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SCADE Suite™ for DO-178B

Abstract

This document addresses the issue of cost and productivity in the development of safe embedded

software for avionics applications. Such projects, driven by the DO-178B guidelines, traditionally

require very difficult and precise development and verification efforts. This handbook reviews the

regulatory guidelines and then presents the optimization of the development and verification

processes that can be achieved with the SCADE Suite methodology and tools. SCADE Suite

supports the automated production of a large part of the development life-cycle elements. The

effect of using SCADE Suite together with the qualified KCG 4.2 Code Generator will be presented

in terms of savings in the development and verification activities, following a step-by-step

approach and considering the objectives that have to be met at each step.
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1. Document Background, Objectives, and Scope

1.1  Background

A traditional situation in the avionics industry is 
that the function and architecture of an 
embedded computer system (i.e., Flight Control, 
Braking, Cockpit Display, etc.) are defined by 
system engineers; the associated control laws are 
developed by control engineers using some 
informal notation or a semi-formal notation 
mostly based on schema-blocks and/or state 
machines; and the embedded production 
software is finally specified textually and coded 
by hand in C and Ada by software engineers.

In this context, qualified automatic code 
generation from formal models is a technology 
that may carry strong Return On Investment 
(ROI), while preserving the safety of the 
application. Basically, the idea is to describe the 
application through a software model, including 
the control laws as described above, and to 
automatically generate the C code from this 
model using a qualified code generator, in the 
sense of DO-178B, thus bringing the following 
advantages to the development life cycle:

• When a proper modeling approach is defined:
• It fulfills the needs of control engineers, 

typically using such notations as data flow 
diagrams and state machines.

• It fulfills the needs of software engineers by 
supporting the accurate definition of the 

software requirements and efficient automatic 
code generation of software, having the 
qualities that are expected for such applications 
(i.e., efficiency, determinism, static memory 
allocation, etc.).

• It allows setting up efficient new processes to 
ensure that safety criteria are met.

• It saves coding time, as this is automatic.
• It saves a significant amount of verification time, 

as the use of such tools guarantees that the 
generated source code agrees with the model.

• It allows identifying problems earlier in the 
development cycle, since most of the verification 
activities can be done at model level.

• It reduces the change cycle time, since 
modifications can be performed at model level 
and code can automatically be regenerated.

1.2  Objectives and Scope

This document gives a careful explanation of 
the system and software life cycles as described 
in the ARP 4754 and DO-178B guidelines. It 
then explains how to use both the proper 
modeling techniques and automatic code 
generation from models to obtain drastic 
productivity improvements.

The document is organized as follows:

Section 2. This section provides an introduction 
to the regulatory guidelines of ARP 4754 and 
DO-178B that are used when developing 
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embedded avionics software. It then describes 
the main challenges in the development of 
safety-critical applications, in terms of 
specification, verification, and efficiency of the 
resulting software.

Section 3. This section presents an overview of 
the SCADE Suite methodology and tools. It 
first demonstrates how SCADE maintains the 
highest-quality standards, while reducing costs 
based on a “correct-by-construction” approach 
and the use of a qualified automatic code 
generator, according to the following points:

• A unique and accurate software description, which 
enables the prevention of many specification or 
design errors, can be shared among project 
participants.

• The early identification of most remaining design 
errors makes it possible to fix them in the 
requirements/design phase rather than in the code 
testing or integration phase.

• Qualified code generation not only saves writing 
the code by hand, but also the cost of verifying it.

Section 4. This section is devoted to the 
software development activities using SCADE 
tools, including the use of the KCG 4.2 
qualified code generator. It also explains how 
SCADE-generated code can be integrated on 
target, including when it has to interact with an 
RTOS (Real Time Operating System).

Section 5. and Section 6. These sections present 
the verification activities that take place when 
SCADE is used, including model-level 
verification with the Simulator, the Design 
Verifier, and the Model Test Coverage tool, as 
well as specific verification activities aimed at 
detecting compiler errors.

Appendix A lists the references.

Appendix B is a glossary of terms.

Appendix C details the KCG 4.2 qualification 
process.

Appendix D details the Compiler Verification 
Kit (CVK).
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2. Development of Safety-Related Airborne Software

2.1  ARP 4754 and DO-
178B Guidelines

2.1.1 Introduction

The avionics industry requires that safety critical 
software be assessed according to strict 
certification authority1 guidelines before it may 
be used on any commercial airliner. ARP 4754 
and DO-178B are guidelines used both by the 
companies developing airborne equipment and 
by the certification authorities.

2.1.2 ARP 4754

ARP 4754 was defined in 1996 by the SAE 
(Society of Automotive Engineers). 

This document discusses the certification 
aspects of highly integrated or complex systems 
installed on an aircraft, taking into account the 
overall aircraft operating environment and 
functions. The term “highly integrated” refers to 
systems that perform or contribute to multiple 
aircraft-level functions.

The guidance material in this document was 
developed in the context of Federal Aviation 
Regulations (FAR) and Joint Airworthiness 
Requirements (JAR) Part 25. In general, this 
material is also applicable to engine systems and 
related equipment. 

ARP 4754 addresses the total life cycle for 
systems that implement aircraft-level functions. 
It excludes specific coverage of detailed systems, 
including software and hardware design 
processes beyond those of significance in 
establishing the safety of the implemented 
system. More detailed coverage of the software 
aspects of design are dealt with in the DO-178B 
(RTCA)/ED12B (EUROCAE) document. 
Coverage of complex hardware aspects of 
design are dealt with in RTCA document DO-
254.

2.1.3 DO-178B

DO-178B/ED-12 was first published in 1992 by 
RTCA (Requirements and Technical Concepts 
for Aviation) and EUROCAE (a non-profit 
organization addressing aeronautic technical 
problems). It was written by a group of experts 
from aircraft and aircraft equipment 
manufacturing companies and from certification 
authorities. It provides guidelines for the 

1. For example, the United States Federal Aviation Administration (FAA), the European Aviation Safety Agency (EASA), Transport 
Canada, etc.
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production of software for airborne systems and 
equipment. The objective of the guidelines is to 
ensure that software performs its intended 
function with a level of confidence in safety that 
complies with airworthiness requirements.

These guidelines specify:

• Objectives for software life-cycle processes.
• Description of activities and design considerations 

for achieving those objectives.
• Description of the evidence indicating that the 

objectives have been satisfied.

2.1.4 Relationship between ARP 4754 
and DO-178B

ARP 4754 and DO-178B are complementary 
guidelines:

• ARP 4754 provides guidelines for the system-level 
processes.

• DO-178B provides guidelines for the software 
life-cycle processes.

The information flow between the system and 
software processes are summarized in Figure 2.1.

Figure 2.1: Relationship between ARP 4754 and 
DO-178B processes

ARP 4754 (§A.2.1) identifies the relationships 
with DO-178B in the following terms:

“The point where requirements are allocated to 
hardware and software is also the point where 
the guidelines of this document transition to the 
guidelines of DO-178B (for software), DO-254 
(for complex hardware), and other existing 
industry guidelines. The following data is passed 
to the software and hardware processes as part 
of the requirements allocation:

a Requirements allocated to hardware. 
b Requirements allocated to software. 
c Development assurance level for each 

requirement and a description of associated 
failure condition(s), if applicable. 
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d Allocated failure rates and exposure interval(s) 
for hardware failures of significance.

e Hardware/software interface description 
(system design).

f Design constraints, including functional 
isolation, separation, and partitioning 
requirements.

g System validation activities to be performed at 
the software or hardware development level, if 
any.

h System verification activities to be performed 
at the software or hardware development 
level.”

2.1.5 Development assurance levels

ARP 4754 defines guidelines for the assignment 
of so-called Development Assurance Levels to 
the system, to its components, and to software, 
with regard to the most severe failure condition 
of the corresponding part.

ARP 4754 and DO-178B define in common 
five “Development Assurance Levels” as 
summarized in the following table: 

This handbook mainly targets level A, B and C 
software.

2.1.6 Objective-oriented approach

The approach in DO-178B is based on the 
formulation of appropriate objectives and on 
the verification that these objectives have been 
achieved. The DO-178B authors acknowledged 
that objectives are more essential and stable 
than specific procedures. The ways of achieving 
an objective may vary from one company to 
another; and they may vary over time with the 
evolution of methods, techniques, and tools. 
DO-178B never states that one should use 
design method X, coding rules Y, or tool Z. 
DO-178B does not even impose a specific life 
cycle.

The general approach is the following:

• Ensure that appropriate objectives are defined. 
For instance:
a Development assurance level of the software.
b Design standards.

• Define procedures for the verification of the 
objectives. For instance:
a Verify that design standards are met and that 

the design is complete, accurate, and traceable.
b Develop and apply requirements-based test 

cases.

Level Effect of anomalous behavior

A Catastrophic failure condition for the aircraft 
(e.g., aircraft crash).

B Hazardous/severe failure condition for the 
aircraft (e.g., several persons could be injured).

C Major failure condition for the aircraft (e.g., 
flight management system could be down, the 
pilot would have to do it manually).

D Minor failure condition for the aircraft (e.g., 
some pilot-ground communications could have 
to be done manually).

E No effect on aircraft operation or pilot workload 
(e.g., entertainment features may be down).

Level Effect of anomalous behavior
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• Define procedures for verifying that the above-
mentioned verification activities have been 
performed satisfactorily. For instance:
a Remarks of document reviews are answered.
b Coverage of requirements by testing is 

achieved.

2.1.7 DO-178B processes overview

DO-178B structures activities as a hierarchy of 
“processes”, as illustrated in Figure 2.2. The 
term “process” appears several times in the 
document. DO-178B defines three top-level 
groups of processes:

• The software planning processes that define and 
coordinate the activities of the software 
development and integral processes for a project. 

These processes are beyond the scope of this 
handbook.

• The software development processes that produce 
the software product. These processes are the 
software requirements process, the software 
design process, the software coding process, and 
the integration process.

• The integral processes that ensure the correctness, 
control, and confidence of the software life-cycle 
processes and their outputs. The integral 
processes are the software verification process, 
the software configuration management process, 
the software quality assurance process, and the 
certification liaison process. The integral processes 
are performed concurrently with the software 
development processes throughout the software 
life cycle.

Figure 2.2: DO-178B life-cycle processes structure

In the remainder of this document we will focus 
on the development and verification processes.
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2.2  DO-178B 
Development Processes

The software development processes, as 
illustrated below in Figure 2.3, are composed of: 

• The software requirements process, which 
produces the high-level requirements (HLR);

• The software design process, which usually 
produces the low-level requirements (LLR) and 
the software architecture through one or more 
refinements of the HLR;

• The software coding process, which produces the 
source code and object code;

• The integration process, which produces object 
code and builds up to the integrated system or 
equipment.

Figure 2.3: DO-178B development processes

The high-level software requirements (HLR) are 
produced directly through analysis of system 
requirements and system architecture and their 
allocation to software. They include 
specifications of functional and operational 
requirements, timing and memory constraints, 

hardware and software interfaces, failure 
detection and safety monitoring requirements, 
as well as partitioning requirements.

The HLR are further developed during the 
software design process, thus producing the 
software architecture and the low-level 
requirements (LLR). These include descriptions 
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of the input/output, the data and control flow, 
resource limitations, scheduling and 
communication mechanisms, as well as software 
components. If the system contains 
“deactivated” code (see Appendix B), the 
description of the means to ensure that this 
code cannot be activated in the target computer 
is also required.

Through the coding process, the low-level 
requirements are implemented as source code.

The source code is compiled and linked by the 
integration process up to an executable code 
linked to the target environment.

At all stages traceability is required: between 
system requirements and HLR; between HLR 
and LLR; between LLR and code; and also 
between tests and requirements.

2.3  DO-178B Verification 
Processes

2.3.1 Objectives of software 
verification

The purpose of the software verification 
processes is “to detect and report errors that may have 
been introduced during the software development 
processes.” DO-178B defines verification 

objectives, rather than specific verification 
techniques, since the later may vary from one 
project to another and/or over time.

Testing is part of the verification processes, but 
verification is not just testing: The verification 
processes also rely on reviews and analyses. 
Reviews are qualitative and generally performed 
once, whereas analyses are more detailed and 
should be reproducible (e.g., compliance with 
coding standards).

Verification activities cover all the processes, 
from the planning process to the development 
process; there are even verifications of the 
verification activities.

2.3.2 Reviews and analyses of the 
high-level requirements

The objective of reviews and analyses is to 
confirm that the HLRs satisfy the following:

a Compliance with the system requirements.
b Accuracy and consistency: each HLR is 

accurate and unambiguous and sufficiently 
detailed; requirements do not conflict with 
each other.

c Compatibility with target computer.
d Verifiability: each HLR has to be verifiable.
e Compliance with standards as defined by the 

planning process.
f Traceability with the system requirements.
g Algorithm accuracy.
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2.3.3 Reviews and analyses of the low-
level requirements

The objective of these reviews and analyses is to 
detect and report requirement errors that may 
have been introduced during the software 
design process. These reviews and analyses 
confirm that the software low-level 
requirements satisfy these objectives: 

a Compliance with high-level requirements: 
the software low-level requirements satisfy the 
software high-level requirements. 

b Accuracy and consistency 
c Compatibility with the target computer: no 

conflicts exist between the software 
requirements and the hardware/software 
features of the target computer, especially the 
use of resources (such as bus loading), system 
response times, and input/output hardware. 

d Verifiability: each low-level requirement can 
be verified. 

e Compliance with the Software Design 
Standards (defined by the software planning 
process). 

f Traceability: the objective is to ensure that all 
high-level requirements were taken into 
account in the development of the low-level 
requirements. 

g Algorithm aspects: ensure the accuracy and 
behavior of the proposed algorithms, especially 
in the area of discontinuities (e.g., mode 
changes, crossing value boundaries). 

h The SW architecture is compatible with the 
HLR, it is consistent and compatible with the 

target computer, is verifiable, and conforms to 
standards. 

i Software partitioning integrity is confirmed.

2.3.4 Reviews and analyses of the 
source code

The objective is to detect and report errors that 
may have been introduced during the software 
coding process. These reviews and analyses 
confirm that the outputs of the software coding 
process are accurate, complete, and can be 
verified. Primary concerns include correctness 
of the code with respect to the LLRs and the 
software architecture, and compliance with the 
Software Code Standards. These reviews and 
analyses are usually confined to the source code. 
The topics should include: 

a Compliance with the low-level 
requirements: The source code is accurate and 
complete with respect to the software low-level 
requirements; no source code implements an 
undocumented function. 

b Compliance with the software architecture: 
The source code matches the data flow and 
control flow defined in the software 
architecture. 

c Verifiability: The source code does not 
contain statements and structures that cannot 
be verified, and the code does not have to be 
altered to test it. 

d Compliance with standards: The Software 
Code Standards (defined by the software 
planning process) were followed during the 
development of the code, especially complexity 
restrictions and code constraints that would be 
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consistent with the system safety objectives. 
Complexity includes the degree of coupling 
between software components, the nesting 
levels for control structures, and the 
complexity of logical or numeric expressions. 
This analysis also ensures that deviations to the 
standards are justified.

e Traceability: The source code implements all 
software low-level requirements.

f Accuracy and consistency: The objective is 
to determine the correctness and consistency 
of the source code, including stack usage, 
fixed-point arithmetic overflow and resolution, 
resource contention, worst-case execution 
timing, exception handling, use of non 
initialized variables or constants, unused 

variables or constants, and data corruption due 
to task or interruption conflicts.

2.3.5 Software testing process

Testing of avionics software has two 
complementary objectives. One objective is to 
demonstrate that the software satisfies its 
requirements. The second objective is to 
demonstrate with a high degree of confidence 
that all errors, which could lead to unacceptable 
failure conditions as determined by the system 
safety assessment process, have been removed.

Figure 2.4: DO-178B testing processes
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There are three types of testing activities:

• Low-level testing: to verify the implementation 
of software low-level requirements. 

• Software integration testing: to verify the 
interrelationships between software requirements 
and components and to verify the implementation 
of the software requirements and software 
components within the software architecture. 

• Hardware/software integration testing: to 
verify correct operation of the software in the 
target computer environment.

As shown in Figure 2.4, DO-178B dictates that 
all test cases, including low-level test cases, be 
requirements-based; namely that all test cases be 
defined from the requirements, and never from 
the code.

TEST COVERAGE ANALYSIS

Test coverage analysis is a two-step activity:

1 Requirements-based test coverage analysis 
determines how well the requirement-based 
testing covered the software requirements. 
The main purpose of this step is to verify that 
all requirements have been implemented.

2 Structural coverage analysis determines which 
code structures were exercised by the 
requirements-based test procedures. The 
main purpose of this step is to verify that 
only the requirements have been 
implemented; for instance, there are no 
unintended functions in the implementation 
(DO-248, FAQ#43). Note that requirements 
coverage is an absolute prerequisite to this 
step.

STRUCTURAL COVERAGE RESOLUTION

If structural coverage analysis reveals structures 
that were not exercised, resolution is required:

• If it is due to shortcomings in the test cases, then 
test cases should be supplemented or test 
procedures changed.

• If it is due to inadequacies in the requirements, 
then the requirements must be changed and test 
cases developed and executed.

• If it is dead code (it cannot be executed, and its 
presence is an error), then this code should be 
removed and an analysis performed to assess the 
effect and the needs for reverification.

• If it is deactivated code (it cannot be executed, but 
its presence is not an error):
• If it is not intended to be executed in any 

configuration, then analysis and testing should 
show that the means by which such code could 
be executed are prevented, isolated, or 
eliminated.

• If it is only executed in certain configurations, 
the operational configuration for execution of 
this code should be established and additional 
test cases should be developed to satisfy 
coverage objectives.

STRUCTURAL COVERAGE CRITERIA

The structural coverage criteria that have to be 
achieved depend on the software level:

• Level C: Statement coverage is required; this 
means that every statement in the program has 
been exercised.

• Level B: Decision coverage is required; this 
means that every decision has taken all possible 
outcomes at least once (e.g., then/else for an “if” 
construct) and that every entry and exit point in 
the program has been invoked at least once.
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• Level A: MC/DC (Modified Condition/Decision 
Coverage) is required; this means that:
• Every entry and exit point in the program has 

been invoked at least once.
• Every decision has taken all possible outcomes.
• Each condition in a decision has been shown 

to independently affect that decision’s outcome 
(this is shown by varying just that condition, 
while holding fixed all other possible 
conditions). 

For instance, the following fragment requires 
four test cases, as shown below in Table 2.1.  

2.4  What Are the Main 
Challenges in the 
Development of Airborne 
Software?

This section introduces the main challenges that 
have to be faced when developing safety-related 
airborne software.

2.4.1 Avoiding multiple descriptions of 
the software

In such a development life cycle, the software is 
described in several phases and documents:

• Software high-level requirements (HLR)
• Software architecture design and low-level 

requirements (LLR)
• Software source code
At each step, it is important to avoid as much as 
possible rewriting the software description. 

This rewriting would not only be expensive, it 
would also be error-prone. And there is a major 
risk of inconsistencies between different 
descriptions. This necessitates devoting a 
significant effort to verifying compliance of each 
level with the previous level. The purpose of 
many activities, as described in [DO-178B], is to 
detect the errors introduced during 
transformations from one written form to 
another.

2.4.2 Preventing ambiguity and lack of 
accuracy in specifications

Requirements and design specifications are 
traditionally written in some natural language, 
possibly complemented by non formal figures 
and diagrams. It is an everyday experience that 
natural language is subject to interpretation, 
even when it is constrained by requirements 

If A or (B and C)
Then do action1
Else do action2
Endif

Table 2.1: Example of test cases

Case A B C Outcome

1 FALSE FALSE TRUE FALSE

2 TRUE FALSE TRUE TRUE

3 FALSE TRUE TRUE TRUE

4 FALSE TRUE FALSE FALSE
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standards. Its inherent ambiguity can lead to 
different interpretations depending on the 
reader. 

This is especially true for the dynamic behavior: 
for instance, how to interpret the combination 
of fragments from several sections of a 
document, such as “A raises B,” “if both B and 
C occur, then set D,” “if D or Z are active, then 
reset A?” 

2.4.3 Avoiding low-level requirements 
and coding errors

Coding is the last transformation in a traditional 
development life cycle. It takes as input the last 
formulation in natural language (or pseudo-
code). 

The programmers generally have a limited 
understanding of the system, which makes it 
vulnerable to ambiguities in the specification. 
Moreover, the code they produce is generally 
not understandable by the author of the system 
or high-level requirements.

In the traditional approach, the combined risk 
of interpretation error and coding errors is so 
high that a major part of the life-cycle 
verification effort is consumed by code testing.

2.4.4 Allowing for an efficient 
implementation of code on target

Code that is produced must be simple, 
deterministic, and efficient. It should require as 
few resources as possible, in terms of memory 
and execution time. It should be easy and 
efficient to retarget to a given processor.

2.4.5 Finding specification and design 
errors as early as possible

A significant number of specification and design 
errors are only detected during software 
integration testing.

One reason is that the requirement/design 
specification is often ambiguous and subject to 
interpretation. Another reason is that it is 
difficult for a human reader to understand 
details regarding dynamic behavior of the 
software without being able to exercise it. And 
the main reason is that, in a traditional process, 
this is the first time where one can exercise the 
software. This is very late in the process.

When a specification error can only be detected 
during the software integration phase, the cost 
of fixing it is much higher than if it had been 
detected during the specification phase.
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2.4.6 Lowering the complexity and cost 
of updates

There are many sources of changes in the 
software, ranging from bug fixing, function 
improvement to the introduction of new 
functions. 

When something has to be changed in the 
software, all products of the software life cycle 
have to be updated consistently, and all 
verification activities must be performed 
accordingly.

2.4.7 Improving verification efficiency

The level of verification for safety-related 
airborne software is much higher than for other 
non safety-related commercial software. For 
Level A software, the overall verification cost 
(including testing) may account for up to 80% 
of the budget. Verification is also a bottleneck 
for the project completion. So, clearly, any 
change in the speed and/or cost of verification 
has a major impact on the project time and 
budget.

The objective of this document is to show how 
to retain a complete and thorough verification 
and validation process, while dramatically 
improving the efficiency of this process. The 
methods we will describe reach at least the level 
of quality achieved by traditional means, by 
optimizing the whole development process.

2.4.8 Providing an efficient way to 
store Intellectual Property (IP)

A significant part of the aircraft or equipment 
company’s know-how resides in its software. It 
is therefore of utmost importance to provide 
tools and methods to efficiently store and access 
Intellectual Property (IP) relative to these safety-
related systems. Such IP vaults will contain:

• Textual system and software requirements
• Graphical models of the software requirements 

(e.g., regulation laws)
• Source code
• Test cases
• Other 
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3. Model-Based Development with SCADE Suite 
and KCG

3.1  What Is SCADE?

SCADE ORIGIN AND APPLICATION DOMAIN

The name SCADE stands for “Safety-Critical 
Application Development Environment.” This 
name is used both for the SCADE notation and 
for the SCADE Suite software development 
environment. Its purpose is to create a bridge 
between control engineering and software 
engineering activities. 

SCADE has been designed from the beginning 
for the development of safety-critical software. 
It relies on the theory of languages for real-time 
applications and, in particular, on the Lustre and 
Esterel languages as described in [LUSTRE] and 
[Esterel] in Appendix B. From the beginning, it 
has been designed with companies developing 
safety-critical software.

SCADE has been used from the start on an 
industrial basis for the development of safety-
critical software such as flight control (Airbus, 
Eurocopter), nuclear power plant control 
(Schneider Electric), and railway switching 
systems (CSEE Transport).

SCADE addresses the applicative part of hard 
real-time software, as illustrated in Figure 3.1. 
This is usually the most complex and 

changeable aspect of software, containing 
complex decision logic, filters, and control laws. 
It typically represents 60% to 80% of the 
software embedded in an airborne computer.

Figure 3.1: SCADE addresses the applicative part 
of software

A BRIDGE BETWEEN CONTROL ENGINEERING 
AND SOFTWARE ENGINEERING

Control engineers and software engineers 
typically use quite different notations and 
concepts:

• Control engineers describe systems and their 
controllers using block diagrams and transfer 
functions (s form for continuous time, z form for 
discrete time), as shown below in Figure 3.2.
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Figure 3.2: Control engineering view of a 
Controller

• Software engineers describe their programs in 
terms of tasks, flowcharts, and algorithms, as 
shown below in Figure 3.3.

Figure 3.3: Software engineering view of a 
Controller

These differences make translation from control 
engineering specifications to software 
engineering specifications complex, expensive, 
and error-prone.

To address this problem, SCADE offers 
rigorous software constructs that reflect control 
engineering constructs:

• Its data flow structure fits the block diagram 
approach.

• Its time operators fit the z operator of control 
engineering. For instance, z-1, the operator of 
control engineering (meaning a unit delay), has an 
equivalent operator called “pre” in SCADE.

3.2  SCADE Modeling 
Techniques

3.2.1 Familiarity and accuracy 
reconciled

SCADE Suite uses two specification formalisms 
that are familiar to control engineers: 

• Block diagrams to specify the algorithmic part of 
an application, such as control laws and filters.

• Safe State Machines (SSM) to model the behavior. 
What the modeling techniques of SCADE add 
is a very rigorous view of these well-known but 
often insufficiently defined formalisms. SCADE 
has a formal foundation and provides a precise 
definition of concurrency; it ensures that all 
programs generated from SCADE behave 
deterministically.

X z( ) x n( )z n–

n ∞–=

∞

∑= (bilateral z transform)
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SCADE allows for automatic generation of C 
code from these two formalisms.

We will now describe more precisely their 
characteristics and the way an application 
designed in SCADE executes on a target 
platform.

3.2.2 SCADE node

The basic building block in SCADE is called a 
node. A node is a user-defined function, built 
from lower-level nodes, down to predefined 
operators (e.g., logical, arithmetic, delay, etc.) A 
node can be represented either graphically (see 
Figure 3.4), or textually (see Table 3.1 below).

Figure 3.4: Graphical notation for an integrator node

A node is a functional module made of the 
following components: 

Actually, the textual notation is the semantic 
reference, which is stored in files and used by all 
tools; the graphical representation is a projection 
of the textual notation, taking into account 

secondary layout details. 

The SCADE Editor supports a user-friendly 
structured editing mode for graphical and 
textual nodes.

Table 3.1: Components of SCADE functional modules: nodes

Component Textual Notation for an Integrator Node Graphical Notation

Formal interface node IntegrFwd( U: real ; hidden TimeCycle: real) 
returns ( Y: real) ; 

Arrows

Local variables 
declarations

var 
delta : real ; 
last_Y : real; 

Naming wires

Equations delta = u * TimeCycle ; 
y = delta + last_Y ; 
last_Y = fby(y , 1 , 0.0) ; 

Network of operator calls
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A node is fully modular: 

• There is a clear distinction between its interface 
and its body.

• There can be no side-effects from one node to 
another one.

• The behavior of a node does not depend on its 
context.

• A node can be used safely in several places in the 
same model or in another one.

3.2.3 Block diagrams for continuous 
control

By “continuous control”, we mean regular 
periodic computation such as: sampling sensors 
at regular time intervals, performing signal-
processing computations on their values, 
computing control laws and outputting the 
results. Data is continuously subject to the same 
transformation. 

In SCADE, continuous control is graphically 
specified using block diagrams, such as the one 
illustrated in Figure 3.5 below.

Figure 3.5: A SCADE block diagram for roll management

Boxes compute mathematical functions, filters, 
and delays, while arrows denote data flowing 
between the boxes. Blocks that have no 
functional dependency compute concurrently, 

and the blocks only communicate through the 
flows. Flows may carry numeric, Boolean, or 
discrete values tested in computational blocks or 
acting on flow switches.
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SCADE blocks are fully hierarchical: blocks at a 
description level can themselves be composed 
of smaller blocks interconnected by local flows. 

In Figure 3.5 above, the RollCalculate block is 
hierarchical, and one can zoom into it using the 
SCADE Editor. Hierarchy makes it possible to 
break design complexity by a divide-and-
conquer approach and to design reusable library 
blocks.

SCADE is modular: the behavior of a node 
does not vary from one context to another.

The SCADE language is strongly typed, in the 
sense that each data flow has a type (Boolean, 
integer, real, arrays, etc.), and that type 
consistency in SCADE models is verified by the 
SCADE tools.

SCADE makes it possible to deal properly with 
issues of timing and causality. Causality means 
that if datum x depends on datum y, then y has 
to be available before the computation of x 
starts. A recursive data circuit poses a causality 
problem, as shown in Figure 3.6 below, where 
the “throttle” output depends on itself via the 
ComputeTargetSpeed and ComputeThrottle 
nodes. The SCADE semantic Checker detects 
this error and signals that this output has a 
recursive definition.

Figure 3.6: Detection of a causality problem

Inserting an FBY (delay) operator in the 
feedback loop solves the causality problem, 
since the input of the ComputeTargetSpeed 
block is now the value of “throttle” from the 
previous cycle, as shown in Figure 3.7.
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Figure 3.7: Functional expression of concurrency in SCADE

The SCADE language provides a simple and 
clean expression of concurrency and functional 
dependency at the functional level, as follows:

• Blocks SetRegulationMode and 
ComputeTargetSpeed are functionally parallel; 
since they are independent, the relative 
computation order of these blocks does not 
matter (because, in SCADE, there are no side-
effects). 

• ComputeThrottle functionally depends on an 
output of ComputeTargetSpeed. The SCADE 
Code Generator takes this into account: it 
generates code that executes 
ComputeTargetSpeed before ComputeThrottle. 
The computation order is always up-to-date and 
correct, even when dependencies are very indirect 
and when the model is updated. The users do not 
need to spend time performing tedious and error-
prone dependency analyses to determine the 
sequencing manually. They can focus on functions 
rather than on coding.

Another important feature of the SCADE 
language is related to the initialization of flows 
(the -> operator), as illustrated in Figure 3.8, 
which models a counter.

Figure 3.8: Initialization of flows

The second argument of the + operator is 0 in 
step 1 (the initial value), and the previous value 
of flow N in steps 2, 3, ... In the absence of 
explicit initialization, SCADE emits warnings. 
Mastering initial values is indeed a critical 
subject for critical embedded software.

Functional concurrency Dependency
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3.2.4 Safe State Machines for discrete 
control

By “discrete control” we mean changing 
behavior according to external events 
originating either from discrete sensors and user 
inputs or from internal program events, for 
example, value threshold detection. Discrete 
control is used when the behavior varies 
qualitatively as a response to events. This is 

characteristic of modal human-machine 
interface, alarm handling, complex functioning 
mode handling, or communication protocols. 

State machines have been very extensively 
studied in the past fifty years, and their theory is 
well understood. However, in practice, they 
have not been adequate even for medium-size 
applications, since their size and complexity 
tend to explode very rapidly. For this reason, a 
richer concept of hierarchical state machines has 
been introduced. SCADE hierarchical state 
machines are called Safe State Machines (SSMs).

Figure 3.9: Safe State Machine for RollMode

SSMs are hierarchical. States can be either 
simple states or macro states, themselves 
recursively containing a full SSM. When a macro 
state is active, so are the SSMs it contains. When 
a macro state is exited by taking a transition out 
of its boundary, the macro state is exited and all 
the active SSMs it contains are preempted, 
whichever state they were in. State machines 
communicate by exchanging signals that may be 
scoped to the macro state that contains them.

The definition of SSMs specifically forbids 
dubious constructs found in other hierarchical 
state machine formalisms: transitions crossing 
macro state boundaries, transitions that can be 
taken halfway and then backtracked, and so on. 
These are non modular, semantically ill defined, 
and very hard to figure out, hence inappropriate 
for safety-critical designs. They are usually not 
recommended by methodological guidelines.
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3.2.5 Mixed continuous/discrete 
control

Large applications contain cooperating 
continuous and discrete control parts. SCADE 
makes it possible to seamlessly couple both data 
flow and state machine styles. Most often, one 
includes SSMs into block-diagram design to 
compute and propagate functioning modes. 
Then, the discrete signals to which an SSM 
reacts and sends back, are simply transformed 
back and forth into Boolean data flows in the 
block diagram. The computation models are 
fully compatible. As an example, Figure 3.5 
shows a data flow diagram where the RollMode 
block contains the Safe State Machine described 
in Figure 3.9.

3.2.6 Cycle-based intuitive computation 
model

The cycle-based execution model of SCADE is 
a direct computer implementation of the 
ubiquitous sampling-actuating model of control 
engineering. It consists of performing a 
continuous loop of the form illustrated in Figure 
3.10 below. In this loop, there is a strict 
alternation between environment actions and 
program actions. Once the input sensors are 
read, the cyclic function starts computing the 
cycle outputs. During that time, the cyclic 
function is blind to environment changes.2 When the 
outputs are ready, or at a given time determined 

by a clock, the output values are fed back to the 
environment, and the program waits for the 
start of the next cycle.

Figure 3.10: The cycle-based execution model of 
SCADE Suite

In a SCADE block diagram specification, each 
block has a so-called clock (the event triggering 
its cycles) and all blocks act concurrently. Blocks 
can all have the same clock, or they can have 
different cycles, which subdivide a master cycle. 
At each of its cycle, a block reads its inputs and 
generates its outputs. If an output of block A is 
connected to an input of block B, and A and B 
have the same cycle, the outputs of A are used 
by B in the same cycle, unless an explicit delay is 
added between A and B. This is the essence of 
the semantics of SCADE.

SCADE SSMs have the very same notion of a 
cycle. For a simple state machine, a cycle 
consists of performing the adequate transition 
from the current state and outputting the 
transition output in the cycle, if any. Concurrent 
state machines communicate with each other, 
receiving the signals sent by other machines and 

2. It is still possible for interruption service routines or other task to run, as long as they do not interfere with the cyclic function.
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possibly sending signals back. Finally, block 
diagrams and SSMs in the same design also 
communicate at each cycle.

This cycle-based computation model carefully 
distinguishes between logical concurrency and 
physical concurrency. The application is 
described in terms of logically concurrent 
activities, block diagrams, or SSMs. Concurrency 
is resolved at code generation time, and the 
generated code remains standard sequential and 
deterministic C code, all contained within a very 
simple subset of this language. What matters is 
that the final sequential code behaves exactly as 
the original concurrent specification, which can 
be formally guaranteed. Notice that there is no 
overhead for communication, which is internally 
implemented using well-controlled shared 
variables without any context switching.

3.2.7 SCADE data typing

The SCADE language is strongly typed. 

The following data types are supported;

• Predefined types: Boolean, Integer, Real, 
Character.

• Structured types:
• Structures make it possible to group data of 

different types. Example: 

• Arrays group data of a homogeneous type. 
They have a static size. Example: 

• Imported types that are defined in C or Ada (to 
interface with legacy software).

All variables are explicitly typed, and type 
consistency is verified by the SCADE semantic 
Checker.

3.2.8 SCADE Suite as a model-based 
development environment

SCADE Suite is an environment for the 
development of safety-related avionics software. 
It supports a model-based development 
paradigm, as illustrated in Figure 3.11:

• The model is the software requirements: it is the 
unique reference in the project and it is based on a 
formal notation.

• Documentation is automatically and directly 
generated from the model: it is correct and up-to-
date by construction.

• The model can be exercised by simulation using 
the same code as the embedded code.

• Formal proof techniques can be directly applied 
to the model to detect corner bugs or to prove 
safety properties.

• Code is automatically and directly generated from 
the model with the KCG 4.2 qualified automatic 
code generator: the code is correct and up-to-date 
by construction.

Ts = [x: int, y: real];

tab = real^3;
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Figure 3.11: Model-based development with 
SCADE Suite and KCG 4.2

SCADE Suite applies the following “golden 
rules”:

• Share unique, accurate specifications.
• Do things once: Do not rewrite descriptions 

from one activity to another; for instance, 
between software architecture and software 
system design, or between module design and 
code.

• Do things right: Detect errors in early stages 
and/or write “correct-by-construction” 
descriptions.

SCADE Suite enables the saving of a significant 
amount of verification effort, essentially because 
it supports a “correct-by-construction” process.

The remainder of this handbook explains how 
full benefit can be obtained using SCADE in a 
DO-178B project.

BENEFITS OF THE “DO THINGS ONCE” 
PRINCIPLE

The SCADE model formalizes a significant part 
of the software architecture and system design. 
It is written and maintained once in the project 
and shared among team members. Expensive 
and error-prone rewriting is thus avoided; 
interpretation errors are minimized. All 
members of the project team, from the 
specification team to the review and testing 
teams, will share the SCADE model as a 
reference. 

This formal definition can even be used as a 
contractual requirement document with 
subcontractors. Basing the activities on an 
identical formal definition of the software may 
save a lot of rework, and acceptance testing is 
faster using simulation scenarios.

3.2.9 SCADE modeling and safety 
benefits

In conclusion to 3.2, we have shown that 
SCADE strongly supports safety at model level 
because of the following points:

• The SCADE modeling language was rigorously 
defined. Its interpretation does not depend on the 
reader or on a tool. It relies on more than twenty 
years of academic research. The semantic kernel 
of SCADE is very stable: it has not changed over 
the last 15 years.

• The SCADE modeling language is simple. It relies 
on very few basic concepts and simple 
combination rules of these concepts. There are no 
complex control structures like loops or gotos. 
There is no creation of memory at runtime. There 
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is no way to incorrectly access memory through 
pointers or an index out of bounds in an array.

• The SCADE modeling language contains specific 
features oriented towards safety: strong typing, 
mandatory initialization of flows, and so on.

• A SCADE model is deterministic. A system is 
deterministic if it always reacts in the same way to 
the same inputs occurring with the same timing. 
In contrast, a non deterministic system can react 
in different ways to the same inputs, the actual 
reaction depending on internal choices or 
computation timings. It is clear that determinism 
is a must for an aircraft: internal computation 

timings should not interfere with the flight control 
algorithms. 

• The SCADE modeling language provides a simple 
and clean expression of concurrency at functional 
level (SCADE block diagrams are computed 
concurrently; data flows express dependencies 
between blocks). This avoids the traditional 
problems of deadlocks and race conditions.

• The Editor and Code Generators of SCADE 
Suite perform the complete verification of the 
language rules, such as type and clock consistency, 
or causality in SCADE models.
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4. Software Development Activities with SCADE Suite

In this section we provide a more detailed view 
on the development activities that were 
introduced in the previous section.

4.1  Overview of 
Software Development 
Activities

The development process uses a combination of 
SCADE development flow and more traditional 
textual/manual flows. It has been observed on 

industrial projects that the fraction developed 
with SCADE typically ranges from 60% to 90% 
of the applicative part of the software.

Figure 4.1 shows the DO-178B development 
processes with those where SCADE is used 
highlighted in bold frame. Traceability between 
system requirements and software high-level and 
low-level requirements can be managed with a 
tool such as DOORS, thanks to the SCADE-
DOORS link.

Figure 4.1: Software development processes with SCADE Suite
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Some companies start using SCADE to define 
control laws during the system definition. In the 
software requirements process, partial SCADE 
modeling is a good support for the identification 
of high-level functions, their interfaces, and 
their data flows. SCADE modeling is used 
extensively in the software design process to 
develop major parts of the low-level 
requirements and the architecture. From such 

SCADE models, KCG, the qualified SCADE 
Code Generator, can automatically generate C 
source code.

As shown in Figure 4.2, the HLRs that are 
described in SCADE are also LLRs. Many other 
HLRs, which are textual (light color fill), are 
refined in SCADE form in the design phase.

Figure 4.2: Development of high-level and low-level requirements with SCADE

4.2  Software 
Requirements Process 
with SCADE

In DO-178B terminology, the software 
requirements process produces the high-level 
requirements (HLR). Most of these high-level 
requirements are in textual form, illustrated with 
figures.

A partial SCADE model (see the example in 
Figure 4.3) can be developed at this stage to:

• Identify the high-level functions. One would 
typically develop a functional breakdown down to 
a depth of two or three.

• Formalize the interfaces of these functions: 
names, data types.

• Describe the data flows between these functions.
• Verify consistency of the data flows between these 

functions using the SCADE syntactic and 
semantic Checker.
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• Prepare the framework for the design process. 
Having defined the top-level functions and their 

interfaces will compel the refinements to be 
consistent in terms of interfaces.

Figure 4.3: Top-level view of a simple flight control system

SCADE’s flexible annotation feature allows 
attaching comments or more specific 
information (such as physical units) to the 
SCADE nodes, interfaces, and data types.

The document items generated from the 
SCADE model can be inserted or handled as an 
annex to the HLR document.

4.3  Software Design 
Process with SCADE

In DO-178B terminology, the software design 
process produces the architecture and the low- 
level requirements. 

Figure 4.4 illustrates the design flow with 
SCADE that is detailed in the next sections.

Figure 4.4: The software design process with 
SCADE
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4.3.1 Architecture design

GLOBAL ARCHITECTURE DESIGN

The first step in the design process is to define 
the global application architecture, taking into 
account both SCADE and manual software 
elements.

The application is decomposed functionally into 
main design units. The characteristics of these 
units will serve as a basis for allocating their 
refinement in terms of technique (SCADE, C, 
assembler, …) and team. Among those 
characteristics, one has to consider:

• The type of processing (e.g., filtering, decision 
logic, byte encoding)

• The interaction it has with hardware or the 
operating system (e.g., direct memory access, 
interrupt handling)

• Activation conditions (e.g., initialization) and 
frequency (e.g., 100 Hz)

SCADE is well suited to the functional parts of 
the software, such as logic, filtering, regulation. 
It is usually less well suited for low-level 
software such as hardware drivers, interrupt 
handlers, and encoding/decoding routines.

SCADE ARCHITECTURE DESIGN

The objective of the SCADE architecture design 
activity is to lay the foundations for the 
development of the SCADE LLRs. A good 
SCADE architecture is composed of data type 
definitions, top-level nodes, and their 
connections, which ensure:

• Stability and maintainability: The team needs a 
stable framework during the first development as 
well as when there are updates.

• Readability 
• Efficiency 
There is no magic recipe to achieving a good 
architecture, rather it requires a mix of 
experience, creativity, and rigor. Here are a few 
suggestions:

• Be reasonable and realistic: nobody can build a 
good architecture in one shot. Do not develop the 
full model from your first draft, but build two or 
three architecture variants, then analyze and 
compare them; otherwise, you may have to live 
with a bad architecture for a long time.

• Review and discuss the architecture with peers.
• Simulate the impact of some changes that are 

likely to occur, such as adding a sensor, an error 
case, and evaluate the robustness of the 
architecture to such changes.

• Retain the architecture that is robust to changes 
and minimizes the complexity of interconnections.

For example, the architecture shown in Figure 
4.3 groups several sensors in one structured 
flow; it is therefore more maintainable than if 
each individual sensor value has its own input 
and flow throughout the model.

Note: If SCADE has already been used for the 
high-level requirements, then this has to be 
considered as the first candidate for the SCADE 
architecture, since it has the best direct 
traceability to the HLRs. That said, it is 
recommended that this architecture also be 
verified to ensure it has the right properties for 
maintainability.



Methodological Handbook
4 - 31

SCADE Suite™ for DO-178B

4.3.2 SCADE low-level requirements 
development

Once the SCADE architecture has been 
defined, the modules are refined to formalize 
the low-level requirements (LLR) in SCADE. 
The objective of this activity is to produce a 
complete and consistent SCADE model.

The following sections provide some examples 
of SCADE modeling patterns. The “SCADE 
Design Guidelines” [SCADE_DGL] handbook 
provides more detailed and complete coverage 
of design guidelines.

INPUT/OUTPUT HANDLING

We assume that raw acquisition from physical 
devices and/or from data buses is done with 
drivers to feed SCADE inputs.

A golden design rule is to never trust an external 
input without appropriate verification and to 
build consolidated data from the appropriate 
combination of available data. 

By using SCADE component libraries, one can, 
for instance, insert:

• A voting function
• A low pass filter and/or Limiter for a numeric 

value
• A Confirmator for Boolean values, as shown in 

Figure 4.5 

Figure 4.5: Inserting a Confirmator in a Boolean 
input flow

In a similar way, outputs to actuators have to be 
value-limited and rate-limited, which can be 
ensured by inserting Limiter blocks before the 
output, as shown in Figure 4.6 below.

Figure 4.6: Inserting a Limiter in an output flow

Since the data flow is very explicit in a SCADE 
model, it is both easy to insert these 
components in the data flow and to verify their 
presence when reviewing a model.

FILTERING AND REGULATION

Filtering and regulation algorithms are usually 
designed by control engineers. Their design is 
often formalized in the form of block diagrams 
and transfer functions defined in terms of “z” 
expressions.

SCADE graphical notation allows representing 
block diagrams in exactly the same way as 
control engineers do using the same semantics.
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The SCADE time operators fit the z operator of 
control engineering. For instance, the z-1 
operator of control engineering (meaning a unit 
delay) has equivalent operators called “pre” and 
“fby” in SCADE. For example, if a control 
engineer has written an equation such as 
s=K1*u - K2* z-1, which means s(k)=K1*u(k) - 
K2* s(k-1), this can be expressed in textual 
SCADE as s=K1*u-K2*pre(s) or graphically, as 
shown in Figure 4.7 below.

Figure 4.7: A first order filter

SCADE can implement both Infinite Impulse 
Response (IIR) filters and Finite Impulse 
Response (FIR) filters. In an FIR filter, the 
output depends on a finite number of past input 
values; in an IIR filter such as the one above, 
the output depends on an infinite number of 
past input values, because there is a loop in the 
diagram.

There are two possibilities for building a 
filtering or regulation algorithm with SCADE:

a Develop this algorithm directly in graphical or 
textual SCADE.

b Develop it by reusing library blocks such as 
“first order filter,” “integrator,” etc. These 
library blocks are themselves developed with 
SCADE.

Using library blocks has many advantages:

• It saves time.
• It relies on validated components.
• It makes the model more readable and more 

maintainable. For instance, a call to an Integrator 
is much more readable than the set of lower-level 
operators and connections that comprise an 
Integrator.

• It enforces consistency throughout the project.
• It factors the code.

DECISION LOGIC

In modern controllers, logic is often more 
complex than filtering and regulation. The 
controller has, for instance, to handle:

• Identification of the situation 
• Detection of abnormal conditions
• Decision making
• Management of redundant computation chains
SCADE offers a variety of techniques for 
handling logic:

• Logical operators (such as and/or/xor) and 
comparators.

• Selecting flows, based on conditions, with the “if” 
and “case” constructs.

• Building complex functions from simpler ones. 
For instance, the Confirmator is built from basic 
counting, comparison, and logical operators; it can 
in turn be used in more complex functions to 
make them simpler and more readable, as shown 
in Figure 4.8.

• Conditional activation of nodes depending on 
Boolean conditions.

• Safe State Machines (SSM), as shown in Figure 4.9.
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Figure 4.8: Alarm detection logic

Figure 4.9: Safe State Machine for RollMode management

Which technique to use for decision logic? 

When starting with SCADE, one may ask which 
of the above-mentioned techniques to select for 
describing logic. Here are some hints for the 
selection of the appropriate technique:

To select between state machines and logical 
expressions:

• Does the output depend on the past? If it only 
depends on the current inputs, then this is just 
combinatorial logic: simply use a logical 

expression in the data flow. A state machine that 
just jumps to state Xi when condition Ci is true, 
independently of the current state, is a 
degenerated one and does not deserve to be state 
machine.

• Does the state have a strong qualitative influence 
on the behavior? This is in favor of a state 
machine.

• Is there a hierarchy in the states? This is in favor 
of SSM, at least in the requirements phase. 
However, with the current version of the SSM 
code generation chain, it is recommended to limit 
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the depth of the state hierarchy in order to ease 
verification of the generated code (see §4.4.2).

To express concurrency:

• Simply design parallel data flows: this is natural 
and readable, and the code generator is in charge 
of implementing this parallel specification into 
sequential code.

Last but not least, pack, use, or reuse behavior 
that you have captured into blocks inserted into 
higher-level data flow nodes. For instance, the 
design of the alarm manager in Figure 4.8 uses 
threshold detectors and confirmators.

ROBUSTNESS

Robustness issues must be addressed at each 
level. We recommend that robustness be 
addressed differently at the design and coding 
levels.

• Design Level 
At the design level, the specification should 
explicitly identify and manage the safety and the 
robustness of the software with respect to invalid 
input data (see  Input/Output Handling). There 
should be no exception mechanisms to respond to 
incorrect sensor or pilot data, but planned 
mastered reaction. This involves techniques such 
as voting, confirmation, and range checking. At 
this level, one should explicitly manage the ranges 
of variables. For instance, it is highly 
recommended that an integrator contain a limiter. 
Or, if there is a division, the case when the divider 
is zero has to be managed explicitly. In the 
context of the division, the division should only 
be called when the divider is not zero (or, more 
precisely, far enough from zero). And the action 

to be taken when the divider is near zero has to 
be defined by the writer of the software 
requirements, not by the programmer.

It is easy to define libraries of robust blocks, such 
as guarded division, voters, confirmators, and 
limiters. Their presence in the diagrams is very 
explicit for the reader. It is also recommended to 
use the same numeric data types on the host and 
on the target with libraries that have the same 
behavior.

• Coding Level 
On the contrary, if an attempt to divide by zero 
happens at runtime in spite of the above-
mentioned design principles, this is an abnormal 
situation caused by a defect in the software 
design. Such a failure has to be handled as a real 
exception. The detection of the event can be 
typically part of the arithmetic library (the optimal 
implementation of that library is generally target-
dependant). The action to be taken (e.g., raise an 
exception and call a specific exception handler) 
has to be defined in the global architecture design 
of the computer.

4.4  Software Coding 
Process

The SCADE Code Generator automatically 
generates the complete C code that implements 
the software system design and module design 
defined in SCADE for both data flows and state 
machines (see Figure 4.10). It is not just a 
generation of skeletons: the complete dynamic 
behavior is implemented.
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Figure 4.10: The software coding process with SCADE

Let us now distinguish two cases of using 
automatic code generation: data flows and 
SSMs.

4.4.1 Code generation from SCADE data 
flow diagrams

The SCADE model completely defines the 
expected behavior of the generated C code. The 
code generation options define the 
implementation choices for the software. 
However, they never complement nor alter the 
behavior of the model.

Independently from the choice of the code 
generation options, the generated C code has 
the following properties:

• The code is portable: it is ISO-C compliant and it 
performs no operating system call.

• The code structure reflects the model architecture 
(by function or by blocks, depending on code 
generation options).

• The code is readable and traceable to the model 
through the use of names and annotations.

• Memory allocation is fully static (no dynamic 
memory allocation).

• There is no recursion and no looping (except a 
few local, fixed-size loops).

• Execution time is bounded.
• The code is decomposed into elementary 

assignments to local variables (this restricts use of 
the optimization options of the C compiler + 
SCADE KCG option).

• Every C variable is assigned only once. This is 
called “Single Static Assignment (SSA)” and it 
reduces compilation complexity.

• Expressions are explicit-parenthesized.
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• No dynamic address calculation is performed (no 
pointer arithmetic).

• It contains no array indexing (since there are no 
arrays, except for FBY).

• There are no implicit conversions.

• There is no expression with side-effects (no i++, 
no a += b, no side-effect in function calls).

• No functions are passed as arguments.
Traceability of the code to the SCADE data 
flow model is illustrated in Figure 4.11 below.

Figure 4.11: SCADE data flow to generated C source code traceability

Various code generation options can be used to 
tune the generated C code to particular target 
and project constraints. Basically, there are two 
ways to generate code from a SCADE node:

• Call mode: the operator is generated as a C 
function.

• Inline mode: the whole code for the operator is 
expanded where it is called.

This is illustrated in Figure 4.12.
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Figure 4.12: Comparing Call and Inline modes

Both of these code generation modes (Call or 
Inline) can be composed at will, performing a 
call for some nodes and inlining for other 
nodes.

CONTROL FLOW

Traditional design and programming is error- 
prone for the control flow. There are frequent 
errors related to:

• Loop termination
• Computation order
• Deadlocks
• Race conditions (a result depends on computation 

timing of parallel tasks/threads)
With SCADE, the approach is different:

• The designers develop the SCADE model 
focusing on functions; they need not spend time 
analyzing the dependencies and developing the 
sequencing.

• When the KCG analyzes a SCADE model, it 
generates a computation order based on the 
functional dependencies.

• Every data element is computed at the right time, 
once and only once.

• There are no loops and no “goto” constructs.
• Concurrency is expressed functionally, but the 

generated code is sequential and contains no 
tasking overhead.

4.4.2 Code generation from SCADE 
SSMs

Figure 4.13 describes the automatic C code 
generation chain from SSM designs. The SSM 
node is first translated into a SCADE data flow 
node, then the KCG 4.2 Code Generator is 
used.
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Figure 4.13: C code generation from SSMs

The code has the same properties as code 
generated from data flow diagrams.

Traceability of the code to the SCADE SSM 
model is illustrated in Figure 4.14 below. It relies 
on the use of names, annotations, and a 

traceability matrix. Variable names identify the 
inputs, outputs, and state names. Specific 
comments identify the transition behavior.

Figure 4.14: SCADE SSM to generated C source code traceability

The way to accommodate concurrent designs in 
a SCADE model, while keeping the necessary 
traceability between model and code, is to use 

data flows to handle concurrency. This is shown 
in Figure 4.15 below, where there are three 
buttons in parallel.
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Figure 4.15: Three buttons in a parallel data flow

4.5  Software Integration 
Process

4.5.1 Integration aspects

Integration of SCADE code concerns:

• Scheduling
• Input/output
• Integration of external data types and constants
• Integration of external functions

4.5.2 Input/output

Interface to physical sensors and/or to data 
buses is usually handled by drivers. If data 
acquisition is done sequentially, while the 
SCADE function is not active, then a driver 
may pass its data directly to the SCADE input. 
If it is a complex data, it may be passed by 

address, for efficiency reasons. If a driver is 
interrupt-driven, then it is necessary to ensure 
that the inputs of the SCADE function remain 
stable, while the SCADE function is computing 
the current cycle. This can be ensured by 
separating the internal buffer of the driver from 
the SCADE input vector and by performing a 
transfer (or address swap) before each SCADE 
computation cycle starts. These drivers are 
usually not developed in SCADE, but in C or 
assembly language.

4.5.3 Integration of external data and 
code

SCADE allows using external data types and 
functions. In the model, they have to be 
declared as “imported,” and for functions, their 
interface also has to be declared. Examples of 
such functions are trigonometric functions, byte 
encoding, and checksum. At integration time, 
these functions have to be compiled and linked 
to the SCADE-generated code. The SCADE 
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Simulator automatically compiles and links 
external code when the path names of the 
source files are given in the project settings.

4.5.4 SCADE scheduling and tasking

Scheduling actually has to be addressed from the 
preliminary design phase, but for the sake of 
simplicity we describe it here. 

First, we recall the execution semantics of 
SCADE, and then we examine how to model 
and implement scheduling of a SCADE model 
in single or multirate mode, in single tasking or 
in multitasking mode.

SCADE EXECUTION SEMANTICS

SCADE execution semantics is based on the 
cycle-based execution model that we described 
in Section 3.2.6. This model can be represented 
with Figure 4.16.

Figure 4.16: SCADE execution semantics

The software application samples the inputs 
from the environment and sets them as inputs 
for the SCADE code. The main SCADE 
function of the generated code is called. When 
SCADE code execution is ended, SCADE-

calculated outputs can be used to act upon the 
environment. The software application is ready 
to start another cycle. 

BARE SYSTEM IMPLEMENTATION

Typically, a cycle can be started in three 
different ways:

• Polling: a new cycle is started immediately after 
the end of the previous one in an infinite loop. 

• Event triggered: a new cycle is started when a 
new start event occurs. 

• Time triggered: a new cycle is started regularly, 
based on a clock signal. 

The SCADE code can be simply included in an 
infinite loop, waiting or not for an event or a 
clock signal to start a new cycle: 

begin_loop 
waiting for an event (usually a clock 
signal)
setting SCADE inputs
calling the SCADE generated main function
using SCADE outputs
end_loop 
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SINGLE-TASK INTEGRATION OF SCADE 
FUNCTION WITH AN RTOS

A SCADE design can easily be integrated in an 
RTOS in the same way that it is integrated in a 
general-purpose C code, as shown in Figure 4.17. 
The infinite loop construction is replaced by a 
task. This task is activated by the start event of 
the SCADE design, which can be a periodic 
alarm or a user activation.

Figure 4.17: SCADE code integration

This architecture can be designed by hand for 
any RTOS.

Note that concurrency is expressed functionally 
in the model and that the Code Generator takes 
into account the data flow structure to generate 
sequential code, taking into account this 

functional concurrency and the data flow 
dependencies. There is no need for the user to 
spend time sequencing parallel flows, neither 
during modeling nor during implementation. 
There is no need to develop multiple tasks with 
complex and error-prone synchronization 
mechanisms.

Note that other code, such as hardware drivers, 
may run in separate tasks, provided it does not 
interfere with the SCADE code.

MULTIRATE, SINGLE-TASK APPLICATIONS

SCADE can be used to design multirate 
applications in a single OS task. Some parts of 
the SCADE design can be executed at a slower 
rate than the SCADE top-level loop. Putting a 
slow part inside a condact3 operator can do this. 
Slowest rates will be derived from the fastest 
rate, which is always the top-level rate. This 
ensures a deterministic behavior.

The following application has two rates: Sys1, 
which is as fast as the top-level, and Sys2, which 
is four times slower, as shown in Figure 4.18 
below.

Figure 4.18: Modeling a birate system

3. A condact operator has an input clock (on top) that is used to trigger the execution of the computation that is described inside the 
block, thus allowing the introduction of various rates of execution for different parts of a SCADE model. When an operator is put 
under condact, its execution only occurs when a given condition is true.
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The schedule of this application will be as 
shown in Figure 4.19 below:

Figure 4.19: Timing diagram of a bi-rate system

Sys2 is executed every four times only. It is 
executed within the same main top-level 
function as Sys1. This means that the whole 
application, Sys1 + Sys2, is executed at the 
fastest rate. This implies the use of a processor 
fast enough to execute all the application at a 
fast rate. This could be a costly issue.

The solution consists of splitting the slow part 
into several little slow parts and distributing 
their execution on several fast rates. This is a 
safe way to design a multirate application. 
Scheduling of this application is fully 
deterministic and can be statically defined.

The previous application example can be 
redesigned as shown in Figure 4.20:

Figure 4.20: Modeling distribution of the slow 
system over four cycles

The slow part, Sys2, is split into four 
subsystems. These subsystems are executed 
sequentially, one after the other, in four cycles, 
as shown in Figure 4.21 below:

Figure 4.21: Timing diagram of the distributed 
computations

Note that Sys1 execution time can be longer 
than with the previous design. This means that a 
slower, but cheaper, processor can be used.

The multirate aspect of a SCADE design is 
achieved using standard SCADE constructs. 
This has no effect on the external interface of 
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the SCADE-generated code. This code can be 
integrated following the infinite loop 
construction as described earlier.

Such design has advantages, but it also has 
constraints:

• Advantages:
• Static scheduling: fully deterministic, no time 

slot exceeded or crushed, no OS deadlock.
• Data exchanges between subsystems are 

handled by SCADE, respecting data flow 
execution order.

• SCADE simulation and proof are valid for the 
generated code.

• Same code interface as a mono-rate 
application.

• Constraints:
• Need to know WCET (Worst Case Execution 

Time) of each subsystem to validate scheduling 
in all cases.

• Split of slow subsystems can be difficult with 
high-rate ratio (e.g., 5ms and 500ms).

• Constraint for design evolutions and 
maintenance.

MULTITASKING IMPLEMENTATION

The single tasking scheme described above has 
been used for fairly large industrial systems. 
There are situations where implementation of 
the SCADE code on several tasks is useful, for 
instance, if there is a large ratio between slow 
and fast execution rates. 

It is possible to build a global SCADE model, 
which formalizes the global behavior of the 
application, while implementing the code on 

different tasks. While it is also possible to build 
and implement separate independent models, 
the global model allows representative 
simulation and formal verification of the 
complete system. 

The distribution over several tasks requires 
specific analysis and implementation (see [Caspi-
2004] for details in Appendix A).

4.6  Teamwork

To work efficiently on a large project requires 
both distribution of the work and consistent 
integration of the pieces developed by each 
team.

The SCADE language is modular: there is a 
clear distinction between the interfaces and the 
contents of modules (called “nodes” in 
SCADE) and there are no side-effects from one 
node to another. 

A typical project organization is shown in Figure 
4.22:

• A software architect defines the top-level nodes, 
their interfaces, and connections.

• Utility libraries are developed.
• Each major subfunction, corresponding to a top- 

level node is developed by a specific team; the 
interfaces of these top-level nodes define a 
framework for these teams, which maintain 
consistency of the design.
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Figure 4.22: Typical teamwork organization

At each step, the team can verify in a mouse 
click that the subsystem remains consistent with 
the interface. Later, the integration of those 
parts in a larger model can be achieved by 
linking these “projects” to the larger one. At any 
stage, the SCADE semantic Checker verifies the 
consistency of this integration in a mouse click.

All these data have to be kept under strict 
version and configuration management control. 
SCADE can be integrated with the customer’s 
configuration management system via SCCI™ 

(Microsoft Source Code Control Interface), 
supported by most commercial Configuration 
Management Systems.

Reuse is also an important means of improving 
productivity and consistency in a project or a 
series of projects. SCADE libraries can store 
definitions of nodes and/or data types, which 
can be reused in several places. These range 
from basic nodes such as latches or integrators 
to complex, customer-specific systems.
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5. Software Verification Activities

5.1  Overview

The software verification process is an 
assessment of the results of both the software 
development process and the software 
verification process. It is typically satisfied 
through a combination of review, analyses, and 
tests.

The software testing process is a part of the 
verification process; it is aimed at demonstrating 
that the software satisfies its requirements both 
in normal operation and in the presence of 
errors that could lead to unacceptable failure 
conditions.

According to DO-178B, validation is “the process 
of determining that the requirements are the correct 
requirements and that they are complete.” Verification 
is “the evaluation of the results of a process to ensure 
correctness and consistency with respect to the inputs and 
standards provided to that process.” In other terms, 
the difference lies in the nature of the errors 
that are found. Validation always concerns the 
requirements, even when a requirement error is 
found by testing an implementation that 
conforms to its (bad) requirement(s); this differs 
from an implementation error, when the 
implementation does not conform to the 
requirements.

5.2  Verification of the 
SCADE High-Level 
Requirements

5.2.1 Verification objectives for the 
HLR

Table 5.1 lists verification objectives for the 
software high-level requirements.
Table 5.1: DO-178B Table A-3 

Objective

1 Software high-level requirements comply with 
system requirements.

2 Software high-level requirements are accurate and 
consistent.

3 Software high-level requirements are compatible 
with target computer.

4 Software high-level requirements are verifiable.

5 Software high-level requirements conform to 
standards.

6 Software high-levels requirements are traceable to 
system requirements.

7 Algorithms are accurate.
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For those elements of the SCADE model that 
are developed during the requirements phase, 
they have to be verified against the objectives of 
DO-178B Table A-3.

They also have to be verified against the 
objectives that DO-178B defines for low-level 
requirements (see Section 5.3), since “when code is 
generated from HLR, these are also considered LLR, 
and the guidelines for LLR also apply to them” (DO-
178B; Section 5.0).

5.2.2 Verification methods for HLR

COMPLIANCE WITH SYSTEM REQUIREMENTS

This compliance is verified by peer review. At 
this stage, the SCADE model is usually 
incomplete and composed primarily of top-level 
nodes. The meaning of these nodes is described 
textually, either in the body of the textual 
document, or as textual annotations of the 
SCADE model.

ACCURACY AND CONSISTENCY

Again, since the model at this stage is 
incomplete, verification is mostly based on 
review. Some consistency checks of both the 
interface and the connections are automated by 
the SCADE Checker.

COMPATIBILITY WITH TARGET COMPUTER

There is nothing specific to SCADE at this 
stage.

VERIFIABILITY

The SCADE model identifies the top-level 
functions and describes the functional 
breakdown and data flows between top-level 
functions. This description is verifiable.

COMPLIANCE WITH STANDARDS

The SCADE notation has precise syntactic and 
semantic rules (e.g., data type consistency) 
defined in the SCADE language reference 
manual. Compliance with this standard can be 
verified by the SCADE syntactic and semantic 
checkers. Note that a model that has been 
created with the SCADE Editor is syntactically 
correct automatically.

TRACEABILITY TO SYSTEM REQUIREMENTS

Traceability can be managed with the SCADE 
DOORS Gateway or by using annotations of 
the SCADE model elements to reference the 
system requirements (see §6.3).

ALGORITHMS ACCURACY

There are usually no SCADE algorithms at this 
stage.
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5.2.3 Verification summary for HLR

Table 5.2 summarizes verification objectives and 
methods for the software high-level 
requirements.

5.3  Verification of the 
SCADE Low-Level 
Requirements and 
Architecture

5.3.1 Verification objectives

The complete SCADE model has to be verified 
against the objectives that DO-178B defines for 
low-level requirements (see Table 5.3). This is 
the case even if all or part of the SCADE model 
is developed as HLR. Indeed, “when code is 
generated from HLR, these are also considered LLR, 
and the guidelines for LLR also apply to them” (DO-
178B; Section 5.0). 

Table 5.2: DO-178B Table A-3 Objectives 
Achievement 

Objective Verification Method

1 Software high-level 
requirements comply with 
system requirements.

Review

2 Software high-level 
requirements are accurate 
and consistent.

Review

3 Software high-level 
requirements are 
compatible with target 
computer.

Review

4 Software high-level 
requirements are 
verifiable.

Review

5 Software high-level 
requirements conform to 
standards.

SCADE syntax Checker

6 Software high-level 
requirements are 
traceable to system 
requirements.

Establish traceability 
with DOORS Link or 
with annotations

7 Algorithms are accurate. N/A (No SCADE 
algorithm at this stage)

Table 5.3: DO-178B Table A-4 

Objective

1 Low-level requirements comply with high-level 
requirements.

2 Low-level requirements are accurate and consistent.

3 Low-level requirements are compatible with target 
computer.

4 Low-level requirements are verifiable.

5 Low-level requirements conform to standards.

6 Low-levels requirements are traceable to high-level 
requirements.

7 Algorithms are accurate.

8 Software architecture is compatible with high-level 
requirements.
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5.3.2 SCADE model accuracy and 
consistency

The syntactic and semantic Checkers of SCADE 
Suite perform an in-depth analysis of model 
consistency, including: 

• Detection of missing definitions
• Warnings on unused definitions
• Detection of non initialized variables
• Coherence of data types and interfaces
• Coherence of “clocks,” namely of production/

consumption rates of data
It is also possible to add custom verification 
rules using the programmable interface (API) of 
the SCADE Suite Editor.

5.3.3 Compliance with design standard

The SCADE Language Reference Manual 
defines the design standard for the SCADE 
architecture and LLRs: it defines precisely the 
syntactic and semantic rules that a SCADE 
model has to follow. The SCADE syntactic and 
semantic Checkers included in KCG verify 
compliance with this standard.

5.3.4 Traceability from SCADE LLR to 
HLR

Traceability from SCADE LLRs to the HLRs 
can be efficiently supported with a tool such as 
DOORS™ Link. This tool imports the SCADE 
structure into DOORS. Then, in the DOORS 
environment, this structure can be handled like 
any other requirements hierarchy. It can then be 
browsed; links with the HLR can be established 
and analyzed; coverage matrices can be 
generated. With a mouse click on a SCADE 
element in DOORS, this element is 
automatically selected in SCADE Editor, as 
shown in Figure 5.1 below.

9 Software architecture is consistent.

10 Software architecture is compatible with target 
computer.

11 Software architecture is verifiable.

12 Software architecture conforms to standards.

13 Software partitioning integrity is confirmed.

Table 5.3: DO-178B Table A-4 (Continued)

Objective
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Figure 5.1: Traceability between SCADE LLR and HLR using DOORSTM Link

5.3.5 Verifiability

The SCADE model describes the low-level 
requirements and the architecture of the 
corresponding software part. Since the SCADE 
notation has a formal definition, a SCADE 
model is formally verifiable.

5.3.6 Compliance with high-level 
requirements

To verify compliance of the SCADE model 
with the HLR, there are three complementary 
techniques:

• Peer review
• Simulation
• Formal verification

REVIEW OF THE SCADE MODEL

Peer review is an essential technique for 
verifying compliance of LLRs with HLRs.
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For review, a report containing all data of the 
SCADE model can be automatically generated. 
SCADE notation has several advantages 
compared to textual notation:

• The description is not subject to interpretation. 
This is because the SCADE notation has formal 
definition.

• The description is complete. Incompleteness is 
detected by the SCADE semantic Checker.

• Its graphical form is simple and intuitive.
Peer review can verify adherence to the 
robustness design rules explained in Section 
4.3.2.

SCADE SIMULATION

It is helpful to dynamically exercise the behavior 
of a SCADE specification to better verify how it 
functions. As soon as a SCADE model (or 
pieces of it) is available, it can be simulated with 
the SCADE Suite Simulator, as shown in Figure 
5.2. Simulation can be run interactively or in 
batch. Scenarios (input/output sequences) can 
be recorded, saved, and replayed later on the 
Simulator or on the target. Note that all 
simulation scenarios, like all testing activities, 
have to be based on the software high-level 
requirements.

Figure 5.2: Simulation makes it possible to “play with the software specification”

Simulation supports the detection of assertion 
violation, which is a powerful help during the 
verification of robustness.

SCADE SUITE FORMAL VERIFICATION WITH 
DESIGN VERIFIER

The SCADE Suite Design Verifier provides an 
original and powerful verification technique 
based on formal verification technologies. 
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Testing activities, including SCADE simulation, 
let you test and verify the correctness of the 
design. However, with testing, one is never 
100% sure that the design is correct, as one 
usually never tests all possible scenarios.

Formal verification of computer systems is a set 
of activities consisting of using a mathematical 
framework to reason about system behaviors 
and properties in a rigorous way. The recipe for 
formal verification of safety properties is:

1 Define a formal model of the system; that is, 
a mathematical model representing the states 
of a system and its behaviors. When 
modeling LLR in SCADE language, the 
model is already formal, so there is no 
additional formalization effort required.

2 Define for the formal model a set of formal 
properties to verify. These properties 
correspond to high-level requirements or 
system requirements.

3 Analyze mathematically and/or by state space 
exploration the validity of the safety 
properties.

Let us take a simple example. Assume we have a 
landing gear control system, which may trigger a 
landing gear retraction command. Assume that 
we want to verify the following safety property: .

We would express in a SCADE node the safety 
property shown in Figure 5.3 below, reflecting 
the property above. This node is called an 
observer.

Figure 5.3: Observer node containing landing 
gear safety property

Then, we would connect the observer node to 
the controller in a verification context node, as 
shown in Figure 5.4 below.

Figure 5.4: Connecting the observer node to the 
landing gear controller

Traditionnally, expressing a property and finding 
a proof for a real system containing complex 
algorithms and control logic required a large 
amount of time and expertise in mathematics; 
thus the use of formal verification techniques 
was marginal. Hence, the major challenge of 
formal verification is to provide system 
engineers and software developers with an 

“for all possible behaviors of this 
controller, it will never send a landing 
gear retraction command while the aircraft 
is in landing mode or on the ground” 
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efficient, easy-to-use, and friendly framework, 
which does not require a lot of time to use and 
also enables increased confidence in the system. 
To meet this challenge, the SCADE Suite 
Design Verifier offers to a wide range of users a 
solution for easy access to formal verification, 
which can rely on the following characteristics:

• Property Expression: The SCADE language 
itself expresses properties. There is no need to 
learn a mathematical dialect to express the 
property requirements you want your design to 
fulfill.

• Property Verification: This is a push-button 
feature of the SCADE application, which basically 
provides a yes/no answer. Moreover, in the case 
of a no answer, SCADE lets you discover in an 
automatic and user-friendly way why a no answer 
was reached.

Design Verifier helps detect specification errors 
at the early phase of the software flow, 
minimizing the risk of discovering these errors 
during the final integration and validation 
phases. The input to Design Verifier is a set of 
properties that have to be checked for 
correctness in the design. This set of safety 
properties is extracted and specified from the 
high-level requirements and/or from the safety 
analysis.

Figure 5.5 represents the Design Verifier 
workflow. It consists of successive tasks that 
may be iterated. There are three kinds of tasks:

Figure 5.5: Design Verifier workflow

• Property Definition: This task consists of 
extracting properties from the high-level 
requirements to check with Design Verifier.

• Property and Environment Specification: This 
task consists of formally describing, as SCADE 
observer properties, the requirement extracted as 
properties in SCADE. Necessary information 
from the environment of the design must be 
specified formally in SCADE as well. For 
example, if the altitude is always more than 100 
feet above sea level, this assertion has to be 
attached to the model, in order to eliminate non 
relevant cases.

• Design Verifier Execution: This task 
corresponds to the usage of Design Verifier.

Formal verification can add efficiency in the 
communication between the Safety Assessment 
Process and the System Development Process. 
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Typically, safety properties can be directly 
expressed from the FHA (Functional Hazard 
Assessment) and from the PSSA (Preliminary 
System Safety Assessment) phases, as defined by 
ARP 4754. Then, by verifying that the software 
model respects these properties, this can feed 
the SSA (System Safety Assessment) process.

The SCADE 5.1 Design Verifier will also 
support automatic detection of potential 
division by zero and overflow/underflow 
throughout the model.

5.3.7 Partitioning

SCADE introduces no specific risks, but 
provides no partition mechanism. Partitioning is 
beyond the scope of SCADE. It has to be 
ensured by low-layer hardware and software 
mechanisms such as memory partitioning and 
interrupt service routines.

5.3.8 Verification summary for LLR and 
architecture

Table 5.4 summarizes verification objectives and 
methods for the software low-level requirements 
and architecture.  
Table 5.4: DO-178B Table A-4 Objectives 
Achievement 

Objective Verification Method

1 Low-level requirements 
comply with high-level 
requirements.

Review, simulation, 
formal verification

2 Low-level requirements 
are accurate and 
consistent.

Ensured by notation 
and semantic checks

3 Low-level requirements 
are compatible with target 
computer.

SCADE computational 
model uses no target- 
specific resource. 
Remains to be verified: 
memory and CPU 
consumption.

4 Low-level requirements 
are verifiable.

Ensured by formality of 
SCADE notation

5 Low-level requirements 
conform to standards.

SCADE syntax and 
semantic Checker

6 Low-levels requirements 
are traceable to high-level 
requirements.

DOORS Link or 
annotations

7 Algorithms are accurate. SCADE formal 
description is 
unambiguous. 
Numerically sensitive 
algorithms have to be 
analyzed by simulation 
and numerical analysis 
techniques.

8 Software architecture is 
compatible with high-level 
requirements.

Review

9 Software architecture is 
consistent.

SCADE semantic 
Checker

10 Software architecture is 
compatible with target 
computer.

SCADE computational 
model uses no target-
specific resource. 
Remains to be verified: 
memory and CPU 
consumption.

11 Software architecture is 
verifiable.

Ensured by SCADE 
notation.

12 Software architecture 
conforms to standards.

SCADE syntax and 
semantic Checker.

Table 5.4: DO-178B Table A-4 Objectives 
Achievement (Continued)

Objective Verification Method
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5.4  Verification of 
Coding Outputs and 
Integration Process

5.4.1 Verification objectives

Table 5.5 lists verification objectives for outputs 
of the coding and integration process. 

5.4.2 Impact of code generator 
qualification

The KCG can be qualified as a development 
tool because it has been developed by Esterel 
Technologies to fulfill the DO-178B 
requirements for Level A development tools 
(see Appendix C for details about qualification).

This has the following consequences:

SOURCE CODE COMPLIES WITH LOW-LEVEL 
REQUIREMENTS

This is ensured by the qualification of the Code 
Generator.

SOURCE CODE COMPLIES WITH SOFTWARE 
ARCHITECTURE 

This is ensured by the qualification of the Code 
Generator.

SOURCE CODE IS VERIFIABLE

By specification of the Code Generator, the 
generated code reflects the model and is 
verifiable. The qualification of the Code 
Generator ensures that this is respected.

SOURCE CODE CONFORMS TO STANDARDS

The specification of the code generation defines 
precise coding standards: it defines precisely 
how SCADE constructs have to be 
implemented in C. The qualification of the Code 
Generator ensures that this standard is 
respected.

13 Software partitioning 
integrity is confirmed.

SCADE introduces no 
specific risk, but 
provides no partition 
mechanism; traditional 
method has to be used.

Table 5.5: DO-178B Table A-5 

Objective

1 Source code complies with low-level requirements.

2 Source code complies with software architecture.

3 Source code is verifiable.

4 Source code conforms to standards.

5 Source code is traceable to low-level requirements.

6 Source code is accurate and consistent.

7 Output of software integration process is complete 
and correct.

Table 5.4: DO-178B Table A-4 Objectives 
Achievement (Continued)

Objective Verification Method
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SOURCE CODE IS TRACEABLE TO LOW-LEVEL 
REQUIREMENTS

By specification, the generated code has a 
simple, readable structure, traceable to the 
model by names and by comments. The 
qualification of the Code Generator ensures that 
this is respected.

SOURCE CODE IS ACCURATE AND 
CONSISTENT

The specification of the Code Generator defines 
accurate and consistent code, reflecting accurate 
and consistent input models. The qualification 
of the Code Generator ensures that this is 
respected.

OUTPUT OF THE SOFTWARE INTEGRATION 
PROCESS IS COMPLETE AND CORRECT

This verification is achieved by the combined 
testing process (see Section 5.5).

5.4.3 Verification summary

Table 5.6 summarizes verification objectives and 
methods for coding outputs and integration 
process.  

5.5  The Combined 
Testing Process

5.5.1 Verification objectives

Table 5.7 lists the verification objectives for 
testing outputs of the integration process.

Table 5.6: DO-178B Table A-5 Objectives 
Achievement 

Objective Verification Method

1 Source code complies with 
low-level requirements.

Replaced by KCG 
qualification

2 Source code complies with 
software architecture.

Replaced by KCG 
qualification

3 Source code is verifiable. Replaced by KCG 
qualification

4 Source code conforms to 
standards.

Replaced by KCG 
qualification

5 Source code is traceable to 
low-level requirements.

Replaced by KCG 
qualification

6 Source code is accurate 
and consistent.

Replaced by KCG 
qualification

7 Output of software 
integration process is 
complete and correct.

See Combined Testing 
Process

Table 5.7: DO-178B Table A-6 

Objective

1 Executable object code complies with high-level 
requirements.

2 Executable object code is robust with high-level 
requirements.

3 Executable object code complies with low-level 
requirements.

4 Executable object code is robust with low-level 
requirements.

Table 5.6: DO-178B Table A-5 Objectives 
Achievement (Continued)

Objective Verification Method
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5.5.2 Divide-and-conquer approach

In a traditional development process, testing 
combines the search for design, coding, and 
compilation errors. The combined testing 
process optimizes the testing effort by using a 
“divide-and-conquer” approach. It benefits 
from KCG qualification and from the 
characteristics of the generated code:

1 Compliance of the SCADE model with the 
HLRs is, to a large extent, verified at the 
model level.

2 Compliance of the source code with the 
SCADE LLRs is ensured by KCG 
qualification.

3 For the verification of source to object code 
transformation, the characteristics of the 
generated source code allow a sample-based 
approach for low-level testing of the source 
code generated by KCG.

5.5.3 Combined testing process 
organization

This section describes the combined testing 
process. Appendix D provides details about the 
justification of the sample-based approach and 
about the process to build the sample. 

Figure 5.6 summarizes the combined testing 
process.

5 Executable object code is compatible with target 
computer.

Table 5.7: DO-178B Table A-6 (Continued)

Objective
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Figure 5.6: The combined testing process with KCG

The combined testing process is organized in 
the following way:

1 The coding environment is prepared as 
follows:

• The source to object code Compiler/Linker is 
installed in a stable version. Appropriate 
compiler options are selected (for example, no 
or little optimization). The same environment 
will be used for hand code and KCG code in 
the project. 

• Analysis of this object code is performed 
according to CAST Paper P-12[CAST-12] to 
demonstrate that if any object is not directly 
traceable to source code, then this object code 
is correct (note that this activity is independent 
from SCADE).

2 For the functions that are hand-coded in the 
source code language, all verification activities 
are performed on the complete code:

• The user performs classical verification 
activities (source code review, all level testing, 
and structural coverage analysis at the source 
code level) for all the code.

3 For the source code automatically generated 
by KCG:

• A representative sample of the generated code 
is verified in the same way as manual code, 
including code review and testing with 
structural code coverage. Appendix D describes 
how the CVK Test Suite containing this 
sample is developed and used.
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• If there is imported code (manual code called 
by SCADE-generated code), integration testing 
between SCADE code and imported code is 
performed.

4 For the whole application: 

• The user performs extensive system 
requirements-based software and hardware/
software integration testing. “Extensive” means 
that all system requirements allocated to 
software are covered by those tests. As 
explained in §5.5.5, the coverage of both HLRs 
and LLRs has to be achieved by the 
combination of target and host testing.

If the combination of all the above activities 
does not detect any errors in the object code, 
then we can have sufficient confidence that the 
compiler did not introduce undetected errors in 
the code generated by KCG for that application.

5.5.4 Verification summary 

Table 5.8 summarizes verification objectives and 
methods for testing outputs of the integration 
process.  
Table 5.8: DO-178B Table A-6 Objectives 
Achievement 

Objective Verification Method

1 Executable object code 
complies with high-level 
requirements.

Set of tests covering 
normal HLR conditions 
(representative SCADE 
simulation and target 
testing)
+ KCG qualification
+ compiler verification

2 Executable object code is 
robust with high-level 
requirements.

Set of tests covering 
abnormal HLR 
conditions 
(representative SCADE 
simulation and target 
testing)
+ KCG qualification
+ compiler verification

3 Executable object code 
complies with low-level 
requirements.

KCG qualification
+ compiler verification

4 Executable object code is 
robust with low-level 
requirements.

Test arithmetic 
exception handler and/
or impose usage of 
robust arithmetic blocks

5 Executable object code is 
compatible with target 
computer.

Target resource usage 
analysis
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6. Verification of the Verification Activities

6.1  Verification 
Objectives

We now have to assess how well the above- 
mentioned verification has been performed. 
Table 6.1 summarizes the verification objectives 
from DO-178B. 

6.2  Verification of Test 
Procedures and Test 
Results

TEST PROCEDURE CORRECTNESS

The following categories of test procedures have 
to be reviewed:

• High-level requirements-based test procedures on 
the Simulator, if verification credit is sought. In 
this case, representativeness has to be 
demonstrated.

• Low-level test procedures of the C sample.
• System or high-level requirements-based test 

procedures on the target.

TEST RESULT CORRECTNESS AND 
DISCREPANCY EXPLANATION

The results of the above-mentioned test have to 
be analyzed and discrepancies explained.

6.3  HLR Coverage 
Analysis

The objective of this activity is to verify that the 
HLRs have been covered by test cases.

All test cases done on the SCADE part are 
based on HLR(s) and will contain a link to the 
HLR(s) that they verify. The analysis of these 

Table 6.1: DO-178B Table A-7 

Objective

1 Test procedures are correct.

2 Test results are correct and discrepancies are 
explained.

3 Test coverage of high-level requirements is 
achieved.

4 Test coverage of low-level requirements is achieved.

5 Test coverage of software structure (modified 
condition/decision) is achieved.

6 Test coverage of software structure (decision 
coverage) is achieved.

7 Test coverage of software structure (statement 
coverage) is achieved.

8 Test coverage of software structure (data coupling 
and control coupling) is achieved.
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links will confirm full coverage of the HLR by 
the test cases; otherwise, test cases have to be 
complemented.

If representativity of the simulation is ensured, 
then coverage has to be ensured by the union of 
test cases performed on the target and on the 
Simulator. Otherwise, all HLRs have to be fully 
covered by target testing. Note that scenarios 
can be transferred from/to the Simulator to/
from the target test environment.

6.4  LLR Coverage 
Analysis with MTC

6.4.1 Objectives and coverage criteria

This section addresses the coverage of the 
SCADE LLRs. Model coverage analysis is a 
means of assessing how far the behavior of a 
model has been explored. It is complementary 
to traceability analysis and high-level 
requirements coverage analysis.

Model coverage verifies that every element of 
the SCADE model (which represents a software 
design feature) has been dynamically activated 
when the high-level requirements are exercised. 
A primary objective is to detect unintended 
functions in the software design. 

The term “unintended function” requires 
clarification. At the implementation level, an 
unintended function is one that exists in the 
actual software implementation, but not by 

design. Similarly, the existence of an unintended 
function in software design is unplanned in the 
software high-level requirements.

One might think that unintended functions are 
just things that should not be present, that they could 
be easily detected by scanning the traceability 
matrix and then removed systematically. The 
reality is somewhat more complex:

1 “Unintended” does not necessarily mean 
“wrong” or “extraneous”. It just means “not 
explicitly intended.” An unintended function 
may well be necessary and correct, but 
missing in the high-level requirements.

2 Regarding the reason and number of 
unintended functions, there is a definite 
difference between the software design and 
the software code:

• The software design is very detailed, and the 
software code basically must reflect it. Any 
difference in functionality between the 
software implementation and its design is 
either an error in the implementation, a derived 
requirement that has not been made explicit, or 
an error/omission in the software 
requirements. In a word, it is the result of an 
error. 

• The high-level requirements are usually not as 
detailed as the definitive software design. 
Practically, it is often necessary to add details 
when developing the software design. These 
additional details must be verified and fed back 
into the high-level requirements. Many of the 
“unintended” functions that exist in the software 
design fill “holes” in the high-level 
requirements; their presence is beneficial. 
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However, their explicit identification and 
verification are required.

3 An unintended function is often not directly 
visible by the mere presence of a high-level 
requirement paragraph (text form) or of a 
SCADE operator (SCADE form). It may 
involve some dynamic behavior.

Thus, there is a need to analyze the dynamic 
behavior of the software design.

Coverage criteria have been a research topic for 
some time, but most available results concern 
sequential programming, which is by far the 
dominant programming technique:

• Control flow coverage criteria are the most widely 
used. In that category, [DO-178B] has selected 
statement coverage, condition/decision coverage 
and MC/DC (Modified Condition/Decision 
Coverage) depending on the safety integrity level.

• Even most data flow coverage criteria found in 
the literature have been primarily designed for 
sequential programs. They focus on the 
definitions and uses of a variable: where is a 
variable defined/redefined; has it always been 
defined before use; which definition has been 
activated before use?

These existing criteria are a valuable source of 
inspiration for SCADE model coverage. 
However, in order to define relevant criteria for 
SCADE models, we need to take into account 
the characteristics of SCADE:

• A SCADE model describes the functionality of 
software, while a C program describes its 
implementation. As it will be shown in the next 
section, this creates a major difference both in 
terms of abstraction level (feature coverage versus 

code coverage) and in terms of coverage of 
multiple occurrences.

• SCADE models are based on functional data 
flow, while most programming languages and 
their criteria are sequential.

• Every SCADE node that is not under activation 
condition is computed at each cycle. This makes 
the control flow somehow “degenerated” 
(compared to a traditional program) for the vast 
majority of SCADE models, which contain few 
activation conditions.

• Regarding the variables definitions/use flow, a 
SCADE model explicitly describes this flow, and 
the language contains semantic integrity rules for 
this flow: every variable in the model is defined 
once and only once. The SCADE tools verify 
such rules.

In order to define proper criteria, we have taken 
into account the following requirements:

• They should capture the activation of elementary 
functions in a SCADE model.

• They should be simple and easy to understand by 
the persons developing or verifying the high-level 
or low-level requirements.

• They should be reasonably easy to capture and 
analyze.

Operators are the building blocks of SCADE 
models. A SCADE model is a network of 
operators, where data flows from one operator 
to another through connections. Each operator 
is characterized by a set of features, which are 
characteristic of the operator’s elementary 
functions.

The most basic feature for an operator 
corresponds to the fact that an operator is 
activated. This criterion is similar to the 
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procedure call criterion for code. In a SCADE 
network, all operators in a node N are 
systematically activated as soon as node N is 
activated. Activation of a node is determined by 
its activation condition, if there is one; otherwise 
it is activated at each cycle. So, this criterion is 
very weak, and thus we propose more relevant 
criteria.

The following example illustrates the kind of 
coverage criterion that we propose. It is based 
on the characteristic features of an operator and 
can be recorded for every instance of this 
operator during the execution of a model.

• Example: Confirmator
A Confirmator is a library operator whose 
purpose is to validate a Boolean input. Its 
output O is true when its input I remained true 
during at least N cycles, and is false otherwise. 

A reasonable criterion corresponds to covering 
the following features:

• Any false input triggers a negative output (I is 
false -> O is false)

• Confirmation (I has been true for N cycles -> 
O true)

6.4.2 LLR coverage analysis with 
SCADE Suite MTC

SCADE MTC (Model Test Coverage) is a 
module of SCADE Suite, which allows 
measuring the coverage of a SCADE model by a 
high-level requirements-based test suite. The 
purpose of this measure is to assess how 
thoroughly the SCADE model has been 
simulated. As described in the previous section, 
the coverage criterion is based on the 
observation of operator features activation, each 
operator being associated with a set of 
characteristic features. Figure 6.1 shows the 
position of Model Test Coverage within the 
software verification flow.
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Figure 6.1: Position of SCADE Suite Model Test Coverage (MTC)

The use of SCADE MTC is decomposed in the 
following phases:

1 Model Coverage Acquisition: Running test 
cases in the SCADE Simulator, while 
measuring the coverage of each operator.

2 Model Coverage Analysis: Identifying the 
SCADE operators that have not been fully 
covered.

3 Model Coverage Resolution: Providing the 
explanation or the necessary fixes for each 
operator that has not been fully covered. 
Fixes can be in the high-level requirements, in 
the SCADE model, or in both.

Figure 6.2 below illustrates the use of MTC. 
Coverage of each operator is indicated via 
colors and percentages. The tool gives a detailed 
explanation of the operator features that have 
not been fully covered.
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Figure 6.2: Using SCADE Suite Model Test Coverage (MTC)

Let us further detail Model Coverage Analysis, 
which allows uncovering model operator 
features that have not been activated. This may 
reveal the following deficiencies:

1 Shortcomings in high-level requirements-
based test procedures: In that case, 
resolution consists of adding missing 
requirements-based test cases.

2 Inadequacies in the high-level 
requirements: In that case, resolution 
consists of fixing HLRs and updating the test 
suite.

3 Dead parts in the SCADE model: In that 
case, resolution may consist of removing the 
dead feature, assessing the effect and the 
needs for reverification.
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4 Deactivated parts in the SCADE model: 
In that case, resolution may consist of 
explaining the reason why a deactivated 
feature remains in the design. 

EXAMPLE 1: INSUFFICIENT TESTING

Figure 6.3: Non activated Confirmator

• Analysis: The Confirmator in Figure 6.3 was not 
raised during testing activities. Analysis concludes 
that the requirement is correct but testing is not 
sufficient.

• Resolution: Develop additional tests.

EXAMPLE 2: LACK OF ACCURACY IN THE HLR

The Integrator in Figure 6.4 was never reset 
during the tests: Is the “reset” behavior an 
unintended function?

Figure 6.4: Uncovered “reset” activation

• Analysis: Resetting the filter here is a correct SW 
requirement, but the HLR did not specify that 
changing speed regulation mode implies resetting 
all filters, so no test case exercised this situation.

• Resolution: Complement the HLR.

IMPACT ON UNINTENDED FUNCTIONS

In a traditional process (Figure 6.5), unintended 
functions can be introduced both during the 
design process and during the coding process. 
Structural code coverage analysis is needed to 
detect both categories.

Figure 6.5: Sources of unintended functions in a traditional process
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When using MTC and KCG as illustrated on 
Figure 6.6, unintended functions are detected 
and eliminated at the model level:

• MTC makes it possible to detect and resolve 
unintended functions in the LLR (SCADE 
model).

• KCG does not introduce unintended functions 
into the source code, which exactly reflects the 
LLR.

Figure 6.6: Elimination of unintended functions with MTC and KCG

6.5  Structural Coverage 
of the Source Code

6.5.1 Control structure coverage

The structural coverage objective depends on 
the safety level; for instance, Level A requires 
MC/DC.

Structural coverage has to be verified both on:

• the complete manual code;

• the C sample (see 5.5 The Combined Testing 
Process).

Test cases ensuring MC/DC structural coverage 
of all the basic C blocks are developed. They are 
exercised both on the host and on the target 
processor. Then, one can assert that every 
required computational path through the C code 
for the primitive computational block level has 
been exercised correctly via the [CVK] in the 
target environment. 

For a given implementation of a low-level 
requirement at a node, model coverage does not 
necessarily guarantee that every piece of 
generated code for that low-level requirement 
has been exercised in that context. This is 
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similar to a situation that may occur with run-
time libraries. Such libraries have commonly 
been approved through separate, structure-
based testing and analysis in unrelated avionics 
applications. For any paths exercised by tests 
that meet the model-coverage criteria, though, 
the behavior of the source code will be correct. 
If subsequent changes to the low-level 
requirements activate other paths in the source 
code, their behavior will also be correct, given 
that all such paths have been evaluated as part 
of the [CVK]. While not a necessary part of the 
argument, analysis is facilitated by the simple 
nature of the generated code in the primitive 
blocks. Most blocks are implemented with three 
or fewer lines of C source. No block comprises 
more than twelve lines of C.

6.5.2 Data coupling and control 
coupling

DO-178B requires that test coverage of the data 
and control coupling are achieved. It defines:

• Data coupling as “The dependence of a software 
component on data not exclusively under the control of 
that software component.”

• Control coupling as “The manner or degree by 
which one software component influences the execution of 
another software component.”

DATA COUPLING

Data coupling verification is based on the 
analysis of integration regarding:

• Interfaces between modules
• Handling of global data
• Input/output buffers sizing
• Etc.

The verification of data coupling is done as 
follows:

• Data coupling between elements of the 
SCADE model is verified automatically with 
the SCADE semantic Checker. SCADE KCG 
ensures that this consistent data coupling at the 
model level is correctly reflected in the C code.

• Data coupling between SCADE and manual 
code is verified manually in the traditional way.

CONTROL COUPLING

Control coupling verification is based on the 
analysis of integration regarding:

• Execution of call sequences
• Analysis of scheduling
• Analysis of WCET
• Etc.

The verification of control coupling is done as 
follows:

• Control coupling between elements of the 
SCADE model is verified automatically with 
the SCADE semantic Checker. SCADE KCG 
ensures that consistent control coupling at the 
model level is correctly reflected in the C code.

• Control coupling between SCADE and manual 
code is verified manually in the traditional way.

Moreover, MTC coverage verifies that control 
coupling and data coupling have been effectively 
exercised by test cases.
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6.6  Summary of 
Verification of 
Verification

Table 6.2 summarizes verification objectives and 
methods for the verification activities.  
Table 6.2: DO-178B Table A-7 Objectives 
Achievement 

Objective Verification Method

1 Test procedures are 
correct.

Test procedure review.
N.B.: concerns both 
host and target.

2 Test results are correct 
and discrepancies are 
explained.

Test results review.
N.B.: concerns both 
host and target.

3 Test coverage of high-
level requirements is 
achieved.

HLR coverage by 
combination of 
simulation and target 
tests.

4 Test coverage of low-level 
requirements is achieved.

Model Test Coverage

5 Test coverage of software 
structure (modified 
condition/decision) is 
achieved.

MC/DC on C sample. 
MTC on SCADE model.

6 Test coverage of software 
structure (decision 
coverage) is achieved.

Decision coverage on C 
sample.
MTC on SCADE model.

7 Test coverage of software 
structure (statement 
coverage) is achieved.

Statement coverage on 
C sample.
MTC on SCADE model.

8 Test coverage of software 
structure (data coupling 
and control coupling) is 
achieved.

Semantic check of 
SCADE model.
Manual verification of 
integration with manual 
code.

Table 6.2: DO-178B Table A-7 Objectives 
Achievement (Continued)

Objective Verification Method
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B Acronyms and Glossary

ACRONYMS

A/C Aircraft
COTS Commercial Off-The-Shelf.
CVK Compiler Verification Kit
DER Designated Engineering 

Representative
DV SCADE Design Verifier
EUROCAE European Organization for Civil 

Aviation Equipment
FAA Federal Aviation Administration
HLR High-level Requirement
KCG SCADE Qualified Code Generator
LLR Low-level Requirement.
JAA Joint Aviation Authorities
JAR Joint Aviation Requirements
MC/DC Modified Condition/Decision 

Coverage
N/A Not Applicable
RTCA Requirements and Technical 

Concepts for Aviation, RTCA, Inc.
SCADE Safety Critical Application 

Development Environment
SQA Software Quality Assurance
SW Software

GLOSSARY

Certification Legal recognition by the certification 
authority that a product, service, 
organization, or a person complies 
with the requirements. Such 
certification comprises the activity of 
technically checking the product, 
service, organization, or person, and 

the formal recognition of compliance 
with the applicable requirements by 
issue of a certificate, license, approval, 
or other documents as required by 
national laws and procedures. In 
particular, certification of a product 
involves: (a) the process of assessing 
the design of a product to ensure that 
it complies with a set of standards 
applicable to that type of product so 
as to demonstrate an acceptable level 
of safety; (b) the process of assessing 
an individual product to ensure that it 
conforms with the certified type 
design; (c) the issuance of a certificate 
required by national laws to declare 
that compliance or conformity has 
been found with standards in 
accordance with items (a) or (b) 
above. 

Certification credit Acceptance by the certification 
authority that a process, product, or 
demonstration satisfies a certification 
requirement. 

Condition A Boolean expression containing no 
Boolean operators. 

Coverage analysis The process of determining the 
degree to which a proposed software 
verification process activity satisfies 
its objective. 

Data coupling The dependence of a software 
component on data not exclusively 
under the control of that software 
component. 

Deactivated code Executable object code (or data) that, 
by design, is either (a) not intended to 
be executed (code) or used (data), for 
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example, a part of a previously 
developed software component; or 
(b) is only executed (code) or used 
(data) in certain configurations of the 
target computer environment, for 
example, code that is enabled by a 
hardware pin selection or software 
programmed options. 

Dead code Executable object code (or data) that, 
as a result of a design error, cannot be 
executed (code) or used (data) in an 
operational configuration of the target 
computer environment and is not 
traceable to a system or software 
requirement. An exception is 
embedded identifiers. 

Decision A Boolean expression composed of 
conditions and zero or more Boolean 
operators. A decision without a 
Boolean operator is a condition. If a 
condition appears more than once in 
a decision, each occurrence is a 
distinct condition.

Error With respect to software, a mistake in 
requirements, design, or code. 

Failure The inability of a system or system 
component to perform a required 
function within specified limits. A 
failure may be produced when a fault 
is encountered. 

Fault A manifestation of an error in 
software. A fault, if it occurs, may 
cause a failure. 

Fault tolerance The built-in capability of a system to 
provide continued correct execution 
in the presence of a limited number 
of hardware or software faults. 

Formal methods Descriptive notations and analytical 
methods used to construct, develop, 
and reason about mathematical 
models of system behavior. 

Hardware/software integration
The process of combining the 
software into the target computer. 

High-level requirements
Software requirements developed 
from analysis of system requirements, 
safety-related requirements, and 
system architecture. 

Host computer The computer on which the software 
is developed. 

Independence Separation of responsibilities, which 
ensures the accomplishment of 
objective evaluation. (1) For software 
verification process activities, 
independence is achieved when the 
verification activity is performed by a 
person(s) other than the developer of 
the item being verified, and a tool(s) 
may be used to achieve an 
equivalence to the human verification 
activity. (2) For the software quality 
assurance process, independence also 
includes the authority to ensure 
corrective action. 

Integral process A process that assists the software 
development, processes, and other 
integral processes and, therefore, 
remains active throughout the 
software life cycle. The integral 
processes are the software verification 
process, the software quality 
assurance process, the software 
configuration management process, 
and the certification liaison process. 

Low-level requirements
Software requirements derived from 
high-level requirements, derived 
requirements, and design constraints 
from which source code can be 
directly implemented without further 
information.
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Modified Condition/Decision Coverage
Every point of entry and exit in the 
program has been invoked at least 
once, every condition in a decision in 
the program has taken all possible 
outcomes at least once, every decision 
in the program has taken all possible 
outcomes at least once, and each 
condition in a decision has been 
shown to independently affect that 
decision's outcome. A condition is 
shown to independently affect a 
decision's outcome by varying just 
that condition, while holding fixed all 
other possible conditions. 

Robustness The extent to which software can 
continue to operate correctly despite 
invalid inputs. 

Standard A rule or basis of comparison used to 
provide both guidance in and 
assessment of the performance of a 
given activity or the content of a 
specified data item. 

Test case A set of test inputs, execution 
conditions, and expected results 
developed for a particular objective, 
such as to exercise a particular 
program oath or to verify compliance 
with a specific requirement. 

Tool qualification The process necessary to obtain 
certification credit for a software tool 
within the context of a specific 
airborne system. 

Traceability The evidence of an association 
between items, such as between 
process outputs, between an output 
and its originating process, or 
between a requirement and its 
implementation. 

Validation The process of determining that the 
requirements are the correct 
requirements and that they are 
complete. The system life-cycle 
process may use software 
requirements and derived 
requirements in system validation. 

Verification The evaluation of the results of a 
process to ensure correctness and 
consistency with respect to the inputs 
and standards provided to that 
process.





Methodological Handbook
C - 77

SCADE Suite™ for DO-178B

C DO-178B Qualification of SCADE KCG 4.2

C-1  What Does 
Qualification Mean and 
Imply?

Qualification of a tool is needed when processes 
are eliminated, reduced, or automated by the use 
of the tool, without its output being otherwise 
verified. The entire qualification process is 
described in Section 12.2 of DO-178B.

Development tools are those whose output is 
part of the embedded software; thus, they can 
introduce errors in that embedded software. 

The way to achieve the qualification of a 
development tool is as follows:

• If a software development tool is to be qualified, 
the software development processes for the tool 
should satisfy the same objectives as the software 
development processes of embedded software. 

• The software level assigned to the tool should be 
the same as that of the embedded software it 
produces, unless the applicant can justify a 
reduction in software level of the tool to the 
certification authority. 

In summary, users have to make sure that if 
they intend to use a tool, that tool has been 
developed in such a way that qualifies for its 
intended role (in our case, development) and at 
the level of the target software. 

C-2  Development of 
SCADE KCG 4.2

The SCADE KCG 4.2 Code Generator has 
been developed to meet the objectives of DO-
178B for Level A. These objectives were 
described in the following documents, which 
have been audited by the Certification 
Authorities on a number of past projects: 

• The Tool Operational Requirements Data 
(TORD) presents the software requirements 
specification and is split into the following 
documents:
• Reference Manual of the SCADE and Lustre 

languages.
• Requirements Data of SCADE/KCG 4.2.

• The Tool Qualification Plan (TQP) presents the 
strategy and the organization for the Qualification 
of the KCG 4.2 Code Generator and refers to 
other project plans.

• The Tool Accomplishment Summary (TAS) 
presents the compliance status with the Tool 
Qualification Plan, the usage conditions, and the 
possible limitations of the tool.

• The Tool Configuration Index (TCI) presents 
the configuration status of the tool.
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C-3  SCADE KCG 4.2 Life-
Cycle Documentation

Table C.1 describes the documents that must be 
considered by the Certification Authorities 
during the qualification audit of KCG 4.2. 

This list conforms to FAA Order 8110.49 
“Software Approval Guidelines,” Chapter 9 
[Order 8110.49]. 

Documents that are “Submit” must be submitted 
to the Certification Authorities. They become 
part of the SCADE KCG 4.2 Qualification Kit 
that is delivered to SCADE users. 

Documents that are “Available” can be audited 
by the Certification Authorities. 

Table C.1: Documents required for SCADE KCG 4.2 qualification audit by Certification Authorities

Data DO-178B 7 FAA 
Requirement

SCADE SuiteTM KCG Package DO-178B 
Reference

Tool Qualification Plan Submit Tool Qualification Plan of KCG 12.2.3.a(1), 
12.2.3.1, & 12.2.4

Tool Operational 
Requirements

Available - Version Content
- Software requirements data of KCG, S2L, 
and L2C
- Reference Manual of SCADE & Lustre 
Languages

12.2.3.c(2) & 
12.2.3.2

Tool Accomplishment 
Summary

Submit Tool Accomplishment Summary of KCG 12.2.3.c(3) & 
12.2.4

Tool Verification 
Records
(for example, test cases, 
procedures, and code)

Available Accessible at Esterel Technologies 
premises

12.2.3

Tool Qualification 
Development data
(for example, 
requirements, design, and 
code)

Available Accessible at Esterel Technologies 
premises

12.2.3

Software Configuration 
Index

Submit Software Configuration Index of KCG 9.3
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D The Compiler Verification Kit (CVK)

D-1  CVK Product 
Overview

WHAT CVK IS

CVK is a test suite, whose purpose is to verify 
that a compiler correctly compiles code 
generated by SCADE KCG.

 While KCG qualification ensures that source 
code conforms to LLRs developed with 
SCADE, the purpose of CVK is to verify that 
the C compiler correctly compiles the C code 
generated by KCG. 

WHAT CVK IS NOT

1 CVK is NOT a validation suite of the C 
compiler. Such validation suites are generally 
available on the market. They rely on running 

large numbers of test cases covering all 
programming language constructs, proper 
number of combinations, and various 
compiling options. It is expected that the 
applicant requires evidence of this activity 
from the compiler provider (or other source).

2 CVK is NOT an executable software.

ROLE OF CVK

CVK is a test suite: it is part of verification 
means of the KCG users.

Figure D.1 shows the complementary roles of 
KCG and CVK in the qualification of the 
customer’s development environment from 
Esterel Technologies to the customer.
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Figure D.1: Role of KCG and CVK in the qualification of the customer’s development environment

CVK CONTENTS

The CVK product is composed of the following 
items:

• A CVK User’s Manual containing:
• Installation and use instructions
• Description of the underlying methodology
• Product structure description
• SCADE models description
• C sample description
• Test cases and procedures description

• The SCADE-generated C sample to verify the C 
compiler.

• The associated SCADE models. This enables 
customers to generate the C sample with KCG in 

their environment and allows them to compare 
the generated code with the reference code 
provided in the CVK test suite and verify their 
KCG installation.

• Test cases to cover the SCADE C subset with an 
MC/DC of 100% coverage for all KCG settings.

• Automated test procedures for Windows 
platform.

C SAMPLE CHARACTERISTICS

The C sample exhibits the following 
characteristics:

• It contains all individual C constructs that can 
ever be generated by KCG 4.2 from a correct 
SCADE model.
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• It contains the C code that is generated for each 
SCADE operator.

• It contains supplementary combinations for the 
specific nesting of C constructs that can be 
produced. Examples:
• Up to five operands for operators such as +, as 

in “A + B + C + D + E” or 
“(A x B) + (C x E)” etc.

• Using selection in a deep structure, as in 
“A.B.C.D.E”.

• A node with 800 inputs.

D-2  Motivation for 
Sample-Based Testing

The source code generated by KCG is a small 
subset of C with a low level of complexity:

• It is composed of a sequence of basic blocks and/
or calls to C functions implementing children 
nodes, as shown in Figure D.2 when expansion is 
not used.

• Memory allocation is fully static (no dynamic 
memory allocation).

• There is no recursion and no looping (except a 
few local, fixed-size loops).

• The code is decomposed into elementary 
assignments to local variables (this restricts use of 
the optimization options of the C compiler + 
SCADE KCG option).

• There is only single static assignment (SSA) to a C 
variable within a C function.

• Expressions are explicitly parenthesized.
• No dynamic address calculation is performed (no 

pointer arithmetic).

• It contains no array indexing (since there are no 
arrays, except for FBY).

• There are no implicit conversions.
• There is no expression with side-effects (no i++, 

no a += b, no side-effect in function calls).
• No functions are passed as arguments.

Figure D.2: Sequential structure of the generated 
code (without expansion)

The basic blocks composing the software do 
not contain branching outside themselves. Table 
D.1 below summarizes which blocks may or not 
contain control structures that are local to their 
enclosing blocks. Generally, these control 
structures are not nested; they are put in 
sequence. The only exception is generated when 
expanding a node under condact or following a 
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“when” operator; this requires verifying that the 
call depth of the expanded subtree is lower than 
the call depth of the one used with CVK..

These building blocks define a set of 
equivalence classes. Thus, a representative 
sample of those building blocks, covering these 
equivalence classes, is used to verify that the 
compiler correctly compiles these building 
blocks into machine code. 

This approach is similar to the approach 
proposed in [CAST-12] for the analysis of 
source to object code traceability, in the sense 
that verification can be performed on a sample 
when there are strict coding standards, 
restricting the programming language to a 
subset:

“The applicant may elect to impose coding standards 
throughout the program that might limit the number of 
programming operations and libraries to a smaller subset 
of the programming language and compiler-provided 
library functions. If evidence can be provided that the 
operational program and library functions fully comply 
with the coding standards, then the certification authority 
may accept analysis that is done on the subset. Once all 
of the existing code can be shown to be in compliance 
with the coding standards, one or more tests combining 
all of the constructs specified in the coding standards can 
be produced and compiled. To establish the validity of the 
test programs, the applicant should document the results 
of a comparison between the results of the analysis and 
some representative code from the actual operational 
program. The representative code should be chosen from 
complex functions where a higher probability of added, 
untraceable functionality might exist (for example, 
software handling arrays, potential hidden calls to 
libraries, exception handlers, traps or loop constructs).”

D-3  Strategy for 
Developing CVK

Figure D.3 summarizes the strategy for 
developing and verifying CVK.

Table D.1: Type of code generated from SCADE 
operators 

SCADE 
Construct

Control Structure in the 
Generated Block

Predefined 
arithmetic 
operators

None

Structured data 
handling

None

Comparison 
operators

None

Boolean operators 
(and, or, xor, not, 
sharp)

None in source code.
Local branching in the machine code, 
if bitwise option is not used.

Selection operator 
(if, case)

Local to the block

->, pre, fby Local to the block

“condact” 
operator

Local to the block if not expanded.
"if" nested down to the next 
unexpanded node otherwise.

“when” operator "if" nested down to the next 
unexpanded node.
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Figure D.3: Strategy for developing and verifying 
CVK

CVK has been built in the following way:

1 Identify the C subset generated by KCG by 
analyzing the L2C requirement specification 
(L2C is the back-end of KCG generating the 
C code). Coverage of L2C is verified. 
Elementary C constructs are identified in 
terms of the C-ISO standard.

2 Build the C sample. 

a A SCADE sample covering all SCADE 
constructs is built as material for code 
generation. 

b Each C sample is obtained by combining a 
SCADE sample item with appropriate KCG 
options. 

c Coverage of the C subset by the C sample is 
verified. Coverage of the SCADE language is 
also verified as a secondary objective, although 
it is not required for the verification of the 
compiler itself. If necessary, additional items 
are added in the SCADE sample and/or 
additional KCG options are exercised.

3 Develop a set of input vectors and expected 
output vectors to test C sample. These tests 
are executed on a host platform to verify:

a Conformance of outputs
b MC/DC coverage of the code

D-4  Use of CVK

CVK is used as follows (Figure D.4):

• The CVK User’s Manual is an appendix of the 
customer’s verification plan, more precisely in the 
qualification plan of the user’s development 
environment.

• The CVK test suite is instantiated for the 
customer’s verification process, more precisely in 
the qualification process of one’s development 
environment, for the verification of the compiler. 
Users must verify that the complexity of their 
model (depth of expressions, data structures, and 
call tree) is lower than the one of the model in 
CVK. Otherwise, they shall either upgrade CVK 
accordingly or decompose the model.
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Figure D.4: Use of CVK items in the customer’s processes

Figure D.5 details the role of CVK items 
(colored boxes) in the verification of the 
compiler:

• The C sample is generated by KCG from the 
SCADE sample with specified KCG options. This 
is done on the host computer.

• From the C sample, the C cross-compiler/linker 
generates an executable. This can be done on the 
host.

• The executable is run on the target processor. It 
reads input vectors and computes output vectors.

• The output vectors are compared to reference 
vectors, based on the requirements, namely the 
semantics of the C sample, which is the same as 

the semantics of the SCADE model. This can be 
done on the host computer.

If there is any difference between the collected 
results and the reference results, then analysis 
has to be conducted to find the origin of the 
difference(s). If it is an error in the use or 
contents of CVK, then this has to be fixed. If it 
is due to an error in the compiler, then this 
probably means that this compiler has to be 
rejected, since the SCADE-generated code is 
very simple, and if the compiler is not able to 
compile it correctly, it means it is definitely not 
reliable.
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Figure D.5: Position of CVK items in the compiler verification process

The cross-compiler/linker has to be run with 
the same options as for the manual code and as 
for the rest of the KCG-generated code.
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