
Methodological Handbook
Efficient Development of Safe

Avionics Software with DO-178B
Objectives Using SCADE Suite

CONTACTS

LOCAL SUPPORT SITES

© 2006 Esterel Technologies SA. All rights reserved Esterel Technologies SA. SCADE Suite is a trademark of Esterel Technologies.

Legal Contact US Technical Support

Esterel Technologies SA
Parc Euclide - 8, rue Blaise Pascal
78990 Elancourt
FRANCE
Phone: +33 1 30 68 61 60
Fax: +33 1 30 68 61 61

Esterel Technologies Inc.
100 View Street, Suite 208
Mountain View, CA 94041
UNITED STATES
Phone: +1 650 641 3250

Submit questions to Technical Support at support@esterel-technologies.com.

Contact one of our Sales representatives at sales@esterel-technologies.com.

Direct general questions about Esterel Technologies to info@esterel-technologies.com.

Discover latest news on our products and technology at www.esterel-technologies.com.

Northern Europe Southern Europe

Esterel Technologies
PO Box 7995
Crowthorne RG45 9AA
UNITED KINGDOM
Phone: +44 1344 780898

Esterel Technologies SA
Park Avenue - 9, rue Michel Labrousse
31100 Toulouse
FRANCE
Phone: +33 5 34 60 90 50

Central Europe China

Esterel Technologies GmbH
Otto-Hahn - Str. 13b
D- 85521 Ottobrunn - Riemerling
GERMANY
Phone: +49 89 608 75537

Esterel Technologies
No. 10-401, Shanghai Pudong Software Park
498, GuoShouJing Road
201203, Shanghai
P.R. CHINA
Phone: +86-21 5027 1120

Shipping date: February 2006 Revision: SC-HB-DO178B - SC/2012u6-KCG4.2

mailto:support@esterel-technologies.com
mailto:sales@esterel-technologies.com
mailto:info@esterel-technologies.com
http://www.esterel-technologies.com

Methodological Handbook

SCADE Suite™ for DO-178B

Abstract

This document addresses the issue of cost and productivity in the development of safe embedded

software for avionics applications. Such projects, driven by the DO-178B guidelines, traditionally

require very difficult and precise development and verification efforts. This handbook reviews the

regulatory guidelines and then presents the optimization of the development and verification

processes that can be achieved with the SCADE Suite methodology and tools. SCADE Suite

supports the automated production of a large part of the development life-cycle elements. The

effect of using SCADE Suite together with the qualified KCG 4.2 Code Generator will be presented

in terms of savings in the development and verification activities, following a step-by-step

approach and considering the objectives that have to be met at each step.

Methodological Handbook
i

SCADE Suite™ for DO-178B

1. Document Background, Objectives, and Scope 1

1.1 Background 1

1.2 Objectives and Scope 1

2. Development of Safety-Related Airborne Software 3

2.1 ARP 4754 and DO-178B Guidelines 3

2.1.1 Introduction 3
2.1.2 ARP 4754 3
2.1.3 DO-178B 3
2.1.4 Relationship between ARP 4754 and DO-178B 4
2.1.5 Development assurance levels 5
2.1.6 Objective-oriented approach 5
2.1.7 DO-178B processes overview 6

2.2 DO-178B Development Processes 7

2.3 DO-178B Verification Processes 8

2.3.1 Objectives of software verification 8
2.3.2 Reviews and analyses of the high-level requirements 8
2.3.3 Reviews and analyses of the low-level requirements 9
2.3.4 Reviews and analyses of the source code 9
2.3.5 Software testing process 10

2.4 What Are the Main Challenges in the Development of Airborne Software? 12

2.4.1 Avoiding multiple descriptions of the software 12
2.4.2 Preventing ambiguity and lack of accuracy in specifications 12
2.4.3 Avoiding low-level requirements and coding errors 13
2.4.4 Allowing for an efficient implementation of code on target 13
2.4.5 Finding specification and design errors as early as possible 13
2.4.6 Lowering the complexity and cost of updates 14
2.4.7 Improving verification efficiency 14
2.4.8 Providing an efficient way to store Intellectual Property (IP) 14

Table of Contents

SCADE Suite™ for DO-178B

Methodological Handbook
ii

3. Model-Based Development with SCADE Suite and KCG 15

3.1 What Is SCADE? 15

3.2 SCADE Modeling Techniques 16

3.2.1 Familiarity and accuracy reconciled 16
3.2.2 SCADE node 17
3.2.3 Block diagrams for continuous control 18
3.2.4 Safe State Machines for discrete control 21
3.2.5 Mixed continuous/discrete control 22
3.2.6 Cycle-based intuitive computation model 22
3.2.7 SCADE data typing 23
3.2.8 SCADE Suite as a model-based development environment 23
3.2.9 SCADE modeling and safety benefits 24

4. Software Development Activities with SCADE Suite 27

4.1 Overview of Software Development Activities 27

4.2 Software Requirements Process with SCADE 28

4.3 Software Design Process with SCADE 29

4.3.1 Architecture design 30
4.3.2 SCADE low-level requirements development 31

4.4 Software Coding Process 34

4.4.1 Code generation from SCADE data flow diagrams 35
4.4.2 Code generation from SCADE SSMs 37

4.5 Software Integration Process 39

4.5.1 Integration aspects 39
4.5.2 Input/output 39
4.5.3 Integration of external data and code 39
4.5.4 SCADE scheduling and tasking 40

4.6 Teamwork 43

Methodological Handbook
iii

SCADE Suite™ for DO-178B

5. Software Verification Activities 45

5.1 Overview 45

5.2 Verification of the SCADE High-Level Requirements 45

5.2.1 Verification objectives for the HLR 45
5.2.2 Verification methods for HLR 46
5.2.3 Verification summary for HLR 47

5.3 Verification of the SCADE Low-Level Requirements and Architecture 47

5.3.1 Verification objectives 47
5.3.2 SCADE model accuracy and consistency 48
5.3.3 Compliance with design standard 48
5.3.4 Traceability from SCADE LLR to HLR 48
5.3.5 Verifiability 49
5.3.6 Compliance with high-level requirements 49
5.3.7 Partitioning 53
5.3.8 Verification summary for LLR and architecture 53

5.4 Verification of Coding Outputs and Integration Process 54

5.4.1 Verification objectives 54
5.4.2 Impact of code generator qualification 54
5.4.3 Verification summary 55

5.5 The Combined Testing Process 55

5.5.1 Verification objectives 55
5.5.2 Divide-and-conquer approach 56
5.5.3 Combined testing process organization 56
5.5.4 Verification summary 58

6. Verification of the Verification Activities 59

6.1 Verification Objectives 59

6.2 Verification of Test Procedures and Test Results 59

6.3 HLR Coverage Analysis 59

6.4 LLR Coverage Analysis with MTC 60

6.4.1 Objectives and coverage criteria 60

SCADE Suite™ for DO-178B

Methodological Handbook
iv

6.4.2 LLR coverage analysis with SCADE Suite MTC 62
6.5 Structural Coverage of the Source Code 66

6.5.1 Control structure coverage 66
6.5.2 Data coupling and control coupling 67

6.6 Summary of Verification of Verification 68

Appendixes and Index 69

A References 71

B Acronyms and Glossary 73

C DO-178B Qualification of SCADE KCG 4.2 77

C-1 What Does Qualification Mean and Imply? 77

C-2 Development of SCADE KCG 4.2 77

C-3 SCADE KCG 4.2 Life-Cycle Documentation 78

D The Compiler Verification Kit (CVK) 79

D-1 CVK Product Overview 79

D-2 Motivation for Sample-Based Testing 81

D-3 Strategy for Developing CVK 82

D-4 Use of CVK 83

INDEX 87

Methodological Handbook
v

SCADE Suite™ for DO-178B

Figure 2.1: Relationship between ARP 4754 and DO-178B processes 4
Figure 2.2: DO-178B life-cycle processes structure 6
Figure 2.3: DO-178B development processes 7
Figure 2.4: DO-178B testing processes 10
Figure 3.1: SCADE addresses the applicative part of software 15
Figure 3.2: Control engineering view of a Controller 16
Figure 3.3: Software engineering view of a Controller 16
Figure 3.4: Graphical notation for an integrator node 17
Figure 3.5: A SCADE block diagram for roll management 18
Figure 3.6: Detection of a causality problem 19
Figure 3.7: Functional expression of concurrency in SCADE 20
Figure 3.8: Initialization of flows 20
Figure 3.9: Safe State Machine for RollMode 21
Figure 3.10: The cycle-based execution model of SCADE Suite 22
Figure 3.11: Model-based development with SCADE Suite and KCG 4.2 24
Figure 4.1: Software development processes with SCADE Suite 27
Figure 4.2: Development of high-level and low-level requirements with SCADE 28
Figure 4.3: Top-level view of a simple flight control system 29
Figure 4.4: The software design process with SCADE 29
Figure 4.5: Inserting a Confirmator in a Boolean input flow 31
Figure 4.6: Inserting a Limiter in an output flow 31
Figure 4.7: A first order filter 32
Figure 4.8: Alarm detection logic 33
Figure 4.9: Safe State Machine for RollMode management 33
Figure 4.10: The software coding process with SCADE 35
Figure 4.11: SCADE data flow to generated C source code traceability 36
Figure 4.12: Comparing Call and Inline modes 37
Figure 4.13: C code generation from SSMs 38
Figure 4.14: SCADE SSM to generated C source code traceability 38
Figure 4.15: Three buttons in a parallel data flow 39
Figure 4.16: SCADE execution semantics 40
Figure 4.17: SCADE code integration 41

List of Figures

SCADE Suite™ for DO-178B

Methodological Handbook
vi

Figure 4.18: Modeling a birate system 41
Figure 4.19: Timing diagram of a bi-rate system 42
Figure 4.20: Modeling distribution of the slow system over four cycles 42
Figure 4.21: Timing diagram of the distributed computations 42
Figure 4.22: Typical teamwork organization 44
Figure 5.1: Traceability between SCADE LLR and HLR using DOORSTM Link 49
Figure 5.2: Simulation makes it possible to “play with the software specification” 50
Figure 5.3: Observer node containing landing gear safety property 51
Figure 5.4: Connecting the observer node to the landing gear controller 51
Figure 5.5: Design Verifier workflow 52
Figure 5.6: The combined testing process with KCG 57
Figure 6.1: Position of SCADE Suite Model Test Coverage (MTC) 63
Figure 6.2: Using SCADE Suite Model Test Coverage (MTC) 64
Figure 6.3: Non activated Confirmator 65
Figure 6.4: Uncovered “reset” activation 65
Figure 6.5: Sources of unintended functions in a traditional process 65
Figure 6.6: Elimination of unintended functions with MTC and KCG 66
Figure D.1: Role of KCG and CVK in the qualification of the customer’s development environment 80
Figure D.2: Sequential structure of the generated code (without expansion) 81
Figure D.3: Strategy for developing and verifying CVK 83
Figure D.4: Use of CVK items in the customer’s processes 84
Figure D.5: Position of CVK items in the compiler verification process 85

Methodological Handbook
vii

SCADE Suite™ for DO-178B

Table 2.1: Example of test cases 12
Table 3.1: Components of SCADE functional modules: nodes 17
Table 5.1: DO-178B Table A-3 45
Table 5.2: DO-178B Table A-3 Objectives Achievement 47
Table 5.3: DO-178B Table A-4 47
Table 5.4: DO-178B Table A-4 Objectives Achievement 53
Table 5.5: DO-178B Table A-5 54
Table 5.6: DO-178B Table A-5 Objectives Achievement 55
Table 5.7: DO-178B Table A-6 55
Table 5.8: DO-178B Table A-6 Objectives Achievement 58
Table 6.1: DO-178B Table A-7 59
Table 6.2: DO-178B Table A-7 Objectives Achievement 68
Table C.1: Documents required for SCADE KCG 4.2 qualification audit by Certification Authorities 78
Table D.1: Type of code generated from SCADE operators 82

List of Tables

Methodological Handbook
1 - 1

SCADE Suite™ for DO-178B

1. Document Background, Objectives, and Scope

1.1 Background

A traditional situation in the avionics industry is
that the function and architecture of an
embedded computer system (i.e., Flight Control,
Braking, Cockpit Display, etc.) are defined by
system engineers; the associated control laws are
developed by control engineers using some
informal notation or a semi-formal notation
mostly based on schema-blocks and/or state
machines; and the embedded production
software is finally specified textually and coded
by hand in C and Ada by software engineers.

In this context, qualified automatic code
generation from formal models is a technology
that may carry strong Return On Investment
(ROI), while preserving the safety of the
application. Basically, the idea is to describe the
application through a software model, including
the control laws as described above, and to
automatically generate the C code from this
model using a qualified code generator, in the
sense of DO-178B, thus bringing the following
advantages to the development life cycle:

• When a proper modeling approach is defined:
• It fulfills the needs of control engineers,

typically using such notations as data flow
diagrams and state machines.

• It fulfills the needs of software engineers by
supporting the accurate definition of the

software requirements and efficient automatic
code generation of software, having the
qualities that are expected for such applications
(i.e., efficiency, determinism, static memory
allocation, etc.).

• It allows setting up efficient new processes to
ensure that safety criteria are met.

• It saves coding time, as this is automatic.
• It saves a significant amount of verification time,

as the use of such tools guarantees that the
generated source code agrees with the model.

• It allows identifying problems earlier in the
development cycle, since most of the verification
activities can be done at model level.

• It reduces the change cycle time, since
modifications can be performed at model level
and code can automatically be regenerated.

1.2 Objectives and Scope

This document gives a careful explanation of
the system and software life cycles as described
in the ARP 4754 and DO-178B guidelines. It
then explains how to use both the proper
modeling techniques and automatic code
generation from models to obtain drastic
productivity improvements.

The document is organized as follows:

Section 2. This section provides an introduction
to the regulatory guidelines of ARP 4754 and
DO-178B that are used when developing

SCADE Suite™ for DO-178B

Methodological Handbook
1 - 2

embedded avionics software. It then describes
the main challenges in the development of
safety-critical applications, in terms of
specification, verification, and efficiency of the
resulting software.

Section 3. This section presents an overview of
the SCADE Suite methodology and tools. It
first demonstrates how SCADE maintains the
highest-quality standards, while reducing costs
based on a “correct-by-construction” approach
and the use of a qualified automatic code
generator, according to the following points:

• A unique and accurate software description, which
enables the prevention of many specification or
design errors, can be shared among project
participants.

• The early identification of most remaining design
errors makes it possible to fix them in the
requirements/design phase rather than in the code
testing or integration phase.

• Qualified code generation not only saves writing
the code by hand, but also the cost of verifying it.

Section 4. This section is devoted to the
software development activities using SCADE
tools, including the use of the KCG 4.2
qualified code generator. It also explains how
SCADE-generated code can be integrated on
target, including when it has to interact with an
RTOS (Real Time Operating System).

Section 5. and Section 6. These sections present
the verification activities that take place when
SCADE is used, including model-level
verification with the Simulator, the Design
Verifier, and the Model Test Coverage tool, as
well as specific verification activities aimed at
detecting compiler errors.

Appendix A lists the references.

Appendix B is a glossary of terms.

Appendix C details the KCG 4.2 qualification
process.

Appendix D details the Compiler Verification
Kit (CVK).

Methodological Handbook
2 - 3

SCADE Suite™ for DO-178B

2. Development of Safety-Related Airborne Software

2.1 ARP 4754 and DO-
178B Guidelines

2.1.1 Introduction

The avionics industry requires that safety critical
software be assessed according to strict
certification authority1 guidelines before it may
be used on any commercial airliner. ARP 4754
and DO-178B are guidelines used both by the
companies developing airborne equipment and
by the certification authorities.

2.1.2 ARP 4754

ARP 4754 was defined in 1996 by the SAE
(Society of Automotive Engineers).

This document discusses the certification
aspects of highly integrated or complex systems
installed on an aircraft, taking into account the
overall aircraft operating environment and
functions. The term “highly integrated” refers to
systems that perform or contribute to multiple
aircraft-level functions.

The guidance material in this document was
developed in the context of Federal Aviation
Regulations (FAR) and Joint Airworthiness
Requirements (JAR) Part 25. In general, this
material is also applicable to engine systems and
related equipment.

ARP 4754 addresses the total life cycle for
systems that implement aircraft-level functions.
It excludes specific coverage of detailed systems,
including software and hardware design
processes beyond those of significance in
establishing the safety of the implemented
system. More detailed coverage of the software
aspects of design are dealt with in the DO-178B
(RTCA)/ED12B (EUROCAE) document.
Coverage of complex hardware aspects of
design are dealt with in RTCA document DO-
254.

2.1.3 DO-178B

DO-178B/ED-12 was first published in 1992 by
RTCA (Requirements and Technical Concepts
for Aviation) and EUROCAE (a non-profit
organization addressing aeronautic technical
problems). It was written by a group of experts
from aircraft and aircraft equipment
manufacturing companies and from certification
authorities. It provides guidelines for the

1. For example, the United States Federal Aviation Administration (FAA), the European Aviation Safety Agency (EASA), Transport
Canada, etc.

SCADE Suite™ for DO-178B

Methodological Handbook
2 - 4

production of software for airborne systems and
equipment. The objective of the guidelines is to
ensure that software performs its intended
function with a level of confidence in safety that
complies with airworthiness requirements.

These guidelines specify:

• Objectives for software life-cycle processes.
• Description of activities and design considerations

for achieving those objectives.
• Description of the evidence indicating that the

objectives have been satisfied.

2.1.4 Relationship between ARP 4754
and DO-178B

ARP 4754 and DO-178B are complementary
guidelines:

• ARP 4754 provides guidelines for the system-level
processes.

• DO-178B provides guidelines for the software
life-cycle processes.

The information flow between the system and
software processes are summarized in Figure 2.1.

Figure 2.1: Relationship between ARP 4754 and
DO-178B processes

ARP 4754 (§A.2.1) identifies the relationships
with DO-178B in the following terms:

“The point where requirements are allocated to
hardware and software is also the point where
the guidelines of this document transition to the
guidelines of DO-178B (for software), DO-254
(for complex hardware), and other existing
industry guidelines. The following data is passed
to the software and hardware processes as part
of the requirements allocation:

a Requirements allocated to hardware.
b Requirements allocated to software.
c Development assurance level for each

requirement and a description of associated
failure condition(s), if applicable.

Methodological Handbook
2 - 5

SCADE Suite™ for DO-178B

d Allocated failure rates and exposure interval(s)
for hardware failures of significance.

e Hardware/software interface description
(system design).

f Design constraints, including functional
isolation, separation, and partitioning
requirements.

g System validation activities to be performed at
the software or hardware development level, if
any.

h System verification activities to be performed
at the software or hardware development
level.”

2.1.5 Development assurance levels

ARP 4754 defines guidelines for the assignment
of so-called Development Assurance Levels to
the system, to its components, and to software,
with regard to the most severe failure condition
of the corresponding part.

ARP 4754 and DO-178B define in common
five “Development Assurance Levels” as
summarized in the following table:

This handbook mainly targets level A, B and C
software.

2.1.6 Objective-oriented approach

The approach in DO-178B is based on the
formulation of appropriate objectives and on
the verification that these objectives have been
achieved. The DO-178B authors acknowledged
that objectives are more essential and stable
than specific procedures. The ways of achieving
an objective may vary from one company to
another; and they may vary over time with the
evolution of methods, techniques, and tools.
DO-178B never states that one should use
design method X, coding rules Y, or tool Z.
DO-178B does not even impose a specific life
cycle.

The general approach is the following:

• Ensure that appropriate objectives are defined.
For instance:
a Development assurance level of the software.
b Design standards.

• Define procedures for the verification of the
objectives. For instance:
a Verify that design standards are met and that

the design is complete, accurate, and traceable.
b Develop and apply requirements-based test

cases.

Level Effect of anomalous behavior

A Catastrophic failure condition for the aircraft
(e.g., aircraft crash).

B Hazardous/severe failure condition for the
aircraft (e.g., several persons could be injured).

C Major failure condition for the aircraft (e.g.,
flight management system could be down, the
pilot would have to do it manually).

D Minor failure condition for the aircraft (e.g.,
some pilot-ground communications could have
to be done manually).

E No effect on aircraft operation or pilot workload
(e.g., entertainment features may be down).

Level Effect of anomalous behavior

SCADE Suite™ for DO-178B

Methodological Handbook
2 - 6

• Define procedures for verifying that the above-
mentioned verification activities have been
performed satisfactorily. For instance:
a Remarks of document reviews are answered.
b Coverage of requirements by testing is

achieved.

2.1.7 DO-178B processes overview

DO-178B structures activities as a hierarchy of
“processes”, as illustrated in Figure 2.2. The
term “process” appears several times in the
document. DO-178B defines three top-level
groups of processes:

• The software planning processes that define and
coordinate the activities of the software
development and integral processes for a project.

These processes are beyond the scope of this
handbook.

• The software development processes that produce
the software product. These processes are the
software requirements process, the software
design process, the software coding process, and
the integration process.

• The integral processes that ensure the correctness,
control, and confidence of the software life-cycle
processes and their outputs. The integral
processes are the software verification process,
the software configuration management process,
the software quality assurance process, and the
certification liaison process. The integral processes
are performed concurrently with the software
development processes throughout the software
life cycle.

Figure 2.2: DO-178B life-cycle processes structure

In the remainder of this document we will focus
on the development and verification processes.

Methodological Handbook
2 - 7

SCADE Suite™ for DO-178B

2.2 DO-178B
Development Processes

The software development processes, as
illustrated below in Figure 2.3, are composed of:

• The software requirements process, which
produces the high-level requirements (HLR);

• The software design process, which usually
produces the low-level requirements (LLR) and
the software architecture through one or more
refinements of the HLR;

• The software coding process, which produces the
source code and object code;

• The integration process, which produces object
code and builds up to the integrated system or
equipment.

Figure 2.3: DO-178B development processes

The high-level software requirements (HLR) are
produced directly through analysis of system
requirements and system architecture and their
allocation to software. They include
specifications of functional and operational
requirements, timing and memory constraints,

hardware and software interfaces, failure
detection and safety monitoring requirements,
as well as partitioning requirements.

The HLR are further developed during the
software design process, thus producing the
software architecture and the low-level
requirements (LLR). These include descriptions

SCADE Suite™ for DO-178B

Methodological Handbook
2 - 8

of the input/output, the data and control flow,
resource limitations, scheduling and
communication mechanisms, as well as software
components. If the system contains
“deactivated” code (see Appendix B), the
description of the means to ensure that this
code cannot be activated in the target computer
is also required.

Through the coding process, the low-level
requirements are implemented as source code.

The source code is compiled and linked by the
integration process up to an executable code
linked to the target environment.

At all stages traceability is required: between
system requirements and HLR; between HLR
and LLR; between LLR and code; and also
between tests and requirements.

2.3 DO-178B Verification
Processes

2.3.1 Objectives of software
verification

The purpose of the software verification
processes is “to detect and report errors that may have
been introduced during the software development
processes.” DO-178B defines verification

objectives, rather than specific verification
techniques, since the later may vary from one
project to another and/or over time.

Testing is part of the verification processes, but
verification is not just testing: The verification
processes also rely on reviews and analyses.
Reviews are qualitative and generally performed
once, whereas analyses are more detailed and
should be reproducible (e.g., compliance with
coding standards).

Verification activities cover all the processes,
from the planning process to the development
process; there are even verifications of the
verification activities.

2.3.2 Reviews and analyses of the
high-level requirements

The objective of reviews and analyses is to
confirm that the HLRs satisfy the following:

a Compliance with the system requirements.
b Accuracy and consistency: each HLR is

accurate and unambiguous and sufficiently
detailed; requirements do not conflict with
each other.

c Compatibility with target computer.
d Verifiability: each HLR has to be verifiable.
e Compliance with standards as defined by the

planning process.
f Traceability with the system requirements.
g Algorithm accuracy.

Methodological Handbook
2 - 9

SCADE Suite™ for DO-178B

2.3.3 Reviews and analyses of the low-
level requirements

The objective of these reviews and analyses is to
detect and report requirement errors that may
have been introduced during the software
design process. These reviews and analyses
confirm that the software low-level
requirements satisfy these objectives:

a Compliance with high-level requirements:
the software low-level requirements satisfy the
software high-level requirements.

b Accuracy and consistency
c Compatibility with the target computer: no

conflicts exist between the software
requirements and the hardware/software
features of the target computer, especially the
use of resources (such as bus loading), system
response times, and input/output hardware.

d Verifiability: each low-level requirement can
be verified.

e Compliance with the Software Design
Standards (defined by the software planning
process).

f Traceability: the objective is to ensure that all
high-level requirements were taken into
account in the development of the low-level
requirements.

g Algorithm aspects: ensure the accuracy and
behavior of the proposed algorithms, especially
in the area of discontinuities (e.g., mode
changes, crossing value boundaries).

h The SW architecture is compatible with the
HLR, it is consistent and compatible with the

target computer, is verifiable, and conforms to
standards.

i Software partitioning integrity is confirmed.

2.3.4 Reviews and analyses of the
source code

The objective is to detect and report errors that
may have been introduced during the software
coding process. These reviews and analyses
confirm that the outputs of the software coding
process are accurate, complete, and can be
verified. Primary concerns include correctness
of the code with respect to the LLRs and the
software architecture, and compliance with the
Software Code Standards. These reviews and
analyses are usually confined to the source code.
The topics should include:

a Compliance with the low-level
requirements: The source code is accurate and
complete with respect to the software low-level
requirements; no source code implements an
undocumented function.

b Compliance with the software architecture:
The source code matches the data flow and
control flow defined in the software
architecture.

c Verifiability: The source code does not
contain statements and structures that cannot
be verified, and the code does not have to be
altered to test it.

d Compliance with standards: The Software
Code Standards (defined by the software
planning process) were followed during the
development of the code, especially complexity
restrictions and code constraints that would be

SCADE Suite™ for DO-178B

Methodological Handbook
2 - 10

consistent with the system safety objectives.
Complexity includes the degree of coupling
between software components, the nesting
levels for control structures, and the
complexity of logical or numeric expressions.
This analysis also ensures that deviations to the
standards are justified.

e Traceability: The source code implements all
software low-level requirements.

f Accuracy and consistency: The objective is
to determine the correctness and consistency
of the source code, including stack usage,
fixed-point arithmetic overflow and resolution,
resource contention, worst-case execution
timing, exception handling, use of non
initialized variables or constants, unused

variables or constants, and data corruption due
to task or interruption conflicts.

2.3.5 Software testing process

Testing of avionics software has two
complementary objectives. One objective is to
demonstrate that the software satisfies its
requirements. The second objective is to
demonstrate with a high degree of confidence
that all errors, which could lead to unacceptable
failure conditions as determined by the system
safety assessment process, have been removed.

Figure 2.4: DO-178B testing processes

Methodological Handbook
2 - 11

SCADE Suite™ for DO-178B

There are three types of testing activities:

• Low-level testing: to verify the implementation
of software low-level requirements.

• Software integration testing: to verify the
interrelationships between software requirements
and components and to verify the implementation
of the software requirements and software
components within the software architecture.

• Hardware/software integration testing: to
verify correct operation of the software in the
target computer environment.

As shown in Figure 2.4, DO-178B dictates that
all test cases, including low-level test cases, be
requirements-based; namely that all test cases be
defined from the requirements, and never from
the code.

TEST COVERAGE ANALYSIS

Test coverage analysis is a two-step activity:

1 Requirements-based test coverage analysis
determines how well the requirement-based
testing covered the software requirements.
The main purpose of this step is to verify that
all requirements have been implemented.

2 Structural coverage analysis determines which
code structures were exercised by the
requirements-based test procedures. The
main purpose of this step is to verify that
only the requirements have been
implemented; for instance, there are no
unintended functions in the implementation
(DO-248, FAQ#43). Note that requirements
coverage is an absolute prerequisite to this
step.

STRUCTURAL COVERAGE RESOLUTION

If structural coverage analysis reveals structures
that were not exercised, resolution is required:

• If it is due to shortcomings in the test cases, then
test cases should be supplemented or test
procedures changed.

• If it is due to inadequacies in the requirements,
then the requirements must be changed and test
cases developed and executed.

• If it is dead code (it cannot be executed, and its
presence is an error), then this code should be
removed and an analysis performed to assess the
effect and the needs for reverification.

• If it is deactivated code (it cannot be executed, but
its presence is not an error):
• If it is not intended to be executed in any

configuration, then analysis and testing should
show that the means by which such code could
be executed are prevented, isolated, or
eliminated.

• If it is only executed in certain configurations,
the operational configuration for execution of
this code should be established and additional
test cases should be developed to satisfy
coverage objectives.

STRUCTURAL COVERAGE CRITERIA

The structural coverage criteria that have to be
achieved depend on the software level:

• Level C: Statement coverage is required; this
means that every statement in the program has
been exercised.

• Level B: Decision coverage is required; this
means that every decision has taken all possible
outcomes at least once (e.g., then/else for an “if”
construct) and that every entry and exit point in
the program has been invoked at least once.

SCADE Suite™ for DO-178B

Methodological Handbook
2 - 12

• Level A: MC/DC (Modified Condition/Decision
Coverage) is required; this means that:
• Every entry and exit point in the program has

been invoked at least once.
• Every decision has taken all possible outcomes.
• Each condition in a decision has been shown

to independently affect that decision’s outcome
(this is shown by varying just that condition,
while holding fixed all other possible
conditions).

For instance, the following fragment requires
four test cases, as shown below in Table 2.1.

2.4 What Are the Main
Challenges in the
Development of Airborne
Software?

This section introduces the main challenges that
have to be faced when developing safety-related
airborne software.

2.4.1 Avoiding multiple descriptions of
the software

In such a development life cycle, the software is
described in several phases and documents:

• Software high-level requirements (HLR)
• Software architecture design and low-level

requirements (LLR)
• Software source code
At each step, it is important to avoid as much as
possible rewriting the software description.

This rewriting would not only be expensive, it
would also be error-prone. And there is a major
risk of inconsistencies between different
descriptions. This necessitates devoting a
significant effort to verifying compliance of each
level with the previous level. The purpose of
many activities, as described in [DO-178B], is to
detect the errors introduced during
transformations from one written form to
another.

2.4.2 Preventing ambiguity and lack of
accuracy in specifications

Requirements and design specifications are
traditionally written in some natural language,
possibly complemented by non formal figures
and diagrams. It is an everyday experience that
natural language is subject to interpretation,
even when it is constrained by requirements

If A or (B and C)
Then do action1
Else do action2
Endif

Table 2.1: Example of test cases

Case A B C Outcome

1 FALSE FALSE TRUE FALSE

2 TRUE FALSE TRUE TRUE

3 FALSE TRUE TRUE TRUE

4 FALSE TRUE FALSE FALSE

Methodological Handbook
2 - 13

SCADE Suite™ for DO-178B

standards. Its inherent ambiguity can lead to
different interpretations depending on the
reader.

This is especially true for the dynamic behavior:
for instance, how to interpret the combination
of fragments from several sections of a
document, such as “A raises B,” “if both B and
C occur, then set D,” “if D or Z are active, then
reset A?”

2.4.3 Avoiding low-level requirements
and coding errors

Coding is the last transformation in a traditional
development life cycle. It takes as input the last
formulation in natural language (or pseudo-
code).

The programmers generally have a limited
understanding of the system, which makes it
vulnerable to ambiguities in the specification.
Moreover, the code they produce is generally
not understandable by the author of the system
or high-level requirements.

In the traditional approach, the combined risk
of interpretation error and coding errors is so
high that a major part of the life-cycle
verification effort is consumed by code testing.

2.4.4 Allowing for an efficient
implementation of code on target

Code that is produced must be simple,
deterministic, and efficient. It should require as
few resources as possible, in terms of memory
and execution time. It should be easy and
efficient to retarget to a given processor.

2.4.5 Finding specification and design
errors as early as possible

A significant number of specification and design
errors are only detected during software
integration testing.

One reason is that the requirement/design
specification is often ambiguous and subject to
interpretation. Another reason is that it is
difficult for a human reader to understand
details regarding dynamic behavior of the
software without being able to exercise it. And
the main reason is that, in a traditional process,
this is the first time where one can exercise the
software. This is very late in the process.

When a specification error can only be detected
during the software integration phase, the cost
of fixing it is much higher than if it had been
detected during the specification phase.

SCADE Suite™ for DO-178B

Methodological Handbook
2 - 14

2.4.6 Lowering the complexity and cost
of updates

There are many sources of changes in the
software, ranging from bug fixing, function
improvement to the introduction of new
functions.

When something has to be changed in the
software, all products of the software life cycle
have to be updated consistently, and all
verification activities must be performed
accordingly.

2.4.7 Improving verification efficiency

The level of verification for safety-related
airborne software is much higher than for other
non safety-related commercial software. For
Level A software, the overall verification cost
(including testing) may account for up to 80%
of the budget. Verification is also a bottleneck
for the project completion. So, clearly, any
change in the speed and/or cost of verification
has a major impact on the project time and
budget.

The objective of this document is to show how
to retain a complete and thorough verification
and validation process, while dramatically
improving the efficiency of this process. The
methods we will describe reach at least the level
of quality achieved by traditional means, by
optimizing the whole development process.

2.4.8 Providing an efficient way to
store Intellectual Property (IP)

A significant part of the aircraft or equipment
company’s know-how resides in its software. It
is therefore of utmost importance to provide
tools and methods to efficiently store and access
Intellectual Property (IP) relative to these safety-
related systems. Such IP vaults will contain:

• Textual system and software requirements
• Graphical models of the software requirements

(e.g., regulation laws)
• Source code
• Test cases
• Other

Methodological Handbook
3 - 15

SCADE Suite™ for DO-178B

3. Model-Based Development with SCADE Suite
and KCG

3.1 What Is SCADE?

SCADE ORIGIN AND APPLICATION DOMAIN

The name SCADE stands for “Safety-Critical
Application Development Environment.” This
name is used both for the SCADE notation and
for the SCADE Suite software development
environment. Its purpose is to create a bridge
between control engineering and software
engineering activities.

SCADE has been designed from the beginning
for the development of safety-critical software.
It relies on the theory of languages for real-time
applications and, in particular, on the Lustre and
Esterel languages as described in [LUSTRE] and
[Esterel] in Appendix B. From the beginning, it
has been designed with companies developing
safety-critical software.

SCADE has been used from the start on an
industrial basis for the development of safety-
critical software such as flight control (Airbus,
Eurocopter), nuclear power plant control
(Schneider Electric), and railway switching
systems (CSEE Transport).

SCADE addresses the applicative part of hard
real-time software, as illustrated in Figure 3.1.
This is usually the most complex and

changeable aspect of software, containing
complex decision logic, filters, and control laws.
It typically represents 60% to 80% of the
software embedded in an airborne computer.

Figure 3.1: SCADE addresses the applicative part
of software

A BRIDGE BETWEEN CONTROL ENGINEERING
AND SOFTWARE ENGINEERING

Control engineers and software engineers
typically use quite different notations and
concepts:

• Control engineers describe systems and their
controllers using block diagrams and transfer
functions (s form for continuous time, z form for
discrete time), as shown below in Figure 3.2.

SCADE Suite™ for DO-178B

Methodological Handbook
3 - 16

Figure 3.2: Control engineering view of a
Controller

• Software engineers describe their programs in
terms of tasks, flowcharts, and algorithms, as
shown below in Figure 3.3.

Figure 3.3: Software engineering view of a
Controller

These differences make translation from control
engineering specifications to software
engineering specifications complex, expensive,
and error-prone.

To address this problem, SCADE offers
rigorous software constructs that reflect control
engineering constructs:

• Its data flow structure fits the block diagram
approach.

• Its time operators fit the z operator of control
engineering. For instance, z-1, the operator of
control engineering (meaning a unit delay), has an
equivalent operator called “pre” in SCADE.

3.2 SCADE Modeling
Techniques

3.2.1 Familiarity and accuracy
reconciled

SCADE Suite uses two specification formalisms
that are familiar to control engineers:

• Block diagrams to specify the algorithmic part of
an application, such as control laws and filters.

• Safe State Machines (SSM) to model the behavior.
What the modeling techniques of SCADE add
is a very rigorous view of these well-known but
often insufficiently defined formalisms. SCADE
has a formal foundation and provides a precise
definition of concurrency; it ensures that all
programs generated from SCADE behave
deterministically.

X z() x n()z n–

n ∞–=

∞

∑= (bilateral z transform)

Methodological Handbook
3 - 17

SCADE Suite™ for DO-178B

SCADE allows for automatic generation of C
code from these two formalisms.

We will now describe more precisely their
characteristics and the way an application
designed in SCADE executes on a target
platform.

3.2.2 SCADE node

The basic building block in SCADE is called a
node. A node is a user-defined function, built
from lower-level nodes, down to predefined
operators (e.g., logical, arithmetic, delay, etc.) A
node can be represented either graphically (see
Figure 3.4), or textually (see Table 3.1 below).

Figure 3.4: Graphical notation for an integrator node

A node is a functional module made of the
following components:

Actually, the textual notation is the semantic
reference, which is stored in files and used by all
tools; the graphical representation is a projection
of the textual notation, taking into account

secondary layout details.

The SCADE Editor supports a user-friendly
structured editing mode for graphical and
textual nodes.

Table 3.1: Components of SCADE functional modules: nodes

Component Textual Notation for an Integrator Node Graphical Notation

Formal interface node IntegrFwd(U: real ; hidden TimeCycle: real)
returns (Y: real) ;

Arrows

Local variables
declarations

var
delta : real ;
last_Y : real;

Naming wires

Equations delta = u * TimeCycle ;
y = delta + last_Y ;
last_Y = fby(y , 1 , 0.0) ;

Network of operator calls

SCADE Suite™ for DO-178B

Methodological Handbook
3 - 18

A node is fully modular:

• There is a clear distinction between its interface
and its body.

• There can be no side-effects from one node to
another one.

• The behavior of a node does not depend on its
context.

• A node can be used safely in several places in the
same model or in another one.

3.2.3 Block diagrams for continuous
control

By “continuous control”, we mean regular
periodic computation such as: sampling sensors
at regular time intervals, performing signal-
processing computations on their values,
computing control laws and outputting the
results. Data is continuously subject to the same
transformation.

In SCADE, continuous control is graphically
specified using block diagrams, such as the one
illustrated in Figure 3.5 below.

Figure 3.5: A SCADE block diagram for roll management

Boxes compute mathematical functions, filters,
and delays, while arrows denote data flowing
between the boxes. Blocks that have no
functional dependency compute concurrently,

and the blocks only communicate through the
flows. Flows may carry numeric, Boolean, or
discrete values tested in computational blocks or
acting on flow switches.

Methodological Handbook
3 - 19

SCADE Suite™ for DO-178B

SCADE blocks are fully hierarchical: blocks at a
description level can themselves be composed
of smaller blocks interconnected by local flows.

In Figure 3.5 above, the RollCalculate block is
hierarchical, and one can zoom into it using the
SCADE Editor. Hierarchy makes it possible to
break design complexity by a divide-and-
conquer approach and to design reusable library
blocks.

SCADE is modular: the behavior of a node
does not vary from one context to another.

The SCADE language is strongly typed, in the
sense that each data flow has a type (Boolean,
integer, real, arrays, etc.), and that type
consistency in SCADE models is verified by the
SCADE tools.

SCADE makes it possible to deal properly with
issues of timing and causality. Causality means
that if datum x depends on datum y, then y has
to be available before the computation of x
starts. A recursive data circuit poses a causality
problem, as shown in Figure 3.6 below, where
the “throttle” output depends on itself via the
ComputeTargetSpeed and ComputeThrottle
nodes. The SCADE semantic Checker detects
this error and signals that this output has a
recursive definition.

Figure 3.6: Detection of a causality problem

Inserting an FBY (delay) operator in the
feedback loop solves the causality problem,
since the input of the ComputeTargetSpeed
block is now the value of “throttle” from the
previous cycle, as shown in Figure 3.7.

SCADE Suite™ for DO-178B

Methodological Handbook
3 - 20

Figure 3.7: Functional expression of concurrency in SCADE

The SCADE language provides a simple and
clean expression of concurrency and functional
dependency at the functional level, as follows:

• Blocks SetRegulationMode and
ComputeTargetSpeed are functionally parallel;
since they are independent, the relative
computation order of these blocks does not
matter (because, in SCADE, there are no side-
effects).

• ComputeThrottle functionally depends on an
output of ComputeTargetSpeed. The SCADE
Code Generator takes this into account: it
generates code that executes
ComputeTargetSpeed before ComputeThrottle.
The computation order is always up-to-date and
correct, even when dependencies are very indirect
and when the model is updated. The users do not
need to spend time performing tedious and error-
prone dependency analyses to determine the
sequencing manually. They can focus on functions
rather than on coding.

Another important feature of the SCADE
language is related to the initialization of flows
(the -> operator), as illustrated in Figure 3.8,
which models a counter.

Figure 3.8: Initialization of flows

The second argument of the + operator is 0 in
step 1 (the initial value), and the previous value
of flow N in steps 2, 3, ... In the absence of
explicit initialization, SCADE emits warnings.
Mastering initial values is indeed a critical
subject for critical embedded software.

Functional concurrency Dependency

Methodological Handbook
3 - 21

SCADE Suite™ for DO-178B

3.2.4 Safe State Machines for discrete
control

By “discrete control” we mean changing
behavior according to external events
originating either from discrete sensors and user
inputs or from internal program events, for
example, value threshold detection. Discrete
control is used when the behavior varies
qualitatively as a response to events. This is

characteristic of modal human-machine
interface, alarm handling, complex functioning
mode handling, or communication protocols.

State machines have been very extensively
studied in the past fifty years, and their theory is
well understood. However, in practice, they
have not been adequate even for medium-size
applications, since their size and complexity
tend to explode very rapidly. For this reason, a
richer concept of hierarchical state machines has
been introduced. SCADE hierarchical state
machines are called Safe State Machines (SSMs).

Figure 3.9: Safe State Machine for RollMode

SSMs are hierarchical. States can be either
simple states or macro states, themselves
recursively containing a full SSM. When a macro
state is active, so are the SSMs it contains. When
a macro state is exited by taking a transition out
of its boundary, the macro state is exited and all
the active SSMs it contains are preempted,
whichever state they were in. State machines
communicate by exchanging signals that may be
scoped to the macro state that contains them.

The definition of SSMs specifically forbids
dubious constructs found in other hierarchical
state machine formalisms: transitions crossing
macro state boundaries, transitions that can be
taken halfway and then backtracked, and so on.
These are non modular, semantically ill defined,
and very hard to figure out, hence inappropriate
for safety-critical designs. They are usually not
recommended by methodological guidelines.

SCADE Suite™ for DO-178B

Methodological Handbook
3 - 22

3.2.5 Mixed continuous/discrete
control

Large applications contain cooperating
continuous and discrete control parts. SCADE
makes it possible to seamlessly couple both data
flow and state machine styles. Most often, one
includes SSMs into block-diagram design to
compute and propagate functioning modes.
Then, the discrete signals to which an SSM
reacts and sends back, are simply transformed
back and forth into Boolean data flows in the
block diagram. The computation models are
fully compatible. As an example, Figure 3.5
shows a data flow diagram where the RollMode
block contains the Safe State Machine described
in Figure 3.9.

3.2.6 Cycle-based intuitive computation
model

The cycle-based execution model of SCADE is
a direct computer implementation of the
ubiquitous sampling-actuating model of control
engineering. It consists of performing a
continuous loop of the form illustrated in Figure
3.10 below. In this loop, there is a strict
alternation between environment actions and
program actions. Once the input sensors are
read, the cyclic function starts computing the
cycle outputs. During that time, the cyclic
function is blind to environment changes.2 When the
outputs are ready, or at a given time determined

by a clock, the output values are fed back to the
environment, and the program waits for the
start of the next cycle.

Figure 3.10: The cycle-based execution model of
SCADE Suite

In a SCADE block diagram specification, each
block has a so-called clock (the event triggering
its cycles) and all blocks act concurrently. Blocks
can all have the same clock, or they can have
different cycles, which subdivide a master cycle.
At each of its cycle, a block reads its inputs and
generates its outputs. If an output of block A is
connected to an input of block B, and A and B
have the same cycle, the outputs of A are used
by B in the same cycle, unless an explicit delay is
added between A and B. This is the essence of
the semantics of SCADE.

SCADE SSMs have the very same notion of a
cycle. For a simple state machine, a cycle
consists of performing the adequate transition
from the current state and outputting the
transition output in the cycle, if any. Concurrent
state machines communicate with each other,
receiving the signals sent by other machines and

2. It is still possible for interruption service routines or other task to run, as long as they do not interfere with the cyclic function.

Methodological Handbook
3 - 23

SCADE Suite™ for DO-178B

possibly sending signals back. Finally, block
diagrams and SSMs in the same design also
communicate at each cycle.

This cycle-based computation model carefully
distinguishes between logical concurrency and
physical concurrency. The application is
described in terms of logically concurrent
activities, block diagrams, or SSMs. Concurrency
is resolved at code generation time, and the
generated code remains standard sequential and
deterministic C code, all contained within a very
simple subset of this language. What matters is
that the final sequential code behaves exactly as
the original concurrent specification, which can
be formally guaranteed. Notice that there is no
overhead for communication, which is internally
implemented using well-controlled shared
variables without any context switching.

3.2.7 SCADE data typing

The SCADE language is strongly typed.

The following data types are supported;

• Predefined types: Boolean, Integer, Real,
Character.

• Structured types:
• Structures make it possible to group data of

different types. Example:

• Arrays group data of a homogeneous type.
They have a static size. Example:

• Imported types that are defined in C or Ada (to
interface with legacy software).

All variables are explicitly typed, and type
consistency is verified by the SCADE semantic
Checker.

3.2.8 SCADE Suite as a model-based
development environment

SCADE Suite is an environment for the
development of safety-related avionics software.
It supports a model-based development
paradigm, as illustrated in Figure 3.11:

• The model is the software requirements: it is the
unique reference in the project and it is based on a
formal notation.

• Documentation is automatically and directly
generated from the model: it is correct and up-to-
date by construction.

• The model can be exercised by simulation using
the same code as the embedded code.

• Formal proof techniques can be directly applied
to the model to detect corner bugs or to prove
safety properties.

• Code is automatically and directly generated from
the model with the KCG 4.2 qualified automatic
code generator: the code is correct and up-to-date
by construction.

Ts = [x: int, y: real];

tab = real^3;

SCADE Suite™ for DO-178B

Methodological Handbook
3 - 24

Figure 3.11: Model-based development with
SCADE Suite and KCG 4.2

SCADE Suite applies the following “golden
rules”:

• Share unique, accurate specifications.
• Do things once: Do not rewrite descriptions

from one activity to another; for instance,
between software architecture and software
system design, or between module design and
code.

• Do things right: Detect errors in early stages
and/or write “correct-by-construction”
descriptions.

SCADE Suite enables the saving of a significant
amount of verification effort, essentially because
it supports a “correct-by-construction” process.

The remainder of this handbook explains how
full benefit can be obtained using SCADE in a
DO-178B project.

BENEFITS OF THE “DO THINGS ONCE”
PRINCIPLE

The SCADE model formalizes a significant part
of the software architecture and system design.
It is written and maintained once in the project
and shared among team members. Expensive
and error-prone rewriting is thus avoided;
interpretation errors are minimized. All
members of the project team, from the
specification team to the review and testing
teams, will share the SCADE model as a
reference.

This formal definition can even be used as a
contractual requirement document with
subcontractors. Basing the activities on an
identical formal definition of the software may
save a lot of rework, and acceptance testing is
faster using simulation scenarios.

3.2.9 SCADE modeling and safety
benefits

In conclusion to 3.2, we have shown that
SCADE strongly supports safety at model level
because of the following points:

• The SCADE modeling language was rigorously
defined. Its interpretation does not depend on the
reader or on a tool. It relies on more than twenty
years of academic research. The semantic kernel
of SCADE is very stable: it has not changed over
the last 15 years.

• The SCADE modeling language is simple. It relies
on very few basic concepts and simple
combination rules of these concepts. There are no
complex control structures like loops or gotos.
There is no creation of memory at runtime. There

Methodological Handbook
3 - 25

SCADE Suite™ for DO-178B

is no way to incorrectly access memory through
pointers or an index out of bounds in an array.

• The SCADE modeling language contains specific
features oriented towards safety: strong typing,
mandatory initialization of flows, and so on.

• A SCADE model is deterministic. A system is
deterministic if it always reacts in the same way to
the same inputs occurring with the same timing.
In contrast, a non deterministic system can react
in different ways to the same inputs, the actual
reaction depending on internal choices or
computation timings. It is clear that determinism
is a must for an aircraft: internal computation

timings should not interfere with the flight control
algorithms.

• The SCADE modeling language provides a simple
and clean expression of concurrency at functional
level (SCADE block diagrams are computed
concurrently; data flows express dependencies
between blocks). This avoids the traditional
problems of deadlocks and race conditions.

• The Editor and Code Generators of SCADE
Suite perform the complete verification of the
language rules, such as type and clock consistency,
or causality in SCADE models.

Methodological Handbook
4 - 27

SCADE Suite™ for DO-178B

4. Software Development Activities with SCADE Suite

In this section we provide a more detailed view
on the development activities that were
introduced in the previous section.

4.1 Overview of
Software Development
Activities

The development process uses a combination of
SCADE development flow and more traditional
textual/manual flows. It has been observed on

industrial projects that the fraction developed
with SCADE typically ranges from 60% to 90%
of the applicative part of the software.

Figure 4.1 shows the DO-178B development
processes with those where SCADE is used
highlighted in bold frame. Traceability between
system requirements and software high-level and
low-level requirements can be managed with a
tool such as DOORS, thanks to the SCADE-
DOORS link.

Figure 4.1: Software development processes with SCADE Suite

SCADE Suite™ for DO-178B

Methodological Handbook
4 - 28

Some companies start using SCADE to define
control laws during the system definition. In the
software requirements process, partial SCADE
modeling is a good support for the identification
of high-level functions, their interfaces, and
their data flows. SCADE modeling is used
extensively in the software design process to
develop major parts of the low-level
requirements and the architecture. From such

SCADE models, KCG, the qualified SCADE
Code Generator, can automatically generate C
source code.

As shown in Figure 4.2, the HLRs that are
described in SCADE are also LLRs. Many other
HLRs, which are textual (light color fill), are
refined in SCADE form in the design phase.

Figure 4.2: Development of high-level and low-level requirements with SCADE

4.2 Software
Requirements Process
with SCADE

In DO-178B terminology, the software
requirements process produces the high-level
requirements (HLR). Most of these high-level
requirements are in textual form, illustrated with
figures.

A partial SCADE model (see the example in
Figure 4.3) can be developed at this stage to:

• Identify the high-level functions. One would
typically develop a functional breakdown down to
a depth of two or three.

• Formalize the interfaces of these functions:
names, data types.

• Describe the data flows between these functions.
• Verify consistency of the data flows between these

functions using the SCADE syntactic and
semantic Checker.

Methodological Handbook
4 - 29

SCADE Suite™ for DO-178B

• Prepare the framework for the design process.
Having defined the top-level functions and their

interfaces will compel the refinements to be
consistent in terms of interfaces.

Figure 4.3: Top-level view of a simple flight control system

SCADE’s flexible annotation feature allows
attaching comments or more specific
information (such as physical units) to the
SCADE nodes, interfaces, and data types.

The document items generated from the
SCADE model can be inserted or handled as an
annex to the HLR document.

4.3 Software Design
Process with SCADE

In DO-178B terminology, the software design
process produces the architecture and the low-
level requirements.

Figure 4.4 illustrates the design flow with
SCADE that is detailed in the next sections.

Figure 4.4: The software design process with
SCADE

SCADE Suite™ for DO-178B

Methodological Handbook
4 - 30

4.3.1 Architecture design

GLOBAL ARCHITECTURE DESIGN

The first step in the design process is to define
the global application architecture, taking into
account both SCADE and manual software
elements.

The application is decomposed functionally into
main design units. The characteristics of these
units will serve as a basis for allocating their
refinement in terms of technique (SCADE, C,
assembler, …) and team. Among those
characteristics, one has to consider:

• The type of processing (e.g., filtering, decision
logic, byte encoding)

• The interaction it has with hardware or the
operating system (e.g., direct memory access,
interrupt handling)

• Activation conditions (e.g., initialization) and
frequency (e.g., 100 Hz)

SCADE is well suited to the functional parts of
the software, such as logic, filtering, regulation.
It is usually less well suited for low-level
software such as hardware drivers, interrupt
handlers, and encoding/decoding routines.

SCADE ARCHITECTURE DESIGN

The objective of the SCADE architecture design
activity is to lay the foundations for the
development of the SCADE LLRs. A good
SCADE architecture is composed of data type
definitions, top-level nodes, and their
connections, which ensure:

• Stability and maintainability: The team needs a
stable framework during the first development as
well as when there are updates.

• Readability
• Efficiency
There is no magic recipe to achieving a good
architecture, rather it requires a mix of
experience, creativity, and rigor. Here are a few
suggestions:

• Be reasonable and realistic: nobody can build a
good architecture in one shot. Do not develop the
full model from your first draft, but build two or
three architecture variants, then analyze and
compare them; otherwise, you may have to live
with a bad architecture for a long time.

• Review and discuss the architecture with peers.
• Simulate the impact of some changes that are

likely to occur, such as adding a sensor, an error
case, and evaluate the robustness of the
architecture to such changes.

• Retain the architecture that is robust to changes
and minimizes the complexity of interconnections.

For example, the architecture shown in Figure
4.3 groups several sensors in one structured
flow; it is therefore more maintainable than if
each individual sensor value has its own input
and flow throughout the model.

Note: If SCADE has already been used for the
high-level requirements, then this has to be
considered as the first candidate for the SCADE
architecture, since it has the best direct
traceability to the HLRs. That said, it is
recommended that this architecture also be
verified to ensure it has the right properties for
maintainability.

Methodological Handbook
4 - 31

SCADE Suite™ for DO-178B

4.3.2 SCADE low-level requirements
development

Once the SCADE architecture has been
defined, the modules are refined to formalize
the low-level requirements (LLR) in SCADE.
The objective of this activity is to produce a
complete and consistent SCADE model.

The following sections provide some examples
of SCADE modeling patterns. The “SCADE
Design Guidelines” [SCADE_DGL] handbook
provides more detailed and complete coverage
of design guidelines.

INPUT/OUTPUT HANDLING

We assume that raw acquisition from physical
devices and/or from data buses is done with
drivers to feed SCADE inputs.

A golden design rule is to never trust an external
input without appropriate verification and to
build consolidated data from the appropriate
combination of available data.

By using SCADE component libraries, one can,
for instance, insert:

• A voting function
• A low pass filter and/or Limiter for a numeric

value
• A Confirmator for Boolean values, as shown in

Figure 4.5

Figure 4.5: Inserting a Confirmator in a Boolean
input flow

In a similar way, outputs to actuators have to be
value-limited and rate-limited, which can be
ensured by inserting Limiter blocks before the
output, as shown in Figure 4.6 below.

Figure 4.6: Inserting a Limiter in an output flow

Since the data flow is very explicit in a SCADE
model, it is both easy to insert these
components in the data flow and to verify their
presence when reviewing a model.

FILTERING AND REGULATION

Filtering and regulation algorithms are usually
designed by control engineers. Their design is
often formalized in the form of block diagrams
and transfer functions defined in terms of “z”
expressions.

SCADE graphical notation allows representing
block diagrams in exactly the same way as
control engineers do using the same semantics.

SCADE Suite™ for DO-178B

Methodological Handbook
4 - 32

The SCADE time operators fit the z operator of
control engineering. For instance, the z-1
operator of control engineering (meaning a unit
delay) has equivalent operators called “pre” and
“fby” in SCADE. For example, if a control
engineer has written an equation such as
s=K1*u - K2* z-1, which means s(k)=K1*u(k) -
K2* s(k-1), this can be expressed in textual
SCADE as s=K1*u-K2*pre(s) or graphically, as
shown in Figure 4.7 below.

Figure 4.7: A first order filter

SCADE can implement both Infinite Impulse
Response (IIR) filters and Finite Impulse
Response (FIR) filters. In an FIR filter, the
output depends on a finite number of past input
values; in an IIR filter such as the one above,
the output depends on an infinite number of
past input values, because there is a loop in the
diagram.

There are two possibilities for building a
filtering or regulation algorithm with SCADE:

a Develop this algorithm directly in graphical or
textual SCADE.

b Develop it by reusing library blocks such as
“first order filter,” “integrator,” etc. These
library blocks are themselves developed with
SCADE.

Using library blocks has many advantages:

• It saves time.
• It relies on validated components.
• It makes the model more readable and more

maintainable. For instance, a call to an Integrator
is much more readable than the set of lower-level
operators and connections that comprise an
Integrator.

• It enforces consistency throughout the project.
• It factors the code.

DECISION LOGIC

In modern controllers, logic is often more
complex than filtering and regulation. The
controller has, for instance, to handle:

• Identification of the situation
• Detection of abnormal conditions
• Decision making
• Management of redundant computation chains
SCADE offers a variety of techniques for
handling logic:

• Logical operators (such as and/or/xor) and
comparators.

• Selecting flows, based on conditions, with the “if”
and “case” constructs.

• Building complex functions from simpler ones.
For instance, the Confirmator is built from basic
counting, comparison, and logical operators; it can
in turn be used in more complex functions to
make them simpler and more readable, as shown
in Figure 4.8.

• Conditional activation of nodes depending on
Boolean conditions.

• Safe State Machines (SSM), as shown in Figure 4.9.

Methodological Handbook
4 - 33

SCADE Suite™ for DO-178B

Figure 4.8: Alarm detection logic

Figure 4.9: Safe State Machine for RollMode management

Which technique to use for decision logic?

When starting with SCADE, one may ask which
of the above-mentioned techniques to select for
describing logic. Here are some hints for the
selection of the appropriate technique:

To select between state machines and logical
expressions:

• Does the output depend on the past? If it only
depends on the current inputs, then this is just
combinatorial logic: simply use a logical

expression in the data flow. A state machine that
just jumps to state Xi when condition Ci is true,
independently of the current state, is a
degenerated one and does not deserve to be state
machine.

• Does the state have a strong qualitative influence
on the behavior? This is in favor of a state
machine.

• Is there a hierarchy in the states? This is in favor
of SSM, at least in the requirements phase.
However, with the current version of the SSM
code generation chain, it is recommended to limit

SCADE Suite™ for DO-178B

Methodological Handbook
4 - 34

the depth of the state hierarchy in order to ease
verification of the generated code (see §4.4.2).

To express concurrency:

• Simply design parallel data flows: this is natural
and readable, and the code generator is in charge
of implementing this parallel specification into
sequential code.

Last but not least, pack, use, or reuse behavior
that you have captured into blocks inserted into
higher-level data flow nodes. For instance, the
design of the alarm manager in Figure 4.8 uses
threshold detectors and confirmators.

ROBUSTNESS

Robustness issues must be addressed at each
level. We recommend that robustness be
addressed differently at the design and coding
levels.

• Design Level
At the design level, the specification should
explicitly identify and manage the safety and the
robustness of the software with respect to invalid
input data (see Input/Output Handling). There
should be no exception mechanisms to respond to
incorrect sensor or pilot data, but planned
mastered reaction. This involves techniques such
as voting, confirmation, and range checking. At
this level, one should explicitly manage the ranges
of variables. For instance, it is highly
recommended that an integrator contain a limiter.
Or, if there is a division, the case when the divider
is zero has to be managed explicitly. In the
context of the division, the division should only
be called when the divider is not zero (or, more
precisely, far enough from zero). And the action

to be taken when the divider is near zero has to
be defined by the writer of the software
requirements, not by the programmer.

It is easy to define libraries of robust blocks, such
as guarded division, voters, confirmators, and
limiters. Their presence in the diagrams is very
explicit for the reader. It is also recommended to
use the same numeric data types on the host and
on the target with libraries that have the same
behavior.

• Coding Level
On the contrary, if an attempt to divide by zero
happens at runtime in spite of the above-
mentioned design principles, this is an abnormal
situation caused by a defect in the software
design. Such a failure has to be handled as a real
exception. The detection of the event can be
typically part of the arithmetic library (the optimal
implementation of that library is generally target-
dependant). The action to be taken (e.g., raise an
exception and call a specific exception handler)
has to be defined in the global architecture design
of the computer.

4.4 Software Coding
Process

The SCADE Code Generator automatically
generates the complete C code that implements
the software system design and module design
defined in SCADE for both data flows and state
machines (see Figure 4.10). It is not just a
generation of skeletons: the complete dynamic
behavior is implemented.

Methodological Handbook
4 - 35

SCADE Suite™ for DO-178B

Figure 4.10: The software coding process with SCADE

Let us now distinguish two cases of using
automatic code generation: data flows and
SSMs.

4.4.1 Code generation from SCADE data
flow diagrams

The SCADE model completely defines the
expected behavior of the generated C code. The
code generation options define the
implementation choices for the software.
However, they never complement nor alter the
behavior of the model.

Independently from the choice of the code
generation options, the generated C code has
the following properties:

• The code is portable: it is ISO-C compliant and it
performs no operating system call.

• The code structure reflects the model architecture
(by function or by blocks, depending on code
generation options).

• The code is readable and traceable to the model
through the use of names and annotations.

• Memory allocation is fully static (no dynamic
memory allocation).

• There is no recursion and no looping (except a
few local, fixed-size loops).

• Execution time is bounded.
• The code is decomposed into elementary

assignments to local variables (this restricts use of
the optimization options of the C compiler +
SCADE KCG option).

• Every C variable is assigned only once. This is
called “Single Static Assignment (SSA)” and it
reduces compilation complexity.

• Expressions are explicit-parenthesized.

SCADE Suite™ for DO-178B

Methodological Handbook
4 - 36

• No dynamic address calculation is performed (no
pointer arithmetic).

• It contains no array indexing (since there are no
arrays, except for FBY).

• There are no implicit conversions.

• There is no expression with side-effects (no i++,
no a += b, no side-effect in function calls).

• No functions are passed as arguments.
Traceability of the code to the SCADE data
flow model is illustrated in Figure 4.11 below.

Figure 4.11: SCADE data flow to generated C source code traceability

Various code generation options can be used to
tune the generated C code to particular target
and project constraints. Basically, there are two
ways to generate code from a SCADE node:

• Call mode: the operator is generated as a C
function.

• Inline mode: the whole code for the operator is
expanded where it is called.

This is illustrated in Figure 4.12.

Methodological Handbook
4 - 37

SCADE Suite™ for DO-178B

Figure 4.12: Comparing Call and Inline modes

Both of these code generation modes (Call or
Inline) can be composed at will, performing a
call for some nodes and inlining for other
nodes.

CONTROL FLOW

Traditional design and programming is error-
prone for the control flow. There are frequent
errors related to:

• Loop termination
• Computation order
• Deadlocks
• Race conditions (a result depends on computation

timing of parallel tasks/threads)
With SCADE, the approach is different:

• The designers develop the SCADE model
focusing on functions; they need not spend time
analyzing the dependencies and developing the
sequencing.

• When the KCG analyzes a SCADE model, it
generates a computation order based on the
functional dependencies.

• Every data element is computed at the right time,
once and only once.

• There are no loops and no “goto” constructs.
• Concurrency is expressed functionally, but the

generated code is sequential and contains no
tasking overhead.

4.4.2 Code generation from SCADE
SSMs

Figure 4.13 describes the automatic C code
generation chain from SSM designs. The SSM
node is first translated into a SCADE data flow
node, then the KCG 4.2 Code Generator is
used.

SCADE Suite™ for DO-178B

Methodological Handbook
4 - 38

Figure 4.13: C code generation from SSMs

The code has the same properties as code
generated from data flow diagrams.

Traceability of the code to the SCADE SSM
model is illustrated in Figure 4.14 below. It relies
on the use of names, annotations, and a

traceability matrix. Variable names identify the
inputs, outputs, and state names. Specific
comments identify the transition behavior.

Figure 4.14: SCADE SSM to generated C source code traceability

The way to accommodate concurrent designs in
a SCADE model, while keeping the necessary
traceability between model and code, is to use

data flows to handle concurrency. This is shown
in Figure 4.15 below, where there are three
buttons in parallel.

Methodological Handbook
4 - 39

SCADE Suite™ for DO-178B

Figure 4.15: Three buttons in a parallel data flow

4.5 Software Integration
Process

4.5.1 Integration aspects

Integration of SCADE code concerns:

• Scheduling
• Input/output
• Integration of external data types and constants
• Integration of external functions

4.5.2 Input/output

Interface to physical sensors and/or to data
buses is usually handled by drivers. If data
acquisition is done sequentially, while the
SCADE function is not active, then a driver
may pass its data directly to the SCADE input.
If it is a complex data, it may be passed by

address, for efficiency reasons. If a driver is
interrupt-driven, then it is necessary to ensure
that the inputs of the SCADE function remain
stable, while the SCADE function is computing
the current cycle. This can be ensured by
separating the internal buffer of the driver from
the SCADE input vector and by performing a
transfer (or address swap) before each SCADE
computation cycle starts. These drivers are
usually not developed in SCADE, but in C or
assembly language.

4.5.3 Integration of external data and
code

SCADE allows using external data types and
functions. In the model, they have to be
declared as “imported,” and for functions, their
interface also has to be declared. Examples of
such functions are trigonometric functions, byte
encoding, and checksum. At integration time,
these functions have to be compiled and linked
to the SCADE-generated code. The SCADE

SCADE Suite™ for DO-178B

Methodological Handbook
4 - 40

Simulator automatically compiles and links
external code when the path names of the
source files are given in the project settings.

4.5.4 SCADE scheduling and tasking

Scheduling actually has to be addressed from the
preliminary design phase, but for the sake of
simplicity we describe it here.

First, we recall the execution semantics of
SCADE, and then we examine how to model
and implement scheduling of a SCADE model
in single or multirate mode, in single tasking or
in multitasking mode.

SCADE EXECUTION SEMANTICS

SCADE execution semantics is based on the
cycle-based execution model that we described
in Section 3.2.6. This model can be represented
with Figure 4.16.

Figure 4.16: SCADE execution semantics

The software application samples the inputs
from the environment and sets them as inputs
for the SCADE code. The main SCADE
function of the generated code is called. When
SCADE code execution is ended, SCADE-

calculated outputs can be used to act upon the
environment. The software application is ready
to start another cycle.

BARE SYSTEM IMPLEMENTATION

Typically, a cycle can be started in three
different ways:

• Polling: a new cycle is started immediately after
the end of the previous one in an infinite loop.

• Event triggered: a new cycle is started when a
new start event occurs.

• Time triggered: a new cycle is started regularly,
based on a clock signal.

The SCADE code can be simply included in an
infinite loop, waiting or not for an event or a
clock signal to start a new cycle:

begin_loop
waiting for an event (usually a clock
signal)
setting SCADE inputs
calling the SCADE generated main function
using SCADE outputs
end_loop

Methodological Handbook
4 - 41

SCADE Suite™ for DO-178B

SINGLE-TASK INTEGRATION OF SCADE
FUNCTION WITH AN RTOS

A SCADE design can easily be integrated in an
RTOS in the same way that it is integrated in a
general-purpose C code, as shown in Figure 4.17.
The infinite loop construction is replaced by a
task. This task is activated by the start event of
the SCADE design, which can be a periodic
alarm or a user activation.

Figure 4.17: SCADE code integration

This architecture can be designed by hand for
any RTOS.

Note that concurrency is expressed functionally
in the model and that the Code Generator takes
into account the data flow structure to generate
sequential code, taking into account this

functional concurrency and the data flow
dependencies. There is no need for the user to
spend time sequencing parallel flows, neither
during modeling nor during implementation.
There is no need to develop multiple tasks with
complex and error-prone synchronization
mechanisms.

Note that other code, such as hardware drivers,
may run in separate tasks, provided it does not
interfere with the SCADE code.

MULTIRATE, SINGLE-TASK APPLICATIONS

SCADE can be used to design multirate
applications in a single OS task. Some parts of
the SCADE design can be executed at a slower
rate than the SCADE top-level loop. Putting a
slow part inside a condact3 operator can do this.
Slowest rates will be derived from the fastest
rate, which is always the top-level rate. This
ensures a deterministic behavior.

The following application has two rates: Sys1,
which is as fast as the top-level, and Sys2, which
is four times slower, as shown in Figure 4.18
below.

Figure 4.18: Modeling a birate system

3. A condact operator has an input clock (on top) that is used to trigger the execution of the computation that is described inside the
block, thus allowing the introduction of various rates of execution for different parts of a SCADE model. When an operator is put
under condact, its execution only occurs when a given condition is true.

SCADE Suite™ for DO-178B

Methodological Handbook
4 - 42

The schedule of this application will be as
shown in Figure 4.19 below:

Figure 4.19: Timing diagram of a bi-rate system

Sys2 is executed every four times only. It is
executed within the same main top-level
function as Sys1. This means that the whole
application, Sys1 + Sys2, is executed at the
fastest rate. This implies the use of a processor
fast enough to execute all the application at a
fast rate. This could be a costly issue.

The solution consists of splitting the slow part
into several little slow parts and distributing
their execution on several fast rates. This is a
safe way to design a multirate application.
Scheduling of this application is fully
deterministic and can be statically defined.

The previous application example can be
redesigned as shown in Figure 4.20:

Figure 4.20: Modeling distribution of the slow
system over four cycles

The slow part, Sys2, is split into four
subsystems. These subsystems are executed
sequentially, one after the other, in four cycles,
as shown in Figure 4.21 below:

Figure 4.21: Timing diagram of the distributed
computations

Note that Sys1 execution time can be longer
than with the previous design. This means that a
slower, but cheaper, processor can be used.

The multirate aspect of a SCADE design is
achieved using standard SCADE constructs.
This has no effect on the external interface of

Methodological Handbook
4 - 43

SCADE Suite™ for DO-178B

the SCADE-generated code. This code can be
integrated following the infinite loop
construction as described earlier.

Such design has advantages, but it also has
constraints:

• Advantages:
• Static scheduling: fully deterministic, no time

slot exceeded or crushed, no OS deadlock.
• Data exchanges between subsystems are

handled by SCADE, respecting data flow
execution order.

• SCADE simulation and proof are valid for the
generated code.

• Same code interface as a mono-rate
application.

• Constraints:
• Need to know WCET (Worst Case Execution

Time) of each subsystem to validate scheduling
in all cases.

• Split of slow subsystems can be difficult with
high-rate ratio (e.g., 5ms and 500ms).

• Constraint for design evolutions and
maintenance.

MULTITASKING IMPLEMENTATION

The single tasking scheme described above has
been used for fairly large industrial systems.
There are situations where implementation of
the SCADE code on several tasks is useful, for
instance, if there is a large ratio between slow
and fast execution rates.

It is possible to build a global SCADE model,
which formalizes the global behavior of the
application, while implementing the code on

different tasks. While it is also possible to build
and implement separate independent models,
the global model allows representative
simulation and formal verification of the
complete system.

The distribution over several tasks requires
specific analysis and implementation (see [Caspi-
2004] for details in Appendix A).

4.6 Teamwork

To work efficiently on a large project requires
both distribution of the work and consistent
integration of the pieces developed by each
team.

The SCADE language is modular: there is a
clear distinction between the interfaces and the
contents of modules (called “nodes” in
SCADE) and there are no side-effects from one
node to another.

A typical project organization is shown in Figure
4.22:

• A software architect defines the top-level nodes,
their interfaces, and connections.

• Utility libraries are developed.
• Each major subfunction, corresponding to a top-

level node is developed by a specific team; the
interfaces of these top-level nodes define a
framework for these teams, which maintain
consistency of the design.

SCADE Suite™ for DO-178B

Methodological Handbook
4 - 44

Figure 4.22: Typical teamwork organization

At each step, the team can verify in a mouse
click that the subsystem remains consistent with
the interface. Later, the integration of those
parts in a larger model can be achieved by
linking these “projects” to the larger one. At any
stage, the SCADE semantic Checker verifies the
consistency of this integration in a mouse click.

All these data have to be kept under strict
version and configuration management control.
SCADE can be integrated with the customer’s
configuration management system via SCCI™

(Microsoft Source Code Control Interface),
supported by most commercial Configuration
Management Systems.

Reuse is also an important means of improving
productivity and consistency in a project or a
series of projects. SCADE libraries can store
definitions of nodes and/or data types, which
can be reused in several places. These range
from basic nodes such as latches or integrators
to complex, customer-specific systems.

Methodological Handbook
5 - 45

SCADE Suite™ for DO-178B

5. Software Verification Activities

5.1 Overview

The software verification process is an
assessment of the results of both the software
development process and the software
verification process. It is typically satisfied
through a combination of review, analyses, and
tests.

The software testing process is a part of the
verification process; it is aimed at demonstrating
that the software satisfies its requirements both
in normal operation and in the presence of
errors that could lead to unacceptable failure
conditions.

According to DO-178B, validation is “the process
of determining that the requirements are the correct
requirements and that they are complete.” Verification
is “the evaluation of the results of a process to ensure
correctness and consistency with respect to the inputs and
standards provided to that process.” In other terms,
the difference lies in the nature of the errors
that are found. Validation always concerns the
requirements, even when a requirement error is
found by testing an implementation that
conforms to its (bad) requirement(s); this differs
from an implementation error, when the
implementation does not conform to the
requirements.

5.2 Verification of the
SCADE High-Level
Requirements

5.2.1 Verification objectives for the
HLR

Table 5.1 lists verification objectives for the
software high-level requirements.
Table 5.1: DO-178B Table A-3

Objective

1 Software high-level requirements comply with
system requirements.

2 Software high-level requirements are accurate and
consistent.

3 Software high-level requirements are compatible
with target computer.

4 Software high-level requirements are verifiable.

5 Software high-level requirements conform to
standards.

6 Software high-levels requirements are traceable to
system requirements.

7 Algorithms are accurate.

SCADE Suite™ for DO-178B

Methodological Handbook
5 - 46

For those elements of the SCADE model that
are developed during the requirements phase,
they have to be verified against the objectives of
DO-178B Table A-3.

They also have to be verified against the
objectives that DO-178B defines for low-level
requirements (see Section 5.3), since “when code is
generated from HLR, these are also considered LLR,
and the guidelines for LLR also apply to them” (DO-
178B; Section 5.0).

5.2.2 Verification methods for HLR

COMPLIANCE WITH SYSTEM REQUIREMENTS

This compliance is verified by peer review. At
this stage, the SCADE model is usually
incomplete and composed primarily of top-level
nodes. The meaning of these nodes is described
textually, either in the body of the textual
document, or as textual annotations of the
SCADE model.

ACCURACY AND CONSISTENCY

Again, since the model at this stage is
incomplete, verification is mostly based on
review. Some consistency checks of both the
interface and the connections are automated by
the SCADE Checker.

COMPATIBILITY WITH TARGET COMPUTER

There is nothing specific to SCADE at this
stage.

VERIFIABILITY

The SCADE model identifies the top-level
functions and describes the functional
breakdown and data flows between top-level
functions. This description is verifiable.

COMPLIANCE WITH STANDARDS

The SCADE notation has precise syntactic and
semantic rules (e.g., data type consistency)
defined in the SCADE language reference
manual. Compliance with this standard can be
verified by the SCADE syntactic and semantic
checkers. Note that a model that has been
created with the SCADE Editor is syntactically
correct automatically.

TRACEABILITY TO SYSTEM REQUIREMENTS

Traceability can be managed with the SCADE
DOORS Gateway or by using annotations of
the SCADE model elements to reference the
system requirements (see §6.3).

ALGORITHMS ACCURACY

There are usually no SCADE algorithms at this
stage.

Methodological Handbook
5 - 47

SCADE Suite™ for DO-178B

5.2.3 Verification summary for HLR

Table 5.2 summarizes verification objectives and
methods for the software high-level
requirements.

5.3 Verification of the
SCADE Low-Level
Requirements and
Architecture

5.3.1 Verification objectives

The complete SCADE model has to be verified
against the objectives that DO-178B defines for
low-level requirements (see Table 5.3). This is
the case even if all or part of the SCADE model
is developed as HLR. Indeed, “when code is
generated from HLR, these are also considered LLR,
and the guidelines for LLR also apply to them” (DO-
178B; Section 5.0).

Table 5.2: DO-178B Table A-3 Objectives
Achievement

Objective Verification Method

1 Software high-level
requirements comply with
system requirements.

Review

2 Software high-level
requirements are accurate
and consistent.

Review

3 Software high-level
requirements are
compatible with target
computer.

Review

4 Software high-level
requirements are
verifiable.

Review

5 Software high-level
requirements conform to
standards.

SCADE syntax Checker

6 Software high-level
requirements are
traceable to system
requirements.

Establish traceability
with DOORS Link or
with annotations

7 Algorithms are accurate. N/A (No SCADE
algorithm at this stage)

Table 5.3: DO-178B Table A-4

Objective

1 Low-level requirements comply with high-level
requirements.

2 Low-level requirements are accurate and consistent.

3 Low-level requirements are compatible with target
computer.

4 Low-level requirements are verifiable.

5 Low-level requirements conform to standards.

6 Low-levels requirements are traceable to high-level
requirements.

7 Algorithms are accurate.

8 Software architecture is compatible with high-level
requirements.

SCADE Suite™ for DO-178B

Methodological Handbook
5 - 48

5.3.2 SCADE model accuracy and
consistency

The syntactic and semantic Checkers of SCADE
Suite perform an in-depth analysis of model
consistency, including:

• Detection of missing definitions
• Warnings on unused definitions
• Detection of non initialized variables
• Coherence of data types and interfaces
• Coherence of “clocks,” namely of production/

consumption rates of data
It is also possible to add custom verification
rules using the programmable interface (API) of
the SCADE Suite Editor.

5.3.3 Compliance with design standard

The SCADE Language Reference Manual
defines the design standard for the SCADE
architecture and LLRs: it defines precisely the
syntactic and semantic rules that a SCADE
model has to follow. The SCADE syntactic and
semantic Checkers included in KCG verify
compliance with this standard.

5.3.4 Traceability from SCADE LLR to
HLR

Traceability from SCADE LLRs to the HLRs
can be efficiently supported with a tool such as
DOORS™ Link. This tool imports the SCADE
structure into DOORS. Then, in the DOORS
environment, this structure can be handled like
any other requirements hierarchy. It can then be
browsed; links with the HLR can be established
and analyzed; coverage matrices can be
generated. With a mouse click on a SCADE
element in DOORS, this element is
automatically selected in SCADE Editor, as
shown in Figure 5.1 below.

9 Software architecture is consistent.

10 Software architecture is compatible with target
computer.

11 Software architecture is verifiable.

12 Software architecture conforms to standards.

13 Software partitioning integrity is confirmed.

Table 5.3: DO-178B Table A-4 (Continued)

Objective

Methodological Handbook
5 - 49

SCADE Suite™ for DO-178B

Figure 5.1: Traceability between SCADE LLR and HLR using DOORSTM Link

5.3.5 Verifiability

The SCADE model describes the low-level
requirements and the architecture of the
corresponding software part. Since the SCADE
notation has a formal definition, a SCADE
model is formally verifiable.

5.3.6 Compliance with high-level
requirements

To verify compliance of the SCADE model
with the HLR, there are three complementary
techniques:

• Peer review
• Simulation
• Formal verification

REVIEW OF THE SCADE MODEL

Peer review is an essential technique for
verifying compliance of LLRs with HLRs.

SCADE Suite™ for DO-178B

Methodological Handbook
5 - 50

For review, a report containing all data of the
SCADE model can be automatically generated.
SCADE notation has several advantages
compared to textual notation:

• The description is not subject to interpretation.
This is because the SCADE notation has formal
definition.

• The description is complete. Incompleteness is
detected by the SCADE semantic Checker.

• Its graphical form is simple and intuitive.
Peer review can verify adherence to the
robustness design rules explained in Section
4.3.2.

SCADE SIMULATION

It is helpful to dynamically exercise the behavior
of a SCADE specification to better verify how it
functions. As soon as a SCADE model (or
pieces of it) is available, it can be simulated with
the SCADE Suite Simulator, as shown in Figure
5.2. Simulation can be run interactively or in
batch. Scenarios (input/output sequences) can
be recorded, saved, and replayed later on the
Simulator or on the target. Note that all
simulation scenarios, like all testing activities,
have to be based on the software high-level
requirements.

Figure 5.2: Simulation makes it possible to “play with the software specification”

Simulation supports the detection of assertion
violation, which is a powerful help during the
verification of robustness.

SCADE SUITE FORMAL VERIFICATION WITH
DESIGN VERIFIER

The SCADE Suite Design Verifier provides an
original and powerful verification technique
based on formal verification technologies.

Methodological Handbook
5 - 51

SCADE Suite™ for DO-178B

Testing activities, including SCADE simulation,
let you test and verify the correctness of the
design. However, with testing, one is never
100% sure that the design is correct, as one
usually never tests all possible scenarios.

Formal verification of computer systems is a set
of activities consisting of using a mathematical
framework to reason about system behaviors
and properties in a rigorous way. The recipe for
formal verification of safety properties is:

1 Define a formal model of the system; that is,
a mathematical model representing the states
of a system and its behaviors. When
modeling LLR in SCADE language, the
model is already formal, so there is no
additional formalization effort required.

2 Define for the formal model a set of formal
properties to verify. These properties
correspond to high-level requirements or
system requirements.

3 Analyze mathematically and/or by state space
exploration the validity of the safety
properties.

Let us take a simple example. Assume we have a
landing gear control system, which may trigger a
landing gear retraction command. Assume that
we want to verify the following safety property: .

We would express in a SCADE node the safety
property shown in Figure 5.3 below, reflecting
the property above. This node is called an
observer.

Figure 5.3: Observer node containing landing
gear safety property

Then, we would connect the observer node to
the controller in a verification context node, as
shown in Figure 5.4 below.

Figure 5.4: Connecting the observer node to the
landing gear controller

Traditionnally, expressing a property and finding
a proof for a real system containing complex
algorithms and control logic required a large
amount of time and expertise in mathematics;
thus the use of formal verification techniques
was marginal. Hence, the major challenge of
formal verification is to provide system
engineers and software developers with an

“for all possible behaviors of this
controller, it will never send a landing
gear retraction command while the aircraft
is in landing mode or on the ground”

SCADE Suite™ for DO-178B

Methodological Handbook
5 - 52

efficient, easy-to-use, and friendly framework,
which does not require a lot of time to use and
also enables increased confidence in the system.
To meet this challenge, the SCADE Suite
Design Verifier offers to a wide range of users a
solution for easy access to formal verification,
which can rely on the following characteristics:

• Property Expression: The SCADE language
itself expresses properties. There is no need to
learn a mathematical dialect to express the
property requirements you want your design to
fulfill.

• Property Verification: This is a push-button
feature of the SCADE application, which basically
provides a yes/no answer. Moreover, in the case
of a no answer, SCADE lets you discover in an
automatic and user-friendly way why a no answer
was reached.

Design Verifier helps detect specification errors
at the early phase of the software flow,
minimizing the risk of discovering these errors
during the final integration and validation
phases. The input to Design Verifier is a set of
properties that have to be checked for
correctness in the design. This set of safety
properties is extracted and specified from the
high-level requirements and/or from the safety
analysis.

Figure 5.5 represents the Design Verifier
workflow. It consists of successive tasks that
may be iterated. There are three kinds of tasks:

Figure 5.5: Design Verifier workflow

• Property Definition: This task consists of
extracting properties from the high-level
requirements to check with Design Verifier.

• Property and Environment Specification: This
task consists of formally describing, as SCADE
observer properties, the requirement extracted as
properties in SCADE. Necessary information
from the environment of the design must be
specified formally in SCADE as well. For
example, if the altitude is always more than 100
feet above sea level, this assertion has to be
attached to the model, in order to eliminate non
relevant cases.

• Design Verifier Execution: This task
corresponds to the usage of Design Verifier.

Formal verification can add efficiency in the
communication between the Safety Assessment
Process and the System Development Process.

Methodological Handbook
5 - 53

SCADE Suite™ for DO-178B

Typically, safety properties can be directly
expressed from the FHA (Functional Hazard
Assessment) and from the PSSA (Preliminary
System Safety Assessment) phases, as defined by
ARP 4754. Then, by verifying that the software
model respects these properties, this can feed
the SSA (System Safety Assessment) process.

The SCADE 5.1 Design Verifier will also
support automatic detection of potential
division by zero and overflow/underflow
throughout the model.

5.3.7 Partitioning

SCADE introduces no specific risks, but
provides no partition mechanism. Partitioning is
beyond the scope of SCADE. It has to be
ensured by low-layer hardware and software
mechanisms such as memory partitioning and
interrupt service routines.

5.3.8 Verification summary for LLR and
architecture

Table 5.4 summarizes verification objectives and
methods for the software low-level requirements
and architecture.
Table 5.4: DO-178B Table A-4 Objectives
Achievement

Objective Verification Method

1 Low-level requirements
comply with high-level
requirements.

Review, simulation,
formal verification

2 Low-level requirements
are accurate and
consistent.

Ensured by notation
and semantic checks

3 Low-level requirements
are compatible with target
computer.

SCADE computational
model uses no target-
specific resource.
Remains to be verified:
memory and CPU
consumption.

4 Low-level requirements
are verifiable.

Ensured by formality of
SCADE notation

5 Low-level requirements
conform to standards.

SCADE syntax and
semantic Checker

6 Low-levels requirements
are traceable to high-level
requirements.

DOORS Link or
annotations

7 Algorithms are accurate. SCADE formal
description is
unambiguous.
Numerically sensitive
algorithms have to be
analyzed by simulation
and numerical analysis
techniques.

8 Software architecture is
compatible with high-level
requirements.

Review

9 Software architecture is
consistent.

SCADE semantic
Checker

10 Software architecture is
compatible with target
computer.

SCADE computational
model uses no target-
specific resource.
Remains to be verified:
memory and CPU
consumption.

11 Software architecture is
verifiable.

Ensured by SCADE
notation.

12 Software architecture
conforms to standards.

SCADE syntax and
semantic Checker.

Table 5.4: DO-178B Table A-4 Objectives
Achievement (Continued)

Objective Verification Method

SCADE Suite™ for DO-178B

Methodological Handbook
5 - 54

5.4 Verification of
Coding Outputs and
Integration Process

5.4.1 Verification objectives

Table 5.5 lists verification objectives for outputs
of the coding and integration process.

5.4.2 Impact of code generator
qualification

The KCG can be qualified as a development
tool because it has been developed by Esterel
Technologies to fulfill the DO-178B
requirements for Level A development tools
(see Appendix C for details about qualification).

This has the following consequences:

SOURCE CODE COMPLIES WITH LOW-LEVEL
REQUIREMENTS

This is ensured by the qualification of the Code
Generator.

SOURCE CODE COMPLIES WITH SOFTWARE
ARCHITECTURE

This is ensured by the qualification of the Code
Generator.

SOURCE CODE IS VERIFIABLE

By specification of the Code Generator, the
generated code reflects the model and is
verifiable. The qualification of the Code
Generator ensures that this is respected.

SOURCE CODE CONFORMS TO STANDARDS

The specification of the code generation defines
precise coding standards: it defines precisely
how SCADE constructs have to be
implemented in C. The qualification of the Code
Generator ensures that this standard is
respected.

13 Software partitioning
integrity is confirmed.

SCADE introduces no
specific risk, but
provides no partition
mechanism; traditional
method has to be used.

Table 5.5: DO-178B Table A-5

Objective

1 Source code complies with low-level requirements.

2 Source code complies with software architecture.

3 Source code is verifiable.

4 Source code conforms to standards.

5 Source code is traceable to low-level requirements.

6 Source code is accurate and consistent.

7 Output of software integration process is complete
and correct.

Table 5.4: DO-178B Table A-4 Objectives
Achievement (Continued)

Objective Verification Method

Methodological Handbook
5 - 55

SCADE Suite™ for DO-178B

SOURCE CODE IS TRACEABLE TO LOW-LEVEL
REQUIREMENTS

By specification, the generated code has a
simple, readable structure, traceable to the
model by names and by comments. The
qualification of the Code Generator ensures that
this is respected.

SOURCE CODE IS ACCURATE AND
CONSISTENT

The specification of the Code Generator defines
accurate and consistent code, reflecting accurate
and consistent input models. The qualification
of the Code Generator ensures that this is
respected.

OUTPUT OF THE SOFTWARE INTEGRATION
PROCESS IS COMPLETE AND CORRECT

This verification is achieved by the combined
testing process (see Section 5.5).

5.4.3 Verification summary

Table 5.6 summarizes verification objectives and
methods for coding outputs and integration
process.

5.5 The Combined
Testing Process

5.5.1 Verification objectives

Table 5.7 lists the verification objectives for
testing outputs of the integration process.

Table 5.6: DO-178B Table A-5 Objectives
Achievement

Objective Verification Method

1 Source code complies with
low-level requirements.

Replaced by KCG
qualification

2 Source code complies with
software architecture.

Replaced by KCG
qualification

3 Source code is verifiable. Replaced by KCG
qualification

4 Source code conforms to
standards.

Replaced by KCG
qualification

5 Source code is traceable to
low-level requirements.

Replaced by KCG
qualification

6 Source code is accurate
and consistent.

Replaced by KCG
qualification

7 Output of software
integration process is
complete and correct.

See Combined Testing
Process

Table 5.7: DO-178B Table A-6

Objective

1 Executable object code complies with high-level
requirements.

2 Executable object code is robust with high-level
requirements.

3 Executable object code complies with low-level
requirements.

4 Executable object code is robust with low-level
requirements.

Table 5.6: DO-178B Table A-5 Objectives
Achievement (Continued)

Objective Verification Method

SCADE Suite™ for DO-178B

Methodological Handbook
5 - 56

5.5.2 Divide-and-conquer approach

In a traditional development process, testing
combines the search for design, coding, and
compilation errors. The combined testing
process optimizes the testing effort by using a
“divide-and-conquer” approach. It benefits
from KCG qualification and from the
characteristics of the generated code:

1 Compliance of the SCADE model with the
HLRs is, to a large extent, verified at the
model level.

2 Compliance of the source code with the
SCADE LLRs is ensured by KCG
qualification.

3 For the verification of source to object code
transformation, the characteristics of the
generated source code allow a sample-based
approach for low-level testing of the source
code generated by KCG.

5.5.3 Combined testing process
organization

This section describes the combined testing
process. Appendix D provides details about the
justification of the sample-based approach and
about the process to build the sample.

Figure 5.6 summarizes the combined testing
process.

5 Executable object code is compatible with target
computer.

Table 5.7: DO-178B Table A-6 (Continued)

Objective

Methodological Handbook
5 - 57

SCADE Suite™ for DO-178B

Figure 5.6: The combined testing process with KCG

The combined testing process is organized in
the following way:

1 The coding environment is prepared as
follows:

• The source to object code Compiler/Linker is
installed in a stable version. Appropriate
compiler options are selected (for example, no
or little optimization). The same environment
will be used for hand code and KCG code in
the project.

• Analysis of this object code is performed
according to CAST Paper P-12[CAST-12] to
demonstrate that if any object is not directly
traceable to source code, then this object code
is correct (note that this activity is independent
from SCADE).

2 For the functions that are hand-coded in the
source code language, all verification activities
are performed on the complete code:

• The user performs classical verification
activities (source code review, all level testing,
and structural coverage analysis at the source
code level) for all the code.

3 For the source code automatically generated
by KCG:

• A representative sample of the generated code
is verified in the same way as manual code,
including code review and testing with
structural code coverage. Appendix D describes
how the CVK Test Suite containing this
sample is developed and used.

SCADE Suite™ for DO-178B

Methodological Handbook
5 - 58

• If there is imported code (manual code called
by SCADE-generated code), integration testing
between SCADE code and imported code is
performed.

4 For the whole application:

• The user performs extensive system
requirements-based software and hardware/
software integration testing. “Extensive” means
that all system requirements allocated to
software are covered by those tests. As
explained in §5.5.5, the coverage of both HLRs
and LLRs has to be achieved by the
combination of target and host testing.

If the combination of all the above activities
does not detect any errors in the object code,
then we can have sufficient confidence that the
compiler did not introduce undetected errors in
the code generated by KCG for that application.

5.5.4 Verification summary

Table 5.8 summarizes verification objectives and
methods for testing outputs of the integration
process.
Table 5.8: DO-178B Table A-6 Objectives
Achievement

Objective Verification Method

1 Executable object code
complies with high-level
requirements.

Set of tests covering
normal HLR conditions
(representative SCADE
simulation and target
testing)
+ KCG qualification
+ compiler verification

2 Executable object code is
robust with high-level
requirements.

Set of tests covering
abnormal HLR
conditions
(representative SCADE
simulation and target
testing)
+ KCG qualification
+ compiler verification

3 Executable object code
complies with low-level
requirements.

KCG qualification
+ compiler verification

4 Executable object code is
robust with low-level
requirements.

Test arithmetic
exception handler and/
or impose usage of
robust arithmetic blocks

5 Executable object code is
compatible with target
computer.

Target resource usage
analysis

Methodological Handbook
6 - 59

SCADE Suite™ for DO-178B

6. Verification of the Verification Activities

6.1 Verification
Objectives

We now have to assess how well the above-
mentioned verification has been performed.
Table 6.1 summarizes the verification objectives
from DO-178B.

6.2 Verification of Test
Procedures and Test
Results

TEST PROCEDURE CORRECTNESS

The following categories of test procedures have
to be reviewed:

• High-level requirements-based test procedures on
the Simulator, if verification credit is sought. In
this case, representativeness has to be
demonstrated.

• Low-level test procedures of the C sample.
• System or high-level requirements-based test

procedures on the target.

TEST RESULT CORRECTNESS AND
DISCREPANCY EXPLANATION

The results of the above-mentioned test have to
be analyzed and discrepancies explained.

6.3 HLR Coverage
Analysis

The objective of this activity is to verify that the
HLRs have been covered by test cases.

All test cases done on the SCADE part are
based on HLR(s) and will contain a link to the
HLR(s) that they verify. The analysis of these

Table 6.1: DO-178B Table A-7

Objective

1 Test procedures are correct.

2 Test results are correct and discrepancies are
explained.

3 Test coverage of high-level requirements is
achieved.

4 Test coverage of low-level requirements is achieved.

5 Test coverage of software structure (modified
condition/decision) is achieved.

6 Test coverage of software structure (decision
coverage) is achieved.

7 Test coverage of software structure (statement
coverage) is achieved.

8 Test coverage of software structure (data coupling
and control coupling) is achieved.

SCADE Suite™ for DO-178B

Methodological Handbook
6 - 60

links will confirm full coverage of the HLR by
the test cases; otherwise, test cases have to be
complemented.

If representativity of the simulation is ensured,
then coverage has to be ensured by the union of
test cases performed on the target and on the
Simulator. Otherwise, all HLRs have to be fully
covered by target testing. Note that scenarios
can be transferred from/to the Simulator to/
from the target test environment.

6.4 LLR Coverage
Analysis with MTC

6.4.1 Objectives and coverage criteria

This section addresses the coverage of the
SCADE LLRs. Model coverage analysis is a
means of assessing how far the behavior of a
model has been explored. It is complementary
to traceability analysis and high-level
requirements coverage analysis.

Model coverage verifies that every element of
the SCADE model (which represents a software
design feature) has been dynamically activated
when the high-level requirements are exercised.
A primary objective is to detect unintended
functions in the software design.

The term “unintended function” requires
clarification. At the implementation level, an
unintended function is one that exists in the
actual software implementation, but not by

design. Similarly, the existence of an unintended
function in software design is unplanned in the
software high-level requirements.

One might think that unintended functions are
just things that should not be present, that they could
be easily detected by scanning the traceability
matrix and then removed systematically. The
reality is somewhat more complex:

1 “Unintended” does not necessarily mean
“wrong” or “extraneous”. It just means “not
explicitly intended.” An unintended function
may well be necessary and correct, but
missing in the high-level requirements.

2 Regarding the reason and number of
unintended functions, there is a definite
difference between the software design and
the software code:

• The software design is very detailed, and the
software code basically must reflect it. Any
difference in functionality between the
software implementation and its design is
either an error in the implementation, a derived
requirement that has not been made explicit, or
an error/omission in the software
requirements. In a word, it is the result of an
error.

• The high-level requirements are usually not as
detailed as the definitive software design.
Practically, it is often necessary to add details
when developing the software design. These
additional details must be verified and fed back
into the high-level requirements. Many of the
“unintended” functions that exist in the software
design fill “holes” in the high-level
requirements; their presence is beneficial.

Methodological Handbook
6 - 61

SCADE Suite™ for DO-178B

However, their explicit identification and
verification are required.

3 An unintended function is often not directly
visible by the mere presence of a high-level
requirement paragraph (text form) or of a
SCADE operator (SCADE form). It may
involve some dynamic behavior.

Thus, there is a need to analyze the dynamic
behavior of the software design.

Coverage criteria have been a research topic for
some time, but most available results concern
sequential programming, which is by far the
dominant programming technique:

• Control flow coverage criteria are the most widely
used. In that category, [DO-178B] has selected
statement coverage, condition/decision coverage
and MC/DC (Modified Condition/Decision
Coverage) depending on the safety integrity level.

• Even most data flow coverage criteria found in
the literature have been primarily designed for
sequential programs. They focus on the
definitions and uses of a variable: where is a
variable defined/redefined; has it always been
defined before use; which definition has been
activated before use?

These existing criteria are a valuable source of
inspiration for SCADE model coverage.
However, in order to define relevant criteria for
SCADE models, we need to take into account
the characteristics of SCADE:

• A SCADE model describes the functionality of
software, while a C program describes its
implementation. As it will be shown in the next
section, this creates a major difference both in
terms of abstraction level (feature coverage versus

code coverage) and in terms of coverage of
multiple occurrences.

• SCADE models are based on functional data
flow, while most programming languages and
their criteria are sequential.

• Every SCADE node that is not under activation
condition is computed at each cycle. This makes
the control flow somehow “degenerated”
(compared to a traditional program) for the vast
majority of SCADE models, which contain few
activation conditions.

• Regarding the variables definitions/use flow, a
SCADE model explicitly describes this flow, and
the language contains semantic integrity rules for
this flow: every variable in the model is defined
once and only once. The SCADE tools verify
such rules.

In order to define proper criteria, we have taken
into account the following requirements:

• They should capture the activation of elementary
functions in a SCADE model.

• They should be simple and easy to understand by
the persons developing or verifying the high-level
or low-level requirements.

• They should be reasonably easy to capture and
analyze.

Operators are the building blocks of SCADE
models. A SCADE model is a network of
operators, where data flows from one operator
to another through connections. Each operator
is characterized by a set of features, which are
characteristic of the operator’s elementary
functions.

The most basic feature for an operator
corresponds to the fact that an operator is
activated. This criterion is similar to the

SCADE Suite™ for DO-178B

Methodological Handbook
6 - 62

procedure call criterion for code. In a SCADE
network, all operators in a node N are
systematically activated as soon as node N is
activated. Activation of a node is determined by
its activation condition, if there is one; otherwise
it is activated at each cycle. So, this criterion is
very weak, and thus we propose more relevant
criteria.

The following example illustrates the kind of
coverage criterion that we propose. It is based
on the characteristic features of an operator and
can be recorded for every instance of this
operator during the execution of a model.

• Example: Confirmator
A Confirmator is a library operator whose
purpose is to validate a Boolean input. Its
output O is true when its input I remained true
during at least N cycles, and is false otherwise.

A reasonable criterion corresponds to covering
the following features:

• Any false input triggers a negative output (I is
false -> O is false)

• Confirmation (I has been true for N cycles ->
O true)

6.4.2 LLR coverage analysis with
SCADE Suite MTC

SCADE MTC (Model Test Coverage) is a
module of SCADE Suite, which allows
measuring the coverage of a SCADE model by a
high-level requirements-based test suite. The
purpose of this measure is to assess how
thoroughly the SCADE model has been
simulated. As described in the previous section,
the coverage criterion is based on the
observation of operator features activation, each
operator being associated with a set of
characteristic features. Figure 6.1 shows the
position of Model Test Coverage within the
software verification flow.

Methodological Handbook
6 - 63

SCADE Suite™ for DO-178B

Figure 6.1: Position of SCADE Suite Model Test Coverage (MTC)

The use of SCADE MTC is decomposed in the
following phases:

1 Model Coverage Acquisition: Running test
cases in the SCADE Simulator, while
measuring the coverage of each operator.

2 Model Coverage Analysis: Identifying the
SCADE operators that have not been fully
covered.

3 Model Coverage Resolution: Providing the
explanation or the necessary fixes for each
operator that has not been fully covered.
Fixes can be in the high-level requirements, in
the SCADE model, or in both.

Figure 6.2 below illustrates the use of MTC.
Coverage of each operator is indicated via
colors and percentages. The tool gives a detailed
explanation of the operator features that have
not been fully covered.

SCADE Suite™ for DO-178B

Methodological Handbook
6 - 64

Figure 6.2: Using SCADE Suite Model Test Coverage (MTC)

Let us further detail Model Coverage Analysis,
which allows uncovering model operator
features that have not been activated. This may
reveal the following deficiencies:

1 Shortcomings in high-level requirements-
based test procedures: In that case,
resolution consists of adding missing
requirements-based test cases.

2 Inadequacies in the high-level
requirements: In that case, resolution
consists of fixing HLRs and updating the test
suite.

3 Dead parts in the SCADE model: In that
case, resolution may consist of removing the
dead feature, assessing the effect and the
needs for reverification.

Methodological Handbook
6 - 65

SCADE Suite™ for DO-178B

4 Deactivated parts in the SCADE model:
In that case, resolution may consist of
explaining the reason why a deactivated
feature remains in the design.

EXAMPLE 1: INSUFFICIENT TESTING

Figure 6.3: Non activated Confirmator

• Analysis: The Confirmator in Figure 6.3 was not
raised during testing activities. Analysis concludes
that the requirement is correct but testing is not
sufficient.

• Resolution: Develop additional tests.

EXAMPLE 2: LACK OF ACCURACY IN THE HLR

The Integrator in Figure 6.4 was never reset
during the tests: Is the “reset” behavior an
unintended function?

Figure 6.4: Uncovered “reset” activation

• Analysis: Resetting the filter here is a correct SW
requirement, but the HLR did not specify that
changing speed regulation mode implies resetting
all filters, so no test case exercised this situation.

• Resolution: Complement the HLR.

IMPACT ON UNINTENDED FUNCTIONS

In a traditional process (Figure 6.5), unintended
functions can be introduced both during the
design process and during the coding process.
Structural code coverage analysis is needed to
detect both categories.

Figure 6.5: Sources of unintended functions in a traditional process

SCADE Suite™ for DO-178B

Methodological Handbook
6 - 66

When using MTC and KCG as illustrated on
Figure 6.6, unintended functions are detected
and eliminated at the model level:

• MTC makes it possible to detect and resolve
unintended functions in the LLR (SCADE
model).

• KCG does not introduce unintended functions
into the source code, which exactly reflects the
LLR.

Figure 6.6: Elimination of unintended functions with MTC and KCG

6.5 Structural Coverage
of the Source Code

6.5.1 Control structure coverage

The structural coverage objective depends on
the safety level; for instance, Level A requires
MC/DC.

Structural coverage has to be verified both on:

• the complete manual code;

• the C sample (see 5.5 The Combined Testing
Process).

Test cases ensuring MC/DC structural coverage
of all the basic C blocks are developed. They are
exercised both on the host and on the target
processor. Then, one can assert that every
required computational path through the C code
for the primitive computational block level has
been exercised correctly via the [CVK] in the
target environment.

For a given implementation of a low-level
requirement at a node, model coverage does not
necessarily guarantee that every piece of
generated code for that low-level requirement
has been exercised in that context. This is

Methodological Handbook
6 - 67

SCADE Suite™ for DO-178B

similar to a situation that may occur with run-
time libraries. Such libraries have commonly
been approved through separate, structure-
based testing and analysis in unrelated avionics
applications. For any paths exercised by tests
that meet the model-coverage criteria, though,
the behavior of the source code will be correct.
If subsequent changes to the low-level
requirements activate other paths in the source
code, their behavior will also be correct, given
that all such paths have been evaluated as part
of the [CVK]. While not a necessary part of the
argument, analysis is facilitated by the simple
nature of the generated code in the primitive
blocks. Most blocks are implemented with three
or fewer lines of C source. No block comprises
more than twelve lines of C.

6.5.2 Data coupling and control
coupling

DO-178B requires that test coverage of the data
and control coupling are achieved. It defines:

• Data coupling as “The dependence of a software
component on data not exclusively under the control of
that software component.”

• Control coupling as “The manner or degree by
which one software component influences the execution of
another software component.”

DATA COUPLING

Data coupling verification is based on the
analysis of integration regarding:

• Interfaces between modules
• Handling of global data
• Input/output buffers sizing
• Etc.

The verification of data coupling is done as
follows:

• Data coupling between elements of the
SCADE model is verified automatically with
the SCADE semantic Checker. SCADE KCG
ensures that this consistent data coupling at the
model level is correctly reflected in the C code.

• Data coupling between SCADE and manual
code is verified manually in the traditional way.

CONTROL COUPLING

Control coupling verification is based on the
analysis of integration regarding:

• Execution of call sequences
• Analysis of scheduling
• Analysis of WCET
• Etc.

The verification of control coupling is done as
follows:

• Control coupling between elements of the
SCADE model is verified automatically with
the SCADE semantic Checker. SCADE KCG
ensures that consistent control coupling at the
model level is correctly reflected in the C code.

• Control coupling between SCADE and manual
code is verified manually in the traditional way.

Moreover, MTC coverage verifies that control
coupling and data coupling have been effectively
exercised by test cases.

SCADE Suite™ for DO-178B

Methodological Handbook
6 - 68

6.6 Summary of
Verification of
Verification

Table 6.2 summarizes verification objectives and
methods for the verification activities.
Table 6.2: DO-178B Table A-7 Objectives
Achievement

Objective Verification Method

1 Test procedures are
correct.

Test procedure review.
N.B.: concerns both
host and target.

2 Test results are correct
and discrepancies are
explained.

Test results review.
N.B.: concerns both
host and target.

3 Test coverage of high-
level requirements is
achieved.

HLR coverage by
combination of
simulation and target
tests.

4 Test coverage of low-level
requirements is achieved.

Model Test Coverage

5 Test coverage of software
structure (modified
condition/decision) is
achieved.

MC/DC on C sample.
MTC on SCADE model.

6 Test coverage of software
structure (decision
coverage) is achieved.

Decision coverage on C
sample.
MTC on SCADE model.

7 Test coverage of software
structure (statement
coverage) is achieved.

Statement coverage on
C sample.
MTC on SCADE model.

8 Test coverage of software
structure (data coupling
and control coupling) is
achieved.

Semantic check of
SCADE model.
Manual verification of
integration with manual
code.

Table 6.2: DO-178B Table A-7 Objectives
Achievement (Continued)

Objective Verification Method

Appendixes and Index

Methodological Handbook
A - 71

SCADE Suite™ for DO-178B

A References

[C. André] “Representation and Analysis of
Reactive Behaviors: A Synchronous
Approach,” proc. CESA'96, IEEE-
SMC, Lille, France (1996).

[Amey] “Correctness by Construction: better
can also be cheaper,” Peter Amey,
Crosstalk, the Journal of Defense
Software Engineering, March 2002.

[ARP4754] “Certification considerations for
highly integrated or complex aircraft
systems,” Society of Automotive
Engineers, 1996.

[G. Berry] “The Foundations of Esterel. In
“Proofs, Languages, and Interaction,
Essays in Honour of Robin Milner,”
G. Plotkin, C. Stirling and M. Tofte,
ed., MIT Press (2000).

[Caspi-2004] “Integrating model-based design and
preemptive scheduling in mixed time
and event-triggered systems,” N.
Scaife and P. Caspi, Verimag Report
Nr. TR-2004-12, June 1, 2004, (see
www-verimag.imag.fr).

[CAST-12] “Guidelines for Approving Source
Code to Object Code Traceability,”
CAST-12 Position Paper, December
2002.

[NASA_MCDC] “A Practical Tutorial on Modified
Condition/Decision Coverage,” Kelly
J. Hayhurst (NASA), Dan S.
Veerhusen (Rockwell Collins), John J.
Chilenski (Boeing), Leanna K.
Rierson (FAA).

[DO-178B/ED-12B]“Software Considerations in Airborne
Systems and Equipment
Certification,” RTCA/EUROCAE,
December 1992.

[DO-248B] Final report for clarification of DO-
178B “Software Considerations in
Airborne Systems and Equipment
Certification,” RTAC Inc, October
2001.

[DO-254] “Design Assurance Guidance for
Airborne Electronic Hardware,”
RTCA Inc.

[Lustre] “The Synchronous Dataflow
Programming Language Lustre,” N.
Halbwachs, P. Caspi, P. Raymond,
and D. Pilaud, Proceedings of the
IEEE, 79(9):1305-1320, September
1991.

[D. Harel] Statecharts: a Visual Approach to
Complex Systems. Science of
Computer Programming, vol. 8, pp.
231-274 (1987).

[Order8110.49] “Software Approval Guidelines,”
FAA Order, February 6, 2003.

[Pilarski] “Cost effectiveness of formal
methods in the development of
avionics systems at Aerospatiale,”
François Pilarski,, 17th Digital
Avionics Conference, November 1-5,
1998, Seattle, WA.

[SCADE_Lang] “SCADE Language Reference
Manual,” Esterel Technologies 2003.

[SCADE_DGL] “SCADE Design Guidelines,”
Esterel Technologies, 2005 (to be
published).

Methodological Handbook
B - 73

SCADE Suite™ for DO-178B

B Acronyms and Glossary

ACRONYMS

A/C Aircraft
COTS Commercial Off-The-Shelf.
CVK Compiler Verification Kit
DER Designated Engineering

Representative
DV SCADE Design Verifier
EUROCAE European Organization for Civil

Aviation Equipment
FAA Federal Aviation Administration
HLR High-level Requirement
KCG SCADE Qualified Code Generator
LLR Low-level Requirement.
JAA Joint Aviation Authorities
JAR Joint Aviation Requirements
MC/DC Modified Condition/Decision

Coverage
N/A Not Applicable
RTCA Requirements and Technical

Concepts for Aviation, RTCA, Inc.
SCADE Safety Critical Application

Development Environment
SQA Software Quality Assurance
SW Software

GLOSSARY

Certification Legal recognition by the certification
authority that a product, service,
organization, or a person complies
with the requirements. Such
certification comprises the activity of
technically checking the product,
service, organization, or person, and

the formal recognition of compliance
with the applicable requirements by
issue of a certificate, license, approval,
or other documents as required by
national laws and procedures. In
particular, certification of a product
involves: (a) the process of assessing
the design of a product to ensure that
it complies with a set of standards
applicable to that type of product so
as to demonstrate an acceptable level
of safety; (b) the process of assessing
an individual product to ensure that it
conforms with the certified type
design; (c) the issuance of a certificate
required by national laws to declare
that compliance or conformity has
been found with standards in
accordance with items (a) or (b)
above.

Certification credit Acceptance by the certification
authority that a process, product, or
demonstration satisfies a certification
requirement.

Condition A Boolean expression containing no
Boolean operators.

Coverage analysis The process of determining the
degree to which a proposed software
verification process activity satisfies
its objective.

Data coupling The dependence of a software
component on data not exclusively
under the control of that software
component.

Deactivated code Executable object code (or data) that,
by design, is either (a) not intended to
be executed (code) or used (data), for

SCADE Suite™ for DO-178B

Methodological Handbook
B - 74

example, a part of a previously
developed software component; or
(b) is only executed (code) or used
(data) in certain configurations of the
target computer environment, for
example, code that is enabled by a
hardware pin selection or software
programmed options.

Dead code Executable object code (or data) that,
as a result of a design error, cannot be
executed (code) or used (data) in an
operational configuration of the target
computer environment and is not
traceable to a system or software
requirement. An exception is
embedded identifiers.

Decision A Boolean expression composed of
conditions and zero or more Boolean
operators. A decision without a
Boolean operator is a condition. If a
condition appears more than once in
a decision, each occurrence is a
distinct condition.

Error With respect to software, a mistake in
requirements, design, or code.

Failure The inability of a system or system
component to perform a required
function within specified limits. A
failure may be produced when a fault
is encountered.

Fault A manifestation of an error in
software. A fault, if it occurs, may
cause a failure.

Fault tolerance The built-in capability of a system to
provide continued correct execution
in the presence of a limited number
of hardware or software faults.

Formal methods Descriptive notations and analytical
methods used to construct, develop,
and reason about mathematical
models of system behavior.

Hardware/software integration
The process of combining the
software into the target computer.

High-level requirements
Software requirements developed
from analysis of system requirements,
safety-related requirements, and
system architecture.

Host computer The computer on which the software
is developed.

Independence Separation of responsibilities, which
ensures the accomplishment of
objective evaluation. (1) For software
verification process activities,
independence is achieved when the
verification activity is performed by a
person(s) other than the developer of
the item being verified, and a tool(s)
may be used to achieve an
equivalence to the human verification
activity. (2) For the software quality
assurance process, independence also
includes the authority to ensure
corrective action.

Integral process A process that assists the software
development, processes, and other
integral processes and, therefore,
remains active throughout the
software life cycle. The integral
processes are the software verification
process, the software quality
assurance process, the software
configuration management process,
and the certification liaison process.

Low-level requirements
Software requirements derived from
high-level requirements, derived
requirements, and design constraints
from which source code can be
directly implemented without further
information.

Methodological Handbook
B - 75

SCADE Suite™ for DO-178B

Modified Condition/Decision Coverage
Every point of entry and exit in the
program has been invoked at least
once, every condition in a decision in
the program has taken all possible
outcomes at least once, every decision
in the program has taken all possible
outcomes at least once, and each
condition in a decision has been
shown to independently affect that
decision's outcome. A condition is
shown to independently affect a
decision's outcome by varying just
that condition, while holding fixed all
other possible conditions.

Robustness The extent to which software can
continue to operate correctly despite
invalid inputs.

Standard A rule or basis of comparison used to
provide both guidance in and
assessment of the performance of a
given activity or the content of a
specified data item.

Test case A set of test inputs, execution
conditions, and expected results
developed for a particular objective,
such as to exercise a particular
program oath or to verify compliance
with a specific requirement.

Tool qualification The process necessary to obtain
certification credit for a software tool
within the context of a specific
airborne system.

Traceability The evidence of an association
between items, such as between
process outputs, between an output
and its originating process, or
between a requirement and its
implementation.

Validation The process of determining that the
requirements are the correct
requirements and that they are
complete. The system life-cycle
process may use software
requirements and derived
requirements in system validation.

Verification The evaluation of the results of a
process to ensure correctness and
consistency with respect to the inputs
and standards provided to that
process.

Methodological Handbook
C - 77

SCADE Suite™ for DO-178B

C DO-178B Qualification of SCADE KCG 4.2

C-1 What Does
Qualification Mean and
Imply?

Qualification of a tool is needed when processes
are eliminated, reduced, or automated by the use
of the tool, without its output being otherwise
verified. The entire qualification process is
described in Section 12.2 of DO-178B.

Development tools are those whose output is
part of the embedded software; thus, they can
introduce errors in that embedded software.

The way to achieve the qualification of a
development tool is as follows:

• If a software development tool is to be qualified,
the software development processes for the tool
should satisfy the same objectives as the software
development processes of embedded software.

• The software level assigned to the tool should be
the same as that of the embedded software it
produces, unless the applicant can justify a
reduction in software level of the tool to the
certification authority.

In summary, users have to make sure that if
they intend to use a tool, that tool has been
developed in such a way that qualifies for its
intended role (in our case, development) and at
the level of the target software.

C-2 Development of
SCADE KCG 4.2

The SCADE KCG 4.2 Code Generator has
been developed to meet the objectives of DO-
178B for Level A. These objectives were
described in the following documents, which
have been audited by the Certification
Authorities on a number of past projects:

• The Tool Operational Requirements Data
(TORD) presents the software requirements
specification and is split into the following
documents:
• Reference Manual of the SCADE and Lustre

languages.
• Requirements Data of SCADE/KCG 4.2.

• The Tool Qualification Plan (TQP) presents the
strategy and the organization for the Qualification
of the KCG 4.2 Code Generator and refers to
other project plans.

• The Tool Accomplishment Summary (TAS)
presents the compliance status with the Tool
Qualification Plan, the usage conditions, and the
possible limitations of the tool.

• The Tool Configuration Index (TCI) presents
the configuration status of the tool.

SCADE Suite™ for DO-178B

Methodological Handbook
C - 78

C-3 SCADE KCG 4.2 Life-
Cycle Documentation

Table C.1 describes the documents that must be
considered by the Certification Authorities
during the qualification audit of KCG 4.2.

This list conforms to FAA Order 8110.49
“Software Approval Guidelines,” Chapter 9
[Order 8110.49].

Documents that are “Submit” must be submitted
to the Certification Authorities. They become
part of the SCADE KCG 4.2 Qualification Kit
that is delivered to SCADE users.

Documents that are “Available” can be audited
by the Certification Authorities.

Table C.1: Documents required for SCADE KCG 4.2 qualification audit by Certification Authorities

Data DO-178B 7 FAA
Requirement

SCADE SuiteTM KCG Package DO-178B
Reference

Tool Qualification Plan Submit Tool Qualification Plan of KCG 12.2.3.a(1),
12.2.3.1, & 12.2.4

Tool Operational
Requirements

Available - Version Content
- Software requirements data of KCG, S2L,
and L2C
- Reference Manual of SCADE & Lustre
Languages

12.2.3.c(2) &
12.2.3.2

Tool Accomplishment
Summary

Submit Tool Accomplishment Summary of KCG 12.2.3.c(3) &
12.2.4

Tool Verification
Records
(for example, test cases,
procedures, and code)

Available Accessible at Esterel Technologies
premises

12.2.3

Tool Qualification
Development data
(for example,
requirements, design, and
code)

Available Accessible at Esterel Technologies
premises

12.2.3

Software Configuration
Index

Submit Software Configuration Index of KCG 9.3

Methodological Handbook
D - 79

SCADE Suite™ for DO-178B

D The Compiler Verification Kit (CVK)

D-1 CVK Product
Overview

WHAT CVK IS

CVK is a test suite, whose purpose is to verify
that a compiler correctly compiles code
generated by SCADE KCG.

 While KCG qualification ensures that source
code conforms to LLRs developed with
SCADE, the purpose of CVK is to verify that
the C compiler correctly compiles the C code
generated by KCG.

WHAT CVK IS NOT

1 CVK is NOT a validation suite of the C
compiler. Such validation suites are generally
available on the market. They rely on running

large numbers of test cases covering all
programming language constructs, proper
number of combinations, and various
compiling options. It is expected that the
applicant requires evidence of this activity
from the compiler provider (or other source).

2 CVK is NOT an executable software.

ROLE OF CVK

CVK is a test suite: it is part of verification
means of the KCG users.

Figure D.1 shows the complementary roles of
KCG and CVK in the qualification of the
customer’s development environment from
Esterel Technologies to the customer.

SCADE Suite™ for DO-178B

Methodological Handbook
D - 80

Figure D.1: Role of KCG and CVK in the qualification of the customer’s development environment

CVK CONTENTS

The CVK product is composed of the following
items:

• A CVK User’s Manual containing:
• Installation and use instructions
• Description of the underlying methodology
• Product structure description
• SCADE models description
• C sample description
• Test cases and procedures description

• The SCADE-generated C sample to verify the C
compiler.

• The associated SCADE models. This enables
customers to generate the C sample with KCG in

their environment and allows them to compare
the generated code with the reference code
provided in the CVK test suite and verify their
KCG installation.

• Test cases to cover the SCADE C subset with an
MC/DC of 100% coverage for all KCG settings.

• Automated test procedures for Windows
platform.

C SAMPLE CHARACTERISTICS

The C sample exhibits the following
characteristics:

• It contains all individual C constructs that can
ever be generated by KCG 4.2 from a correct
SCADE model.

Methodological Handbook
D - 81

SCADE Suite™ for DO-178B

• It contains the C code that is generated for each
SCADE operator.

• It contains supplementary combinations for the
specific nesting of C constructs that can be
produced. Examples:
• Up to five operands for operators such as +, as

in “A + B + C + D + E” or
“(A x B) + (C x E)” etc.

• Using selection in a deep structure, as in
“A.B.C.D.E”.

• A node with 800 inputs.

D-2 Motivation for
Sample-Based Testing

The source code generated by KCG is a small
subset of C with a low level of complexity:

• It is composed of a sequence of basic blocks and/
or calls to C functions implementing children
nodes, as shown in Figure D.2 when expansion is
not used.

• Memory allocation is fully static (no dynamic
memory allocation).

• There is no recursion and no looping (except a
few local, fixed-size loops).

• The code is decomposed into elementary
assignments to local variables (this restricts use of
the optimization options of the C compiler +
SCADE KCG option).

• There is only single static assignment (SSA) to a C
variable within a C function.

• Expressions are explicitly parenthesized.
• No dynamic address calculation is performed (no

pointer arithmetic).

• It contains no array indexing (since there are no
arrays, except for FBY).

• There are no implicit conversions.
• There is no expression with side-effects (no i++,

no a += b, no side-effect in function calls).
• No functions are passed as arguments.

Figure D.2: Sequential structure of the generated
code (without expansion)

The basic blocks composing the software do
not contain branching outside themselves. Table
D.1 below summarizes which blocks may or not
contain control structures that are local to their
enclosing blocks. Generally, these control
structures are not nested; they are put in
sequence. The only exception is generated when
expanding a node under condact or following a

SCADE Suite™ for DO-178B

Methodological Handbook
D - 82

“when” operator; this requires verifying that the
call depth of the expanded subtree is lower than
the call depth of the one used with CVK..

These building blocks define a set of
equivalence classes. Thus, a representative
sample of those building blocks, covering these
equivalence classes, is used to verify that the
compiler correctly compiles these building
blocks into machine code.

This approach is similar to the approach
proposed in [CAST-12] for the analysis of
source to object code traceability, in the sense
that verification can be performed on a sample
when there are strict coding standards,
restricting the programming language to a
subset:

“The applicant may elect to impose coding standards
throughout the program that might limit the number of
programming operations and libraries to a smaller subset
of the programming language and compiler-provided
library functions. If evidence can be provided that the
operational program and library functions fully comply
with the coding standards, then the certification authority
may accept analysis that is done on the subset. Once all
of the existing code can be shown to be in compliance
with the coding standards, one or more tests combining
all of the constructs specified in the coding standards can
be produced and compiled. To establish the validity of the
test programs, the applicant should document the results
of a comparison between the results of the analysis and
some representative code from the actual operational
program. The representative code should be chosen from
complex functions where a higher probability of added,
untraceable functionality might exist (for example,
software handling arrays, potential hidden calls to
libraries, exception handlers, traps or loop constructs).”

D-3 Strategy for
Developing CVK

Figure D.3 summarizes the strategy for
developing and verifying CVK.

Table D.1: Type of code generated from SCADE
operators

SCADE
Construct

Control Structure in the
Generated Block

Predefined
arithmetic
operators

None

Structured data
handling

None

Comparison
operators

None

Boolean operators
(and, or, xor, not,
sharp)

None in source code.
Local branching in the machine code,
if bitwise option is not used.

Selection operator
(if, case)

Local to the block

->, pre, fby Local to the block

“condact”
operator

Local to the block if not expanded.
"if" nested down to the next
unexpanded node otherwise.

“when” operator "if" nested down to the next
unexpanded node.

Methodological Handbook
D - 83

SCADE Suite™ for DO-178B

Figure D.3: Strategy for developing and verifying
CVK

CVK has been built in the following way:

1 Identify the C subset generated by KCG by
analyzing the L2C requirement specification
(L2C is the back-end of KCG generating the
C code). Coverage of L2C is verified.
Elementary C constructs are identified in
terms of the C-ISO standard.

2 Build the C sample.

a A SCADE sample covering all SCADE
constructs is built as material for code
generation.

b Each C sample is obtained by combining a
SCADE sample item with appropriate KCG
options.

c Coverage of the C subset by the C sample is
verified. Coverage of the SCADE language is
also verified as a secondary objective, although
it is not required for the verification of the
compiler itself. If necessary, additional items
are added in the SCADE sample and/or
additional KCG options are exercised.

3 Develop a set of input vectors and expected
output vectors to test C sample. These tests
are executed on a host platform to verify:

a Conformance of outputs
b MC/DC coverage of the code

D-4 Use of CVK

CVK is used as follows (Figure D.4):

• The CVK User’s Manual is an appendix of the
customer’s verification plan, more precisely in the
qualification plan of the user’s development
environment.

• The CVK test suite is instantiated for the
customer’s verification process, more precisely in
the qualification process of one’s development
environment, for the verification of the compiler.
Users must verify that the complexity of their
model (depth of expressions, data structures, and
call tree) is lower than the one of the model in
CVK. Otherwise, they shall either upgrade CVK
accordingly or decompose the model.

SCADE Suite™ for DO-178B

Methodological Handbook
D - 84

Figure D.4: Use of CVK items in the customer’s processes

Figure D.5 details the role of CVK items
(colored boxes) in the verification of the
compiler:

• The C sample is generated by KCG from the
SCADE sample with specified KCG options. This
is done on the host computer.

• From the C sample, the C cross-compiler/linker
generates an executable. This can be done on the
host.

• The executable is run on the target processor. It
reads input vectors and computes output vectors.

• The output vectors are compared to reference
vectors, based on the requirements, namely the
semantics of the C sample, which is the same as

the semantics of the SCADE model. This can be
done on the host computer.

If there is any difference between the collected
results and the reference results, then analysis
has to be conducted to find the origin of the
difference(s). If it is an error in the use or
contents of CVK, then this has to be fixed. If it
is due to an error in the compiler, then this
probably means that this compiler has to be
rejected, since the SCADE-generated code is
very simple, and if the compiler is not able to
compile it correctly, it means it is definitely not
reliable.

Methodological Handbook
D - 85

SCADE Suite™ for DO-178B

Figure D.5: Position of CVK items in the compiler verification process

The cross-compiler/linker has to be run with
the same options as for the manual code and as
for the rest of the KCG-generated code.

Methodological Handbook
87

SCADE Suite™ for DO-178B

A
Accuracy 48

Architecture 30

ARP 4754

overview 3

B
Block diagrams 18

C
C sample 80

Causality 19

Clock 22

Coding process 34

Combined testing process 55

Compiler Verification Kit 79

Concurrency 20, 23

Configuration Management 44

Control Engineering 15

Coverage 59, 62

Coverage analysis

test coverage 11
with MTC 60

Coverage criteria

structural coverage 11

Coverage resolution

structural coverage 11

CVK 79

D
Data typing 23

Dependency 20

Design process 29

Design standard 48

Design Verifier 50

Development assurance levels 5

Development processes 6, 7

Discrete control 21

DO-178B

overview 3
processes 6

DOORS 27

E
Equations 17

EUROCAE 3

F
Filtering 31

Formal verification 50

H
High-level requirements 7, 8

HLR
see High-level requirements

I
Initialization 20

Input/Output 31

Integral processes 6

Integration process 39

Interface 17

L
LLR

see Low-level requirements

Local variables 17

Logic 32, 33

Low-level requirements 7, 9
development in SCADE 31

M
MC/DC 12

Model-based 23

Modified Condition/Decision
Coverage

see MC/DC

Modular 19

MTC 60, 62

Multitasking 43

N
Node 17

P
Partitioning 53

Planning processes 6

Property 52

Index

SCADE Suite™ for DO-178B

Methodological Handbook
88

Index

Q
Qualification 54, 77

R
Regulation 31

Requirements process 28

Robustness 34

RTCA 3

RTOS 41

S
SAE 3

Safe State Machines 21

Scheduling 40

Simulation 50

Software architecture 7

Software Design Standards 9

Source code 9

SSM 21, 37

Standards 54

Structural coverage 66

T
Task integration

RTOS 41

Tasking 40

Teamwork 43

Test procedures 59

Test results 59

Testing 10, 45

Traceability 36, 38, 46

U
Unintended functions 60, 65

V
Validation 45

Verification 45

Verification processes 8

Contact Information

Submit questions to Technical Support at
support@esterel-technologies.com

Contact one of our Sales representatives at
sales@esterel-technologies.com

Direct general questions about Esterel Technologies to
info@esterel-technologies.com

Discover the latest news on our products and technology at
http://www.esterel-technologies.com

Copyright © 2005 Esterel Technologies SA. All rights reserved
Esterel Technologies SA. [SC-HB-DO-178B-KCG42]

mailto:support@esterel-technologies.com
mailto:sales@esterel-technologies.com
mailto:info@esterel-technologies.com
http://www.esterel-technologies.com

	Table of Contents
	List of Figures
	List of Tables
	1. Document Background, Objectives, and Scope
	1.1 Background
	1.2 Objectives and Scope

	2. Development of Safety-Related Airborne Software
	2.1 ARP 4754 and DO- 178B Guidelines
	2.1.1 Introduction
	2.1.2 ARP 4754
	2.1.3 DO-178B
	2.1.4 Relationship between ARP 4754 and DO-178B
	2.1.5 Development assurance levels
	2.1.6 Objective-oriented approach
	2.1.7 DO-178B processes overview

	2.2 DO-178B Development Processes
	2.3 DO-178B Verification Processes
	2.3.1 Objectives of software verification
	2.3.2 Reviews and analyses of the high-level requirements
	2.3.3 Reviews and analyses of the low- level requirements
	2.3.4 Reviews and analyses of the source code
	2.3.5 Software testing process

	2.4 What Are the Main Challenges in the Development of Airborne Software?
	2.4.1 Avoiding multiple descriptions of the software
	2.4.2 Preventing ambiguity and lack of accuracy in specifications
	2.4.3 Avoiding low-level requirements and coding errors
	2.4.4 Allowing for an efficient implementation of code on target
	2.4.5 Finding specification and design errors as early as possible
	2.4.6 Lowering the complexity and cost of updates
	2.4.7 Improving verification efficiency
	2.4.8 Providing an efficient way to store Intellectual Property (IP)

	3. Model-Based Development with SCADE Suite and KCG
	3.1 What Is SCADE?
	3.2 SCADE Modeling Techniques
	3.2.1 Familiarity and accuracy reconciled
	3.2.2 SCADE node
	3.2.3 Block diagrams for continuous control
	3.2.4 Safe State Machines for discrete control
	3.2.5 Mixed continuous/discrete control
	3.2.6 Cycle-based intuitive computation model
	3.2.7 SCADE data typing
	3.2.8 SCADE Suite as a model-based development environment
	3.2.9 SCADE modeling and safety benefits

	4. Software Development Activities with SCADE Suite
	4.1 Overview of Software Development Activities
	4.2 Software Requirements Process with SCADE
	4.3 Software Design Process with SCADE
	4.3.1 Architecture design
	4.3.2 SCADE low-level requirements development

	4.4 Software Coding Process
	4.4.1 Code generation from SCADE data flow diagrams
	4.4.2 Code generation from SCADE SSMs

	4.5 Software Integration Process
	4.5.1 Integration aspects
	4.5.2 Input/output
	4.5.3 Integration of external data and code
	4.5.4 SCADE scheduling and tasking

	4.6 Teamwork

	5. Software Verification Activities
	5.1 Overview
	5.2 Verification of the SCADE High-Level Requirements
	5.2.1 Verification objectives for the HLR
	5.2.2 Verification methods for HLR
	5.2.3 Verification summary for HLR

	5.3 Verification of the SCADE Low-Level Requirements and Architecture
	5.3.1 Verification objectives
	5.3.2 SCADE model accuracy and consistency
	5.3.3 Compliance with design standard
	5.3.4 Traceability from SCADE LLR to HLR
	5.3.5 Verifiability
	5.3.6 Compliance with high-level requirements
	5.3.7 Partitioning
	5.3.8 Verification summary for LLR and architecture

	5.4 Verification of Coding Outputs and Integration Process
	5.4.1 Verification objectives
	5.4.2 Impact of code generator qualification
	5.4.3 Verification summary

	5.5 The Combined Testing Process
	5.5.1 Verification objectives
	5.5.2 Divide-and-conquer approach
	5.5.3 Combined testing process organization
	5.5.4 Verification summary

	6. Verification of the Verification Activities
	6.1 Verification Objectives
	6.2 Verification of Test Procedures and Test Results
	6.3 HLR Coverage Analysis
	6.4 LLR Coverage Analysis with MTC
	6.4.1 Objectives and coverage criteria
	6.4.2 LLR coverage analysis with SCADE Suite MTC

	6.5 Structural Coverage of the Source Code
	6.5.1 Control structure coverage
	6.5.2 Data coupling and control coupling

	6.6 Summary of Verification of Verification

	Appendixes and Index
	A References
	B Acronyms and Glossary
	C DO-178B Qualification of SCADE KCG 4.2
	C-1 What Does Qualification Mean and Imply?
	C-2 Development of SCADE KCG 4.2
	C-3 SCADE KCG 4.2 Life- Cycle Documentation

	D The Compiler Verification Kit (CVK)
	D-1 CVK Product Overview
	D-2 Motivation for Sample-Based Testing
	D-3 Strategy for Developing CVK
	D-4 Use of CVK

	Index

