Design Heat Loss Report

General

Date of Reporting: 1/18/2023

Date of Rating: 1/9/2023

Client: Report Sample

Home Address:

Home City: , AK

AkWarm File Name: C:\Users\rober\Dropbox\Wisdom's shared

workspace\HOMES\Finished Ratings\Petska, Bruce - 288 Tulin

Terrace, Homer.hm2

Temperatures / Wind Speed

Indoor Temperature: 70 deg F
Design Air Temperature: -0.01 deg F
Deep Ground Temperature: 39 deg F
Garage Temperature: 55 deg F
Airport Design Wind Speed: 4.0 mph

Main Home Heat Loss

Heat Loss from Shell Components

Shell Component Type	ID Name	Net Area, sq. ft.	Total R- Value	UA to Air, Btu/hr/deg- F	UA to Ground, Btu/hr/deg-F	Design Heat Loss, Btu/hour
Below grade Floor Perimeter	House	396	17.1	0.4	22.9	725
Below grade Floor Center	House	721	45.1	0.0	16.0	490
Above grade Wall	House-2X8	280	24.3	11.4	0.0	795
Above grade Wall	House-2X6	2,890	19.2	148.3	0.0	10,382
Above grade Wall	House/Rim Joist	301	21.7	13.7	0.0	959
External Door	House	20	3.2	5.7	0.0	397
Window	House/south slider	65	3.7	16.1	0.0	1,129
Window	House/slider	139	3.7	34.6	0.0	2,424
Window	House/south fixed	240	4.3	51.7	0.0	3,618
Window	House/fixed	29	4.3	6.2	0.0	433
Window	House/casement	17	4.0	3.8	0.0	269
Window	House/south sgd	105	3.8	25.2	0.0	1,768
Ceiling with Attic	House	1,526	52.1	29.3	0.0	2,053
Total		6,727		346.4	38.9	25,443

Heat Loss due to Natural Air Leakage and Mechanical Ventilation

Mechanical Ventilation Flow, Unbalanced118 cfmEffective Mechanical Ventilation:74 cfmMechanical Ventilation Heat Recovery Effectiveness:0 %Natural Air Leakage at Design Conditions:57 cfmTotal Ventilation:132 cfm0.23 ACH

Heat Loss per deg F: 141 Btu/hr/deg-F Heat Loss from Air Leakage/Ventilation: 9,837 Btu/hour

Total Design Heat Loss for Main Home

Home Shell Components: 25,443 Btu/hour
Air Leakage + Mechanical Ventilation: 9,837 Btu/hour
Loss to Garage: 0 Btu/hour
Heating System Distribution Loss (100% efficiency): 0 Btu/hour
Required Heating System Output: 35,280 Btu/hour

Garage Heat Loss

Heat Loss from Shell Components

Shell Component Type	ID Name	Net Area, sq. ft.	Total R- Value	UA to Air, Btu/hr/deg- F	UA to Ground, Btu/hr/deg-F	Design Heat Loss, Btu/hour
Below grade Floor Perimeter	Garage	284	17.1	0.3	16.4	270
Below grade Floor Center	Garage	441	45.1	0.0	9.8	153
Above grade Wall	Garage-2X8	540	24.3	21.9	0.0	1,205
External Door	Garage	20	3.2	5.7	0.0	312
Garage Door	Garage	160	7.1	21.5	0.0	1,183
Window	Garage/south slider	18	3.7	4.4	0.0	241
Ceiling with Attic	Garage	319	52.1	6.1	0.0	337
Total		1,781		59.8	26.2	3,701

Heat Loss due to Natural Air Leakage and Mechanical Ventilation

Natural Air Leakage at Design Conditions:10.8 cfmMechanical Ventilation at Design Conditions:0.00 cfmTotal Ventilation:10.8 cfm

Heat Loss per deg F: <u>11.5</u> Btu/hr/deg-F Heat Loss from Air Leakage/Ventilation: 633 Btu/hour

Total Design Heat Loss for Garage

Garage Shell Components: 3,701 Btu/hour
Air Leakage + Mechanical Ventilation: 633 Btu/hour

Gain from Home: 0 Btu/hour Heating System Distribution Loss (100% efficiency): 0.00 Btu/hour Required Heating System Output: 4,334 Btu/hour

Domestic Hot Water Heat Load

The DHW Load is Served by the Primary Heating System

DHW Storage Tank Size 70 gallons
Peak 2 Hour Usage of 140 F Water 95 gallons
Peak 2 Hour DHW Heat Load 19,165 Btu/hour
Extra Heating System Capacity Required 9,248 Btu/hour

NOTE: DHW Load calculation assumes *no* large DHW loads such as Spa tubs.

Required Heating System Output

The table below shows the amount of heat required to be supplied by the heating systems.

Required Output, Btu/hour	No Safety	10% Safety	20% Safety	25% Safety
	Margin	Margin	Margin	Margin
Primary System serving Main Home, Garage, DHW	48,863	53,749	58,635	61,078

The design heat load falls within the output range of the primary heating system, which is 13,750 - 99,000 Btu/hour.

NOTE: DHW Load calculation assumes *no* large DHW loads such as Spa tubs.

If you need to determine the required *Input Rating* of the heating system, you must divide the Output Requirement by the efficiency of the system. For example, if the heating system is 85% efficient and the Output Requirement is 56,000 Btu/hour, the needed Input Rating is 56,000 Btu/hour / 0.85 = 65,900 Btu/hour