
Supporting Design of Safety-Critical Systems

Dr Mark Nicholson, MATISSE Project (GR/R70590/01), University of York, UK

Introduction

One of the grand challenges in computing identified in a future oriented review of

Computer Science by the U.K. Computing Research Committee is the evolution of

dependable computing systems. In this paper, issues that can be addressed using

evolution-based algorithms to support a solution to this grand challenge are introduced.

The Grand Challenge states that “Society’s dependence on computing systems is

increasing, and the consequences of their failures are at best inconvenient; in certain

application areas, they may also lead to large economic losses, and even loss of human

life. A computing system is dependable if reliance can justifiably be placed on the service

that it delivers, characterised in terms such as functionality, availability, safety, and

security. Evidence is needed in advance to back up any manufacturer’s promises about a

product’s future service, and this evidence must be scientifically rigorous. At the moment

it is very expensive and difficult to produce such evidence.”

In Section 2 safety critical systems are introduced and the aims of a future development

process for these dependable systems is presented. In Section 3 one future avionics

architecture is presented as an exemplar of the trends and issues to be addressed by the

introduction of a Y-model supported by evolutionary computation. In Section 4 the

“allocation” problem is presented and a set of “blueprints” developed. In Section 5 future

research issues are proposed. Finally, the conclusions indicate the rewards for successfully

employing evolution based search techniques in this context.

2. Computer Based Dependable Control Systems

Safety-Critical Control Systems are employed in many products used in everyday life;

for example electronic braking systems in cars, avionics systems in aircraft and signaling

systems on the railways. The defining feature of these systems is that they not only have

the potential to cause financial loss if they fail to act correctly in their operating

environment but also can potentially lead to loss of life.

The current generation of safety-critical systems is typically developed using a V

model [6] see Figure 1. Experience, with employing this approach has led to the

2 Dr Mark Nicholson, MATISSE Project (GR/R70590/01), University of York, UK

realisation that the need to build dependability into a design often leads to very time

consuming and costly redesigns. Furthermore, the process has led to systems that require a

great deal of analysis to be undertaken if a change is subsequently made to the system.

Thus there is a need to evolve such systems rapidly, at costs, which reflect the size of

change, not the scale of the system. The Y-model, see Figure 1, is likely to be a more

appropriate development life cycle.

Units

Systems

Platform

Implementation

Integration & Test

Requirements
- Platform Concept

- Initial Hazard List

Delivered Platform
- Safe Platform

- Safety Case

Causal Analysis

Integration of Safety Evidence

SSAPSSA

Hazard Identification

Consequence Analysis

FHA

PHI

Design & Decomposition

(Predictive) Causal Analysis

Units

Systems

Platform

Automated Implementation e.g auto-
code generation, configuration

generation, automated safety analysis

Integration & Test

Requirements
-Platform Concept
- Initial Hazard List

Delivered Platform
- Safe Platform
- Safety Case

Causal Analysis

Integration of Safety
Evidence

SSAPSSA

Hazard Identification

Consequence Analysis

FHA

PHI

Design & Decomposition

(Predictive) Causal Analysis

Figure 1: V and Y lifecycle for Dependable Systems

In the Y-model automated support is required in three areas. First, support for

implementation via automated code generation, configuration generation and assessment

of dependability. Second, support to address a number of “what-if” questions that can be

asked during the iterative development phase of the system. Finally, automated support

should be provided for implementing and analyzing changes during the lifetime of the

system. Evolution based algorithms can be employed to provide the framework and

solution engines for a number of aspects of a move to the Y development life cycle.

3. Integrated Modular Avionics (IMA)

The current generation of avionics platforms has been developed using a federated

approach. In this approach the functionality required is spit into a number of systems.

Each system is developed independently and placed onto dedicated hardware. Quite large

systems have been built this way. Unfortunately, complexity, resource usage, flexibility

and change management issues have made continued development of systems this way

infeasible.

Integrated Modular Avionics (IMA) [2,7] aims to bring the flexibility of distributed

architectures, such as networks of PCs to aircraft applications. With IMA a number of

functions are run on a processor, communicating via services provided by an operating

Supporting Design of Safety-Critical Systems 3

system (O/S). The overarching aim is to reduce the cost of developing and maintaining a

system through its lifetime.

One standard form of IMA is the ASAAC [3] computing architecture that consists of

three layers divided by interface layers see Figure 2. The O/S polices access by functions

to the computing resources. To provide this service the O/S has access to configuration

data comprising of which application process runs on which processor, what priority each

process has, assuming a priority based schedule scheme [1], and which message uses

which bus. This configuration information is stored in a run-time “blueprint” that is

accessed via the Generic Systems Manager (GSM).

APOS / API
Health Monitor

Fault Manager

Config Manager

Security Manager

Health Monitor

Fault Manager

Config Manager

Security Manager

Health Monitor

Fault Manager

Config Manager

Security Manager

Module Support Layer

Generic

System

Management

Hardware

Module Support Layer

MOS / Co-ex

Generic

System

Management

Generic

System

Management

Hardware

Functional

Application i

Functional

Application 1

Functional

Application n

Operating
System

Operating
System

Operating
System

Figure 2: ASAAC Architecture

If a failure is detected via the health monitor, the fault manager determines the

appropriate course of action. For instance, the processes normally resident on a failed

processor may be moved to other processors, and the accompanying messages moved to

different buses. If more than one failure occurs then some less essential functionality may

have to be dropped, as well as a reconfiguration taking place.

4. Solving the Blueprints Issue for IMA – First Steps

Consider the configuration and reconfiguration of a system via blueprints for a given

IMA platform when all components are working and when any one hardware component

has failed. This problem essentially is an allocation problem that can be characterized as:

“given a hardware platform map the a given set of software components to the processing

hardware and messages to the bus hardware such that a given set of requirements are

met. Furthermore, given a hardware component fails re-allocate the software components

and messages as required.”

4 Dr Mark Nicholson, MATISSE Project (GR/R70590/01), University of York, UK

Each allocation becomes a blueprint in the run-time system. To address the allocation

and re-allocation under failure (and change) issue the following process is followed:

1. Model the system and allocate the software components to produce a “baseline”

system that meets all performance and safety requirements.

2. Produce a list of hardware platforms that result from any single hardware failure.

Identify those systems that no longer meet their requirements.

3. For those systems that no longer meet their requirements, reallocate the software

components to produce a new hardware-software mapping which does meet the

requirements.

4. Produce a “reconfiguration blueprint” of allocations for each blueprint.

5. If there remain failed systems for which there are no allocations that meet all

requirements determine which software components need to be dropped and

revisit step 4 to produce a new configuration.

6. Indicate any failures for which an acceptable reconfiguration cannot be found. Is

there a minimum safe-state that the system can be put into?

7. Investigate the mode change problem for each possible blueprint

8. Revisit 1 to 7 for multiple failed components?

So how is a baseline allocation determined? There are four steps: produce a

representation of a solution, determine the quality of that solution using a fitness function,

determine a way of changing any solution into another solution and automate the process

of finding the best option amongst the many possible solutions. Space limitations have led

to only one aspect of this approach being considered here.

What is the quality of a proposed allocation? The fitness function is split into two parts:

primary and secondary objectives. For the allocation problem the primary requirements

are for no worst case response time (WCRT) requirements to be missed, no resource

constraints to be violated and no fault tolerant software components to be placed on the

same processor as other replicas of the same component. The secondary requirements

include minimising the number of processors / buses used and minimising WCRT of each

component (given all WCRT have been met).

The penalty for a primary requirement (k1(Gx)
2

)is determined by adding up the degree

to which the proposed solution misses the requirement and squaring the resulting number.

The penalty for a secondary requirement is a simple linear function (k2Fx). The value kx is

a weighting factor that indicates the acceptable trade-offs with other elements of the

fitness function. Thus, the fitness function for a problem embodies the set of good versus

bad trade-offs between different design solutions, since all possible solutions will be

scored via this function.

Automated searches have been undertaken on the allocation problem with some

success. For instance, Nicholson employs Simulated Annealing hybridised with elements

of Tabu Search [4,5].

Supporting Design of Safety-Critical Systems 5

Assuming that a baseline can be produced how can the process be extended to look at

reconfiguration on failure, or a change to the system? Suppose that in a three-processor

example onto which three components that are fault tolerant copies have been allocated,

one of the processors failed. Since there are only two processors left one of these

components can be dropped. Thus the problem becomes one of placing four components

onto two processors. Once the first failure has occurred, and a redundant has been

dropped, the reliability of the system in the next period of time has decreased over that in

the original configuration. Any decision to allow the aircraft to fly on it’s next flight with

the failure still on board will need to be take this failure into consideration.

The reconfiguration algorithm is employed for every new architecture resulting from a

single failure of a hardware component. Each resultant allocation can be placed in a look-

up table that forms part of the set of runtime blueprints available to the GSM. It would be

possible to extend this to look at reconfigurations for two failures, etc. However, the

number of scenarios to be explored becomes an issue. It may be worth defining a default

safe-state configuration to go to if necessary.

In this Section it has been shown that a Y-model approach can in part be supported by

automated search for an acceptable allocation of software components to a hardware

platform, such as an IMA platform for a fully working system, one subject to hardware

failures and for one subject to change.

5. Extensions to the Approach

The issues considered in Section 4 have been applied to a number of different

architectural styles, including IMA, and control problems both of an academic and

industrial nature. However, these techniques potentially can provide even greater benefit

by allowing the implications of different design decisions on the eventual size, and form,

of the hardware and software architectures, as well as predicting whether appropriate

allocations exist, to be addressed.

For any given proposed set of software components resource usage and worst case

execution time (WCET) budgets can be set during the design process. A hardware

architecture can then be proposed and a prediction made as to the ability to produce an

appropriate set of blueprints for this proposed system. Thus the impact of a design change,

such as the introduction of extra software components to provide extra fault tolerance and

reliability, on the likely blueprints can be investigated. This gives the designer useful

information on the implications of such a design change. This is very much an area of

future research, but some first steps have been taken [4,5].

6 Dr Mark Nicholson, MATISSE Project (GR/R70590/01), University of York, UK

6. Conclusions

In this paper it has been stated that the Grand Challenge of producing a process by

which evolvable dependable computer based control systems can be developed and

maintained requires a range of problems to be addressed. It requires automated tool

support for aspects of system (especially architectural) design, automated implementation

of the design and support for changes to the design during the lifetime of the system. In

this paper it has been proposed that evolution based algorithms can provide the basis of

solutions to a number of problems in this area. Specifically, attention has been drawn to

work on the evolution of a fault tolerant architecture for reliability and the allocation of

software items to this architecture in such a way that the resource constraints and timing

characteristics of the required dependable system can be met.

The implication in the “real-world” of employing such techniques is that products will

be introduced into service more quickly and will be quickly upgradeable to keep pace

with the demands being placed on the system during it’s lifetime. Furthermore, the

designs being produced should be more efficient and analysable for their dependability

characteristics, especially safety, giving more confidence that the level of risk to the

consumer, and general public, from the system is as Low As Reasonably Practicable. A

number of issues especially related to design support and the set of characteristics

covered; remain to be addressed to achieve this.

References

[1]Burns, A. Wellings, A. “Real-time Systems and Programming Languages (3rd Ed), Addison

Wesley Longmain, March 2001

[2]Conmy, P., et al. Safety Analysis and Certification of Open Distributed Systems. in International

System Safety Conference. 2002. Denver, USA

[3]Multedo, G., D. Jibb, and G. Angel, ASAAC Phase II programme progress on the definition of

standards for the core processing architecture of future military aircraft. Microprocessors and

Microsystems, 1999. 23: p. 393-407

[4]M. Nicholson, “Selecting a Topology for Safety-critical real-time Control Systems” YCST 98/08

Dphil Thesis, Department of Computer Science, University of York (1998)

[5]M. Nicholson, P. Hollow and J. A. McDermid, "Approaches to Certification of Reconfigurable

IMA Systems", INCOSE 2000, Minneapolis, USA, 17-20 July 2000

[6] SAE-ARP4754 Certification Considerations for Highly Integrated or Complex Aircraft

Systems, Issue 1996-11

 [7] VICTORIA, Validation platform for Integration of standardised Components, technologies and

Tools in an Open, ModulaR and Improved Aircraft electronic systems, EU grant GRD1-2000-

25209, 2001 - 2004

