

RTCA, Inc.
1140 Connecticut Avenue, N. W., Suite 1020

Washington, D.C. 20036

SOFTWARE CONSIDERATIONS IN AIRBORNE
SYSTEMS AND EQUIPMENT CERTIFICATION

Copyright © RTCA, Inc. 1992

RTCA/DO-178B Prepared by:

December 1, 1992 RTCA SC- 167 / EUROCAE WG- 12

Uncontrolled copy when printed

Copies of this document may be obtained from

RTCA, Inc.
1140 Connecticut Avenue, Northwest, Suite 1020

Washington, D. C. 20036-4001 U.S.A.

Telephone: 202-833-9339
Facsimile: 202-833-9434

Please contact RTCA for price and ordering information.

 i

FOREWORD

This document was prepared by Special Committee 167 of RTCA, Inc. It was approved by RTCA, Inc.
on December 1, 1992.

RTCA is an association of aeronautical organizations of the United States of America from both
government and industry. Dedicated to the advancement of aeronautics, RTCA seeks sound technical
solutions to problems involving the application of electronics and telecommunications to aeronautical
operations. Its objective is the resolution of such problems by mutual agreement of its member and
participating organizations.

The findings of RTCA are in the nature of recommendations to all organizations concerned. As RTCA is
not an official agency of the United States Government, its recommendations may not be regarded as
statements of official government policy unless so enunciated by the federal government organizations or
agency having statutory jurisdiction over any matters to which the recommendations relate.

The development of these guidelines was jointly accomplished by RTCA SC-167 and the European
Organisation for Civil Aviation Equipment (EUROCAE) WG-12 through a consensus process.

 ii

Consensus n. Collective opinion or concord; general agreement or accord. [Latin, from consentire, to
agree]

iii

TABLE OF CONTENTS

Page

1.0 INTRODUCTION..1

 1.1 Purpose...1

 1.2 Scope...1

 1.3 Relationship to Other Documents ..1

 1.4 How to Use This Document..1

 1.5 Document Overview...3

2.0 SYSTEM ASPECTS RELATING TO SOFTWARE DEVELOPMENT...5

 2.1 Information Flow Between System and Software Life Cycle Processes5
 2.1.1 Information Flow from System Processes to Software Processes..........................6
 2.1.2 Information Flow from Software Processes to System Processes..........................6

 2.2 Failure Condition and Software Level ..6
 2.2.1 Failure Condition Categorization...7
 2.2.2 Software Level Definitions...7
 2.2.3 Software Level Determination..8

 2.3 System Architectural Considerations..8
 2.3.1 Partitioning...9
 2.3.2 Multiple-Version Dissimilar Software ..9
 2.3.3 Safety Monitoring...9

 2.4 System Considerations for User-Modifiable Software, Option- Selectable Software
and Commercial Off-The- Shelf Software ..10

 2.5 System Design Considerations for Field-Loadable Software ...10

 2.6 System Requirements Considerations for Software Verification...11

 2.7 Software Considerations in System Verification ..11

3.0 SOFTWARE LIFE CYCLE..13

 3.1 Software Life Cycle Processes ...13

 3.2 Software Life Cycle Definition ..13

 3.3 Transition Criteria Between Processes..14

4.0 SOFTWARE PLANNING PROCESS ...15

 4.1 Software Planning Process Objectives..15

 4.2 Software Planning Process Activities..15

 4.3 Software Plans...16

 4.4 Software Life Cycle Environment Planning ..16
 4.4.1 Software Development Environment ..17
 4.4.2 Language and Compiler Consideration...17
 4.4.3 Software Test Environment...18

iv

Page

 4.5 Software Development Standards..18

 4.6 Review and Assurance of the Software Planning Process...18

5.0 SOFTWARE DEVELOPMENT PROCESSES ...19

 5.1 Software Requirements Process...19
 5.1.1 Software Requirements Process Objectives...19
 5.1.2 Software Require ments Process Activities...19

 5.2 Software Design Process...20
 5.2.1 Software Design Process Objectives ...20
 5.2.2 Software Design Process Activities...20
 5.2.3 Designing for User-Modifiable Software ...21

 5.3 Software Coding Process...21
 5.3.1 Software Coding Process Objectives...21
 5.3.2 Software Coding Process Activities ..22

 5.4 Integration Process...22
 5.4.1 Integration Process Objectives ...22
 5.4.2 Integration Process Activities ...22
 5.4.3 Integration Considerations..23

 5.5 Traceability ..23

6.0 SOFTWARE VERIFICATION PROCESS...25

 6.1 Software Verification Process Objectives ..25

 6.2 Software Verification Process Activities..26

 6.3 Software Reviews and Analyses ..26
 6.3.1 Reviews and Analyses of the High-Level Requirements.......................................27
 6.3.2 Reviews and Analyses of the Low-Level Requirements27
 6.3.3 Reviews and Analyses of the Software Architecture..28
 6.3.4 Reviews and Analyses of the Source Code..28
 6.3.5 Reviews and Analyses of the Outputs of the Integration Process29
 6.3.6 Reviews and Analyses of the Test Cases, Procedures and Results29

 6.4 Software Testing Process..29
 6.4.1 Test Environment..30
 6.4.2 Requirements-Based Test Case Selection ..30

 6.4.2.1 Normal Range Test Cases ...31
 6.4.2.2 Robustness Test Cases...31

 6.4.3 Requirements-Based Testing Methods...31
 6.4.4 Test Coverage Analysis ...33

 6.4.4.1 Requirements-Based Test Coverage Analysis33
 6.4.4.2 Structural Coverage Analysis ...33
 6.4.4.3 Structural Coverage Analysis Resolution...33

v

Page

7.0 SOFTWARE CONFIGURATION MANAGEMENT PROCESS………………………………...35

 7.1 Software Configuration Management Process Objectives ..35

 7.2 Software Configuration Management Process Activities ..35
 7.2.1 Configuration Identification..35
 7.2.2 Baselines and Traceability...36
 7.2.3 Problem Reporting, Tracking and Corrective Action...36
 7.2.4 Change Control ...37
 7.2.5 Change Review...37
 7.2.6 Configuration Status Accounting...37
 7.2.7 Archive, Retrieval and Release..38
 7.2.8 Software Load Control...38
 7.2.9 Software Life Cycle Environment Control...39

 7.3 Data Control Categories ..39

8.0 SOFTWARE QUALITY ASSURANCE PROCESS... 41

 8.1 Software Quality Assurance Process Objectives...41
 8.2 Software Quality Assurance Process Activities ..41
 8.3 Software Conformity Review...42

9.0 CERTIFICATION LIAISON PROCESS...43

 9.1 Means of Compliance and Planning..43

 9.2 Compliance Substantiation..43

 9.3 Minimum Software Life Cycle Data That Is Submitted to Certification Authority..............43

 9.4 Software Life Cycle Data Related to Type Design...44

10.0 OVERVIEW OF AIRCRAFT AND ENGINE CERT IFICATION ...45

 10.1 Certification Basis ..45
 10.2 Software Aspects of Certification..45
 10.3 Compliance Determination ...45

11.0 SOFTWARE LIFE CYCLE DATA ..47

 11.1 Plan for Soft ware Aspects of Certification...48
 11.2 Software Development Plan..48
 11.3 Software Verification Plan ..49
 11.4 Software Configuration Management Plan ..50
 11.5 Software Quality Assurance Plan...51
 11.6 Software Requirements Standards...51
 11.7 Software Design Standards...51
 11.8 Software Code Standards ..52
 11.9 Software Requirements Data ..52
 11.10 Design Description ...52
 11.11 Source Code...53

vi

Page

 11.12 Executable Object Code ..53

 11.13 Software Verification Cases and Procedures...53

 11.14 Software Verification Results...53

 11.15 Software Life Cycle Environment Configuration Index..53

 11.16 Software Configuration Index..54

 11.17 Problem Reports..54

 11.18 Software Configuration Management Records..55

 11.19 Software Quality Assurance Records..55

 11.20 Software Accomplishment Summary ..55

12.0 ADDITIONAL CONSIDERATIONS ..57

 12.1 Use of Previously Developed Software ..57
 12.1.1 Modifications to Previously Developed Software ..57
 12.1.2 Change of Aircraft Installation...57
 12.1.3 Change of Application or Development Environment...57
 12.1.4 Upgrading A Development Baseline ...58
 12.1.5 Software Configuration Management Considerations ...59
 12.1.6 Software Quality Assurance Considerations..59

 12.2 Tool Qualification...59
 12.2.1 Qualification Criteria fo r Software Development Tools60
 12.2.2 Qualification Criteria fo r Software Verification Tools ..61
 12.2.3 Tool Qualification Data ...61

 12.2.3.1 Tool Qualification Plan..61
 12.2.3.2 Tool Operational Requirements ...61

 12.2.4 Tool Qualification Agreement ...62

 12.3 Alternative Methods...62
 12.3.1 Formal Methods..62
 12.3.2 Exhaustive Input Testing...63
 12.3.3 Considerations for Multiple -Version Dissimilar Software Verification63

 12.3.3.1 Independence of Multiple-Version Dissimilar Software64
 12.3.3.2 Multiple Processor-Related Verification ..64
 12.3.3.3 Multiple-Version Source Code Verification65
 12.3.3.4 Tool Qualification for Multiple -Version Dissimilar

 Software ...65
 12.3.3.5 Multiple Simulators and Verification..65

 12.3.4 Software Reliability Models ...65
 12.3.5 Product Service History...65

ANNEX A PROCESS OBJECTIVES AND OUTPUTS BY SOFTWARE LEVEL..67

ANNEX B ACRONYMS AND GLOSSARY OF TERMS ..79

 Acronyms ...79

vii

Page

 Glossary..80

APPENDIX A BACKGROUND OF DOCUMENT DO-178..A-1

1.0 Prior Document Version History

2.0 RTCA / EUROCAE Committee Activities in the Production of This Document

3.0 Summary Of Differences between DO-178B and DO-178A

APPENDIX B COMMITTEE MEMBERSHIP .. B-1

APPENDIX C INDEX OF TERMS.. C-1

APPENDIX D IMPROVEMENT SUGGESTION FORM ...D-1

LIST OF FIGURES AND TABLES

FIGURES
FIGURE 1-1 DOCUMENT OVERVIEW ...3
FIGURE 2-1 SYSTEM SAFETY-RELATED INFORMATION FLOW BETWEENSYSTEM AND SOFTWARE
 LIFE CYCLE PROCESSES..5
FIGURE 3-1 EXAMPLE OF A SOFTWARE PROJECTUSING FOUR DIFFERENT DEVELOPMENT
 SEQUENCES ..14
FIGURE 6-1 SOFTWARE TESTING PROCESS ...30

TABLES
TABLE 7-1 SCM PROCESS OBJECTIVES ASSOCIATED WITH CC1 AND CC2 DATA ..39
TABLE A-1 SOFTWARE PLANNING PROCESS ..68
TABLE A-2 SOFTWARE DEVELOPMENT PROCESSES...69
TABLE A-3 VERIFICATION OF OUTPUTS OF SOFTWARE REQUIREMENTS PROCESS70
TABLE A-4 VERIFICATION OF OUTPUTS OF SOFTWARE DESIGN PROCESS ...71
TABLE A-5 VERIFICATION OF OUTPUTS OF SOFTWARE CODING &
INTEGRATION PROCESSES ..72
TABLE A-6 TESTING OF OUTPUTS OF INTEGRATION PROCESS ...73
TABLE A-7 VERIFICATION OF VERIFICATION PROCESS RESULTS ...74
TABLE A-8 SOFTWARE CONFIGURATION MANAGEMENT PROCESS ...75
TABLE A-9 SOFTWARE QUALITY ASSURANCE PROCESS ...76

TABLE A-10 CERTIFICATION LIAISON PROCESS...77

THIS PAGE INTENTIONALLY LEFT BLANK.

1

1 INTRODUCTION

The rapid increase in the use of software in airborne systems and equipment used on aircraft and engines
in the early 1980s resulted in a need for industry-accepted guidance for satisfying airworthiness
requirements. DO-178, "Software Considerations in Airborne Systems and Equipment Cert ification,"
was written to satisfy this need.

This document, now revised in the light of experience, provides the aviation community with guidance
for determining, in a consistent manner and with an acceptable level of confidence, that the software
aspects of airborne systems and equipment comply with airworthiness requirements. As software use
increases, technology evolves and experience is gained in the application of this document, this
document will be reviewed and revised. Appendix A contains a history of this document.

1.1 Purpose

The purpose of this document is to provide guidelines for the production of software for airborne systems
and equipment that performs its intended function with a level of confidence in safety that complies with
airworthiness requirements. These guidelines are in the form of:
• Objectives for software life cycle processes.
• Descriptions of activities and design considerations for achieving those objectives
• Descriptions of the evidence that indicate that the objectives have been satisfied.

1.2 Scope

This document discusses those aspects of airworthiness certification that pertain to the production of
software for airborne systems and equipment used on aircraft or engines. In discussing those aspects, the
system life cycle and its relationship with the software life cycle is described to aid in the understanding
of the certification process. A complete description of the system life cycle processes, including the
system safety assessment and validation processes, or aircraft and engine certification process is not
intended.

Since certification issues are discussed only in relation to the software life cycle, the operational aspects
of the resulting software are not discussed. For example, the certification aspects of user-modifiable data
are beyond the scope of this document.

This document does not provide guidelines concerning the structure of the applicant’s organization, the
relationships between the applicant and its suppliers, or how the responsibilities are divided. Personnel
qualification criteria are also beyond the scope of this document.

1.3 Relationship to Other Documents

 In addition to the airworthiness requirements, various national and international standards for software
are available. In some communities, compliance with these standards may be required. However, it is
outside the scope of this document to invoke specific national or international standards, or to propose a
means by which these standards might be used as an alternative or supplement to this document

Where this document uses the term "standards," it should be interpreted to mean the use of project
specific standards as applied by the airborne system, airborne equipment, engine, or aircraft
manufacturer. Such standards may be derived from general standards produced or adopted by the
manufacturer for its activities.

1.4 How to Use This Document
 These points need to be noted when using this document:

• Explanatory text is included to aid the reader in understanding the topic under discussion.
For example, section 2 provides information necessary to understand the interaction

2

between the system life cycle and software life cycle. Similarly, section 3 is a description of the
software life cycle and section 10 is an overview of aircraft and engine certification.

• This document is intended to be used by the international aviation community. To aid such use,
references to specific national regulations and procedures are minimized. Instead, generic terms are
used. For example, the term "certification authority" is used to mean the organization or person
granting approval on behalf of the country responsible for aircraft or engine certification. Where a
second country or a group of countries validates or participates in this certification, this document
may be used with due recognition given to bilateral agreements or memoranda of understanding
between the countries involved.

• This document recognizes that the guidelines herein are not mandated by law, but represent a
consensus of the aviation community. It also recognizes that alternative methods to the methods
described herein may be available to the applicant. For these reasons, the use of words such as
"shall" and "must" is avoided.

• This document states the objectives for the software levels, as defined in paragraph 2.2.2. Annex A
specifies the variation in these objectives by software level. If an applicant adopts this document for
certification purposes, it may be used as a set of guidelines to achieve these objectives.

• Section 11 contains the data generally produced to aid the software aspects of the certification
process. The names of the data are denoted in the text by capitalization of the first letter of each
word in the name. For example, Source Code

• Section 12 discusses additional considerations including guidance for the use of previously
developed software, for tool qualification, and for the use of alternative methods to those described
in sections 2 through 11. Section 12 may not apply to every certification.

• The tables for software level variation and the glossary are contained in Annexes, and are normative,
parts of this document. Other material is contained in Appendices, and are informative parts of this
document.

• In cases where examples are used to indicate how the guidelines might be applied, either graphically
or through narrative, the examples are not to be interpreted as the preferred method.

• A list of items does not imply the list is all-inclusive.
• Notes are used in this document to provide explanatory material, emphasize a point, or draw

attention to related items which are not entirely within context. Notes do not contain guidance.

3

1.5 Document Overview

Figure 1-1 is a pictorial overview of this document’s sections and their relationship to each other.

FIGURE 1-1

DOCUMENT OVERVIEW

THIS PAGE INTENTIONALLY LEFT BLANK.

5

2 SYSTEM ASPECTS RELATING TO SOFTWARE DEVELOPMENT

This section discusses those aspects of the system life cycle processes necessary to understand the
software life cycle processes. Discussed are:

• Exchange of data between the system and software life cycle processes (subsection 2.1).

• Categorization of failure conditions, definition of software levels, and software level determination
(subsection 2.2).

• System architectural considerations (subsection 2.3).

• System considerations for user-modifiable software, option-selectable software, and commercial off-
the-shelf software (subsection 2.4).

• System design considerations for field-loadable software (subsection 2.5).

• System requirements considerations for software verification (subsection 2.6).

• Software considerations in system verification (subsection 2.7).

2.1 Information Flow Between System and Software Life Cycle Processes

Figure 2-1 is an overview of the safety aspects of the information flow between system life cycle
processes and the software life cycle processes. Due to interdependence of the system safety assessment
process and the system design process, the flow of information described in these sections is iterative.

FIGURE 2-1

SYSTEM SAFETY-RELATED INFORMATION FLOW BETWEEN
SYSTEM AND SOFTWARE LIFE CYCLE PROCESSES

Note: At the time of publication of this document, guidelines for the system life cycle processes were

under development by an international committee. While every attempt was made to keep the
inter-process information flows and definitions compatible, some differences may exist between
the final published documents. Any differences will be reconciled in future revisions of the
documents.

6

2.1.1 Information Flow from System Processes to Software Processes

The system safety assessment process determines and categorizes the failure conditions of the system.
Within the system safety assessment process, an analysis of the system design defines safety related
requirements that specify the desired immunity from, and system responses to, these failure conditions.
These requirements are defined for hardware and software to preclude or limit the effects of faults, and may
provide fault detection and fault tolerance. As decisions are being made during the hardware design process
and software development processes, the system safety assessment process analyzes the resulting system
design to verify that it satisfies the safety-related requirements.

The safety-related requirements are a part of the system requirements which are inputs to the software life
cycle processes. To ensure that the safety-related requirements are properly implemented throughout the
software life cycle, the system requirements typically include or reference:
• The system description and hardware definition.
• Certification requirements, including applicable Federal Aviation Regulations (FAR - United States),

Joint Aviation Regulations (JAR - Europe), Advisory Circulars (United States), etc.
• System requirements allocated to software, including functional requirements, performance

requirements, and safety-related requirements.
• Software level(s) and data substantiating their determination, failure conditions, their categories, and

related functions allocated to software.
• Safety strategies and design constraints, including design methods, such as, partitioning,

dissimilarity, redundancy or safety monitoring.
• If the system is a component of another system, the safety-related requirements and failure

conditions for that system.

System life cycle processes may specify requirements for the software life cycle processes to aid system
verification activities.

2.1.2 Information Flow from Software Processes to System Processes

The system safety assessment process determines the impact of the software design and implementation on
system safety using information provided by the software life cycle processes. This information includes
fault containment boundaries, software requirements, software architecture, and error sources that may
have been detected or eliminated through software architecture or by the use of tools or by other methods
used in the software design process. Traceability between system requirements and software design data is
important to the system safety assessment process.

Modifications to the software may affect system safety and, therefore, need to be identified to the system
safety assessment process for evaluation.

2.2 Failure Condition and Software Level

Guidance follows concerning system failure condition categories, the definition of software levels, the
relationship between software levels and failure condition categories, and how software level is
determined.

The failure condition category of a system is establis hed by determining the severity of failure conditions
on the aircraft and its occupants. An error in software may cause a fault that contributes to a failure
condition. Thus, the level of software integrity necessary for safe operation is related to the system failure
conditions.

7

2.2.1 Failure Condition Categorization

For a complete definition of failure condition categories, refer to the applicable regulations and guidance
material, Federal Aviation Administration AC 25-1309-1A and/or the Joint Aviation Authorities AMJ 25-
1309, as amended. The failure condition categories listed are derived from this guidance material and are
included to assist in the use of this document. The categories are:

 a. Catastrophic: Failure conditions which would prevent continued safe flight and landing.

 b. Hazardous/Severe-Major: Failure conditions which would reduce the capability of the aircraft or the
ability of the crew to cope with adverse operating conditions to the extent that there would be:

 (1) a large reduction in safety margins or functional capabilities,

 (2) physical distress or higher workload such that the flight crew could not be relied on to
perform their tasks accurately or completely, or

 (3) adverse effects on occupants including serious or potentially fatal injuries to a small number
of those occupants.

 c. Major: Failure conditions which would reduce the capability of the aircraft or the ability of the crew
to cope with adverse operating conditions to the extent that there would be, for example, a
significant reduction in safety margins or functional capabilities, a significant increase in crew
workload or in conditions impairing crew efficiency, or discomfort to occupants, possibly including
injuries.

 d. Minor: Failure conditions which would not significantly reduce aircraft safety, and which would
involve crew actions that are well within their capabilities. Minor failure conditions may include, for
example, a slight reduction in safety margins or functional capabilities, a slight increase in crew
workload, such as, routine flight plan changes, or some inconvenience to occupants.

 e. No Effect: Failure conditions which do not affect the operational capability of the aircraft or
increase crew workload.

2.2.2 Software Level Definitions

Software level is based upon the contribution of software to potential failure conditions as
determined by the system safety assessment process. The software level implies that the level
of effort required to show compliance with certification requirements varies with the failure
condition category. The software level definitions are:

 a. Level A: Software whose anomalous behavior, as shown by the system safety assessment process,
would cause or contribute to a failure of system function resulting in a catastrophic failure condition
for the aircraft.

 b. Level B: Software whose anomalous behavior, as shown by the system safety assessment process,
would cause or contribute to a failure of system function resulting in a hazardous/severe-major
failure condition for the aircraft.

 c. Level C: Software whose anomalous behavior, as shown by the system safety assessment process,
would cause or contribute to a failure of system function resulting in a major failure condition for the
aircraft.

 d. Level D: Software whose anomalous behavior, as shown by the system safety assessment process,
would cause or contribute to a failure of system function resulting in a minor failure condition for
the aircraft.

 e. Level E: Software whose anomalous behavior, as shown by the system safety assessment process,
would cause or contribute to a failure of system function with no effect on aircraft operational
capability or pilot workload. Once software has been confirmed as level E by the certification
authority, no further guidelines of this document apply.

8

2.2.3 Software Level Determination

 Initially, the system safety assessment process determines the software level(s) appropriate to
 the software components of a particular system without regard to system design. The impact of
 failure, both loss of function and malfunction, is addressed when making this determination.

 Note: (1) The applicant may want to consider planned functionality to be added during future
developments, as well as potential changes in system requirements allocated to software
that may result in a more severe failure condition category and higher software level. It
may be desirable to develop the software to a level higher than that determined by the
system safety assessment process of the original application, since later development of
software life cycle data for substantiating a higher software level application may be
difficult.

(2) For airborne systems and equipment mandated by operating regulations, but
 which do not affect the airworthiness of the aircraft, for example, an accident
 flight data recorder, the software level needs to be commensurate with the
 intended function. In some cases, the software level may be specified in
 equipment minimum performance standards.

If the anomalous behavior of a software component contributes to more than one failure condition, then
the most severe failure condition category of that component determines the software level for that
software component. There are various architectural strategies, such as those described in subsection 2.3,
which during the evolution of the system design, may result in the software level(s) being revised.

A system function may be allocated to one or more partitioned software components. A parallel
implementation is one in which a system function is implemented with multiple software components
such that anomalous behavior of more than one component is required to produce the failure condition.
For a parallel implementation, at least one software component will have the software level associated
with the most severe failure condition category for that system function. The software level for the other
components are determined using the failure condition category associated with loss of that function.
Examples of such implementations are described in paragraphs 2.3.2, Multiple-Version Dissimilar
Software, and 2.3.3, Safety Monitoring.

A serial implementation is one in which multiple software components are used for a system function such
that anomalous behavior of any of the components could produce the failure condition. In this
implementation, the software components will have the software level associated with the most severe
failure condition category of the system function.

Development of software to a software level does not imply the assignment of a failure rate for that
software. Thus, software levels or software reliability rates based on software levels cannot be used by
the system safety assessment process as can hardware failure rates. Strategies which depart from the
guidelines of this paragraph (2.2.3) need to be justified by the system safety assessment process.

2.3 System Architectural Considerations

If the system safety assessment process determines that the system architecture precludes anomalous
behavior of the software from contributing to the most severe failure condition of a system, then the
software level is determined by the most severe category of the remaining failure conditions to which the
anomalous behavior of the software can contribute. The system safety assessment process considers the
architectural design decisions to determine whether they affect software level or software functionality.
Guidance is provided on several architectural strategies that may limit the impact of errors, or detect
errors and provide acceptable system responses to contain the errors. These architectural techniques are
not intended to be interpreted as the preferred or required solutions.

9

2.3.1 Partitioning

Partitioning is a technique for providing isolation between functionally independent software components
to contain and/or isolate faults and potentially reduce the effort of the software verification process. If
protection by partitioning is provided, the software level for each partitioned component may be
determined using the most severe failure condition category associated with that component.

Guidance for partitioning includes:

a. These aspects of the system should be considered when designing partitioning protection to

determine their potential for violating that protection:
(1) Hardware resources: processors, memory devices, I/O devices, interrupts, and timers.

 (2) Control coupling: vulnerability to external access.
(3) Data coupling: shared or overlaying data, including stacks and processor registers.
(4) Failure modes of hardware devices associated with the protection mechanisms.

b. The software life cycle processes should address the partitioning design considerations,
including the extent and scope of interactions permitted between the partitioned components,
and whether the protection is implemented by hardware or by a combination of hardware and
software.

c. If the partitioning protection involves software, then that software should be assigned the
software level corresponding to the highest level of the partitioned software components.

2.3.2 Multiple-Version Dissimilar Software

 Multiple -version dissimilar software is a system design technique that involves producing two
 or more components of software that provide the same function in a way that may avoid some
 sources of common errors between the components. Multiple -version dissimilar software is
 also referred to as multi-version software, dissimilar software, N-version programming, or
 software diversity.

Software life cycle processes completed or activated before dissimilarity is introduced into a
development, remain potential error sources. System requirements specify a hardware configuration
which provides for the execution of multiple-version dissimilar software.
The degree of dissimilarity and hence the degree of protection is not usually measurable. Probability of
loss of system function will increase to the extent that the safety monitoring associated with dissimilar
software versions detects actual errors or experiences transients that exceed comparator threshold limits.
Dissimilar software versions are usually used, therefore, as a means of providing additional protection
after the software verification process objectives for the software level, as described in section 6, have
been satisfied. Dissimilar software verification methods may be reduced from those used to verify single
version software if it can be shown that the resulting potential loss of system function is acceptable as
determined by the system safety assessment process.

Verification of multiple-version dissimilar software is discussed in paragraph 12.3.3.

2.3.3 Safety Monitoring

Safety monitoring is a means of protecting against specific failure conditions by directly monitoring a
function for failures which would contribute to the failure condition. Monitoring functions may be
implemented in hardware, software, or a combination of hardware and software.

Through the use of monitoring techniques, the software level of the monitored function may be reduced
to the level associated with the loss of its related system function. To allow this level reduction, there are
three important attributes of the monitor that should be determined:

10

a. Software level: Safety monitoring software is assigned the software level associated with the

most severe failure condition category for the monitored function.
b. System fault coverage: Assessment of the system fault coverage of a monitor ensures that the

monitor's design and implementation are such that the faults which it is intended to detect will
be detected under all necessary conditions.

c. Independence of Function and Monitor: The monitor and protective mechanism are not
rendered inoperative by the same failure condition that causes the hazard.

2.4 System Considerations for User-Modifiable Software, Option-Selectable Software and
Commercial Off-The-Shelf Software

The potential effects of user modification are determined by the system safety assessment process and
used to develop the software requirements, and then, the software verification process activities.
Designing for user-modifiable software is discussed further in paragraph 5.2.3. A change that affects the
non-modifiable software, its protection, or the modifiable software boundaries is a software modification
and discussed in paragraph 12.1.1. For this document, a modifiable component is that part of the software
that is intended to be changed by the user, and a non-modifiable component is that which is not intended
to be changed by the user.

Some airborne systems and equipment may include optional functions which may be selected by
software programmed options rather than by hardware connector pins. The option-selectable software
functions are used to select a particular configuration within the target computer. See paragraph 5.4.3 for
guidelines on deactivated code.

Guidance for system considerations for user-modifiable software, option-selectable software, and
commercial off-the-shelf software includes:
a. User-modifiable software : Users may modify software within the modification constraints

without certification authority review, if the system requirements provide for user modification.
b. The system requirements should specify the mechanisms which prevent the user modification

from affecting system safety whether or not they are correctly implemented. The software which
provides the protection for user modification should be at the same software level as the
function it is protecting from errors in the modifiable component.

c. If the system requirements do not include provision for user modification, the software should
not be modified by the user unless compliance with this document is demonstrated for the
modification.

d. At the time of the user modification, the user should take responsibility for all aspects of the
user-modifiable software, for example, software configuration management, software quality
assurance, and software verification.

e. Option-selectable software: When software programmed options are included, means should be
provided to ensure that inadvertent selections involving non-approved configurations for the
target computer within the installation environment cannot be made.

f. Commercial off-the-shelf software: COTS software included in airborne systems or equipment
should satisfy the objectives of this document.

g. If deficiencies exist in the software life cycle data of COTS software, the data should be
augmented to satisfy the objectives of this document. The guidelines in paragraphs 12.14,
Upgrading A Development Baseline, and 12.3.5, Product Service History, may be relevant in
this instance.

2.5 System Design Considerations for Field-Loadable Software

Field-loadable airborne software refers to software or data tables that can be loaded without removing
the system or equipment from its installation. The safety-related requirements associated

11

with the software data loading function are part of the system requirements. If the inadvertent enabling of
the software data loading function could induce a system failure condition, a safety-related requirement
for the software data loading function is specified in the system requirements.

System safety considerations relating to field-loadable software include:

• Detection of corrupted or partially loaded software.

• Determination of the effects of loading the inappropriate software.

• Hardware/software compatibility.

• Software/software compatibility.

• Aircraft/software compatibility.

• Inadvertent enabling of the field loading function.

• Loss or corruption of the software configuration identification display.

Guidance for field-loadable software includes:

 a. Unless otherwise justified by the system safety assessment process, the detection mechanism for
partial or corrupted software loads should be assigned the same failure condition or software
level as the most severe failure condition or software level associated with the function that uses
the software load.

 b. If a system has a default mode when inappropriate software or data is loaded, then each
partitioned component of the system should have safety-related requirements specified for
operation in this mode which address the potential failure condition.

 c. The software loading function, including support systems and procedures, should include a
means to detect incorrect software and/or hardware and/or aircraft combinations and should
provide protection appropriate to the failure condition of the function.

 d. If software is part of an airborne display mechanism that is the means for ensuring that the
aircraft conforms to a certified configuration, then that software should either be developed to the
highest level of the software to be loaded, or the system safety assessment process should justify
the integrity of an end-to-end check of the software configuration identification.

2.6 System Requirements Considerations for Software Verification

The system requirements are developed from the system operational requirements and the safety-related
requirements that result from the system safety assessment process. Considerations include:

 a. The system requirements for airborne software establish two characteristics of the
 software:

 (1) The software performs specified functions as defined by the system requirements.

 (2) The software does not exhibit specific anomalous behavior(s) as determined by the
system safety assessment process. Additional system requirements are generated to
eliminate the anomalous behavior.

 b. These system requirements should then be developed into software high-level requirements that
are verified by the software verification process activities.

2.7 Software Considerations in System Verification

 Guidance for system verification is beyond the scope of this document. However, the software life cycle
processes aid and interact with the system verification process. Software design details that relate to the
system functionality need to be made available to aid system verification.

System verification may provide significant coverage of code structure. Coverage analysis of system
verification tests may be used to achieve the coverage objectives of various test activities described under
software verification.

THIS PAGE INTENTIONALLY LEFT BLANK.

13

3 SOFTWARE LIFE CYLCE

This section discusses the software life cycle processes, software life cycle definition, and transition
criteria between software life cycle processes. The guidelines of this document do not prescribe a
preferred software life cycles and interactions between them. The separation of the processes is not
intended to imply a structure for the organization (s) that perform them, For each software product, the
software life cycle (s) is constructed that includes these processes.

3.1 Software Life Cycle Processes

 The software life cycle processes are:

• The software planning process that defines and coordinates the activities of the software
development and integral processes for a project. Section 4 describes the software planning process.

• The software development processes that produce the software product. These processes are the
software requirements process, the software design process, the software coding process, and the
integration process. Section 5 describes the software development processes.

• The integral processes that ensure the correctness, control, and confidence of the software life cycle
processes and their outputs. The integral processes are the software verification process, the
software configuration management process, the software quality assurance process, and the
certification liaison process. It is important to understand that the integral processes are performed
concurrently with the software development processes throughout the software life cycle. Sections 6
through 9 describe the integral processes.

3.2 Software Life Cycle Definition

A project defines one or more software life cycle (s) by choosing the activities for each process,
specifying a sequence for the activities, and assigning responsibilities for the activities.

For a specific project, the sequencing of these processes is determined by attributes of the project, such as
system functionality and complexity, software size and complexity, requirements stability, use of
previously developed results, development strategies and hardware availability. The usual sequence
through the software development processes is require ments, design, coding and integration.

Figure 3-1 illustrates the sequence of software development processes for several components of a single
software product with different software life cycles. Component W implements a set of system
requirements by developing the software requirements, using those requirements to define a software
design, implementing that design into source code, and then integrating the component into the hardware.
Component X illustrates the use of previously developed software used in a certified aircraft or engine.
Component Y illustrates the use of a simple, partitioned function that can be coded directly from the
software requirements. Component Z illustrates the use of a prototyping strategy. Usually, the goals of
prototyping are to better understand the software requirements and to mitigate development and technical
risks. The initial requirements are used as the basis to implement a prototype. This prototype is
evaluated in an environment representative of the intended use of the system under development. Results
of the evaluation are used to refine the requirements.

The processes of a software life cycle may be iterative, that is, entered and re-entered. The timing and
degree of iteration varies due to the incremental development of system functions, complexity,
requirements development, hardware availability, feedback to previous processes, and other attributes of
the project.

14

The various parts of the s elected software life cycle are tied together with a combination of incremental
integration process and software verification process activities.

FIGURE 3-1
EXAMPLE OF A SOFTWARE PROJECT

USING FOUR DIFFERENT DEVELOPMENT SEQUENCES

3.3 Transition Criteria Between Processes

Transition criteria are used to determine whether a process may be entered or re-entered. Each software
life cycle process performs activities on inputs to produce outputs. A process may produce feedback to
other processes and receive feedback from others. Definition of feedback includes how information is
recognized, controlled and resolved by the receiving process. An example of a feedback definition is
problem reporting.

The transition criteria will depend on the planned sequence of software development processes and
integral
processes, and may be affected by the software level. Examples of transition criteria which may be
chosen are: that the software verification process reviews have been performed; the input is an identified
configuration item; and a traceability analysis has been completed for the input.
Every input to a process need not be complete before that process can be initiated, if the transition criteria
established for the process are satisfied. Guidance includes:

a. If a process acts on partial inputs, subsequent inputs to the process should be examined to

determine that the previous outputs of the software development and software verification
processes are still valid.

15

4 SOFTWARE PLANNING PROCESS

This section discusses the objectives and activities of the software planning process. This process
produces the software plans and standards that direct the software development processes and the integral
processes. Table A-1 of Annex A is a summary of the objectives and outputs of the software planning
process by software level.

4.1 Software Planning Process Objectives

The purpose of the software planning process is to define the means of producing software which will
satisfy the system requirements and provide the level of confidence which is consistent with
airworthiness requirements. The objectives of the software planning process are:

a. The activities of the software development processes and integral processes of the software life
cycle that will address the system requirements and software level(s) are defined (subsection 4.2).

b. The software life cycle(s), including the inter-relationships between the processes, their

sequencing, feedback mechanisms, and transition criteria are determined (section 3).

c. The software life cycle environment, including the methods and tools to be used for the
activities of each software life cycle process have been selected (subsection 4.4).

d. Additional considerations, such as those discussed in section 12, have been addressed, if
necessary.

e. Software development standards consistent with the system safety objectives for the software to

be produced are defined (subsection 4.5).

f. Software plans that comply with subsection 4.3 and section 11 have been produced.

g. Development and revision of the software plans are coordinated (subsection 4.3).

4.2 Software Planning Process Activities

Effective planning is a determining factor in producing software that satisfies the guidelines of this
document. Guidance for the software planning process includes:

a. The software plans should be developed at a point in time in the software life cycle that

provides timely direction to the personnel performing the software development processes and
integral processes. See also the guidelines of subsection 9. I.

b. The software development standards to be used for the project should be defined or selected.
c. Methods and tools should be chosen that provide error prevention in the software development

processes.
d. The software planning process should provide coordination between the software development

and integral processes to provide consistency among strategies in the software plans.
e. The software planning process should include a means to revise the software plans as a project

progresses.
f. When multiple-version dissimilar software is used in a system, the software planning process

should choose the methods and tools to achieve the error avoidance or detection necessary to
satisfy the system safety objectives.

g. For the software planning process to be complete, the software plans and software
development standards should be under change control and reviews of them completed
(subsection 4.6).

16

h. If deactivated code is planned (subsection 2.4), the software planning process should describe

how the deactivated code (selected options, flight test) will be defined, verified and handled to
achieve system safety objectives.

i. If user-modifiable code is planned, the process, tools, environment, and data items
substantiating the guidelines of paragraph 5.2.3 should be specified in the software plans and
standards.

Other software life cycle processes may begin before completion of the software planning process if the
plans and procedures for the specific process activity are available.

4.3 Software Plans

The purpose of the software plans is to define the means of satisfying the objectives of this document.
They specify the organizations that will perform those activities. The software plans are:

• The Plan for Software Aspects of Certification (subsection 1 1. 1) serves as the primary means

 for communicating the proposed development methods to the certification authority for
 agreement, and defines the means of compliance with this document.

• The Software Development Plan (subsection 11.2) defines the software life cycle (s) and
 software development environment.

• The Software Verification Plan (subsection 11.3) defines the means by which the software
 verification process objectives will be satisfied.

• The Software Configuration Management Plan (subsection 11.4) defines the means by which
 the software configuration management process objectives will be satisfied.

• The Software Quality Assurance Plan (subsection 11.5) defines the means by which the
 software quality assurance process objectives will be satisfied.

Guidance for the software plans includes:
a. The software plans should comply with this document.

b. The software plans should define the criteria for transition between software life cycle processes

by specifying:
 (1) The inputs to the process, including feedback from other processes.
 (2) Any integral process activities that may be required to act on these inputs.
 (3) Availability of tools, methods, plans and procedures.

c. The software plans should state the procedures to be used to implement software changes prior

to use on a certified aircraft or engine. Such changes may be as a result of feedback from other
processes and may cause a change to the software plans.

4.4 Software Life cycle Environment Planning

The purpose of the planning for the software life cycle environment is to define the methods, tools,
procedures, programming languages and hardware that will be used to develop, verify, control and
produce the software life cycle data (section 11) and software product. Examples of how the software
environment chosen can have a beneficial effect on the airborne software include enforcing standards,
detecting errors, and implementing error prevention and fault tolerance methods. The software life cycle
environment is a potential error source that can contribute to failure conditions. Composition of this
software life cycle environment may be influenced by the safety-related requirements determined by the
system safety assessment process, for example, the use of dissimilar, redundant components.

The goal of error prevention methods is to avoid errors during the software development processes that
might contribute to a failure condition. The basic principle is to choose requirements

17

development and design methods, tools, and programming languages that limit the opportunity for
introducing errors, and verification methods that ensure that errors introduced are detected. The goal of
fault tolerance methods is to include safety features in the software design or Source Code to ensure that
the software will respond correctly to input data errors and prevent output and control errors. The need
for error prevention or fault tolerance methods is determined by the system requirements and the system
safety assessment process.

 The considerations presented above may affect:

• The methods and notations used in the software requirements process and software design process.

• The programming language(s) and methods used in the software coding process.

• The software development environment tools.

• The software verification and software configuration management tools.

• The need for tool qualification (subsection 12.2).

4.4.1 Software Development Environment

The software development environment is a significant factor in the production of high quality software. The
software development environment can also adversely affect the production of airborne software in several ways.
For example, a compiler could introduce errors by producing a corrupted output or a linker could fail to reveal a
memory allocation error that is present. Guidance for the selection of software development environment
methods and tools includes:

 a. During the software planning proces s, the software development environment should be chosen to
minimize its potential risk to the final airborne software.

 b. The use of qualified tools or combinations of tools and parts of the software development environment
should be chosen to achieve the necessary level of confidence that an error introduced by one part would
be detected by another. An acceptable environment is produced when both parts are consistently used
together.

 c. Software verification process activities or software development standards, which include consideration
of the software level, should be defined to minimize potential software development
environment-related errors.

 d. If certification credit is sought for use of the tools in combination, the sequence of operation of the tools
should be specified in the appropriate plan.

 e. If optional features of software development tools are chosen for use in a project, the effects of the
options should be examined and specified in the appropriate plan.

Note: This is especially important where the tool directly generates part of the software product. In this
context, compilers are probably the most important tools to consider.

4.4.2 Language and Compiler Considerations

Upon successful completion of verification of the software product, the compiler is considered acceptable for
that product. For this to be valid, the software verification process activities need to consider particular features
of the programming language and compiler. The software planning process considers these features when
choosing a programming language and planning for verification. Guidance includes:

a. Some compilers have features intended to optimize performance of the object code. If the test cases

give coverage consistent with the software level, the correctness of the optimization need not be
verified. Otherwise, the impact of these features on structural coverage analysis should be
determined following the guidelines of subparagraph 6.4.4.2.

b. To implement certain features, compilers for some languages may produce object code that is not
directly traceable to the source code, for example, initialization, built -in error detection or
exception handling (subparagraph 6.4.4.2, item b). The software planning

18

process should provide a means to detect this object code and to ensure verification coverage and define
the means in the appropriate plan.

c. If a new compiler, linkage editor or loader version is introduced, or compiler options are

changed during the software life cycle, previous tests and coverage analyses may no longer be
valid. The verification planning should provide a means of re -verification which is consistent
with the guidelines of section 6 and paragraph 12.1.3.

4.4.3 Software Test Environment

The purpose of software test environment planning is to define the methods, tools, procedures and
hardware that will be used to test the outputs of the integration process. Testing may be performed using
the target computer, a target computer emulator or a host computer simulator. Guidance includes:

a. The emulator or simulator may need to be qualified as described in subsection 12.2.
b. The differences between the target computer and the emulator or simulator, and the effects of
 these differences on the ability to detect errors and verify functionality, should be considered. Detection
 of those errors should be provided by other software verification process activities and specified in the

Software Verification Plan.

4.5 Software Test Environment

The purpose of the software development standards is to define the rules and constraints for the software
development processes. The software development standards include the Software Requirements
Standards, the Software Design Standards and the Software Code Standards. The software verification
process uses these standards as a basis for evaluating the compliance of actual outputs of a process with
intended outputs. Guidance for software development standards includes:

a. The software development standards should comply with section 11.

b. The software development standards should enable software components of a given software

product or related set of products to be uniformly designed and implemented.

c. The software development standards should disallow the use of constructs or methods that
produce outputs that cannot be verified or that are not compatible with safety-related
requirements.

Note: In developing standards, consideration can be given to previous experience. Constraints and
 rules on development, design, and coding methods can be included to control complexity.
 Defensive programming practices may be considered to improve robustness.

4.6 Review and Assurance of the Software Planning Process

Reviews and assurance of the software planning process are conducted to ensure that the software plans
and software development standards comply with the guidelines of this document and means are
provided to execute them. Guidance includes:

a. The chosen methods will enable the objectives of this document to be satisfied.

b. The software life cycle processes can be applied consistently.

c. Each process produces evidence that its outputs can be traced to their activity and inputs,

showing the degree of independence of the activity, the environment, and the methods to be
used.

d. The outputs of the software planning process are consistent and comply with section 11.

19

5 SOFTWARE DEVELOPMENT PROCESS

This section discusses the objectives and activities of the software development processes. The software
development processes are applied as defined by the software planning process (section 4) and the
Software Development Plan (subsection 11.2). Table A-2 of Annex A is a summary of the objectives and
outputs of the software development processes by software level. The software development processes
are:

• Software requirements process.

• Software design process.

• Software design process.

• Integration process.

Software development processes produce one or more levels of software requirements. High-level
requirements are produced directly through analysis of system requirements and system architecture.
Usually, these high-level requirements are further developed during the software design process, thus
producing one or more successive, lower levels of requirements. However, if Source Code is generated
directly from high-level requirements, then the high-level requirements are also considered low-level
requirements. and the guidelines for low-level requirements also apply.

The development of a software architecture involves decisions made about the structure of the software.
During the software design process, the software architecture is defined and low-level requirements are
developed. Low-level requirements are software requirements from which Source Code can be directly
implemented without further information.

Each software development process may produce derived requirements. Derived requirements are
requirements that are not directly traceable to higher level requirements. An example of such a derived
require ment is the need for interrupt handling software to be developed for the chosen target computer.
High-level requirements may include derived requirements, and low-level requirements may include
derived requirements. The effects of derived requirements on safety related requirements are determined
by the system safety assessment process.

5.1 Software Requirements Process

The software requirements process uses the outputs of the system life cycle process to develop the
software high-level requirements. These high-level requirements include functional, performance,
interface and safety-related requirements.

5.1.1 Software Requirements Process Objectives

The objectives of the software requirements process are:

 a. High-level requirements are developed.

 b. Derived high-level requirements are indicated to the system safety assessment process.

5.1.2 Software Requirements Process Activities

Inputs to the software requirements process include the system requirements, the hardware interface and
system architecture (if not included in the requirements) from the system life cycle process, and the
Software Development Plan and the Software Requirements Standards from the software planning
process. When the planned transition criteria have been satisfied, these inputs are used to develop the
software high-level requirements.

 The primary output of this process is the Software Requirements Data (subsection 11.9).

20

The software requirements process is complete when its objectives and the objectives of the integral
processes associated with it are satisfied. Guidance for this process includes:

 a. The system functional and interface requirements that are allocated to software should be analyze
for ambiguities, inconsistencies and undefined conditions.

 b. Inputs to the software requirements process detected as inadequate or incorrect should be
reported as feedback to the input source processes for clarification or correction.

 c. Each system requirement that is allocated to software should be specified in the high-level
requirements.

 d. High-level requirements that address system requirements allocated to software to preclude
system hazards should be defined.

 e. The high-level requirements should conform to the Software Requirements Standards, and be
verifiable and consistent.

 f. The high-level requirements should be stated in quantitative terms with tolerances where
applicable.

 g. The high-level requirements should not describe design or verification detail except for specified
and justified design constraints.

 h. Each system requirement allocated to software should be traceable to one or more software high-
level requirements.

 i. Each high-level requirement should be traceable to one or more system requirements, except for
derived requirements.

 j. Derived high-level requirements should be provided to the system safety assessment process.

5.2 Software Design Process

The software high-level requirements are refined through one or more iterations in the software design
process to develop the software architecture and the low-level requirements that can be used to
implement Source Code.

5.2.1 Software Design Process Objectives

The objectives of the software design process are:

 a. The software architecture and low-level requirements are developed from the high-level
requirements.

b. Derived low-level requirements are provided to the system safety assessment process.

5.2.2 Software Design Process Activities

The software design process inputs are the Software Requirements Data, the Software Development Plan
and the Software Design Standards. When the planned transition criteria have been satisfied, the high-
level requirements are used in the design process to develop software architecture and low-level
requirements. This may involve one or more lower levels of requirements.

The primary output of the process is the Design Description (subsection I 1. 10) which includes the
software architecture and the low-level requirements.

The software design process is complete when its objectives and the objectives of the integral processes
associated with it are satisfied. Guidance for this process includes:

21

a. Low-level requirements and software architecture developed during the software design process
should conform to the Software Design Standards and be traceable, verifiable and consistent

b. Derived requirements should be defined and analyzed to ensure that the higher level
requirements are not compromised.

c. Software design process activities could introduce possible modes of failure into the software
or, conversely, preclude others. The use of partitioning or other architectural means in the
software design may alter the software level assignment for some components of the software.
In such cases, additional data should be defined as derived requirements and provided to the
system safety assessment process.

d. Control flow and data flow should be monitored when safety-related requirements dictate, for
example, watchdog timers, reasonableness-checks and cross-channel comparisons.

e. Responses to failure conditions should be consistent with the safety-related requirements.

f. Inadequate or incorrect inputs detected during the software design process should be provided to

either the system life cycle process, the software requirements process, or the software planning
process as feedback for clarification or correction.

Note: The current state of software engineering does not permit a quantitative correlation between
 complexity and the attainment of safety objectives. While no objective guidelines can be provided, the

software design process should avoid introducing complexity because as the complexity of software
increases, it becomes re difficult to verify the design and to show that the safety objectives of the software
are satisfied.

5.2.3 Designing for User-Modifiable Software

Guidance follows concerning the development of software that is designed to be modifiable by its users.
A modifiable component is that part of the software that is intended to be changed by the user and a non-
modifiable component is that which is not intended to be changed by the user. User-modifiable software
may vary in complexity. Examples include a single memory bit used to select one of two equipment
options, a table of messages, or a memory area that can be programmed, compiled, and linked for aircraft
maintenance functions. Software of any level can include a modifiable component.

Guidance for designing user-modifiable software includes:

a. The non-modifiable component should be protected from the modifiable component to
 prevent interference in the safe operation of the non-modifiable component. This
 protection can be enforced by hardware, by software, by the tools used to make the
 change, or by a combination of the three.
b. The applicant-provided means should be shown to be the only means by which the modifiable

component can be changed.

5.3 Software Coding Process

In the software coding process, the Source Code is implemented from the software architecture and the
low-level requirements.

5.3.1 Software Coding Process Objectives

The objective of the software coding process is:

a. Source code is developed that is traceable, verifiable, consistent, and correctly implements low-

level requirements.

22

5.3.2 Software Coding Process Activities

The coding process inputs are the low-level requirements and software architecture from the software
design process, and the Software Development Plan and the Software Code Standards. The software
coding process may be entered or re-entered when the planned transition criteria are satisfied. The
Source Code is produced by this process based upon the software architecture and the low-level
requirements.

The primary results of this process are Source Code (subsection 1 1. I 1) and object code.

The software coding process is complete when its objectives and the objectives of the integral processes
associated with it are satisfied. Guidance for this process includes:

a. The Source Code should implement the low-level requirements and conform to the software

architecture.
b. The Source Code should conform to the Software Code Standards.
c. The Source Code should be traceable to the Design Description.
d. Inadequate or incorrect inputs detected during the software coding process should be provided

to the software requirements process, software design process or software planning process as
feedback for clarification or correction.

5.4 Integration Process

The target computer, and the Source Code and object code from the software coding process are used
with the linking and loading data (subsection 11.16) in the integration process to develop the integrated
airborne system or equipment.

5.4.1 Integration Process Objectives

The objective of the integration process is:
a. The Executable Object Code is loaded into the target hardware for hardware/software

integration.

5.4.2 Integration Process Activities

The integration process consists of software integration and hardware/software integration.

The integration process may be entered or re-entered when the planned transition criteria have been
satisfied. The integration process inputs are the software architecture from the software design process,
and the Source Code and object code from the software coding process.

The outputs of the integration process are the Executable Object Code, as defined in subsection 11.12,
and the linking and loading data. The integration process is complete when its objectives and the
objectives of the integral processes associated with it are satisfied. Guidance for this process includes:

a. The Executable Object Code should be generated from the Source and linking and loading data.

b. The software should be loaded into the target computer for hardware/software integration.

c. Inadequate or incorrect inputs detected during the integration process should be provided to the

software requirements process, the software design process, the software coding process or the
software planning process as feedback for clarification or correction.

23

5.4.3 Integration Considerations

The following are considerations for deactivated code and software patches. An airborne system or
equipment may be designed to include several configurations, not all of which are intended to be used in
every application. This can lead to deactivated code that cannot be executed or data that is not used.
This differs from dead code which is defined in the glossary and discussed in subparagraph 6.4.4.3.
Guidance for deactivated code and patches includes:

a. Evidence should be available that the deactivated code is disabled for the environments where

its use is not intended. Unintended activation of deactivated code due to abnormal system
conditions is the same as unintended activation of activated code.

b. The methods for handling deactivated code should comply with the software plans.

c. Patches should not be used in software submitted for use in a certified aircraft or engine to

implement changes in requirements or architecture, or changes found necessary as a result of
software verification process activities. Patches may be used on a limited, case-by-case basis,
for example, to resolve known deficiencies in the software development environment. such as a
known compiler problem.

d. When a patch is used, these should be available:

(1) Confirmation that the software configuration management process can
effectively track the patch.

(2) Regression analysis to provide evidence that the patch satisfies all objectives
of the software developed by normal methods.

(3) Justification in the Software Accomplishment Summary for the use of a patch.

5.5 Traceability

Traceability guidance includes:

a. Traceability between system requirements and software requirements should be provided
 to enable verification of the complete implementation of the system requirements and give
 visibility to the derived requirements.

b. Traceability between the low-level requirements and high-level requirements should be
 provided to give visibility to the derived requirements and the architectural design
 decisions made during the software design process, and allow verification of the complete
 implementation of the high-level requirements.

c. Traceability between Source Code and low-level requirements should be provided to

enable verification of the absence of undocumented Source Code and verification of the
complete implementation of the low-level requirements.

THIS PAGE INTENTIONALLY LEFT BLANK.

25

6.0 SOFTWARE VERIFICATION PROCESS

This section discusses the objectives and activities of the software verification process. Verification is a
technical assessment of the results of both the software development processes and the software
verification process. The software verification process is applied as defined by the software planning
process (section 4) and the Software Verification Plan (subsection 11.3).

Verification is not simply testing. Testing, in general, cannot show the absence of errors. As a result, the
following subsections use the term "verify" instead of "test" when the software verification process
objectives being discussed are typically a combination of reviews, analyses and test.

Tables A-3 through A-7 of Annex A contain a summary of the objectives and outputs of the software
verification process, by software level.

Note: For lower software levels, less emphasis is on:

• Verification of low-level requirements.

• Verification of the software architecture.

• Degree of test coverage.

• Control of verification procedures.

• Independence of software verification process activities.

• Overlapping software verification process activities, that is, multiple verification activities, each
 of which may be capable of detecting the same class of error.

• Robustness testing.

• Verification activities with an indirect effect on error prevention or detection, for example,
 conformance to software development standards.

6.1 Software Verification Process Objectives

The purpose of the software verification process is to detect and report errors that may have been
introduced during the software development processes. Removal of the errors is an activity of the
software development processes. The general objectives of the software verification process are to verify
that:

 a. The system requirements allocated to software have been developed into software high-level
requirements that satisfy those system requirements.

 b. The high-level requirements have been developed into software architecture and low-level
requirements that satisfy the high-level requirements. If one or more levels of software
requirements are developed between high-level requirements and low-level requirements,
the successive levels of requirements are developed such that each successively lower
level satisfies its higher level requirements. If code is generated directly from high-level
requirements, this objective does not apply.

 c. The software architecture and low-level requirements have been developed into Source
Code that satisfies the low-level requirements and software architecture.

 d. The Executable Object Code satisfies the software requirements.

 e. The means used to satisfy these objectives are technically correct and complete for the
software level.

26

6.2 Software Verification Process Activities

Software verification process objectives are satisfied through a combination of reviews, analyses,
the development of test cases and procedures, and the subsequent execution of those test
procedures. Reviews and analyses provide an assessment of the accuracy, completeness, and
verifiability of the software requirements, software architecture, and Source Code. The
development of test cases may provide further assessment of the internal consistency and
completeness of the requirements. The execution of the test procedures provides a demonstration
of compliance with the requirements.

The inputs to the software verification process include the system require ments, the software
requirements and architecture, traceability data, Source Code, Executable Object Code, and the
Software Verification Plan.

The outputs of the software verification process are recorded in Software Verification Cases and
Procedures (subsection 11.13) and Software Verification Results (subsection 11.14).

The need for the requirements to be verifiable once they have been implemented in the software
may itself impose additional requirements or constraints on the software development processes.

The verification process provides traceability between the implementation of the software
requirements and verification of those software requirements:

• The traceability between the software requirements and the test cases is accomplished by
the requirements-based coverage analysis.

• The traceability between the code structure and the test cases is accomplished by the
structural coverage analysis.

 Guidance for the software verification activities includes:

a. High-level requirements and traceability to those high-level requirements should be
verified.

 b. The results of the traceability analyses and requirements-based and structural coverage
analyses should show that each software requirement is traceable to the code that
implements it and to the review, analysis, or test case that verifies it.

 c. If the code tested is not identical to the airborne software, those differences should be
specified and justified.

 d. When it is not possible to verify specific software requirements by exercising the software
in a realistic test environment, other means should be provided and their justification for
satisfying the software verification process objectives defined in the Software Verification
Plan or Software Verification Results.

 e. Deficiencies and errors discovered during the software verification process should be
reported to the software development processes for clarification and correction.

6.3 Software Reviews and Analyses

Reviews and analyses are applied to the results of the software development processes and software
verification process. One distinction between reviews and analyses is that analyses provide
repeatable evidence of correctness and reviews provide a qualitative assessment of correctness. A
review may consist of an inspection of an output of a process guided by a checklist or similar aid.
An analysis may examine in detail the functionality, performance, traceability and safety
implications of a software component, and its relationship to other components within the airborne
system or equipment.

27

6.3.1 Reviews and Analyses of the High-Level Requirements

The objective of these reviews and analyses is to detect and report requirements errors that may
have been introduced during the software requirements process. These reviews and analyses
confirm that the high-level requirements satisfy these objectives:

a. Compliance with system requirements: The objective is to ensure that the system functions
to be performed by the software are defined, that the functional, performance, and safety-
related requirements of the system are satisfied by the software high-level requirements,
and that derived requirements and the reason for their existence are correctly defined.

b. Accuracy and consistency: The objective is to ensure that each high-level requirement is
accurate, unambiguous and sufficiently detailed and that the requirements do not conflict
with each other.

c. Compatibility with the target computer: The objective is to ensure that no conflicts exist
between the high-level requirements and the hardware/software features of the target
computer, especially, system response times and input/output hardware.

d. Verifiability: The objective is to ensure that each high-level requirement can be verified.

e. Conformance to standards: The objective is to ensure that the Software Requirements
Standards were followed during the software requirements process and that deviations from
the standards are justified.

f. Traceability: The objective is to ensure that the functional, performance, and safety-related
requirements of the system that are allocated to software were developed into the software
high-level requirements.

g. Algorithm aspects : The objective is to ensure the accuracy and behavior of the proposed
algorithms, especially in the area of discontinuities.

6.3.2 Reviews and Analyses of the Low-Level Requirements

The objective of these reviews and analyses is to detect and report requirements errors that may
have been introduced during the software design process. These reviews and analyses confirm that
the software low-level requirements satisfy these objectives:

a. Compliance with high-level requirements: The objective is to ensure that the software low-
level requirements satisfy the software high-level requirements and that derived
requirements and the design basis for their existence are correctly defined.

b. Accuracy and consistency: The objective is to ensure that each low-level requirement is
accurate and unambiguous and that the low-level requirements do not conflict with each
other.

c. Compatibility with the target computer: The objective is to ensure that no conflicts exist
between the software requirements and the hardware/software features of the target
computer, especially, the use of resources (such as bus loading), system response times, and
input/output hardware.

d. Verifiability: The objective is to ensure that each low-level requirement can be verified.

e. Conformance to standards: The objective is to ensure that the Software Design Standards
were followed during the software design process, and that deviations from the standards
are justified.

f. Traceability: The objective is to ensure that the high-level requirements and derived
requirements were developed into the low-level requirements.

g. Algorithm aspects : The objective is to ensure the accuracy and behavior of the proposed
algorithms, especially in the area of discontinuities.

28

6.3.3 Reviews and Analyses of the Software Architecture

 The objective of these reviews and analyses is to detect and report errors that may have been
 introduced during the development of the software architecture. These reviews and analyses
 confirm that the software architecture satisfies these objectives:

 a. Compatibility with the high-level requirements: The objective is to ensure that the
software architecture does not conflict with the high-level requirements, especially
functions that ensure system integrity, for example, partitioning schemes.

 b. Consistency: The objective is to ensure that a correct relationship exists between the
components of the software architecture. This relationship exists via data flow and control
flow.

 c. Compatibility with the target computer: The objective is to ensure that no conflicts exist,
especially initialization, asynchronous operation, synchronization and interrupts, between
the software architecture and the hardware/software features of the target computer.

 d. Verifiability: The objective is to ensure that the software architecture can be verified, for
example, there are no unbounded recursive algorithms.

 e. Conformance to standards: The objective is to ensure that the Software Design Standards
were followed during the software design process and that deviations to the standards are
justified, especially complexity restrictions and design constructs that would not comply
with the system safety objectives.

 f. Partitioning integrity: The objective is to ensure that partitioning breaches are prevented
or isolated.

6.3.4 Reviews and Analyses of the Source Code

 The objective is to detect and report errors that may have been introduced during the software
coding process. These reviews and analyses confirm that the outputs of the software coding
process are accurate, complete and can be verified. Primary concerns include correctness of the
code with respect to the software requirements and the software architecture, and conformance
to the Software Code Standards. These reviews and analyses are usually confined to the Source
Code. The topics should include:

 a. Compliance with the low-level requirements: The objective is to ensure that the Source
Code is accurate and complete with respect to the software low-level requirements, and
that no Source Code implements an undocumented function.

 b. Compliance with the software architecture: The objective is to ensure that the Source
Code matches the data flow and control flow defined in the software architecture.

 c. Verifiability: The objective is to ensure the Source Code does not contain statements and
structures that cannot be verified and that the code does not have to be altered to test it.

 d. Conformance to standards: The objective is to ensure that the Software Code Standards
were followed during the development of the code, especially complexity restrictions and
code constraints that would be consistent with the system safety objectives. Complexity
includes the degree of coupling between software components, the nesting levels for control
structures, and the complexity of logical or numeric expressions. This analysis also ensures
that deviations to the standards are justified.

 e. Traceability: The objective is to ensure that the software low-level requirements were
 developed into Source Code.

 f. Accuracy and consistency: The objective is to determine the correctness and
 consistency of the Source Code, including stack usage, fixed point arithmetic overflow and
 resolution, resource contention, worst-case execution timing, exception handling, use of
 uninitialized variables or constants, unused variables or constants, and data corruption due to task
 or interrupt conflicts.

29

6.3.5 Reviews and Analyses of the Outputs of the Integration Process

The objective is to ensure that the results of the integration process are complete and correct. This could
be performed by a detailed examination of the linking and loading data and memory map. The topics
should include:

a. Incorrect hardware addresses.

b. Memory overlaps.

c. Missing software components.

6.3.6 Reviews and Analyses of the Test Cases, Procedures and Results

The objective of these reviews and analyses is to ensure that the testing of the code was developed and
performed accurately and completely. The topics should include:

a. Test cases : The verification of test cases is presented in paragraph 6.4.4.

b. Test procedures : The objective is to verify that the test cases were accurately developed into test
procedures and expected results.

c. Test results: The objective is to ensure that the test results are correct and that discrepancies
between actual and expected results are explained.

6.4 Software Testing Process

Testing of airborne software has two complementary objectives. One objective is to demonstrate that the
software satisfies its requirements. The second objective is to demonstrate with a high degree of
confidence that errors which could lead to unacceptable failure conditions, as determined by the system
safety assessment process, have been removed.

Figure 6-1 is a diagram of the software testing process. The objectives of the three types of testing in the
figure are:

• Hardware/software integration testing: To verify correct operation of the software in the
 target computer environment.

• Software integration testing: To verify the interrelationships between software
requirements and components and to verify the implementation of the software
requirements and software components within the software architecture.

• Low-level testing: To verify the implementation of software low-level requirements.

Note: If a test case and its corresponding test procedure are developed and executed for
hardware/software integration testing or software integration testing and satisfy the
requirements-based coverage and structural coverage, it is not necessary to duplicate the
test for low-level testing. Substituting nominally equivalent low-level tests for high-level
tests may be less effective due to the reduced amount of overall functionality tested.

To satisfy the software testing objectives:

a. Test cases should be based primarily on the software requirements.

b. Test cases should be developed to verify correct functionality and to establish conditions
that reveal potential errors.

 c. Software requirements coverage analysis should determine what software requirements
were not tested.

d. Structural coverage analysis should determine what software structures were not
exerc ised.

30

FIGURE 6-1
SOFTWARE TESTING PROCESS

6.4.1 Test Environment

More than one test environment may be needed to satisfy the objectives for software testing. An
excellent test environment includes the software loaded into the target computer and tested in a
high fidelity simulation of the target computer environment.

 Note: In many cases, the requirements-based coverage and structural coverage necessary can
 be achieved only with more precise control and monitoring of the test inputs and code
 execution than generally possible in a fully integrated environment. Such testing may
 need to be performed on a small software component that is functionally isolated from
 other software components.

Certification credit may be given for testing done using a target computer emulator or a host
computer simulator. Guidance for the test environment includes:

 a. Selected tests should be performed in the integrated target computer environment, since some
errors are only detected in this environment.

6.4.2 Requirements-Based Test Case Selection

 Requirements-based testing is emphasized because this strategy has been found to be the most
 effective at revealing errors. Guidance for requirements-based test case selection includes:

 a. To implement the software testing objectives, two categories of test cases should be included:
normal range test cases and robustness (abnormal range) test cases.

31

b. The specific test cases should be developed from the software requirements and the error sources inherent in
the software development processes.

6.4.2.1 Normal Range Test Cases

The objective of normal range test cases is to demonstrate the ability of the software to respond to normal inputs
and conditions. Normal range test cases include:

a. Real and integer input variables should be exercised using valid equivalence classes and boundary values.

b. For time-related functions, such as filters, integrators and delays, multiple iterations of the code should be
performed to check the characteristics of the function in context.

c. For state transitions, test cases should be developed to exercise the transitions possible during normal
operation.

d. For software requirements expressed by logic equations, the normal range test cases should verify the
variable usage and the Boolean operators.

Note: One method is to test all combinations of the variables. For complex expressions, this method is
impractical due to the large number of test cases required. A different strategy that ensures the required
coverage could be developed. For example, for Level A, the Boolean operators could be verified by
analysis or review, and to complement this activity, test cases could be established to provide modified
condition/decision coverage.

6.4.2.2 Robustness Test Cases

The objective of robustness test cases is to demonstrate the ability of the software to respond to abnormal inputs
and conditions. Robustness test cases include:

a. Real and integer variables should be exercised using equivalence class selection of invalid values.

 b. System initialization should be exercised during abnormal conditions.

c. The possible failure modes of the incoming data should be determined, especially complex, digital data
strings from an external system.

d. For loops where the loop count is a computed value, test cases should be developed to attempt to
compute out-of-range loop count values, and thus demonstrate the robustness of the loop-related code.

e . A check should be made to ensure that protection mechanisms for exceeded frame times respond
correctly.

f. For time-related functions, such as filters, integrators and delays, test cases should be developed for
arithmetic overflow protection mechanisms.

g. For state transitions, test cases should be developed to provoke transitions that are not allowed by the
software requirements.

6.4.3 Requirements-Based Testing Methods

Requirements-based testing methods consist of methods for requirements-based hardware/software integration
testing, requirements-based software integration testing, and requirements-based low-level testing. With the
exception of hardware/software integration testing, these methods do not prescribe a specific test environment
or strategy. Guidance includes:

a. Requirements-Based Hardware/Software Integration Testing: This testing method should concentrate
on error sources associated with the software operating within the target computer environment, and on
the high-level functionality. The objective of requirements-based hardware/software integration testing
is to ensure that the software in the target

32

computer will satisfy the high-level requirements. Typical errors revealed by this testing method
include:

• Incorrect interrupt handling.

• Failure to satisfy execution time requirements.

• Incorrect software response to hardware transients or hardware failures, for example, start-up
sequencing, transient input loads and input power transients.

• Data bus and other resource contention problems, for example, memory mapping.

• Inability of built-in test to detect failures.

• Errors in hardware/software interfaces.

• Incorrect behavior of feedback loops.

• Incorrect control of memory management hardware or other hardware devices under
software control.

• Stack overflow.

• Incorrect operation of mechanism(s) used to confirm the correctness and compatibility of
field-loadable software.

• Violations of software partitioning.

b. Requirements-Based Software Integration Testing: This testing method should concentrate on
the inter-relationships between the software requirements, and on the implementation of
requirements by the software architecture. The objective of requirements-based software
integration testing is to ensure that the software components interact correctly with each other
and satisfy the software requirements and software architecture. This method may be performed
by expanding the scope of requirements through successive integration of code components with
a corresponding expansion of the scope of the test cases. Typical errors revealed by this testing
method include:

• Incorrect initialization of variables and constants.
• Parameter passing errors.
• Data corruption, especially global data.
• Inadequate end-to-end numerical resolution.
• Incorrect sequencing of events and operations.

 c. Requirements-Based Low-Level Testing: This testing method should concentrate on

demonstrating that each software component complies with its low-level requirements. The
objective of requirements-based low-level testing is to ensure that the software components
satisfy their low-level requirements.

• Typical errors revealed by this testing method include:
• Failure of an algorithm to satisfy a software requirement.
• Incorrect loop operations
• Incorrect logic decisions.
• Failure to process correctly legitimate combinations of input conditions.
• Incorrect responses to missing or corrupted input data.
• Incorrect handling of exceptions, such as arithmetic faults or violations of array limits.
• Incorrect computation sequence.
• Inadequate algorithm precision, accuracy or performance.

33

6.4.4 Test Coverage Analysis

Test coverage analysis is a two step process, involving requirements-based coverage analysis and
structural coverage analysis. The first step analyzes the test cases in relation to the software requirements
to confirm that the selected test cases satisfy the specified criteria. The second step confirms that the
requirements-based test procedures exercised the code structure. Structural coverage analysis may not
satisfy the specified criteria. Additional guidelines are provided for resolution of such situations as dead
code (subparagraph 6.4.4.3).

6.4.4.1 Requirements-Based Test Coverage Analysis

The objective of this analysis is to determine how well the requirements-based testing verified the
implementation of the software requirements. This analysis may reveal the need for additional
requirements-based test cases. The requirements-based test coverage analysis should show that:

a. Test cases exist for each software requirement.

b. Test cases satisfy the criteria of normal and robustness testing as defined in paragraph 6.4.2.

6.4.4.2 Structural Coverage Analysis

The objective of this analysis is to determine which code structure was not exercised by the
requirements-based test procedures. The requirements-based test cases may not have completely
exercised the code structure, so structural coverage analysis is performed and additional verification
produced to provide structural coverage. Guidance includes:

a. The analysis should confirm the degree of structural coverage appropriate to the software level.

b. The structural coverage analysis may be performed on the Source Code, unless the software level
is A and the compiler generates object code that is not directly traceable to Source Code
statements. Then, additional verification should be performed on the object code to establish the
correctness of such generated code sequences. A compiler-generated array-bound check in the
object code is an example of object code that is not directly traceable to the Source Code.

c. The analysis should confirm the data coupling and control coupling between the code
components.

6.4.4.3 Structural Coverage Analysis Resolution

Structural coverage analysis may reveal code structure that was not exercised during testing. Resolution
would require additional software verification process activity. This unexecuted code structure may be
the result of:

a. Shortcomings in requirements-based test cases or procedures : The test cases should be
supplemented or test procedures changed to provide the missing coverage. The method(s) used to
perform the requirements-based coverage analysis may need to be reviewed.

b. Inadequacies in software requirements: The software requirements should be modified and
additional test cases developed and test procedures executed.

c. Dead code: The code should be removed and an analysis performed to assess the effect and the
need for reverification.

d. Deactivated code: For deactivated code which is not intended to be executed in any
configuration used within an aircraft or engine, a combination of analysis and testing should
show that the means by which such code could be inadvertently executed are prevented, isolated,
or eliminated. For deactivated code which is only executed in certain configurations of the target
computer environment, the operational configuration needed for normal execution of this code
should be established and additional test cases and test procedures developed to satisfy the
required coverage objectives.

THIS PAGE INTENTIONALLY LEFT BLANK.

35

7.0 SOFTWARE CONFIGURATION MANAGEMENT PROCESS

This section discusses the objectives and activities of the software configuration management
(SCM process. The SCM process is applied as defined by the software planning process (section
4) and the Software Configuration Management Plan (subsection 11.4). Outputs of the SCM
process are recorded in Software Configuration Management Records (subsection 11.18) or in
other software life cycle data.

Table A-8 of Annex A is a summary of the objectives and outputs of the SCM process.

7.1 Software Configuration Management Process Objectives

The SCM process, working in cooperation with the other software life cycle processes, assists in
satisfying general objectives to:

a. Provide a defined and controlled configuration of the software throughout the software life
cycle.

b. Provide the ability to consistently replicate the Executable Object Code for software
manufacture or to regenerate it in case of a need for investigation or modification.

c. Provide control of process inputs and outputs during the software life cycle that ensures
consistency and repeatability of process activities.

d. Provide a known point for review, assessing status, and change control by control of
configuration items and the establishment of baselines.

e. Provide controls that ensure problems receive attention and changes are recorded,
approved, and implemented.

f. Provide evidence of approval of the software by control of the outputs of the software life
cycle processes.

g. Aid the assessment of the software product compliance with requirements.

h. Ensure that secure physical archiving, recovery and control are maintained for the
configuration items.

The objectives for SCM are independent of software level. However, two categories of software
life cycle data may exist based on the SCM controls applied to the data (subsection 7.3).

7.2 Software Configuration Management Process Activities

The SCM process includes the activities of configuration identification, change control, baseline
establishment, and archiving of the software product, including the related software life cycle data.
The following guidelines define the objectives for each SCM process activity. The SCM process
does not stop when the software product is accepted by the certification authority, but continues
throughout the service life of the airborne system or equipment.

7.2.1 Configuration Identification

The objective of the configuration identification activity is to label unambiguously each
configuration item (and its successive versions) so that a basis is established for the control and
reference of configuration items. Guidance includes:

a. Configuration identification should be established for the software life cycle data.

b. Configuration identification should be established for each configuration item, for each
separately controlled component of a configuration item, and for combinations of
configuration items that comprise a software product.

c. Configuration items should be configuration-identified prior to the implementation of
change control and traceability data recording.

36

d. A configuration item should be configuration-identified before that item is used by other
software life cycle processes, referenced by other software life cycle data, or used for
software manufacture or software loading.

e. If the software product identification cannot be determined by physical examination (for
example, part number plate examination), then the Executable Object Code should contain
configuration identification which can be accessed by other parts of the airborne system or
equipment. This may be applicable for field -loadable software (subsection 2.5).

7.2.2 Baselines and Traceability

The objective of baseline establishment is to define a basis for further software life cycle process
activity and allow reference to. control of, and traceability between configuration items. Guidance
includes:

a. Baselines should be established for configuration items used for certification credit.
(Intermediate baselines may be established to aid in controlling software life cycle process
activities.)

b. A software product baseline should be established for the software product and defined in
the Software Configuration Index (subsection II. 16).

Note: User-modifiable software is not included in the software product baseline, except for its
associated protection and boundary components. Therefore, modifications may be made
to user-modifiable software without affecting the configuration identification of the
software product baseline.

c. Baselines should be established in controlled software libraries (physical, electronic, or
other) to ensure their integrity. Once a baseline is established, it should be protected from
change.

d. Change control activities should be followed to develop a derivative baseline from an
established baseline.

e. A baseline should be traceable to the baseline from which it was derived, if certification
credit is sought for software life cycle process activities or data associated with the
development of the previous baseline.

f. A configuration item should be traceable to the configuration item from which it was
derived, if certification credit is sought for software life cycle process activities or data
associated with the development of the previous configuration item.

g. A baseline or configuration item should be traceable either to the output it identifies or to
 the process with which it is associated.

7.2.3 Problem Reporting, Tracking and Corrective Action

The objective of problem reporting, tracking and corrective action is to record process non-
compliance with software plans and standards, to record deficiencies of outputs of software life
cycle processes, to record anomalous behavior of software products, and to ensure resolution of
these problems.

Note: Software life cycle process and software product problems may be recorded in separate
problem reporting systems.

Guidance includes:

a. A problem report should be prepared that describes the process non-compliance with
plans, output deficiency, or software anomalous behavior, and the corrective action taken,
as defined in subsection 11.17.

37

b. Problem reporting should provide for configuration identification of affected configuration
item(s) or definition of affected process activities, status reporting of problem reports, and
approval and closure of problem reports.

c. Problem reports that require corrective action of the software product or outputs of
software life cycle processes should invoke the change control activity.

Note: The problem reporting and change control activities are related.

7.2.4 Change Control

The objective of the change control activity is to provide for recording, evaluation, resolution and
approval of changes throughout the software life cycle. Guidance includes:

a. Change control should preserve the integrity of the configuration items and baselines by
providing protection against their change.

b. Change control should ensure that any change to a configuration item requires a change to
its configuration identification.

c. Changes to baselines and to configuration items under change control should be recorded,
approved, and tracked. Problem reporting is related to change control, since resolution of
a reported problem may result in changes to configuration items or baselines.

 Note: It is generally recognized that early implementation of change control assists the
 control and management of software life cycle process activities.

d. Software changes should be traced to their origin and the software life cycle processes
repeated from the point at which the change affects their outputs. For example, an error
discovered at hardware/software integration, that is shown to result from an incorrect
design, should result in design correction, code correction and repetition of the associated
integral process activities.

e. Throughout the change activity, software life cycle data affected by the change should be
updated and records should be maintained for the change control activity.

The change control activity is aided by the change review activity.

7.2.5 Change Review

The objective of the change review activity is to ensure problems and changes are assessed,
approved or disapproved, approved changes are implemented, and feedback is provided to affected
processes through problem reporting and change control methods defined during the software
planning process. The change review activity should include:

a. Confirmation that affected configuration items are configuration identified.

b. Assessment of the impact on safety-related requirements with feedback to the system
safety assessment process.

c. Assessment of the problem or change, with decis ions for action to be taken.

d. Feedback of problem report or change impact and decisions to affected processes.

7.2.6 Configuration Status Accounting

The objective of the status accounting activity is to provide data for the configuration management
of software life cycle processes with respect to configuration identification, baselines, problem
reports, and change control. The status accounting activity should include:

a. Reporting on configuration item identification, baseline identification, problem report
status, change history, and release status.

38

b. Definition of the data to be maintained and the means of recording and reporting status of this
data.

7.2.7 Archive, Retrieval and Release

The objective of the archive and retrieval activity is to ensure that the software life cycle data
associated with the software product can be retrieved in case of a need to duplicate, regenerate, retest
or modify the software product. The objective of the release activity is to ensure that only authorized
software is used, especially for software manufacturing, in addition to being archived and retrievable.
Guidance includes:

a. Software life cycle data associated with the software product should be retrievable from the
approved source (for example, the developing organization or company).

b. Procedures should be established to ensure the integrity of the stored data (regardless of
medium of storage) by:

(1) Ensuring that no unauthorized changes can be made.

(2) Selecting storage media that minimize regeneration errors or deterioration.

(3) Exercising and/or refreshing archived data at a frequency compatible with the storage
life of the medium.

(4) Storing duplicate copies in physically separate archives that minimize the risk of loss in
the event of a disaster.

c. The duplication process should be verified to produce accurate copies, and procedures should
exist that ensure error-free copying of the Executable Object Code.

d. Configuration items should be identified and released prior to use for software manufacture
and the authority for their release should be established. As a minimum, the components of the
software product loaded into the airborne system or equipment (which includes the Executable
Object Code and may also include associated media for software loading) should be released.

Note: Release is generally also required for the data that defines the approved software for
loading into the airborne system or equipment. Definition of that data is outside the
scope of this document, but may include the Software Configuration Index.

e. Data retention procedures should be established to satisfy airworthiness requirements and
enable software modifications.

Note: Additional data retention considerations may include items such as business needs and
future certification authority reviews, which are outside the scope of this document.

7.2.8 Software Load Control

The objective of the software load control activity is to ensure that the Executable Object Code is
loaded into the airborne system or equipment with appropriate safeguards. Software load control
refers to the process by which programmed instructions and data are transferred from a master
memory device into the airborne system or equipment. For example, methods may include
(subject to approval by the certification authority) the installation of factory per-programmed
memory devices or in situ re-programming of the airborne system or equipment using a field
loading device. Whichever method is used, software load control should include:

a. Procedures for part numbering and media identification that identify software
configurations that are intended to be approved for loading into the airborne system or
equipment.

b. Whether the software is delivered as an end item or is delivered installed in the airborne
system or equipment, records should be kept that confirm software compatibility with the
airborne system or equipment hardware.

39

Note: Additional guidance on software load control is provided in subsection 2.5.

7.2.9 Software Life Cycle Environment Control

The objective of software fife cycle environment control is to ensure that the tools used to produce
the software are identified, controlled, and retrievable. The software life cycle environment tools
are defined by the software planning process and identified in the Software Life Cycle
Environment Configuration Index (subsection 11.15). Guidance includes:

a. Configuration identification should be established for the Executable Object Code (or
equivalent) of the tools used to develop, control, build, verify, and load the software.

b. The SCM process for controlling qualified tools, should comply with the objectives
associated with Control Category I or 2 data (subsection 7.3), as specified in paragraph
12.2.3, item b.

c. Unless 7.2.9 item b applies, the SCM process for controlling the Executable Object Code
(or equivalent) of tools used to build and load the software (for example, compilers,
assemblers, linkage editors) should comply with the objectives associated with Control
Category 2 data, as a minimum.

7.3 Data Control Categories

Software life cycle data can be assigned to one of two categories: Control Category 1 (CC1) and
Control Category 2 (CC2). These categories are related to the configuration management controls
placed on the data. Table 7-1 defines the set of SCM process objectives associated with each
control category, where · indicates that the objectives apply for software life cycle data of that
category.

The tables of Annex A specify the control category for each software life cycle data item, by
software level. Guidance for data control categories includes:

a. The SCM process objectives for software life cycle data categorized as CC should be
applied according to Table 7- 1 .

b. The SCM process objectives for software life cycle data categorized as C should be applied
according to Table 7-1 as a minimum.

TABLE 7 -1
SCM PROCESS OBJECTIVES ASSOCIATED WITH CC1 and CC2 DATA

THIS PAGE INTENTIONALLY LEFT BLANK.

41

8.0 SOFTWARE QUALITY ASSURANCE PROCESS

This section discusses the objectives and activities of the software quality assurance (SQA) process.
The SQA process is applied as defined by the software planning process (section 4) and the Software
Quality Assurance Plan (subsection 11.5). Outputs of the SQA process activities are recorded in
Software Quality Assurance Records (subsection 11.19) or other software life cycle data.

The SQA process assesses the software life cycle processes and their outputs to obtain assurance that
the objectives are satisfied, that deficiencies are detected, evaluated, tracked and resolved, and that the
software product and software life cycle data conform to certification requirements.

8.1 Software Quality Assurance Process Objectives

The SQA process objectives provide confidence that the software life cycle processes produce
software that conforms to its requirements by assuring that these processes are performed in
compliance with the approved software plans and standards.

The objectives of the SQA process are to obtain assurance that:

a. Software development processes and integral processes comply with approved software plans
and standards.

b. The transition criteria for the software life cycle processes are satisfied.

c. A conformity review of the software product is conducted.

The applicability of the objectives by software level is specified in Table A-9 of Annex A.

8.2 Software Quality Assurance Process Activities

To satisfy the SQA process objectives:

a. The SQA process should take an active role in the activities of the software life cycle
processes, and have those performing the SQA process enabled with the authority,
responsibility and independence to ensure that the SQA process objectives are satisfied.

b. The SQA process should provide assurance that software plans and standards are developed
and reviewed for consistency.

c. The SQA process should provide assurance that the software life cycle processes comply with
the approved software plans and standards.

d. The SQA process should include audits of the software development and integral processes
during the software life cycle to obtain assurance that:

(1) Software plans are available as specified in subsection 4.2.

(2) Deviations from the software plans and standards are detected, recorded, evaluated,
tracked and resolved.

Note: It is generally accepted that early detection of process deviations assists
efficient achievement of software life cycle process objectives.

(3) Approved deviations are recorded.

(4) The software development environment has been provided as specified in the software
plans.

(5) The problem reporting, tracking and corrective action process complies with the
Software Configuration Management Plan.

(6) Inputs provided to the software life cycle processes by the on-going system safety
assessment process have been addressed.

42

Note: Monitoring of the activities of software life cycle processes may be performed to provide
assurance that the activities are under control.

e. The SQA process should provide assurance that the transition criteria for the software life
cycle processes have been satisfied in compliance with the approved software plans.

f. The SQA process should provide assurance that software life cycle data is controlled in
accordance with the control categories as defined in subsection 7.3 and the tables of Annex A.

g. Prior to the delivery of software products submitted as part of a certification application, a
software conformity review should be conducted.

h. The SQA process should produce records of the SQA process activities (subsection 11.19),
including audit results and evidence of completion of the software conformity review for each
software product submitted as part of certification application.

8.3 Software Conformity Review

The objective of the software conformity review is to obtain assurances, for a software product
submitted as part of a certification application, that the software life cycle processes are complete,
software life cycle data is complete, and the Executable Object Code is controlled and can be
regenerated.

This review should determine that:

a. Planned software life cycle process activities for certification credit, including the generation
of software life cycle data, have been completed and records of their completion are retained.

b. Software life cycle data developed from specific system requirements, safety-related
requirements, or software requirements are traceable to those requirements.

c. Software life cycle data complies with software plans and standards, and is controlled in
accordance with the SCM Plan.

d. Problem reports comply with the SCM Plan, have been evaluated and have their status
recorded.

e. Software requirement deviations are recorded and approved.

f. The Executable Object Code can be regenerated from the archived Source Code.

g The approved software can be loaded successfully through the use of released instructions.

h. Problem reports deferred from a previous software conformity review are re-evaluated to
determine their status.

i. If certification credit is sought for the use of previously developed software, the current
software product baseline is traceable to the previous baseline and the approved changes to that
baseline.

Note: For post-certification software modifications, a subset of the software conformity review
activities, as justified by the significance of the change, may be performed.

43

9.0 CERTIFICATION LIAISON PROCESS

The objective of the certification liaison process is to establish communication and understanding
between the applicant and the certification authority throughout the software life cycle to assis t the
certification process.

The certification liaison process is applied as defined by the software planning process (section 4) and
the Plan for Software Aspects of Certification (subsection 11.1). Table A-10 of Annex A is a summary
of the objectives and outputs of this process.

9.1 Means of Compliance and Planning

The applicant proposes a means of compliance that defines how the development of the airborne
system or equipment will satisfy the certification basis. The Plan for Software Aspects of Certification
(subsection 11.1) defines the software aspects of the airborne system or equipment within the context
of the proposed means of compliance. This plan also states the software level(s) as determined by the
system safety assessment process. The applicant should:

a. Submit the Plan for Software Aspects of Certification and other requested data to the
certification authority for review at a point in time when the effects of changes are minimal,
that is, when they can be managed within project constraints.

b. Resolve issues identified by the certification authority concerning the planning for the software
aspects of certification.

c. Obtain agreement with the certification authority on the Plan for Software Aspects of
Certification.

9.2 Compliance Substantiation

The applicant provides evidence that the software life cycle processes satisfy the software plans.
Certification authority reviews may take place at the applicant’s facilities or the applicant’s suppliers’
facilities. This may involve discussions with the applicant or its suppliers. The applicant arranges these
reviews of the activities of the software life cycle processes and makes software life cycle data
available as needed. The applicant should:

a. Resolve issues raised by the certification authority as a result of its reviews.

b. Submit the Software Accomplishment Summary (subsection 11.20) and Software
Configuration Index (subsection 11.16) to the certification authority.

c. Submit or make available other data or evidence of compliance requested by the certification
authority.

9.3 Minimum Software Life Cycle Data That Is Submitted to Certification Authority

The minimum software life cycle data that is submitted to the certification authority is:

• Plan for Software Aspects of Certification.

• Software Configuration Index.

• Software Accomplishment Summary.

44

9.4 Software Life Cycle Data Related to Type Design

Unless otherwise agreed by the certification authority, the regulations concerning retrieval and
approval of software life cycle data related to the type design applies to:

• Software Requirements Data.

• Design Description.

• Source Code.

• Executable Object Code.

• Software Configuration Index.

• Software Accomplishment Summary.

45

10.0 OVERVIEW OF AIRCRAFT AND ENGINE CERTIFICATION

This section is an overview of the certification process for aircraft and engines with respect to
software aspects of airborne systems and equipment, and is provided for information purposes
only. The certification authority considers the software as part of the airborne system or equipment
installed on the aircraft or engine; that is, the certification authority does not approve the software
as a unique, stand-alone product.

10.1 Certification Basis

The certification authority establishes the certification basis for the aircraft or engine in
consultation with the applicant. The certification basis defines the particular regulations together
with any special conditions which may supplement the published regulations.

For modified aircraft or engines, the certification authority considers the impact the modification
has on the certification basis originally established for the aircraft or engine. In some cases, the
certification basis for the modification may not change from the original certification basis;
however, the original means of compliance may not be applicable for showing that the
modification complies with the certification basis and may need to be changed.

10.2 Software Aspects of Certification

The certification authority assesses the Plan for Software Aspects of Certification for
completeness and consistency with the means of compliance that was agreed upon to satisfy the
certification basis. The certification authority satisfies itself that the software level(s) proposed by
the applicant is consistent with the outputs of the system safety assessment process and other
system life cycle data. The certification authority informs the applicant of issues with the proposed
software plans that need to be satisfied prior to certification authority agreement.

10.3 Compliance Determination

Prior to certification, the certification authority determines that the aircraft or engine (including the
software aspects of its systems or equipment) complies with the certification basis. For the
software, this is accomplished by reviewing the Software Accomplishment Summary and
evidence of compliance. The certification authority uses the Software Accomplishment Summary
as an overview for the software aspects of certification.

The certification authority may review at its discretion the software life cycle processes and their
outputs during the software life cycle as discussed in subsection 9.2.

THIS PAGE IS INTENTIONALLY LEFT BLANK.

47

11.0 SOFTWARE LIFE CYCLE DATA

Data is produced during the software life cycle to plan, direct, explain, define, record, or provide
evidence of activities. This data enables the software life cycle processes, system or equipment
certification, and post-certification modification of the software product. This section discusses the
characteristics, form, configuration management controls, and content of the software life cycle data.

The characteristics of the software life cycle data are:

a. Unambiguous: Information is unambiguous if it is written in terms which only allow a single
interpretation, aided if necessary by a definition.

b. Complete: Information is complete when it includes necessary, relevant requirements and/or
descriptive material, responses are defined for the range of valid input data, figures used are
labeled, and terms and units of measure are defined.

c. Verifiable: Information is verifiable if it can be checked for correctness by a person or tool.

d. Consistent: Information is consistent if there are no conflicts within it.

e. Modifiable: Information is modifiable if it is structured and has a style such that changes can be
made completely, consis tently, and correctly while retaining the structure.

f. Traceable: Information is traceable if the origin of its components can be determined.

 In addition, this guidance applies:

g. Form: The form should provide for the efficient retrieval and review of software fife cycle data
throughout the service life of the airborne system or equipment. The data and the specific form
of the data should be specified in the Plan for Software Aspects of Certification.

Note: (1) The software life cycle data may take a number of forms. For example, it can be
in written form, as computer files stored on magnetic media, or as displays on a
remote terminal. It may be packaged as individual documents, combined into
larger documents, or distributed across several documents.

(2) The Plan for Software Aspects of Certification and the Software Accomplishment
Summary may be required as separate printed documents by some certification
authorities.

Software life cycle data can be placed in one of two categories associated with the software
configuration management controls applied: Control Category 1 (CC1) and Control Category 2 (CC2)
(subsection 7.3). This distinction provides a means to manage development costs where less stringent
controls can be applied without a reduction in safety. The minimum control category assigned to
each data item, and its variation by software level is specified in Annex A.

The following data descriptions define the data generally produced to aid in the software aspects of
the certification process. The descriptions are not intended to describe all data necessary to develop a
software product, and are not intended to imply a particular data packaging method or organization of
the data within a package.

In addition to the data defined in these subsections, other data may be produced as evidence to aid the
certification process.

h. Control: If intended to be used for this purpose, this data should be defined in the software
plan which defines the process for which the data will be produced. While the nature and
content of this data may vary, as a minimum, CC2 controls should be applied. Examples
include memoranda and meeting minutes.

48

11.1 Plan for Software Aspects of Certification

The Plan for Software Aspects of Certification is the primary means used by the certification
authority for determining whether an applicant is proposing a software life cycle that is commensurate
with the rigor required for the level of software being developed. This plan should include:

 a. System overview: This section provides an overview of the system, including a description of its
functions and their allocation to the hardware and software, the architecture, processor(s) used,
hardware/software interfaces, and safety features.

 b. Software overview: This section briefly describes the software functions with emphasis on the
proposed safety and partitioning concepts, for example, resource sharing, redundancy,
multiple-version dissimilar software, fault tolerance, and timing and scheduling strategies.

 c. Certification considerations. This section provides a summary of the certification basis, including
the means of compliance, as relating to the software aspects of certification. This section also
states the proposed software level(s) and summarizes the justification provided by the system
safety assessment process, including potential software contributions to failure conditions.

 d. Software life cycle: This section defines the software life cycle to be used and includes a
 summary of each software life cycle and its processes for which detailed information is defined
 in their respective software plans. The summary explains how the objectives of each software
 life cycle process will be satisfied, and specifies the organizations to be involved, the
 organizational responsibilities, and the system life cycle processes and certification liaison
 process responsibilities.

 e. Software life cycle data: This section specifies the software life cycle data that will be
 produced and controlled by the software life cycle processes. This section also describes the
 relationship of the data to each other or to other data defining the system, the software life
 cycle data to be submitted to the certification authority, the form of the data, and the means by
 which software life cycle data will be made available to the certification authority.

 f. Schedule: This section describes the means the applicant will use to provide the certification
 authority with visibility of the activities of the software life cycle processes so reviews can be
 planned.

 g. Additional considerations.: This section describes specific features that may affect the
 certification process, for example, alternative methods of compliance, tool qualification,
 previously developed software, option-selectable software, user-modifiable software, COTS
 software, field -loadable software, multiple-version dissimilar software, and product service
 history.

11.2 Software Development Plan

 The Software Development Plan includes the objectives, standards and software life cycle(s) to be used
 in the software development processes. It may be included in the Plan for Software Aspects of
 Certification. This plan should include:

 a. Standards: Identification of the Software Requirements Standards, Software Design Standards
 and Software Code Standards for the project. Also, references to the standards for previously
 developed software, including COTS software, if those standards are different.

 b. Software life cycle: A description of the software life cycle processes to be used to form the
 specific software life cycle(s) to be used on the project, including the transition criteria for the
 software development processes. This description is distinct from the summary provided in
 the Plan for Software Aspects of Certification, in that it provides the detail necessary to ensure
 proper implementation of the software life cycle processes .

 c. Software evelopment environment: A statement of the chosen software development environment
in terms of hardware and software, including:

49

(1) The chosen requirements development method(s) and tools to be used.

(2) The chosen design method(s) and tools to be used.

(3) The programming language(s), coding tools, compilers, linkage editors and loaders to be used.

(4) The hardware platforms for the tools to be used.

11.3 Software Verification Plan

The Software Verification Plan is a description of the verification procedures to satisfy the
software verification process objectives. These procedures may vary by software level as defined
in the tables of Annex A. This plan should include:

a. Organization: Organizational responsibilities within the software verification process and
interfaces with the other software life cycle processes.

b. Independence: A description of the methods for establishing verification independence,
when required.

c. Verification methods: A description of the verification methods to be used for each
activity of the software verification process.

(1) Review methods, including checklists or other aids.

(2) Analysis methods, including traceability and coverage analysis.

(3) Testing methods, including guidelines that establish the test case selection process,
the test procedures to be used, and the test data to be produced.

d Verification environment: A description of the equipment for testing, the testing and
analysis tools, and the guidelines for applying these tools and hardware test equipment
(see also paragraph 4.4.3, item b for guidance on indicating target computer and simulator
or emulator differences).

e. Transition criteria: The transition criteria for entering the software verification process
defined in this plan.

f. Partitioning considerations: If partitioning is used, the methods used to verify the integrity
of the partitioning.

g. Compiler assumptions: A description of the assumptions made by the applicant about the
correctness of the compiler, linkage editor or loader (paragraph 4.4.2).

h. Reverification Guidelines: For software modification, a description of the methods for
identifying the affected areas of the software and the changed parts of the Executable
Object Code. The reverification should ensure that previously reported errors or classes of
errors have been eliminated.

i. Previously developed software: For previously developed software, if the initial
compliance baseline for the verification process does not comply with this document, a
description of the methods to satis fy the objectives of this document.

j. Multiple-version dissimilar software: If multiple -version dissimilar software is used, a
description of the software verification process activities (paragraph 12.3.3).

50

11.4 Software Configuration Management Plan

The Software Configuration Management Plan establishes the methods to be used to achieve the
objectives of the software configuration management (SCM) process throughout the software life
cycle. This plan should include:

a. Environment: A description of the SCM environment to be used, including procedures,
tools, methods, standards, organizational responsibilities, and interfaces.

b. Activities: A description of the SCM process activities in the software life cycle that will
satisfy the objectives for:

(1) Configuration identification: Items to be identified, when they will be identified, the
identification methods for software life cycle data (for example, part numbering),
and the relationship of software identification and airborne system or equipment
identification.

(2) Baselines and traceability: The means of establishing baselines, what baselines will
be established, when these baselines will be established, the software library
controls, and the configuration item and baseline traceability.

(3) Problem reporting: The content and identification of problem reports for the software
product and software life cycle processes, when they will be written, the method of
closing problem reports, and the relationship to the change control activity.

(4) Change control: Configuration items and baselines to be controlled, when they will
be controlled, the problem/change control activities that control them, pre-
certification controls, post-certification controls, and the means of preserving the
integrity of baselines and configuration items.

(5) Change review: The method of handling feedback from and to the software life cycle
processes; the methods of assessing and prioritizing problems, approving changes,
and handling their resolution or change implementation; and the relationship of these
methods to the problem reporting and change control activities.

(6) Configuration status accounting: The data to be recorded to enable reporting
configuration management status, definition of where that data will be kept, how it
will be retrieved for reporting, and when it will be available.

(7) Archive, retrieval, and release: The integrity controls, the release method and
authority, and data retention.

(8) Software load control: A description of the software load control safeguards and
records.

(9) Software life cycle environment controls: Controls for the tools used to develop,
build, verify and load the software, addressing items I through 7 above. This
includes control of tools to be qualified.

(10) Software life cycle data controls: Controls associated with Control Category I and
Control Category 2 data.

c. Transition criteria The transition criteria for entering the SCM process.

d. SCM data: A definition of the software life cycle data produced by the SCM process,
including SCM Records, the Software Configuration Index and the Software Life Cycle
Environment Configuration Index.

e. Supplier control: The means of applying SCM process requirements to sub-tier suppliers.

51

11.5 Software Quality Assurance Plan

The Software Quality Assurance Plan establishes the methods to be used to achieve the objectives of
the software quality assurance (SQA) process. The SQA Plan may include descriptions of process
improvement, metrics, and progressive management methods. This plan should include:

a. Environment: A description of the SQA environment, including scope, organizational
responsibilities and interfaces, standards, procedures, tools and methods.

b. Authority: A statement of the SQA authority, responsibility, and independence, including the
approval authority for software products.

c. Activities: The SQA activities that are to be performed for each software life cycle process
and throughout the software life cycle including:

(1) SQA methods, for example, reviews, audits, reporting, inspections, and monitoring
of the software life cycle processes.

(2) Activities related to the problem reporting, tracking and corrective action system.

(3) A description of the software conformity review activity.

d. Transition criteria The transition criteria for entering the SQA process.

e. Timing: The timing of the SQA process activities in relation to the activities of the software
life cycle processes.

f. SQA Records: A definition of the records to be produced by the SQA process.

g. Supplier control: A description of the means of ensuring that sub-tier suppliers' processes
and outputs will comply with the SQA Plan.

 11.6 Software Requirements Standards

The purpose of Software Requirements Standards is to define the methods, rules and tools to be used to
develop the high-level requirements. These standards should include:

a. The methods to be used for developing software requirements, such as structured methods.

b. Notations to be used to express requirements, such as data flow diagrams and formal
specification languages.

c. Constraints on the use of the requirement development tools.

d. The method to be used to provide derived requirements to the system process.

 11.7 Software Design Standards

The purpose of Software Design Standards is to define the methods, rules and tools to be used to
develop the software architecture and low-level requirements. These standards should include:

a. Design description method(s) to be used.
b. Naming conventions to be used.
c. Conditions imposed on permitted design methods, for example, scheduling, and the use of
 interrupts and event-driven architectures, dynamic tasking, re-entry, global data, and exception
 handling, and rationale for their use.
d. Constraints on the use of the design tools.
e. Constraints on design, for example, exclusion of recursion, dynamic objects, data aliases, and
 compacted expressions.
f. Complexity restrictions, for example, maximum level of nested calls or conditional structures,
 use of unconditional branches, and number of entry/exit points of code components.

52

11.8 Software Code Standards

The purpose of the Software Code Standards is to define the programming languages, methods, rules
and tools to be used to code the software. These standards should include:

a. Programming language(s) to be used and/or defined subset(s). For a programming language,
reference the data that unambiguously defines the syntax, the control behavior, the data behavior
and side-effects of the language. This may require limiting the use of some features of a
language.

 b. Source Code presentation standards, for example, line length restriction, indentation, and blank
line usage and Source Code documentation standards, for example, name of author, revision
history, inputs and outputs, and affected global data.

 c. Naming conventions for components, subprograms, variables, and constants.

 d. Conditions and constraints imposed on permitted coding conventions, such as the degree of
coupling between software components and the complexity of logical or numerical expressions
and rationale for their use.

 e. Constraints on the use of the coding tools.

11.9 Software Requirements Data

Software Requirements Data is a definition of the high-level requirements including the derived
requirements. This data should include:

 a. Description of the allocation of system requirements to software, with attention to safety
related requirements and potential failure conditions.

 b. Functional and operational requirements under each mode of operation.

 c. Performance criteria, for example, precision and accuracy.

 d. Timing requirements and constraints.

 e. Memory size constraints.

 f. Hardware and software interfaces, for example, protocols, formats, frequency of inputs and
frequency of outputs.

 g. Failure detection and safety monitoring requirements.

 h. Partitioning requirements allocated to software, how the partitioned software components
interact with each other, and the software level(s) of each partition.

11.10 Design Description

The Design Description is a definition of the software architecture and the low-level requirements that
will satisfy the software high-level requirements. This data should include:

 a. A detailed description of how the software satisfies the specified software high-level
requirements, including algorithms, data structures, and how software requirements are
allocated to processors and tasks.

 b. The description of the software architecture defining the software structure to implement the
requirements.

 c. The input/output description, for example, a data dictionary, both internally and externally
throughout the software architecture.

 d. The data flow and control flow of the design.

 e. Resource limitations, the strategy for managing each resource and its limitations, the margins,
and the method for measuring those margins, for example, timing and memory.

53

f. Scheduling procedures and inter-processor/inter-task communication mechanisms,
including time -rigid sequencing, preemptive scheduling, Ada rendezvous, and interrupts.

g. Design methods and details for their implementation, for example, software data loading,
user-modifiable software, or multiple -version dissimilar software.

h. Partitioning methods and means of preventing partition breaches.

i. Descriptions of the software components, whether they are new or previously developed,
and, if previously developed, reference to the baseline from which they were taken.

j. Derived requirements resulting from the software design process.

k. If the system contains deactivated code, a description of the means to ensure that the code
cannot be enabled in the target computer.

1. Rationale for those design decisions that are traceable to safety-related system
requirements.

11.11 Source Code

This data consists of code written in source language(s) and the compiler instructions for
generating the object code from the Source Code, and linking and loading data. This data should
include the software identification, including the name and date of revision and/or version, as
applicable.

11.12 Executable Object Code

The Executable Object Code consists of a form of Source Code that is directly usable by the
central processing unit of the target computer and is, therefore, the software that is loaded into the
hardware or system.

11.13 Software Verification Cases and Procedures

Software Verification Cases and Procedures detail how the software verification process activities
are implemented. This data should include descriptions of the:

a. Review and analysis procedures: Details, supplementary to the description in the Software
Verification Plan, which describes the scope and depth of the review or analysis methods
to be used.

b. Test cases: The purpose of each test case, set of inputs, conditions, expected results to
achieve the required coverage criteria, and the pass/fail criteria.

c. Test proceed: The step-by-step instructions for how each test case is to be set up and
executed, how the test results are evaluated, and the test environment to be used.

11.14 Software Verification Results

The Software Verification Results are produced by the software verification process activities.
Software Verification Results should:

a. For each review, analysis and test, indicate each procedure that passed or failed during the
activities and the final pass/fail results.

b. Identify the configuration item or software version reviewed, analyzed or tested.

c. Include the results of tests, reviews and analyses, including coverage analyses and
traceability analyses.

11.15 Software Life Cycle Environment Configuration Index

The Software Life Cycle Environment Configuration Index (SECI) identifies the configuration of
the software life cycle environment. This index is written to aid reproduction of the hardware and

54

software life cycle environment, for software regeneration, reverification, or software
modification, and should:

a. Identify the software life cycle environment hardware and its operating system software.

b. Identify the software development tools, such as compilers, linkage editors and loaders,
and data integrity tools (such as tools that calculate and embed checksums or cyclical
redundancy checks).

c. Identify the test environment used to verify the software product, for example, the
software verification tools.

d. Identify qualified tools and their associated tool qualification data.

Note: This data may be included in the Software Configuration Index.

11.16 Software Configuration Index

The Software Configuration Index (SCI) identifies the configuration of the software product.

Note: The SCI can contain one data item or a set (hierarchy) of data items. The SCI can contain
the items listed below or it may reference another SCI or other configuration identified
data that specifies the individual items and their versions.

The SCI should identify:

a. The software product.

b. Executable Object Code.

 c. Each Source Code component.

 d. Previously developed software in the software product, if used.

 e. Software life cycle data.

 f. Archive and release media.

 g. Instructions for building the Executable Object Code, including, for example, instructions
and data for compiling and linking; and the procedures used to recover the software for
regeneration, testing or modification.

 h. Reference to the Software Life Cycle Environment Configuration Index (subsection II. 15),
 if is packaged separately.

 i. Data integrity checks for the Executable Object Code, if used.

 Note: The SCI may be produced for one software product version or it may be extended to contain
 data for several alternative or successive software product versions.

11.17 Problem Reports

Problem reports are a means to identify and record the resolution to software product anomalous
behavior, process non-compliance with software plans and standards, and deficiencies in software
life cycle data. Problem reports should include:

 a. Identification of the configuration item and/or the software life cycle process activity in
which the problem was observed.

 b. Identification of the configuration item(s) to be modified or a description of the process to be
changed.

 c. A problem description that enables the problem to be understood and resolved.

 d A description of the corrective action taken to resolve the reported problem.

55

11.18 Software Configuration Management Records

The results of the SCM process activities are recorded in SCM Records. Examples include configuration
identification lists, baseline or software library records, change history reports, archive records, and release
records. These examples do not imply records of these specific types need to be produced.

Note: Due to the integral nature of the SCM process, its outputs will often be included as parts of other
software life cycle data.

11.19 Software Quality Assurance Records

The results of the SQA process activities are recorded in SQA Records. These may include SQA review or
audit reports, meeting minutes, records of authorized process deviations, or software conformity review
records.

11.20 Software Accomplishment Summary

The Software Accomplishment Summary is the primary data item for showing compliance with the Plan
for Software Aspects of Certification. This summary should include:

a. System overview: This section provides an overview of the system, including a description of its
functions and their allocation to hardware and software, the architecture, the processor(s) used,
the hardware/software interfaces, and safety features. This section also describes any differences
from the system overview in the Plan for Software Aspects of Certification.

b. Software overview: This section briefly describes the software functions with emphasis on the
safety and partitioning concepts used, and explains differences from the software overview
proposed in the Plan for Software Aspects of Certification.

c. Certification considerations: This section restates the certification considerations described in the
Plan for Software Aspects of Certification and describes any differences.

d. Software characteristics: This section states the Executable Object Code size, timing and memory
margins, resource limitations, and the means of measuring each characteristic.

e. Software life cycle : This section summarizes the actual software life cycle(s) and explains
differences from the software life cycle and software life cycle processes proposed in the Plan for
Software Aspects of Certification.

f. Software life cycle data: This section references the software life cycle data produced by the
software development processes and integral processes. It describes the relationship of the data
to each other and to other data defining the system, and the means by which software life cycle
data will be made available to the certification authority. This section also describes any
differences from the Plan for Software Aspects of Certification.

g. Additional considerations: This section summarizes certification issues that may warrant the
attention of the certification authority and references data items applicable to these issues, such as
issue papers or special conditions.

h. Software identification: This section identifies the software configuration by part number and
version.

i. Change history: If applicable, this section includes a summary of software changes with attention
to changes made due to failures affecting safety, and identifies changes from the software life
cycle processes since the previous certification.

j. Software status: This section contains a summary of problem reports unresolved at the time of
certification, including a statement of functional limitations.

k. Compliance statement: This section includes a statement of compliance with this document and a
summary July 2, 1996 of the methods used to demonstrate compliant with criteria specified in the

56

software plans. This section also addresses additional rulings and deviations from the software
plans, standards and this document.

57

12.0 ADDITIONAL CONSIDERATIONS

The previous sections of this document provide guidance for satisfying certification requirements in
which the applicant submits evidence of the software life cycle processes. This section introduces
additional considerations concerning the software aspects of certification in relation to the use of
previously developed software, qualification of software tools, and alternative methods for achieving
the objectives of the previous sections of this document.

12.1 Use of Previously Developed Software

The guidelines of this subsection discuss the issues associated with the use of previously developed
software, including the assessment of modifications, the effect of changing an aircraft installation,
application environment, or development environment, upgrading a development baseline, and SCM
and SQA considerations. The intention to use previously developed software is stated in the Plan for
Software Aspects of Certification.

12.1.1 Modifications to Previously Developed Software

This guidance discusses modifications to previously developed software where the outputs of the
previous software life cycle processes comply with this document. Modification may result from
requirement changes, the detection of errors, and/or software enhancements. Analysis activities for
proposed modifications include:

a. The revised outputs of the system safety assessment process should be reviewed considering
 the proposed modifications.

b. If the software level is revised, the guidelines of paragraph 12.1.4 should be considered.

c. Both the impact of the software requirements changes and the impact of software architecture
 changes should be analyzed, including the consequences of software requirement
changes upon other requirements and coupling between several software components that
may result in reverification effort involving more than the modified area.

d. The area affected by a change should be determined. This may be done by data flow analysis,
control flow analysis, timing analysis and traceability analysis.

e. Areas affected by the change should be reverified considering the guidelines of section 6.

12.1.2 Change of Aircraft Installation

Airborne systems or equipment containing software which has been previously certified at a certain
software level and under a specific certification basis may be used in a new aircraft installation. This
guidance should be used for new aircraft installations, if using previously developed software:

 a. The system safety assessment process assesses the new aircraft installation and
determines the software level and the certification basis. No additional effort will be
required if these are the same for the new installation as they were in the previous
installation.

 b. If functional modifications are required for the new installation, the guidelines of
paragraph 12.1.1, Modifications to Previously Developed Software , should be satisfied.

 c. If the previous development activity did not produce outputs required to substantiate
the safety objectives of the new installation, the guidelines of paragraph 12.1.4,
Upgrading a Development Baseline, should be satisfied.

12.1.3 Change of Application or Developme nt Environment

Use and modification of previously developed software may involve a new development
 environment, a new target processor or other hardware, or integration with other software than
that used for the original application.

58

New development environments may increase or reduce some activities within the software life cycle.
New application environments may require activities in addition to software life cycle process activities
which address modifications. Guidance for change of application or development environment includes:

a. If a new development environment uses software development tools, the guidelines of subsection
12.2, Tool Qualification, may be applicable.

b. The rigor of the evaluation of an application change should consider the complexity and
sophistication of the programming language. For example, the rigor of the evaluation for Ada
generics will be greater if the generic parameters are different in the new application. For object
oriented languages, the rigor will be greater if the objects that are inherited are different in the new
application.

c. If a different compiler or different set of compiler options are used, resulting in different object
code, the results from a previous software verification process activity using the object code may
not be valid and should not be used for the new application. In this case, previous test results may
no longer be valid for the structural coverage criteria of the new application. Similarly, compiler
assumptions about optimization may not be valid.

d. If a different processor is used then:

(1) The results from a previous software verification process activity directed at the
 hardware/software interface should not be used for the new application.
(2) The previous hardware/software integration tests should be executed for the new
 application.
(3) Reviews of hardware/software compatibility should be repeated.
(4) Additional hardware/software integration tests and reviews may be necessary.

 e. Verification of software interfaces should be conducted where previously
 developed software is used with different interfacing software.

12.1.4 Upgrading A Development Baseline

 Guidelines follow for software whose software life cycle data from a previous application are
 determined to be inadequate or do not satisfy the objectives of this document, due to the safety
 objectives associated with a new application. These guidelines are intended to aid in the
 acceptance of:

• Commercial off-the-shelf software.
• Airborne software developed to other guidelines.
• Airborne software developed prior to the existence of this document.
• Software previously developed to this document at a lower software level.

 Guidance for upgrading a development baseline includes:

 a. The objectives of this document should be satisfied while taking advantage of software life
cycle data of the previous development that satisfy the objectives for the new application.

 b. Software aspects of certification should be based on the failure conditions and software
level(s) as determined by the system safety assessment process. Comparison to failure
conditions of the previous application will determine areas which may need to be upgraded.

 c. Software life cycle data from a previous development should be evaluated to ensure that the
software verification process objectives of the software level are satisfied for the new
application.

 d. Reverse engineering may be used to regenerate software life cycle data that is inadequate or
missing in satisfying the objectives of this document. In addition to producing the software
product, additional activities may need to be performed to satisfy the software verification
process objectives.

59

e. If use of product service history is planned to satisfy the objectives of this document in upgrading a
development baseline, the guidelines of paragraph 12.3.5 should be considered.

f. The applicant should specify the strategy for accomplis hing compliance with this document in the
Plan for Software Aspects of Certification.

12.1.5 Software Configuration Management Considerations

If previously developed software is used, the software configuration management process for the
new application should include, in addition to the guidelines of section 7:

a. Traceability from the software product and software life cycle data of the previous
application to the new application.

b. Change control that enables problem reporting, problem resolution, and tracking of
changes to software components used in more than one application.

12.1.6 Software Quality Assurance Considerations

If previously developed software is used, the software quality assurance process for the new
application should include, in addition to the guidelines of section 8:

a. Assurance that the software components satisfy or exceed the software life cycle criteria of
the software level for the new application.

b. Assurance that changes to the software life cycle processes are stated in the software
plans.

12.2 Tool Qualification

Qualification of a tool is needed when processes of this document are eliminated, reduced or
automated by the use of a software tool without its output being verified as specified in section 6.
The use of software tools to automate activities of the software life cycle processes can help
satisfy system safety objectives insofar as they can enforce conformance with software
development standards and use automatic checks.

The objective of the tool qualification process is to ensure that the tool provides confidence at least
equivalent to that of the process(es) eliminated, reduced or automated. If partitioning of tool
functions can be demonstrated, only those functions that are used to eliminate, reduce, or automate
software life cycle process activities, and whose outputs are not verified, need be qualified.

Only deterministic tools may be qualified, that is, tools which produce the same output for the
same input data when operating in the same environment. The tool qualification process may be
applied either to a single tool or to a collection of tools.

Software tools can be classified as one of two types:

• Software development tools: Tools whose output is part of airborne software and thus can
introduce errors. For example, a tool which generates Source Code directly from low-
level requirements would have to be qualified if the generated Source Code is not verified
as specified in section 6.

• Software verification tools: Tools that cannot introduce errors, but may fail to detect them.
For example, a static analyzer, that automates a software verification process activity, should
be qualified if the function that it performs is not verified by another activity. Type checkers,
analysis tools and test tools are other examples.

Tool qualification guidance includes:

a. Tools should be qualified according to the type specified above.

60

b. Combined software development tools and software verification tools should be qualified to
comply with the guidelines in paragraph 12.2.1, unless partitioning between the two functions
can be demonstrated.

c. The software configuration management process and software quality assurance process
objectives for airborne software should apply to software tools to be qualified.

The software verification process objectives for software development tools are described in paragraph
12.2.1, item d.

A tool may be qualified only for use on a specific system where the intention to use the tool is stated in
the Plan for Software Aspects of Certification. Use of the tool for other systems may need further
qualification.

12.2.1 Qualification Criteria for Software Development Tools

The qualification criteria for software development tools includes:

a. If a software development tool is to be qualified, the software development processes for the
tool. should satisfy the same objectives as the software development processes of airborne
software.

b. The software level assigned to the tool should be the same as that for the airborne software it
produces, unless the applicant can justify a reduction in software level of the tool to the
certification authority.

Note: A reduction in a tool's software level can be based upon the significance of the
software verification process activity to be eliminated, reduced or automated, with
respect to the entire suite of verification activities. This significance is a function of:

• The type of software verification process activity to be eliminated, reduced or
automated. For example, a verification activity for conformance of the
Source Code with software indentation standards is less significant than
verification activity for compliance of the Executable Object Code with the
high-level requirements.

• The likelihood that other verification activities would have detected the same
error(s).

c. The applicant should demonstrate that the tool complies with its Tool Operational
Requirements (subparagraph 12.2.3.2). This demonstration may involve a trial period during
which a verification of the tool output is performed and tool-related problems are analyzed,
recorded and corrected.

d. Software development tools should be verified to check the correctness, consistency, and
completeness of the Tool Operational Requirements and to verify the tool against those
requirements. The objectives of the tool's software verification process are different from
those of the airborne software since the tool's high-level requirements correspond to its Tool
Operational Requirements instead of system requirements. Verification of software
development tools may be achieved by:
(1) Review of the Tool Operational Requirements as described in paragraph 6.3.1, items
 a and b.
(2) Demonstration that the tool complies with its Tool Operational Requirements under
 normal operating conditions.
(3) Demonstration that the tool complies with its Tool Operational Requirements while
 executing in abnormal operating conditions, including external disturbances and
 selected failures applied to the tool and its environment.

 (4) Requirements-based coverage analysis and additional tests to complete the coverage
 of the requirements.

61

(5) Structural coverage analysis appropriate for the tool's software level.

 (6) Robustness testing for tools with a complex data flow or control flow, as specified
 in subparagraph 6.4.2.2, appropriate to the tool's software level.

 (7) Analysis of potential errors produced by the tool, to confirm the validity of the
 Tool Qualification Plan.

12.2.2 Qualification Criteria for Software Verification Tools

The qualification criteria for software verification tools should be achieved by demonstration that the
tool complies with its Tool Operational Requirements under normal operational conditions.

12.2.3 Tool Qualification Data

Guidance for tool qualification data includes:

a. When qualifying a tool, the Plan for Software Aspects of Certification of the related airborne
software should specify the tool to be qualified and reference the tool qualification data.

b. The tool qualification data should be controlled as Control Category 1 (CC1) for software
development tools and CC2 for software verification tools.

c. For software development tools, the tool qualification data should be consistent with the data in
section 11 and have the same characteristics and content as data for airborne software, with these
considerations:

(1) A Tool Qualification Plan satisfies the same objectives as the Plan for Software
Aspects of Certification of the airborne software.

(2) Tool Operational Requirements satisfies the same objectives as the Software
Requirements Data of the airborne software.

(3) A Tool Accomplishment Summary satisfies the same objectives as the Software
Accomplishment Summary of the airborne software.

12.2.3.1 Tool Qualification Plan

For software development tools to be qualified, the Tool Qualification Plan describes the tool
qualification process. This plan should include:

a. Configuration identification of the tool.

b. Details of the certification credit sought, that is, the software verification process activities to be
eliminated, reduced or automated.

c. The software level proposed for the tool.

d. A description of the tool's architecture.

e. The tool qualification activities to be performed.

f. The tool qualification data to be produced.

12.2.3.2 Tool Operational Requirements

Tool Operational Requirements describe the tool's operational functionality. This data should include:

a. A description of the tool's functions and technical features. For software development tools, it
includes the software development process activities performed by the tool.

b. User information, such as installation guides and user manuals.

c. A description of the tool's operational environment.

62

d. For software development tools, the expected responses of the tool under abnormal
operating conditions.

12.2.4 Tool Qualification Agreement

The certification authority gives its agreement to the use of a tool in two steps:

• For software development tools, agreement with the Tool Qualification Plan. For software
verification tools, agreement with the Plan for Software Aspects of Certification of the
airborne software.

• For software development tools, agreement with the Tool Accomplishment Summary. For
software verification tools, agreement with the Software Accomplishment Summary of the
airborne software.

12.3 Alternative Methods

Some methods were not discussed in the previous sections of this document because of inadequate
maturity at the time this document was written or limited applicability for airborne software. It is
not the intention of this document to restrict the implementation of any current or future methods.
Any single alternative method discussed in this subsection is not considered an alternative to the
set of methods recommended by this document, but may be used in satisfying one or more of the
objectives of in this document.

Alternative methods may be used to support one another. For example, formal methods may assist
tool qualification or a qualified tool may assist the use of formal methods.

An alternative method cannot be considered in isolation from the suite of software development
processes. The effort for obtaining certification credit of an alternative method is dependent on
the software level and the impact of the alternative method on the software life cycle processes.
Guidance for using an alternative method includes:

a. An alternative method should be shown to satisfy the objectives of this document.

b. The applicant should specify in the Plan for Software Aspects of Certification, and obtain
agreement from the certification authority for:

(1) The impact of the proposed method on the software development processes.
(2) The impact of the proposed method on the software life cycle data.
(3) The rationale for use of the alternative method which shows that the system safety

objectives are satisfied.

c. The rationale should be substantiated by software plans, processes, expected results, and
evidence of the use of the method.

12.3.1 Formal Methods

Formal methods involve the use of formal logic, discrete mathematics, and computer-readable
languages to improve the specification and verification of software. These methods could produce
an implementation whose operational behavior is known with confidence to be within a defined
domain. In their most thorough application, formal methods could be equivalent to exhaustive
analysis of a system with respect to its requirements. Such analysis could provide:

• Evidence that the system is complete and correct with respect to its requirements.

• Determination of which code, software requirements or software architecture satisfy the
next higher level of software requirements.

The goal of applying formal methods is to prevent and eliminate requirements, design and code
errors throughout the software development processes. Thus, formal methods are complementary
to testing. Testing shows that functional requirements are satisfied and detects errors, and formal

63

methods could be used to increase confidence that anomalous behavior will not occur (for inputs
that are out of range) or unlikely to occur.

Formal methods may be applied to software development processes with consideration of these
factors:

• Levels of the design refinement: The use of formal methods begins by specifying software high-
level requirements in a formal specification language and verifying by formal proofs that they
satisfy system requirements, especially constraints on acceptable operation. The next lower level of
requirements are then shown to satisfy the high-level requirements. Performing this process down
to the Source Code provides evidence that the software satisfies system requirements. Application
of formal methods can start and stop with consecutive levels of the design refinement, providing
evidence that those levels of requirements are specified correctly.

• Coverage of software requirements and software architecture: Formal methods may be applied to
 software requirements that:

• Are safety-related.

• Can be defined by discrete mathematics.

• Involve complex behavior, such as concurrency, distributed processing, redundancy
management, and synchronization.

 These criteria can be used to determine the set of requirements at the level of the design
 refinement to which the formal methods are applied.

• Degree of rigor: Formal methods include these increasingly rigorous levels:

• Formal specification with no proofs.

• Formal specification with manual proofs.

• Formal specification with automatically checked or generated proofs.

The use of formal specifications alone forces requirements to be unambiguous. Manual proof is a
well-understood process that can be used when there is little detail. Automatically checked or
generated proofs can aid the human proof process and offer a higher degree of dependability,
especially for more complicated proofs.

12.3.2 Exhaustive Input Testing

There are situations where the software component of an airborne system or equipment is simple and
isolated such that the set of inputs and outputs can be bounded. If so, it may be possible to
demonstrate that exhaustive testing of this input space can be substituted for a software verification
process activity. For this alternative method, the applicant should include:

a. A complete definition of the set of valid inputs and outputs of the software.

b. An analysis which confirms the isolation of the inputs to the software.

c. Rationale for the exhaustive input test cases and procedures.

d. The test cases, test procedures and test results.

12.3.3 Considerations for Multiple-Version Dissimilar Software Verification

Guidelines follow concerning the software verification process as it applies to multiple-version
dissimilar software. If the software verification process is modified because of the use of multiple-
version dissimilar software, evidence should be provided that the software verification process
objectives are satisfied and that equivalent error detection is achieved for each software version.

64

Multiple, dissimilar versions of the software are produced using combinations of these techniques:

• The Source Code is implemented in two or more different programming languages.

• The object code is generated using two or more different compilers.

• Each software version of Executable Object Code executes on a separate, dissimilar processor,
 or on a single processor with the means to provide partitioning between the software versions.

• The software requirements, software design, and/or Source Code are developed by two or more
 development teams whose interactions are managed.

• The software requirements, software design, and/or Source Code are developed on two or more
 software development environments, and/or each version is verified using separate test
 environments.

• The Executable Object Code is linked and loaded using two or more different linkage editors
 and two or more different loaders.

• The software requirements, software design, and/or Source Code are developed in
 conformance with two or more different Software Requirements Standards, Software Design
 Standards, and/or Software Code Standards, respectively.

When multiple versions of software are used, the software verification methods may be modified from
those used to verify single version software. They will apply to software development process
activities that are multi-thread, such as separate, multiple development teams. The software
verification process is dependent on the combined hardware and software architectures since this
affects the dissimilarity of the multiple software versions. Additional software verification process
objectives to be satisfied are:

a. To demonstrate that the inter-version compatibility requirements are satisfied, including
compatibility during normal and abnormal operations and state transitions.

b. To demonstrate that equivalent error detection is achieved.

Other changes in software verification process activities may be agreed with by the certification
authority, if the changes are substantiated by rationale that confirms equivalent software verification
coverage.

12.3.3.1 Independence of Multiple-Version Dissimilar Software

When multiple-version dissimilar software versions are developed independently using a managed
method, the development processes have the potential to reveal certain classes of errors such that
verification of each software version is equivalent to independent verification of the software
development processes. To realize the advantage of this potential, guidance for independence
includes:

 a. The applicant should demonstrate that different teams with limited interaction
 developed each software version's software requirements, software design and Source Code.
 b. Independent test coverage analyses should still be performed as with a single version.

12.3.3.2 Multiple Processor-Related Verification

When each version of dissimilar software executes on a different type of processor, the verification of
some aspects of compatibility of the code with the processor (paragraph 6.4.3, item a) may be replaced
by verification to ensure that the multiple types of processor produce the correct outputs. This
verification consists of integration tests in which the outputs of the multiple versions are cross-
compared in requirements-based test cases. The applicant should show that:

a. Equivalent error detection is achieved.

b. Each processor was designed by a different developer.

65

c. The outputs of the multiple versions are equivalent.

12.3.3.3 Multiple-Version Source Code Verification

The guidelines for structural coverage analysis (subparagraph 6.4.4.2) may be modified for
airborne systems or equipment using multiple-version dissimilar software. Structural coverage
analysis may be performed at the Source Code level even if the object code is not directly
traceable to Source Code statements provided that the applicant shows that:

a. Each version of software is coded using a different programming language.

b. Each compiler used is from a different developer.

12.3.3.4 Tool Qualification for Multiple-Version Dissimilar Software

If multiple-version dissimilar software is used, the tool qualification process may be modified, if
evidence is available that the multiple software development tools are dissimilar. This depends on
the demonstration of equivalent software verification process activity in the development of the
multiple software versions using dissimilar software development tools. The applicant should
show that:

a. Each tool was obtained from a different developer.

b. Each tool has a dissimilar design.

12.3.3.5 Multiple Simulators and Verification

If separate, dissimilar simulators are used to verify multiple-version dissimilar software versions,
then tool qualification of the simulators may be modified. This depends on the demonstration of
equivalent software verification process activity in the simulation of the multiple software
versions using multiple simulators. Unless it can be justified as unnecessary, for multiple
simulators to be dissimilar, evidence should be available that:

a. Each simulator was developed by a different team.

b. Each simulator has different requirements, a different design and a different programming
language.

c. Each simulator executes on a different processor.

Note: When a multiple processor system using multiple, dissimilar versions of software are
executing on identical processors, it may be difficult to demonstrate dissimilarity of
simulators because of the reliance on information obtained from a common source, the
processor manufacturer.

12.3.4 Software Reliability Models

During the preparation of this document, methods for estimating the post-verification probabilities
of software errors were examined. The goal was to develop numerical requirements for such
probabilities for software in computer-based airborne systems or equipment. The conclusion
reached, however, was that currently available methods do not provide results in which confidence
can be placed to the level required for this purpose. Hence, this document does not provide
guidance for software error rates. If the applicant proposes to use software reliability models for
certification credit, rationale for the model should be included in the Plan for Software Aspects of
Certification, and agreed with by the certification authority.

12.3.5 Product Service History

If equivalent safety for the software can be demonstrated by the use of the software's product service
history, some certification credit may be granted. The acceptability of this method is dependent on:

66

• Configuration management of the software.
• Effectiveness of problem reporting activity.
• Stability and maturity of the software.
• Relevance of product service history environment.
• Actual error rates and product service history.
• Impact of modifications.

 Guidance for the use of product service history includes:

a. The applicant should show that the software and associated evidence used to comply with system
safety objectives have been under configuration management throughout the product service
history.

b. The applicant should show that the problem reporting during the product service history
provides assurance that representative data is available and that in -service problems were
reported and recorded, and are retrievable.

c. Configuration changes during the product service history should be identified and the effect
analyzed to confirm the stability and maturity of the software. Uncontrolled changes to the
Executable Object Code during the product service history may invalidate the use of product
service history.

d. The intended software usage should be analyzed to show the relevance of the product service
history.

e. If the operating environments of the existing and proposed applications differ, additional software
verification should confirm compliance with the system safety objectives.

f The analysis of configuration changes and product service history environment may require the
use of software requirements and design data to confirm the applicability of the product service
history environment.

g. If the software is a subset of the software that was active during the service period, then analysis
should confirm the equivalency of the new environment with the previous environment, and
determine those software components that were not executed during normal operation.

Note: Additional verification may be needed to confirm compliance with the system safety
objectives for those components.

h. The problem report history should be analyzed to determine how safety-related problems occurred
 and which problems were corrected.

i. Those problems that are indicative of an inadequate process, such as design or code errors, should
 be indicated separately from those whose cause are outside the scope of this document, such as
 hardware or system requirements errors.

j. The data described above and these items should be specified in the Plan for Software Aspects of
 Certification:

 (1) Analysis of the relevance of the product service history environment.
(2) Length of service period and rationale for calculating the number of hours in service,
 including factors such as operational modes, the number of independently operating
 copies in the installation and in service, and the definition of "normal operation" and
 "normal operation time."
(3) Definition of what was counted as an error and rationale for that definition.
(4) Proposed acceptable error rates and rationale for the product service history period in
 relation to the system safety and proposed error rates.

k . If the error rate is greater than that identified in the plan, these errors should be analyzed and the
 analyses reviewed with the certification authority.

67

ANNEX A

PROCESS OBJECTIVES AND OUTPUTS BY SOFTWARE LEVEL

This annex provides guidelines for the software life cycle process objectives and outputs described in this document by software
level. These tables reference the objectives and outputs of the software life cycle processes previously described in this
document.

The tables include guidelines for:

a. The process objectives applicable for each software level. For level E software, see paragraph 2.2.2.

b. The independence by software level of the software life cycle process activities applicable to satisfy that process's

objectives.

c. The control category by software level for the software life cycle data produced by the software life cycle process

activities (subsection 7.3).

68

Table A-1

Software Planning Process

69

Table A-2

Software Development Processes

70

Table A-3
Verification of Outputs of Software Requirements Process

71

Table A-4
Verification of Outputs of Software Design Process

72

Table A-5
Verification of Outputs of Software Coding & Integration Processes

73

Table A-6
Testing of Outputs of Integration Process

74

Table A-7
Verification of Verification Process Results

75

Table A-8

Software Configuration Management Process

Note: (1) Although the software configuration management objectives of section 7 do not vary with
software level, the control category assigned to the software life cycle data may vary.

 (2) The objectives of section 7 provide a sufficient integrity basis in the SCM process activities
 without the need for the independence criteria.

76

Table A-9
Software Quality Assurance Process

77

Table A-10
Certification Liaison Process

Note: The Plan for Software Aspects of Certification and the Software Configuration Index are outputs of other
processes. They are included in this table to show completion of the certification liaison process
objectives.

THIS PAGE INTENTIONALLY LEFT BLANK.

79

ANNEX B

ACRONYMS AND GLOSSARY OF TERMS

Acronyms

AC Advisory Circular

AMJ Advisory Material - Joint

CC1 Control Category I

CC2 Control Category 2

COTS commercial off-the-shelf

EUROCAE European Organisation for Civil Aviation Equipment

FAA Federal Aviation Administration

FAR Federal Aviation Regulation

IC integrated circuit

I/O input and/or output

JAA Joint Aviation Authorities

JAR Joint Aviation Requirements

RTCA RTCA, Inc.

SCI Software Configuration Index

SCM software configuration management

SECI Software Life Cycle Environment Configuration Index

SQA software quality assurance

80

Glossary

These definitions are provided for the terms which are used in this document. If a term is not defined in this annex,
it is possible that it is defined instead in the body of this document. Refer to the American Heritage Dictionary for
the definition of common terms.

Algorithm - A finite set of well-defined rules that gives a sequence of operations for performing a specific task.

Anomalous behavior - Behavior that is inconsistent with specified requirements.

Applicant - A person or organization seeking approval from the certification authority.

Approval - The act or instance of expressing a favorable opinion or giving formal or official sanction.

Assurance - The planned and systematic actions necessary to provide adequate confidence and evidence that a
product or process satisfies given requirements.

Audit - An independent examination of the software life cycle processes and their outputs to confirm required
attributes.

Baseline - The approved, recorded configuration of one or more configuration items, that thereafter serves as the
basis for further development, and that is changed only through change control procedures.

Certification - Legal recognition by the certification authority that a product, service, organization or person
complies with the requirements. Such certification comprises the activity of technically checking the product,
service, organization or person and the formal recognition of compliance with the applicable requirements by issue
of a certificate, license, approval or other documents as required by national laws and procedures. In particular,
certification of a product involves: (a) the process of assessing the design of a product to ensure that it complies with
a set of standards applicable to that type of product so as to demonstrate an acceptable level of safety; (b) the process
of assessing an individual product to ensure that it conforms with the certified type design; (c) the issuance of a
certificate required by national laws to declare that compliance or conformity has been found with standards in
accordance with items (a) or (b) above.

Certification Authority - The organization or person responsible within the state or country concerned with the
certification of compliance with the requirements.

Note: A matter concerned with aircraft, engine or propeller type certification or with equipment approval would
usually be addressed by the certification authority; matters concerned with continuing airworthiness might
be addressed by what would be referred to as the airworthiness authority.

Certification credit - Acceptance by the certification authority that a process, product or demonstration satisfies a
certification requirement.

Change control - (1) The process of recording, evaluating, approving or disapproving and coordinating changes to
configuration items after formal establishment of their configuration identification or to baselines after their
establishment. (2) The systematic evaluation, coordination, approval or disapproval and implementation of approved
changes in the configuration of a configuration item after formal establishment of its configuration identification or
to baselines after their establishment.

Note: This term may be called configuration control in other industry standards.

Code - The implementation of particular data or a particular computer program in a symbolic form, such as source
code, object code or machine code.

Commercial off-the-shelf (COTS) software - Commercially available applications sold by vendors through public
catalog listings. COTS software is not intended to be customized or enhanced. Contract-negotiated software
developed for a specific application is not COTS software.

81

Compiler - Program that translates source code statements of a high level language, such as FORTRAN or Pascal,
into object code.

Component - A self-contained part, combination of parts, subassemblies or units, which performs a distinct function
of a system.

Condition - A Boolean expression containing no Boolean operators.

Condition/Decision Coverage - Every point of entry and exit in the program has been invoked at least once, every
condition in a decision in the program has taken on all possible outcomes at least once, and every decision in the
program has taken on all possible outcomes at least once.

Configuration identification - (1) The process of designating the configuration items in a system and recording their
characteristics. (2) The approved documentation that defines a configuration item.

Configuration item - (1) One or more hardware or software components treated as a unit for configuration
management purposes. (2) Software life cycle data treated as a unit for configuration management purposes.

Configuration management - (1) The process of identifying and defining the configuration items of a system,
controlling the release and change of these items throughout the software life cycle, recording and reporting the
status of configuration items and change requests and verifying the completeness and correctness of configuration
items. (2) A discipline applying technical and administrative direction and surveillance to (a) identify and record the
functional and physical characteristics of a configuration item, (b) control changes to those characteristics, and (c)
record and report change control processing and implementation status.

Configuration status accounting - The recording and reporting of the information necessary to manage a
configuration effectively, including a listing of the approved configuration identification, the status of proposed
changes to the configuration and the implementation status of approved changes.

Control coupling - The manner or degree by which one software component influences the execution of another
software component.

Control program - A computer program designed to schedule and to supervise the execution of programs in a
computer system.

Coverage analysis - The process of determining the degree to which a proposed software verification process
activity satisfies its objective.

Database - A set of data, part or the whole of another set of data, consisting of at least one file that is sufficient for a
given purpose or for a given data processing system.

Data coupling - The dependence of a software component on data not exclusively under the control of that software
component.

Data dictionary - The detailed description of data, parameters, variables, and constants used by the system.

Data type - A class of data, characterized by the members of the class and the operations that can be applied to them.
Examples are character types and enumeration types.

Deactivated code - Executable object code (or data) which by design is either (a) not intended to be executed (code)
or used (data), for example, a part of a previously developed software component, or (b) is only executed (code) or
used (data) in certain configurations of the target computer environment, for example, code that is enabled by a
hardware pin selection or software programmed options.

Dead code - Executable object code (or data) which, as a result of a design error cannot be executed (code) or used
(data) in a operational configuration of the target computer environment and is not traceable to a system or software
requirement An exception is embedded identifiers.

82

Decision - A Boolean expression composed of conditions and zero or more Boolean operators. A decision without a
Boolean operator is a condition. If a condition appears more than once in a decision, each occurrence is a distinct
condition.

Decision Coverage - Every point of entry and exit in the program has been invoked at least once and every decision
in the program has taken on all possible outcomes at least once.

Derived requirements - Additional requirements resulting from the software development processes, which may not
be directly traceable to higher level requirements.

Emulator - A device, computer program, or system that accepts the same inputs and produces the same output as a
given system using the same object code.

Equivalence class - The partition of the input domain of a program such that a test of a representative value of the
class is equivalent to a test of other values of the class.

Error - With respect to software, a mistake in requirements, design or code.

Failure - The inability of a system or system component to perform a required function within specified limits. A
failure may be produced when a fault is encountered.

Failure condition -The effect on the aircraft and its occupants both direct and consequential, caused or contributed to
by one or more failures, considering relevant adverse operational and environmental conditions. A failure condition
is classified according to the severity of its effect as defined in FAA AC 25.1309- 1 A or JAA AMJ 25.1309.

Fault - A manifestation of an error in software. A fault, if it occurs, may cause a failure.

Fault tolerance - The built-in capability of a system to provide continued correct execution in the presence of a
limited number of hardware or software faults.

Formal methods - Descriptive notations and analytical methods used to construct, develop and reason about
mathematical models of system behavior.

Hardware/software integration- The process of combining the software into the target computer.

High-level requirements - Software requirements developed from analysis of system requirements, safety-related
requirements, and system architecture.

Host computer - The computer on which the software is developed.

Independence - Separation of responsibilities which ensures the accomplishment of objective evaluation. (1) For
software verification process activities, independence is achieved when the verification activity is performed by a
person(s) other than the developer of the item being verified, and a tool(s) may be used to achieve an equivalence to
the human verification activity. (2) For the software quality assurance process, independence also includes the
authority to ensure corrective action.

Integral process - A process which assists the software development processes and other integral processes and,
therefore, remains active throughout the software life cycle. The integral processes are the software verification
process, the software quality assurance process, the software configuration management process, and the
certification liaison process.

Interrupt - A suspension of a task, such as the execution of a computer program, caused by an event external to that
task, and performed in such a way that the task can be resumed.

Low-level requirements - Software requirements derived from high-level requirements, derived requirements, and
design constraints from which source code can be directly implemented without further information.

83

Means of compliance - The intended method(s) to be used by the applicant to satisfy the requirements stated in the
certification basis for an aircraft or engine. Examples include statements, drawings, analyses, calculations, testing,
simulation, inspection, and environmental qualification. Advisory material issued by the certification authority is
used if appropriate.

Media - Devices or material which act as a means of transferal or storage of software, for example, programmable
read-only memory, magnetic tapes or discs, and paper.

Memory device - An article of hardware capable of storing machine-readable computer programs and associated
data. It may be an integrated circuit chip, a circuit card containing integrated circuit chips, a core memory, a disk, or
a magnetic tape.

Modified Condition/Decision Coverage - Every point of entry and exit in the program has been invoked at least
once, every condition in a decision in the program has taken all possible outcomes at least once, every decision in
the program has taken all possible outcomes at least once, and each condition in a decision has been shown to
independently affect that decision's outcome. A condition is shown to independently affect a decision's outcome by
varying just that condition while holding fixed all other possible conditions.

Monitoring - (1) [Safety] Functionality within a system which is designed to detect anomalous behavior of that
system. (2) [Quality Assurance] The act of witnessing or inspecting selected instances of test, inspection, or other
activity, or records of those activities, to assure that the activity is under control and that the reported results are
representative of the expected results. Monitoring is usually associated with activities done over an extended period
of time where 100% witnessing is considered impractical or unnecessary. Monitoring permits authentication that
the claimed activity was performed as planned.

Multiple-version dissimilar software - A set of two or more programs developed separately to satisfy the same
functional requirements. Errors specific to one of the versions are detected by comparison of the multiple outputs.

Object Code - A low-level representation of the computer program not usually in a form directly usable by the target
computer but in a form which includes relocation information in addition to the processor instruction information.

Part number - A set of numbers, letters or other characters used to identify a configuration item.

Process - A modification to an object program, in which one or more of the planned steps of re-compiling, re-
assembling or re-linking is bypassed. This does not include identifiers embedded in the software product, for
example, part numbers and checksums.

Process - A collection of activities performed in the software life cycle to produce a definable output or product.

Product service history - A contiguous period of time during which the software is operated within a known
environment, and during which successive failures are recorded.

Proof of correctness -A logically sound argument that a program satisfies its requirements.

Release - The act of formally making available and authorizing the use of a retrievable configuration item.

Reverse engineering - The method of extracting software design information from the source code.

Robustness -The extent to which software can continue to operate correctly despite invalid inputs.

Simulator - A device, computer program or system used during software verification, that accepts the same inputs
and produces the same output as a given system, using object code which is derived from the original object code.

Software - Computer programs and, possibly, associated documentation and data pertaining to the operation of a
computer system.

Software architecture - The structure of the software selected to implement the software requirements.

84

Software change - A modification in source code, object code, executable object code, or its related documentation
from its baseline.

Software integration - The process of combining code components.

Software library - A controlled repository containing a collection of software and related data and documents
designed to aid in software development, use or modification. Examples include software development library,
master library, production library, program library and software repository.

Software life cycle- (1) An ordered collection of processes determined by an organization to be sufficient and
adequate to produce a software product. (2) The period of time that begins with the decision to produce or modify a
software product and ends when the product is retired from service.

Software partitioning - The process of separating, usually with the express purpose of isolating one or more
attributes of the software, to prevent specific interactions and cross-coupling interference.

Software product - The set of computer programs, and associated documentation and data, designated for delivery to
a user. In the context of this document, this term refers to software intended for use in airborne applications and the
associated software life cycle data.

Software requirement - A description of what is to be produced by the software given the inputs and constraints.
Software requirements include both high-level requirements and low-level requirements.

Software tool - A computer program used to help develop, test, analyze, produce or modify another program or its
documentation. Examples are an automated design tool, a compiler, test tools and modification tools.

Source code - Code written in source languages, such as assembly language and/or high level language, in a
machine-readable form for input to an assembler or a compiler.

Standard - A rule or basis of comparison used to provide both guidance in and assessment of the performance of a
given activity or the content of a specified data item.

Statement coverage - Every statement in the program has been invoked at least once.

Static analyzer - A software tool that helps to reveal certain properties of a program without executing the program.

Structure - A specified arrangement or interrelation of parts to form a whole.

System - A collection of hardware and software components organized to accomplish a specific function or set of
functions.

System architecture - The structure of the hardware and the software selected to implement the system requirements.

System safely assessment - An ongoing, systematic, comprehensive evaluation of the proposed system to show that
relevant safety-related requirements are satisfied.

System safety assessment process - Those activities which demonstrate compliance with airworthiness requirements
and associated guidance material, such as, JAA AMJ/FAA AC 25.1309.,The major activities within this process
include: functional hazard assessment, preliminary system safety assessment, and system safety assessment. The
rigor of the activities will depend on the criticality, complexity, novelty, and relevant service experience of the
system concerned.

Task - The basic unit of work from the standpoint of a control program.

Test case - A set of test inputs, execution conditions, and expected results developed for a particular objective, such
as to exercise a particular program path or to verify compliance with a specific requirement.

85

Testing - The process of exercising a system or system component to verify that it satisfies specified requirements
and to detect errors.

Test procedure - Detailed instructions for the set-up and execution of a given set of test cases, and instructions for
the evaluation of results of executing the test cases.

Tool Qualification - The process necessary to obtain certification credit for a software tool within the context of a
specific airborne system.

Traceability - The evidence of an association between items, such as between process outputs, between an output
and its originating process, or between a requirement and its implementation.

Transition criteria - The minimum conditions, as defined by the software planning process, to be satisfied to enter a
process.

Validation -The process of determining that the requirements are the correct requirements and that they are
complete. The system life cycle process may use software requirements and derived requirements in system
validation.

Verification - The evaluation of the results of a process to ensure correctness and consistency with respect to the
inputs and standards provided to that process.

THIS PAGE INTENTIONALLY LEFT BLANK.

APPENDICES

APPENDIX A BACKGROUND OF DOCUMENT DO-178

APPENDIX B COMMITTEE MEMBERSHIP

APPENDIX C INDEX OF TERMS

APPENDIX D IMPROVEMENT SUGGESTION FORM

THIS PAGE INTENTIONALLY LEFT BLANK.

A-1

APPENDIX A

BACKGROUND OF DOCUMENT DO-178

1.0 Prior Document Version History

In May 1980, the Radio Technical Commission for Aeronautics, now RTCA, Inc., established
Special Committee 145 (SC-145), "Digital Avionics Software", to develop and document software
practices that would support the development of software-based airborne systems and equipment.
The European Organisation for Civil Aviation Electronics, now the European Organisation for
Civil Aviation Equipment (EUROCAE), had previously established Working Group 12 (WG-12)
to produce a similar document and, in October 1980, was ready to publish document ED -35,
"Recommendations on Software Practice and Documentation for Airborne Systems." EUROCAE
elected to withhold publication of its document and, instead, to work in concert with RTCA to
develop a common set of guidelines. SC-145 produced RTCA Document DO-178, "Software
Considerations in Airborne Systems and Equipment Certification", which was approved by the
RTCA Executive Committee and published by RTCA in January 1982. EUROCAE published
ED-12 shortly thereafter.

Early in 1983 the RTCA Executive Committee determined that DO-178 should be revised to
reflect the experience gained in the certification of the aircraft and engines containing software
based systems and equipment. It established Special Committee 152 (SC-152) for this purpose.

As a result of this committee's work, a revised RTCA document, DO-178A, "Software
Considerations in Airborne Systems and Equipment Certification", was published in 1985.
Shortly thereafter, EUROCAE published ED-12A, which was identical in technical content to
DO-178A.

2.0 RTCA / EUROCAE Committee Activities in the Production of This Document

In early 1989, the Federal Aviation Administration (FAA) fo rmally requested that RTCA establish
a Special Committee for the review and revision of DO-178A. Since its release in 1985, the
aircraft manufacturers, the avionics industry and the certification authorities throughout the world
have used DO-178A or the equivalent EUROCAE ED -12A as the primary source of the guidelines
to determine the acceptability of systems and equipment containing software.

However, rapid advances in software technology, which were not envisioned by SC-152, and
differing interpretations which were applied to some crucial areas, indicated that the guidelines
required revision. Accordingly, an RTCA ad hoc group was formed with representatives from
ARINC, the Airline Pilots Association, the National Business Aircraft Association, the Air Transport
Association and the FAA to consider the FAA request. The group reviewed the issues and
experience associated with the application of DO-178A and concluded that a Special Committee
should be authorized to revise DO-178A. The RTCA Executive Committee established Special
Committee 167 (SC- 167) during the autumn of 1989 to accomplish this task, and agreed to these
Terms of Reference:

"Special Committee 167 shall review and revise, as necessary, RTCA Document DO-178A,
"Software Considerations in Airborne Systems and Equipment Certification."

GUIDANCE:

SC-167 should recognize the dynamic, evolving environment for software requirements, software
design, code generation, testing and documentation; and formulate a revised document that can
accommodate this environment while recommending suitably rigorous techniques. SC-167 should
also recognize the international implications of this document and, therefore, should establish a close
working relationship with EUROCAE, which has become the normal practice in RTCA committees.
To accomplish this revision, the Special Committee should consider the experience gained through
the field application of the guidance material contained in DO-178 and DO-178A,

A-2

as well as the as results of recent research in software engineering. The Special Committee should
focus this review to address these areas:

1. Examine existing industry and government standards and consider for possible adaptation or
reference, where relevant.

2 Assess the adequacy of existing software levels and the associated nature and degree of
analysis, verification, test and assurance activities. The revised process criteria should be
structured to support objective compliance demonstration.

3. Examine the criteria for tools to be used for certification credit, for example, tools for software
development, software configuration management and software verification.

4. Examine the certification criteria for previously developed software, off-the-shelf software,
databases and user-modifiable software for the system to be certified.

5. Examine the certification criteria for architectural and methodical strategies used to reduce the
software level or to provide verification coverage, for example, partitioning and dissimilar
software.

6. Examine configuration control guidelines, software quality assurance guidelines and
identification conventions; and their compatibility with existing certification authority
requirements for type certification, in-service modifications and equipment approval.

7. Consider the impact of new technology, such as, modular architecture, data loading, packaging,
and memory technology.

8. Examine the need, content and delivery requirements of all documents, with special
emphasis on the Software Accomplishment Summary.

9. Define and consider the interfaces between the software and system life cycles.

10. Review the criteria associated with making pre- and post-certification changes to a system.

11. Consider the impact of evolutionary development and other alternative life cycles to the model
implied by DO-178A.

EUROCAE WG-12 was re-established to work with SC-167 and, to accomplish the task, five joint
RTCA/EUROCAE working groups were formed to address these topics:

1. Documentation Integration and Production.
2. System Issues.
3. Software Development.
4. Software Verification.
5. Software Configuration Management and Software Quality Assurance.

The cooperative efforts of SC-167 and WG-12 culminated in the publication of RTCA document
DO-178B and EUROCAE document ED-12B.

3.0 Summary Of Differences between DO-178B and DO-178A

This is a complete rewrite of DO-178A.

It is suggested that the entire document be read before using any of the sections or tables in isolation.

DO-178B is primarily a process-oriented document. For each process, objectives are defined and a means
of satisfying these objectives are described. A description of the software life cycle data which shows that
the objectives have been satisfied is provided. The objectives for each process are summarized in tables
and the effect of software level on the applicability and independence of these objectives is specified in the
tables. The variation by software level in configuration management rigor for the software life cycle data is
also in the tables.

A-3

DO-178B recognizes that many different software life cycles are acceptable for developing
software for airborne systems and equipment. DO-178B emphasizes that the chosen software life
cycle(s) should be defined during the planning for a project. The processes which comprise a
software development project, no matter which software life cycle was chosen, are described.
These processes fall into three categories: the software planning process, the software
development processes, which include software requirements, software design, software coding
and integration; and the integral processes which include software verification, software quality
assurance, software configuration management and certification liaison. Integral processes are
active throughout the software life cycle. DO-178B requires that criteria which control the
transitions between software life cycle processes should be established during the software
planning process.

The relationship between the system life cycle processes and software life cycle processes is
further defined. Failure conditions associated with functions which are to be implemented in
software need to be considered during the system safety assessment process. This is the basis for
establishing the software level. The software levels are now Level A, Level B, Level C, Level D,
and Level E.

The software verification section emphasizes requirements-based testing, which is supplemented
with structural coverage.

The items that are to be delivered and other data items are further defined, as well as the
configuration management required.

A section covering additional topics has been added to provide guidance in areas previously not
addressed in DO-178A. These topics include the use of previously developed software, tool
qualification, and the use of alternative methods, including formal methods, exhaustive input
testing, multiple-version dissimilar software verification, software reliability models, and product
service history.

The glossary of terms has been reviewed for redundant or conflicting terminology and, where
possible, industry-accepted definitions adopted.

The guidelines of this document were compared with international standards: ISO 9000-3 (1991),
"Guidelines for the Application of ISO 9001 to the Development, Supply and Maintenance of
Software," and IEC 65A (Secretariat)122 (Draft - November 1991), "Software for Computers in
the Application of Industrial Safety-Related Systems." These guidelines are considered to
generally satisfy the intent of those standards.

A comprehensive index is provided to assist in the application of this document.

THIS PAGE INTENTIONALLY LEFT BLANK.

B-1

APPENDIX B

COMMITTEE MEMBERSHIP

Chairmen:

RTCA SC-167: Roger A. Seeman Boeing

EUROCAE WG-12 Daniel J. Hawkes UK CAA

Secretaries:

RTCA SC-167: Michael DeWalt FAA

EUROCAE WG-12 Jean-Michel Nogué Aerospatiale

Working/Sub-Group Chairmen/Secretaries:

Group 1 Group 4

B. Pflug Boeing J. Angerinayer Bendix/King ATAD

J-M. Astruc Veridatas

Group 2 G. Finelli NASA

D. Allen Boeing J. Williams FAA

M. DeWalt FAA

J-M. Nogué Aerospatiale

Group 5

Group 3 T. Drake British Aerospace

J. Krodel Pratt & Whitney R. Hannan Smiths Industries

N. Smith British Aerospace M. Kress Boeing

Editorial Group:

A. Coupier CEAT B. Pflug Boeing

R. Hannan Smiths Industries C. Secher DGAC France

E. Kosowski Rockwell Collins N. Smith British Aerospace

T. Kraft FAA J. Stesney Litton Aero

F. Moyer Rockwell Collins W. Struck Boeing

J-M. Nogué Aerospatiale L. Tripp Boeing

K. Peterson Honeywell B. Weiser Honeywell

Federal Aviation Administration Representative:

G. McIntyre FAA Research and Development

RTCA Representatives EUROCAE Representative:

J. Lohr B. Perret

D. Watrous

B-2

MEMBERS
Allen, D. Boeing Cucchiara, P. Kollsman
Ammann, P. George Mason University Davidson, D. Honeywell
Anderson, C. Sundstrand Decker, B. Douglas Aircraft
Angermayer, J. Bendix/King Dehlin, G. Honeywell
Anton, T. ARINC Deller, S. Verdix
Ashpole, R. British Aerospace Delong, C. Westar
Ashworth, D. Teledyne Avionics DeWalt, M. FAA
Astruc, J. Veridatas Dewshi, M. Dowty Controls
Awad, S. Canadair Dick, A. GEC Ferranti
Balivet, E. SNECMA Dolman, W. Lucas Aerospace
Barton, D. Intennetrics Drake, T. British Aerospace
Beaman, B. Woodward Governor Drtil, H. Bodenseewerk Geraetetechnik
Bearn, W. SDC ASD Dunham, J. Research Triangle
Beaulieu, G. GE Aircraft Engines Dunst, A. Smiths Industries
Beijard, J. CEAT Durgeat, E. Sextant Avionique
Belcher, G. GEC Avionics, Ltd. Dvorak, E. FAA
Bennet, P. CSE Eckmann, B. Microcomputer
Berna, P. Sextant Avionique Ehrhart, M. FAA
Bisiaux, M. Eurocontrol Fakhouri, 0. Rogerson Kratos
Blackburn, M. Bendix/King ATAD Farrell, J. Westinghouse
Blair, K. Bendix/King Ferrell, T. Boeing
Bosco, C. FAA Fieldstad, K. II Morrow Inc
Bowers, R. Air Transport Association Finelli, G. NASA
Bradley, S. Mitre Follet, H. Aerospatiale
Branch, C. Bendix/King ATAD Fortier, S. Columbia Services Group
Brazell, R. Vevas Inc. Franck, P. Rockwell Collins
Bretschneider, M. Deutsche Airbus Furstnau, R. Allison Gas Turbine
Brewer, A. Softech Gale, R. Martin Marietta ATS
Brown, P. UK MOD Gamie, G. Aike
Brown, W. Sundstrand Ganz, H. Airbus Industrie
Burtenshaw, G. UK CAA Garroway, L. Westinghouse
Byers, P. Smith Associates Gasiorowski, M Honeywell
Caling, J. Avtech Germanicus, P. Intertechnique
Campbell, J. US Coast Guard Glasser, J. Teledyne
Carré, B. Program Validation, Ltd Glenn, E. Teledyne
Castonguay, R. ELDEC Goel, A. Syracuse University
Chandler, J. Lucas Aerospace Ltd. Griffith, E. II Morrow Inc
Cheney, N. Hamilton Standard Grimshaw, A. British Aerospace
Clemence, G. Chandler Evans Hainmar, J. Search Technology
Climie, B. Honeywell (Consult.) Hall, B. Airline Pilots Association
Coffman, K. Simmonds Hall, B. British Aerospace
Cohen, N. Honeywell Halverson, K. Rockwell Collins
Coleman, J. Hamilton Standard Hannah, J. Info Spectrum Inc
Coley, D. Northstar Avionics Hannan, R. Smiths Industries
Collins, B. Dowty Controls Hannert, L. Honeywell
Coupier, A. CEAT Harrison, W. Advanced System Tech.
Crout, J. Gables Engineering, Inc. Hawkes, D. UK CAA

B-3

Heller, P. Deutsche Airbus McDonald, W. Sundstrand
Hendrickson, T. Boeing McIntyre FAAR&D
Hill, K. Boeing McKinlay, A. Douglas Aircraft
Hopf, R. GE Aircraft Engines McKown, B. Boeing
Hopkins, D. Pratt & Whitney, Canada Meyer, K. Integsystems
Hostert, S. Rockwell Collins Miller, D. George Mason University
Hung, B. MITRE Mischkot, E. Garrett Canada
Hutchinson, S. ARINC Monavon, M. SNECMA
Ion, J. Lohr Systems Montgomery, S. Simmonds
Jack, C. Rolls -Royce Moore, L. Honeywell
Janelle, J. Honeywell Morrice, G. GEC Ferranti Defence
Johnson, R. Delco Systems Ops Morse, T. Boeing
Karis, C. GE-ACSD Moyer, F. Rockwell Collins
Keizer, K. Microcomputer Mueller, H. FAA
Keller, F. FAA Myers, J. Simmonds
Kerr, R. Honeywell Neilan, P. UK CAA
Kilbane, T. Westinghouse Nelson, K Woodward Govemor
Kirby, N. Boeing Newton, 1. GEC Avionics, Ltd.
Kleine-Beek, W. LBA Nogué, J-M. Aerospatiale
Klinka, B. FAA Norris, J. ELDEC
Kosowski, E. Rockwell Collins Nutaro, J. Honeywell
Kraft, T. FAA Oberg, M. Boeing
Kress, M. Boeing Ochs, D. Cessna Aircraft
Krodel, J. Pratt & Whitney Olivier, E. Hamilton Standard
Kuhl, F. Mitre Oss, J. Honeywell
Kuhn, R. NIST Paasch, S. FAA
Kurowsky, R. US Anny Patterson, W. Westinghouse
Ladier, G. Aerospatiale Peak, A. Ametek Aerospace
Lampton, M. Rockwell Collins Pearce, M. GEC Ferranti Defence
Langumier, P. DGAC France Penny, J. British Aerospace
lapicca, C. ALENIA (Aeritalia) Perini, M. FAA
LaPietra, P. GE Aircraft Engines Perret, B. EUROCAE
Laurent, 0. Aerospatiale Peterson, K. Honeywell
Leveson, N. University of California Pflug, B. Boeing
Lewis, D. Boeing Pharr, J. Teledyne Avionics
Lillis, M. Hamilton Standard Piper, E. Douglas Aircraft
Lin, M. Litton Aero Products Porter, C. Kollsman
Littlewood, B. Centre for SW Reliability Prisaznuk, P. ARINC - AEEC
Lleres, J. SNECMA Quinby, G. Narco Avionics
Lock, H. ARINC - AEEC Ramji, S. Canadian Marconi
Lohr, J. RTCA Rao, R. Transport Canada
Luck, H. Aero-Radui Rawas, M. Beech Aircraft
Marchand, M. Aerospatiale Reich, A. Racal Avionics
Marzke, L. Kollsman Reige, J. Woodward Govemor
Mastantvoild, P. DGAC France Reitz, G. Litton Aero Products
Mattissek, A. LITEF Reynold, B. Douglas Aircraft
Mayor, M. Boeing of Canada Roberts, F. Douglas Aircraft
McCallister, R. FAA Robinson, P. Rolls -Royce
McCormick, T. Allied-Signal Canada Rodgers, D. Boeing

B-4

Roth, T. Bendix/King Van De Hulst, H. Fokker
Rowe, W. Westinghouse Van Houtte, E. ARINC
Ruana, R. Jeppesen Vaughn, R. FAA
Russell, W. Air Transport Association Vincent, J. UK CAA
Ryburn, R. FAA Wade, M. FAA
Saraceni, P. FAA Walker, T. GE Aircraft Engines
Sarich, C. FAA Ward, J. Gulfstreatn Aero
Satyen, U. MITRE Watrous, D. RTCA
Sayegh,S. Canadian Marconi Watson, J. Bendix/King
Schad,L. Boeing Watts, R. Honeywell
Schirle, P. Dassault Aviation Weadon, T. Honeywell
Schmitz, S. Alcatel TITN Weiser, B. Honeywell
Scott, R. British Aerospace Wells, R. Boeing
Secher,C. DGAC France Wilkinson, M. Smith Associates
Seeman, R. Boeing Willimns, J. FAA
Semmakie, E. British Airways Wilson, W. Litton Aero Products
Shagnea,A. Research Triangle Wojciech, J. FAA
Shahijanian, P. Litton Aero Products Wolf, C. FAA
Shimmin, A. British Aerospace Wolf, R. Teledyne
Shore, D. Honeywell Wolfley, K. FAA
Silver, S. Litton Aero Products Wong, A. FAA
Simmons, J. Woodward Govemor Wood, B. CMU/SEI
Simonetti, A. Veridatas Woodfield, D. Litton Aero Products
Sitz, J. NASA Wright, C. FAA
Skaves, P. FAA Wright, K. Smiths Industries
Smart, J. British Aerospace Young K. Honeywell
Smith, N. British Aerospace Yuen, J. Canadian Marconi
Smith, W. Rockwell Collins
Spoor, H. GEC Ferranti
Stack, N. Litton Aero Products
Stallivitz, C. Beech Aircraft
Stesney, J. Litton Aero Products
Stihl, D. Douglas Aircraft
Stolzenthaler, J. Hamilton Standard
Struck, W. Boeing
Summers, P. Rolls Royce
Teichert, P. LBA Germany
Temprement, M. Sextant Avionique
Tessier, B. FAA
Theodore, A. Bendix/King ATAD
Thompson, L. Honeywell
Toldo, D. SNECMA
Tomasi, J. Aerospatiale
Tourret, 0. STTE
Tripp, L. Boeing
Tucker, R. Teledyne Controls
Tucker, S. GTE Airfone
Turton, J. UK MOD
Van Baal, J. RLD The Netherlands

C-1

APPENDIX C

INDEX OF TERMS

This index includes these terms:
• Items identified in the glossary
• Terms of Reference
• Useful alternative nomenclature for important concepts
All indexed terms are followed by page number references. The underlined page number(s) indicates the page where
the term is defined.

acceptance 58 certification process 1, 2, 43, 45, 47, 48
agreement(s) 2, 16, 43, 45, 62 certification requirements 6, 7, 41, 57
aircraft 1, 2, 6, 7, 8, 11, 13, 16, 21, 23, 33, 45, 57 change control 15, 35, 36, 37, 39, 50, 59
airworthiness 1, 8 change history 37, 55
airworthiness requirements 1, 15, 38 change review 37, 39, 50
algorithm(s) 27, 28, 32, 52 code structure 11, 26, 33
alternative method(s) 2, 48, 57, 62, 63 commercial off-the-shelf (COTS) software 5, 10, 48, 58
analysis(es) 6, 19, 23, 25, 26, 27, 28, 29, 31, 33, 49, 53,

57, 59, 61, 62, 63, 66, 67

compiler(s) 17, 18, 23, 33, 39, 49, 53, 54, 58, 64, 65

anomalous behavior 7, 8, 11, 36, 54, 63 component(s) 6, 8, 9, 10, 11, 13, 16, 21, 26, 28, 29, 32,
33, 35, 36, 47, 51, 52, 54, 66

applicant 1, 2, 8, 21, 43, 45, 48, 49, 57, 59, 60, 62, 63,
64, 65, 66

condition(s) 10, 20, 23, 29, 31, 32, 51, 52, 53

approve (d, al) 2, 35, 36, 37, 38, 41, 42, 44, 45, 51 configuration identification 11, 35, 36, 37, 39, 50, 61
archive(s) 35, 38, 42, 50, 54, 55 configuration item(s) 14, 35, 36, 37, 38, 50, 53, 54
assurance 18, 41, 42, 59, 66
 see also software quality assurance process

configuration status accounting 37, 39, 50

audit(s) 41, 42, 51, 55 control(s) 13, 25 ,28, 30, 32, 35, 36, 37, 39, 42, 47,
 50, 51

authority 38, 41, 50, 51 control category(ies) 39, 42, 47
baseline(s) 10, 35, 36, 37, 39, 42, 49, 50, 53, 55, 57, 58,

59
Control Category 1 (CC1) 39, 47, 50, 61

certification 1, 2, 42, 43, 45, 47, 48, 55, 57, 58, 62 Control Category 2 (CC2) 39, 47, 50, 61

certification application 42 control coupling 9, 33

certification authority 2, 7, 16, 35, 38, 43, 44, 45, 47, 48,
55, 60, 62, 64, 65, 67

control flow 21, 28, 52, 61

certification authority review(s) 10, 38, 43 control flow analysis 57
certification basis 43, 45, 48, 57 corrective action 36, 37, 41, 51, 54
certification credit 17, 30, 36, 42, 61, 62, 65 coupling 28, 52, 57

 see also control coupling and data coupling
certification liaison process 13, 43, 48 coverage 11, 17, 18, 31, 33, 53, 60, 64

C-2

coverage analysis(es) 11,17, 18, 26, 29, 33, 49, 53,
 60, 61, 64, 65

host computer 18, 30

data coupling 9, 33 identification 36, 37, 38, 39, 48, 50, 53, 54, 55
data dictionary 52 independence 10, 18, 25, 41, 49, 51, 64
data flow 21, 28, 51, 52, 61 integral process(es) 13, 14, 15, 16, 20, 22, 37, 41, 55

see also software verification process, software
configuration management process, software
quality assurance process, and certification liaison
process

data flow analysis 57 integration process 13, 14, 18, 19, 22, 23, 29
data retention 38, 39, 50 interrupt(s) 9, 19, 28, 32, 51, 53
deactivated code 10, 16, 23, 33, 53 linking and loading data 22, 29, 53
dead code 23, 33 low-level requirements 19, 20, 21, 22, 23, 25, 27, 28, 29,

32, 51, 52, 59
 see also software requirements

decision(s) 32 low-level testing 29, 31, 32
derivative baseline 36 means of compliance 16, 43, 45, 48
derived requirements 19, 20, 21, 23, 27, 51, 52, 53
 see also software requirements

media 38, 39, 47, 54

Design Description 20, 22, 44, 51, 52, 53 memory device(s) 9, 38
development baseline(s) 10, 57, 58, 59 modification (s) 6, 10, 35, 36, 38, 42, 45, 47, 49, 54, 57,

58, 66
dissimilar(ity) 6, 9, 16, 64, 65
 see also multiple-version dissimilar software

modified condition/decision coverage 31

emulator 18, 30, 49 monitoring 30, 42, 51
engine(s) 1, 2, 13, 16, 23, 33, 45 multiple-version dissimilar software 8, 9, 15, 48, 49, 53,

63, 65
 normal range test cases 30, 31
equivalence class(es) 31 object code 17, 22, 33, 53, 58, 64, 65
error(s) 6, 8, 9, 10, 15, 16, 17, 25, 26, 27, 28, 29, 30,

31, 32, 37, 38, 49, 57, 59, 60, 61, 63, 64, 65, 66
operation (al) (ing) 1, 6, 7, 8, 11, 17, 21, 28, 29, 31, 32,

33, 52, 60, 61, 62, 63, 64, 66
Executable Object Code 22, 25, 26,35, 36, 38, 39, 42,

44, 49, 53, 54, 55, 60, 64, 66
option-selectable software 5, 10, 48

exhaustive testing 63 part number(ing) 36, 38, 50, 55
failure(s) 7, 8, 9, 21, 31, 32, 52, 55, 60 partitioning 6, 9, 21, 28, 32, 48, 49, 52, 53, 55, 59,

60, 64
failure condition(s) 5, 6, 7, 8, 9, 10, 11, 16, 21, 29, 48,

52, 58
patch(es) 23

failure condition category(ies) 6, 7, 8, 9, 10 Plan for Software Aspects of Certification 16, 43, 45,
47, 48, 55, 57, 59, 60, 61, 62, 65, 66

fault(s) 6, 9, 10, 32 previously developed software 2, 13, 42, 48, 49, 54, 57,
59

fault detection 6 problem report(s) 36, 37, 42, 50, 54, 55, 66
fault tolerance 6, 16, 17, 48 problem reporting 14, 36, 39, 41, 50, 51, 59, 66
field loading 11, 38 product service history 10, 48, 59, 65, 66
field-loadable software 5, 11, 32, 36, 48 programming language(s) 16, 17, 49, 52, 58, 64, 65
formal methods 62, 63
hardware/software integration 22, 37, 58
hardware/software integration test(s) (ing) 29, 31, 58

high-level requirements 11, 19, 20, 23, 25, 26, 27, 28,

32, 51, 52, 60, 63
 see also software requirements

release, 37, 38, 39, 50, 54, 55

C-3

requirements-based coverage 29, 30 software development environment (s) 17, 23, 41, 48, 64
requirements-based coverage analysis 26, 29, 30, 33,

 60
Software Development Plan 16, 19, 20, 22, 48, 49

requirements-based test case(s) 30, 33, 64 software development process(es) 6, 13, 14, 15, 16, 18, 19,
23, 25, 26, 31, 41, 48, 55, 60, 61, 62, 63, 64
 see also software requirements process, software design

process, software coding process and integration process
requirements-based test procedures 33 software development standards 15, 17, 18, 25, 59

 see also Software Requirements Standards, Software
Design Standards, Software Code Standards, and
standards

requirements-based testing 30, 31, 32, 33, 64
 see also testing.

software development tools 17, 54, 58, 59, 60, 61, 65 see
also software life cycle environment

retrieval 38, 39, 44, 47, 50 Software integration testing 29, 31, 32
reverse engineering 58 software level(s) 2, 5, 6, 7, 8, 9, 11, 14, 15, 17, 19, 21, 25,

33, 35, 39, 41, 43, 45, 47, 48, 49, 52, 57, 58, 59, 60,
61, 62

review(s) 14, 15, 18, 25, 26, 27, 28, 29, 31, 35, 41, 42, 43,
47, 48, 49, 51, 53, 55, 58, 60

software life cycle 1, 2, 6, 13, 14, 15, 16, 18, 35, 37, 41,
43, 44, 45, 47, 48, 50, 51, 55, 58, 59

robustness 18, 30 software life cycle data 8, 10, 16, 35, 36, 37, 38, 39, 41,
42, 43, 47, 48, 56, 58, 61, 62

robustness testing and test cases 25, 31, 33, 61 software life cycle environment 15, 16, 39, 53
safety monitoring 6, 8, 9, 10, 52 Software Life Cycle Environment Configuration Index

(SECI) 39, 50, 53, 54
safety objective (s) 21, 28, 57, 58, 59, 62, 66 software life cycle environment control(s) 39, 50
safety-related requirements 6, 10, 16, 18, 19, 21, 27, 42, 52 software life cycle process(es) 1, 2, 5, 6, 9, 11, 13, 14, 15,

43, 45, 47, 48, 49, 50, 51, 54, 58, 59, 62
see also software planning process, integral processes,
and software development processes

scope 1, 9, 11, 32, 38, 51, 53, 66 software load control 38, 50
simu lator(s) 18, 30, 49, 65 software planning process 13, 15, 18, 19, 21, 22, 25, 35,

37, 39, 41, 43
Software Accomplishment Summary 23, 43, 44, 45, 47, 55,

61, 62
software plans, 15, 16, 18, 36, 41, 42, 43, 45, 48, 54, 56,

59, 62
see also Plan for Software Aspects of Certification,
Software Development Plan, Software, Software
Configuration Management Plan, Software Quality
Assurance Plan and Software Verification Plan

software architecture 6, 19, 20, 21, 22, 25, 26, 28, 29, 32, 51,
52, 57, 63, 64

software product(s) 13, 16, 17, 18, 35, 36, 37, 38, 41, 42,
47, 50, 51, 54, 58

software changes 16, 37, 55
 see also modification

software product baseline 36, 42

Software Code Standards 18, 22, 28, 48, 52, 64 software quality assurance (SQA) 10, 41
software coding process 13, 17, 19, 21, 22, 28
software component(s) 8, 9, 18, 26, 28, 29, 30, 32,

52, 53, 57, 59, 63, 66

Software Configuration Index 36, 38, 43, 44, 50, 54
Software Configuration Management (SCM) Plan

16, 35, 41, 50

software configuration management (SCM) process 13, 16,
23, 35, 39, 50, 55, 59, 60

Software Configuration Management (SCM) Records 35, 55
software conformity review 42, 51, 55
software data loading 10, 53
software design process 6, 13, 17, 19, 20, 21, 22, 23,

27, 28, 53

Software Design Standards 18, 20, 21, 27, 28, 48, 51, 64

C-4

Software Quality Assurance (SQA) Plan 16, 41, 51 system life cycle process(es) 1, 5, 6, 19, 21, 48, 51
software quality assurance (SQA) process 13, 16, 41,
42, 51, 55, 59, 60

system requirement(s) 5, 6, 8, 9, 10, 13, 15, 17, 19, 20, 23,
25, 26, 27, 42, 52, 53, 60, 63, 66

Software Quality Assurance (SQA) Records 41, 55 system safety 6, 10, 11, 15, 16, 28, 59, 62, 66
software reliability 8, 65 system safety assessment process 1, 5, 6, 7, 8, 9, 10, 11,

16, 17, 19, 20, 21, 29, 37, 41, 43, 45, 48, 57, 58
software requirements 6, 10, 13, 19, 23, 25, 26, 27, 28,

29, 31, 32, 33, 42, 51, 57, 62, 64, 66
see also high-level requirements, low-level
requirements, and derived requirements

system verification 5, 6, 11

Software Requirements Data 19, 20, 44, 52, 61 task(s)(ing) 28, 51, 52, 53
software requirements process 13, 17, 19, 20, 21, 22,

27
test case(s) 17, 26, 29, 30, 31, 32, 33, 49, 53, 63, 64

Software Requirements Standards 18, 19, 20, 27, 48,
51, 64

test coverage 25

software testing 29, 30
see also testing

test coverage analysis(es) 33, 64

software tools 57, 59
see also software cycle environment, software
development tools, software verification tools,
and tools

test environment(s) 18, 26, 30, 31, 49, 54, 64

software verification 5, 10, 11, 17, 26, 49, 64 test procedures 26, 29, 33, 49, 53, 63
see also Software Verification Procedures

Software Verification Cases and Procedures 26, 53 test result(s) 29, 49, 53, 58, 63
see also Software Verification Results

Software Verification Plan 16, 18, 25, 26, 49, 53 testing 18, 25, 29, 30, 31, 32, 33, 49, 54, 61, 62, 63
Software Verification Procedures 25, 26, 53 testing method(s) 31, 32, 49

see also verification methods
software verification process 9, 10, 11, 13, 14, 16, 17,
18, 23, 25, 33, 49, 53, 58, 59, 60, 63, 64

timing and timing analysis 28, 48, 52, 55, 57

Software Verification Results 26, 53
see also traceability analysis, coverage analysis,
test results, and test coverage analysis

tool(s) 6, 15, 16, 17, 18, 21, 39, 47, 49, 50, 51, 52, 54, 57,
58, 59, 60, 61, 62, 65

software verification tools 54, 59, 61, 62 Tool Operational Requirements 60, 61, 62
Source Code 13, 17, 19, 20, 21, 22, 23, 25, 26, 28, 33,

42, 44, 52, 53 54, 59, 60, 64, 65
tool qualification 2, 17, 48, 58, 59, 60, 61, 62, 65

standards 1, 15, 16, 18, 22, 27, 28, 36, 41, 42, 48, 50,
51, 52, 54, 56, 60

tool qualification data 54, 61

statement of compliance 55 Tool Qualification Plan 61, 62
static analyzer 59 traceability 6, 23, 26, 27, 28, 35, 36, 39, 49, 50, 59
structural coverage 29, 30, 33, 58 traceability analysis(es) 14, 26, 53, 57
structural coverage analysis 17, 26, 29, 33, 61, 65 transition criteria 13, 14, 15, 19, 20, 22, 41, 42, 48,

49, 50, 51
structure(s) 19, 28, 29, 33, 47, 51, 52

see also code structure
user-modifiable data 1

system architecture 8, 19 user-modifiable software 5, 10, 21, 36, 48, 53
system design (process) 5, 6, 8, 9 validation 1
system fault coverage 10 verification – see software verification

D-1
APPENDIX D IMPROVEMENT SUGGESTION FORM

Name:____________________________Company Name:_____________________
Address:__
City:__________________ State, Postal Code, Country:_______________________
Phone:________________________________ Date:__________________________

Document: DO-178/ED -12 Revision B Sec:_________Page:________Line:__________

[] Documentation error (Format, punctuation, spelling)
[] Content error
[] Enhancement or refinement

Rationale (Describe the error or justification for enhancement):_____________________
__
__
__
__
__

Proposed change (Attach marked-up text or proposed rewrite):______________________
__
__
__
__
__
__

Please provide any general comments for improvement of this document:
__
__
__
__

Return completed form to:
 RTCA

Attention: DO-178B EUROCAE
1140 Connecticut Ave., NW Suite 1020 Attention: Secretary-Genera

 Washington, D.C. 20036 USA OR 17 Rue Hamelin
 Paris Cedex 75783 France

THIS PAGE IS INTENTIONALLY LEFT BLANK.

