0 25 250 275 30.0

In [27]: hist_box('run")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 13/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

0.0006
0.0005
0.0004
=
w
c
& 00003
0.0002
1
0.0001 - = |
I |
al A Suhnun RN ananE
0 2000 4000
un
In [28]:

hist_box('rerun')

rerun
50
40
0
=
7]
c
a
20
10
0
3006 3008 3010
rerun

In [29]: hist_box('camcol")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

I II I- | gl
6000

301.2 3014

14/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

camcol

08

Density

04

02

0.0

camcol

In [30]: hist_box('field")

—_— ™

field

0.0040

0.0035

0.0030

0.0025

Density

0.0020

0.0015

0.0010
0.0005

0.0000

II L[]] —
400

0 800 1000
field

In [31]: hist_box('plate’)

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 15/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

——

e e e e DEE Ll A 2. 4 1.1

plate

0.00035
0.00030
0.00025
0.00020
2
8
0.00015

0.00010

0.00005

0.00000

10000 12000
plate

In [22]: hist_box('mjd")

e ——

mjd

0.0005
0.0004

0.0003

Density

0.0002

0.0001

0.0000

51000 52000 53000 54000 55000 56000 57000 58000 59000

In [33]: hist_box('fiberid")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

16/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

— %

fiberid

1
00016 i
1

00014
0.0012
00010
= [
w
§o,onos
0.0006
0.0004
0.0002
SRR III I I I l
0 200 400 600 800 1000

fiberid
Observations:

The distribution plot shows that the plate, field, dec and redhshift variables are right-skewed. It
is evident from the boxplots that all these variables have outliers.

The camcol, rerun, run, fiberid and delta are the variables which do not possess outliers in the
boxplot.

rerun is the only variable which has one unique value.
The variables x, i and r have similar distributions.

The variables g and u are slightly left-skewed distributions.

Bivariate Analysis for Categorical and
Continuous variables

In [34]: #class vs redshift
sns.boxplot(df_astro['class'],df_astro['redshift'],palette="PuBu")

out[34]: <AxesSubplot:xlabel="class', ylabel='redshift'>

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 17/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

(4]
d B S D B

4
e
3
= 3
@
2 *
1
0 . 4
0 1 2
class

In [35]: # class vs [u,g,r,1,z]
cols = df_astro[['u','g"', 'r',"1","'z"]].columns.tolist()
plt.figure(figsize=(10,10))

for i, variable in enumerate(cols):
plt.subplot(3,2,i+1)
sns.boxplot(df_astro["class"],df_astro[variable],palette="PuBu")
plt.tight_layout()
plt.title(variable)

plt.show()

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 18/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

@ . .
18 18
16
16
=1 (=]
+ 14
14
A 12
12 * *
- # 10 *
0 1 2 0
class
' 30
]]
B]
'Y 25 '
25 H (]
’ —
20 L__
- 20 __JL__ -
15 15
)
10 10
0 1 2 0
class
rd
¢
25
¢
20
Y]
15
10
0] 1 2
class

g
class

‘ $

;]LE

class

cols = df_astro[['run', 'rerun', ‘camcol', 'field']].columns.tolist()

plt.figure(figsize=(10,10))

for i, variable in enumerate(cols):
plt.subplot(3,2,i+1)

sns.boxplot(df_astro["class"],df_astro[variable],palette="PuBu")

plt.tight_layout()
plt.title(variable)
plt.show()

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

19/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

un rerun
8000 . 315
Sile 310
6000
305
= =
5 4000 2 300
e
295
2000
290
0 - 285
0 1 2 0 1 2
class class
camcol field
& — 1000 P
5 800
— 4 600
g o
@
83 = 00
2 200
; I , i——
0 1 2 0 1 2
class class

In [38]: cols = df_astro[['plate’', 'mjd', 'fiberid']].columns.tolist()
plt.figure(figsize=(10,10))

for i, variable in enumerate(cols):
plt.subplot(3,2,i+1)
sns.boxplot(df_astro["class"],df_astro[variable],palette="PuBu")
plt.tight_layout()
plt.title(variable)

plt.show()

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

20/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

plate mjd
12000
' ' 58000
10000
57000
ga0o 56000
T 6000 B 55000
&
4000 54000
53000
2000
52000
0
0 1 2
class class
fiberid
1000
800
- 600
E
= 400
200
0 ——
0 1 2
class
kdeplot
Recall: The kdeplot is a graph of the density of a numerical variable.
[39]: def plot(column):
for i in range(3):
sns.kdeplot(data=df_astro[df_astro["class"] == i][column], label = le.inverse_
sns.kdeplot(data=df_astro[column],label = ["Al1l"])
plt.legend();

407: def log_plot(column):
for i in range(3):
sns.kdeplot(data=np.log(df_astro[df_astro["class"] == i][column]), label = le.
sns.kdeplot(data=np.log(df_astro[column]),label = ["Al1l"])
plt.legend();

rerun

Rerun Number to specify how the image was processed

4171: df_astro["rerun"].nunique()

1

Out[41]:

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 21/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

| will drop the column containing this unique value since does not help me train a predictive
model.

df_astro =

df_astro.drop("rerun”,axis=1)

alpha

Right Ascension angle (at J2000 epoch)

plot("ra™)
0.007 — ['GALAXY"]
— [QSO]
— [STAR]]
0008 FAII
0.005
=
= 0.004
g
0.003
0.002
0.001
0.000
O 100 200 300 400
ra
Observations:

There is not much difference in the distribution according to class, but we can see that there are
some characteristics that distinguish the STAR class here.

delta

Declination angle (at J2000 epoch)

plot("dec")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

22/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

— [[GALAXY"
— [QSO]
0.020 —— [STAR]
— [AIlI
0015
=
7]
c
8 0.010
0.005
0.000
dec
Observations:

Although there is no significant difference in distribution according to class, we can see that
there are some characteristics to distinguish QSO class.

r

The red filter in the photometric system

457: plot("r")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 23/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

0.8 —— ['GALAXY]
—— [QSOT
0.7 —— ['STAR]|
— [AI
0.6
0.5
>
D
E 0.4
0.3
0.2
0.1
0.0
10 15 20 25 30
r

Observation It can be seen that the distribution of the QSO class for this variable is
characterized by a different pattern from the other categories.

Near Infrared filter in the photometric system

plot("i")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 24/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

—— ['GALAXY]
0.7 —— [QSO]
—— [STAR]
06 —— [AIl
05
=
E 0.4
0.3
0.2
0.1
0.0
10 15 20 25 30

Observation We can see that the distribution of the gso class is characteristic compared to the
others.

run

Run Number used to identify the specific scan

plot("run"

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 25/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

0.00040
—— ['GALAXY]
0.00035 [QS0]
—— [STAR]
0.00030 Eid
0.00025
=
E 0.00020
0.00015
0.00010
0.00005
0.00000
0 2000 4000 5000 8000
n

There is no significant difference in distribution by class, so | am going to drop this column.

In [48]: df_astro = df_astro.drop("run",axis=1)

field

Field number to identify each field

Tn [49]: plot("field")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 26/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

0.0040 [[GALAXY"
[QSO]]
[STAR]
[AIl]

0.0035

0.0030

0.0025

Density

0.0020

0.0015

0.0010

0.0005

0.0000
0 200 400 600 800 1000
field

There is no significant difference in distribution by class, and | will alsdo drop this colum.

df_astro = df_astro.drop("field",axis=1)

redshift

redshift value based on the increase in wavelength

plot("redshift")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 27/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

1600 —— [GALAXY]
— [QSO]
1400 — [STAR]
— [AIll
1200
1000
=
[7}]
é 800
600
400
200
D -
0 1 2 3 4 5 6 7
redshift

This is hard to see because of the extreme values, so | will log the data and see if it's any better.

log plot("redshift")

—— [GALAXY]
08 — rQso]
—— [STAR]

0.7 —— A

o
o

Density
=
I

0.2

0.1

0.0 =

redshift

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 28/47

4/29/23, 2:54 PM

Observation

MIT - Celestial Object Detector

MUCH MUCH BETTER! | can see that the overall distribution is characterized.

plate

plate ID, identifies each plate in SDSS

plot("plate")

0.00040

0.00035

0.00030

0.00025

0.00020

Density

0.00015

0.00010

0.00005

0.00000

Observation

[GALAXY']
[QS0]
[STAR]
[AIl

0 2000 4000 B000 8000 10000 12000 14000
plate

We can see that the overall distribution has distinct characteristics.

mjd

Modified Julian Date, used to indicate when a given piece of SDSS data was taken

plot("mjd")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

29/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

[GALAXY"
— [@QS0O]
— [STAR]]
0.0004
[AI
0.0003
=
7]
g
0.0002
0.0001
0.0000
50000 52000 54000 56000 58000 60000
mjd
Observation:

Again, we can see that the overall distribution has a distinct characteristic.

fiberid

fiber ID that identifies the fiber that pointed the light at the focal plane in each observation
plot("fiberid")

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

30/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector
0.0016

—— ['GALAXY']
[QSOT
0.0014 — [STAR]
[AIN
0.0012

0.0010

Density

0.0008

0.0006

0.0004

0.0002

0.0000

200

400
fiberid

600 800 1000

There is no significant difference in distribution by class, but there are minor differences. | will
leave this column for now but might delete later.

camcol

Camera column to identify the scanline within the run

plot("camcol™)

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

31/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

0.40 [GALAXY]

A ‘. E [Qso]

0.35 [STAR]
A A A [AI]
A. A |

0.10
0.05 v V w .f
0.00
0 1 2 3 4 5 6 7
camcol

In [57]: sns.countplot(x=df_astro["camcol"])

out[57]: <AxesSubplot:xlabel="camcol', ylabel='count'>

3 4 5 6

camcol

8000

6000

count

4000

2000

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 32/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

In [58]: sns.countplot(x=df_astro["“camcol"],hue=df_astro["class"])

Out[58]: <AxesSubplot:xlabel="camcol', ylabel='count'>

5000 class
mm 0
[
4000 o
.. 3000
=
=
8
2000
1000
0
1 2 3 4 5 6
camcol
Observations:

So camcol is evenly distributed, and it is difficult to differentiate data according to this, so | will
delete this column

In [59]: df_astro = df_astro.drop("camcol"”,axis=1)

class

object class (galaxy, star or quasar object)

In [60]: sns.countplot(x=df_astro["class"])

out[60]: <AxesSubplot:xlabel="'class', ylabel='count'>

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 33/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

25000

20000

15000

count

10000

5000

class

Observation

The distribution of class is unbalanced.

Multivariate Analysis

Pairwise Correlation

In [61]: plt.figure(figsize=(20,10))
sns.heatmap(df_astro.corr(),annot=True, fmt=".2f")
plt.show()

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 34/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

ra

dec

- 08

plate redshift class z

mjd

1.00

fiberid

ra dec u g r z dass redshift plate mjd fiberid

Observations:

| observe a high positive correlation among the following variables:
zandg

mjd and plate

zandr

zand i

iand g

iandr

randg

| observe a high negative correlation among the following variables:
fiberid and ra

mjd and ra

mjd and u

plate and ra

redshift and class

The ra, dec, u, g and redshift are highly negatively correlated with target (class)

The i and g are highly correlated, g and r are highly correlated and r and z are highly correlated.

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 35/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

There is a negative correlation between redshift and class variables. The redshift is clearly going
to be a highly influential feature in determining the class of the celestial object.

PREPARING THE DATA FOR ALGORITHM

Separating the dependent and independent columns in the dataset
df_astro.drop(['class'], axis=1);

#
X
Y = df_astro[['class']];

df_astro[['class']]

class

240208 2
18744 0

207175 0
18669 0

189086 2
12026 0

101461 2
146611 1
152140 0
168265 1

50000 rows x 1 columns

Splitting the dataset into the Training and Testing set

X_train, X_test, y_train, y test = train_test_split(X, Y, test_size=0.1, random_state:

Checking the shape of the Train and Test sets
print('X Train Shape:', X_train.shape);
print('X Test Shape:', X test.shape);

print('Y Train Shape:', y_train.shape);
print('Y Test Shape:', y test.shape);

X Train Shape: (45000, 11)
X Test Shape: (5000, 11)
Y Train Shape: (45000, 1)
Y Test Shape: (5000, 1)

def metrics_score(actual, predicted):
print(classification_report(actual, predicted));
cm = confusion_matrix(actual, predicted);
plt.figure(figsize = (8,5));

sns.heatmap(cm, annot = True, fmt = '.2f', xticklabels = ['Galaxy', 'Quasar', 'Star’

plt.ylabel('Actual'); plt.xlabel('Predicted');
plt.show()

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

36/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

K-NEAREST NEIGHBORS MODEL

from sklearn.neighbors import KNeighborsClassifier
knn_model= KNeighborsClassifier()
knn_model.fit(X_train,y_train)

knn_train_predictions =
metrics_score(y_train,knn_train_predictions)

precision
0 0.79
1 0.62
2 0.90

accuracy
macro avg 0.77
weighted avg 0.81
21993.00

Galaxy

2687.00

Quasar

Actual

3164.00

Star

Galaxy

y_test_pred_knn = knn_model.predict(X_test);

0.96
0.27
0.78

0.67
0.82

Q.
Q.
Q.

[

recall f1-score

87
38
84

.82
.69
.80

223.00

1299.00

Quasar

Predicted

metrics_score(y_test, y_test_pred_knn)

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

knn_model.predict(X_train)

support

22983
4751
17266

45000
45000
45000

= 20000
767.00

= 17500
15000
12500
765.00
10000
7500

5000

13513.00

2500

Star

37/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

precision recall fl-score support

0 0.77 0.93 0.84 2554

1 0.39 0.16 0.23 528

2 0.84 0.74 0.79 1918

accuracy 0.78 5000
macro avg 0.67 0.61 0.62 5000
weighted avg 0.76 0.78 0.76 5000

=
E 2373.00 ~ 2000
8
1500
R
i
<3
1000
500

1423.00

Star

Galaxy Cluasar Star
Predicted

Ok, I'm going to have to scale this data and reduce the dimensionality. For this, | will use
standard scaler and PCA.

After Scaling and PCA

from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

scaler = StandardScaler()

X_train_std = scaler.fit_transform(X_train)
X_test_std = scaler.fit_transform(X_test)

pca = PCA()

X_train_pca = pca.fit_transform(X_train_std)
X_test_pca = pca.fit_transform(X_test_std)
knn_model= KNeighborsClassifier()
knn_model.fit(X_train_pca,y_train)
knn_train_predictions = knn_model.predict(X_train_pca)
metrics_score(y_train,knn_train_predictions)

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 38/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

precision recall fl-score support

0 0.93 0.97 0.95 22983

1 0.99 0.91 0.95 4751

2 0.95 0.92 0.94 17266

accuracy 0.94 45000
macro avg 0.96 0.93 0.94 45000
weighted avg 0.94 0.94 0.94 45000

5 ~ 20000
3 9222200
o) —~ 17500
- 15000
o 12500
M m
28
< 3 10000
7500
5000
z‘E" 1332.00
2500

Galaxy Quasar Star
Predicted

y_test_pred_knn = knn_model.predict(X_test_pca);
metrics_score(y_test, y_test_pred_knn)

precision recall fl-score support

0 0.86 0.88 0.87 2554

1 0.93 0.86 0.89 528

2 0.82 0.82 0.82 1918

accuracy 0.85 5000
macro avg 0.87 0.85 0.86 5000
weighted avg 0.85 0.85 0.85 5000

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 39/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

= 2000

2246.00

Galaxy

= 1750

1500
- 1250
2 m
<3 1000
750
500
@
i
250
Galaxy Cuasar Star
Predicted
Observations:

While the performance of the k-Nearest Neighbors algorithm on the test dataset was quite
good, it doesn't achieve the 90%+ accuracies and F1-scores we expect from a high-performing

Machine Learning model on this dataset, and there is clear scope for improvement there.

In addition, k-Nearest Neighbors also does not computationally scale well with a large amount
of data, and can be infeasible to run on big datasets. For these reasons, we need a more
efficient and elegant algorithm that is capable of non-linear classification, and we can turn to

Decision Trees for that.

TREE-BASED MODELS

decision Tree Classifier

dt = DecisionTreeClassifier(random_state=1);
dt.fit(X_train, y_train)

y_train_pred_dt = dt.predict(X_train)
metrics_score(y_train, y_train_pred_dt)

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

40/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

precision recall fl-score support

0 1.00 1.00 1.00 22983

1 1.00 1.00 1.00 4751

2 1.00 1.00 1.00 17266

accuracy 1.00 45000
macro avg 1.00 1.00 1.00 45000
weighted avg 1.00 1.00 1.00 45000

& = 20000
o 22983.00
3
15000
?ﬁ {
3 4751.00
]
<3 10000
5000
@
3]
0
Galaxy Quasar Star
Predicted

y_test_pred_dt = dt.predict(X_test);
metrics_score(y_test, y_test pred_dt)

precision recall fl-score support

(%] 0.99 0.99 0.99 2554

1 0.94 0.94 0.94 528

2 1.00 1.00 1.00 1918

accuracy 0.99 5000
macro avg 0.98 0.98 0.98 5000
weighted avg 0.99 0.99 0.99 5000

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 41/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

2525.00

Actual
Galaxy

Quasar

Star

Galaxy Cluasar
Predicted

Evaluating the model with K-Fold Cross Validation

from sklearn.model selection import cross_val score
scores = cross_val score(dt, X test, y_ test, cv=5)

print(f"The average score of the model with K-5 Cross validation is {np.average(score:

The average score of the model with K-5 Cross validation is ©.983

Ok that's great.

Now | will scale the data.

dt = DecisionTreeClassifier(random_state=1);
X_train_std = scaler.fit_transform(X_train)
X_test_std = scaler.fit_transform(X_test)
dt.fit(X_train_std, y_train)

y_train_pred dt = dt.predict(X_train_std)
metrics_score(y_train, y train_pred dt)

precision recall fl-score

0 1.00 1.00 1.00

1 1.00 1.00 1.00

2 1.00 1.00 1.00

accuracy 1.00
macro avg 1.00 1.00 1.00
weighted avg 1.00 1.00 1.00

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

support

22983
4751
17266

45000
45000
45000

— 2500

— 2000

1500

1000

500

42/47

4/29/23, 2:54 PM

22983.00

Quasar Galaxy

Actual

Star

Galaxy

MIT - Celestial Object Detector

4751.00

Quasar

y_test pred dt = dt.predict(X_test std);
metrics_score(y_test, y test pred dt)

Predicted

precision recall fl1-score

0 0.89 0.98 0.93

1 0.95 0.93 0.94

2 0.99 0.85 0.92

accuracy 0.93
macro avg 0.94 0.92 0.93
weighted avg 0.93 0.93 0.93

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

support

2554
528
1918

5000
5000
5000

Star

= 20000

15000

10000

5000

43/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

= 2500
=
= 2509.00
f_r_)“ = 2000
1500
55
g &
]
1000
i 2 500
m .00
= 0.0C
]
Galaxy Quasar Star
Predicted

from sklearn.model_selection import cross_val score
scores = cross_val score(dt, X test_std, y test, cv=5)
print(f"The average score of the model with K-5 Cross validation is {np.average(score:

The average score of the model with K-5 Cross validation is ©.983

Observation

As expected, scaling doesn't make much of a difference in the performance of the Decision Tree
model, since it is not a distance-based algorithm and rather tries to separate instances with

orthogonal splits in a vector space.

features = list(X.columns);

plt.figure(figsize=(30,20))

tree.plot_tree(dt, max_depth=3, feature_names=features, filled=True, fontsize=12, node
plt.show()

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

44/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

node #0
redshift <= -0.386

samples = 45000
value = [22983, 4751, 17266]
lass = y[0]

Observation:

The first split in the decision tree is at the redshift feature, which implies that it is clearly the
most important factor in deciding the class of the celestial object.

While this may be common knowledge in astronomy, it is good that machine learning backs it
up even if this experiment is being run by a mathematician with no astrophysics degree.

Feature Importance

In [77]: # Plotting the feature importance

importances = dt.feature_importances_

columns = X.columns;

importance_df_astro = pd.DataFrame(importances, index=columns, columns=['Importance’];
plt.figure(figsize=(13,13));

sns.barplot(importance_df_astro.Importance, importance_df_astro.index)

plt.show()

print(importance_df_astro)

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 45/47

4/29/23, 2:54 PM MIT - Celestial Object Detector

redshift

plate

r

dec

fiberid

mjd

0.0 0.2 04 0.6 0.8 1.0
Importance

Importance
redshift 0.96480
u 0.00905
g 0.00838
z 0.00378
ra 0.00285
i 0.00265
plate 0.00249
r 0.00208
dec 0.00183
fiberid 0.00120
mjd 0.00089

Conclusions and Recommendations

Algorithmic Insights

It is apparent from the efforts above that there are some advantages with Decision Trees when

it comes to non-linear modeling and classification, to obtain a mapping from input to output.

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html 46/47

4/29/23, 2:54 PM

MIT - Celestial Object Detector

Decision Trees are simple to understand and explain, and they mirror the human pattern of if-
then-else decision making. They are also more computationally efficient than kNN.

These advantages are what enable them to outperform the k-Nearest Neighbors algorithm,
which is also known to be a popular non-linear modeling technique.

Dataset Insights

From a dataset perspective, the fact that the redshift variable is clearly the most important
feature in determining the class of a celestial object, makes it tailor-made for a Decision Tree's
hierarchical nature of decision-making. As we see in the case study, the Decision Tree prioritizes
that feature as the root node of decision splits before moving on to other features.

Another potential reason for the improved performance of the Decision Tree on this dataset
may have to do with the nature of the observations. In astronomical observations such as these,
the value ranges of the features of naturally occurring objects such as stars, galaxies, and
quasars should, for the most part, lie within certain limits outside of a few exceptions. Those
exceptions would be difficult to detect purely through the values of the neighbors of that
datapoint in vector space, and would rather need to be detected through fine orthogonal
decision boundaries. This nuanced point could be the reason why Decision Trees perform
relatively better on this dataset.

Although there are more advanced ML techniques that use an ensemble of Decision Trees,
such as Random Forests and Boosting methods, they are computationally more
expensive, and the 90%+ performance of Decision Trees means they would be my first
recommendation to an astronomy team looking to use this Machine Learning model
purely as a second opinion to make quick decisions on Celestial Object Detection.

file:///C:/Users/trade/Downloads/MIT - Celestial Object Detector.html

47/47

