Introduction

kollection of kupboard is a bundle of software packages and applications to install on
the platform. For example, you can include open sources such as Nginx or Prometheus, and

you can include applications in a container format that you want to deploy.

Kupboard Kollection

Kollection consists of package, application, and config.yaml, and Kupboard contains the
default kollection. You can install any package on a given cluster using cli commands. Basic
kollection information is available in

https://docs.kupboard.io/docs/kollection/package#default-packages

N

Storage Cluster

Admin Cluster

Default Kollection

Kupboard

Control Block

Function Block

Users can create their own kollections and deploy them through the kupboard. This is very
useful if you need to manage the platform separately by project or service. The packages
included in the kollection can be commonly used open source solutions and can also be
user-written software. All you need to do is to create a simple Ansible Playbook for installing
the package so that Kupboard can read it. For applications, you only need to provide the
information you need to build a docker container, regardless of whether the source file is

included or not.

Admin Cluster

lI Storage Cluster

Default Kollection

Kupboard

Control Block

Customer Kollections Function Block

A kollection has only one config.yaml which defines the information of packages and
applications in the kollection. The user can define many actions to manage packages and
applications, as well as the parameters required when each action is performed. config

are automatically loaded by the kupboard, and users can deploy the packages and

applications they want using the actions defined in the config. Kollections must be in
data/kollections with non-duplicate names.

kollection—-name.tar.gz

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/intro.md

Config

config contains information about the applications and packages included in the

kollection.

G) NOTE

Before LI BUMMER, the configuration filename of kollection was
WA MYETIE. [T you have a kollection that includes QuHYEIUIN, simply renaming

it to Weloleh X' PLCIUNN Will work.

Application

Applications included in the kollection are often used when users want to deploy their
applications to the service cluster. (For this reason, there are no applications in a default
kollection of kupboard.) Include the source directory containing Dockerfile inthe
kollection and define the build and deploy options in the config . The kupboard builds the
application based on the specifications defined in the config and deploys it to the service

cluster.

apps:
— name: myapp
version: 1.0
app_port: 80
service_port: 8080
exposed_port: 32001
replica: 2
envs:
— name: ENV1
value: value_of_ENV1
— name: ENV2
value: value_of_ENV2

e name application name
e version application version (container tag)

* app_port container port on kubernetes

service_port service port on kubernetes

exposed_port service port(node port) on kubernetes. exposed_port should set to
expose a service using a port between 32000~32767.

replica pod replica

envs env variables

Packages

If you have your own solution or open source package that you need for a service or
operation, you can install it using kupboard. In addition you can define a variety of action
and parameter to handle many situations. Each package must contain at least one Ansible

playbook, and can excuted in a variety of ways using the action defined in the config.

packages:
— name: mypackage
vars:
target_group: gateway
playbook: nginx/nginx.yaml
actions:
— name: deploy
default: true
vars:
state: present
params:
- "name=value"

e name pakcage name
e vars playbook variables (for package)

e actions action list
°© npame action name
o default default or not. If action not given, the anction with default true will
be excuted.

o vars playbook variable (for action)

o params playbook parameter (used for ansile-playbook)

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/config.md

Application

Depending on how you compose Dockerfile , you can build container images for your
application in a variety of ways. You can change only some files you need from the base

image, or you can build a container image with just one Dockerfile . Also you can use
environment variables to create images for different environments.

mykollection
L— apps

— app1
| L Dockerfile
L— app2

I— src

L— Dockerfile

Build

Applications defined in config can be built using the commands below, and the container
image built in this way is automatically pushed to the Harbor registry defined in
kupboard.yaml (or custom configuration file).

Build customer application

$ kupboard kollection app -c <kollection—-name> —-n <app-name>
Build all customer applications

$ kupboard kollection app -c <kollection-name>
Build all customer applications from all customer kollections

$ kupboard kollection app

Deployment

If a container image is pushed properly to the Harbor registry, you can use the deploy

command to deploy the container to the service cluster.

$ kupboard deploy -s <application-name>

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/application.md

Package

The kollection package of the kupboard uses Ansible Playbook. Ansible is a greate open
source tool and is already used widely for a variety of purposes in many solutions. There are
many good written playbooks on the Internet. You can use those playbooks very easily and
quickly by defining only the action in the config. In the kupboard, we tried to avoid the
functional limitations of creating a package's playbook. Users can also use playbooks and

actions to create their own great kollections.

mykollection
L— packages

— packagel
| L— playbook.yaml

L — package2

— data

L— playbook.yaml

This is an example to run a kollection command. The -c <kollection-name> option allow

you to use packages in a specific kollection.

$ kupboard kollection package —-n <package-name> [-a <action-name>]

kupboard-kollection-nginx

Let's check an example

In config.yaml a pakcage named nginx is defined and there are two actions, deploy
and delete . Only one playbook named nginx.yaml is used and the variable

target_group can be used in the playbook. And the variable state is used when

actions are excuted, and its value can be started and absent .

version: 1.0
metadata:

name: Nginx
packages:

— name: nginx

https://github.com/mike-atop/kupboard-materials/raw/main/kollections/kupboard-kollection-nginx.tar.gz

playbook: nginx/nginx.yaml
vars:
target_group: gateway
actions:
— name: deploy
default: true
vars:
state: started
params:
— name: delete
vars:
state: absent
params:

The Nginx package uses the 'nginx:1.19.10' container. It uses target_group and state

defined in the config, and the state value is used for container deployment.

- name: Nginx Package
hosts: "{{ target_group }}"
become: no
vars:
release_state: "{{ state | default('started') }}"
tasks:
- name: "{% if release_state == 'started' %} Deploy Nginx {% else
%} Remove Nginx {% endif %}"
docker_container:
name: nginx
image: nginx:1.19.10
state: "{{ release_state }}"
restart_policy: always
container_default_behavior: compatibility
restart: yes
ports:
- 80:80

Now you can see that you need to use the —a deploy option to install nginx in the gateway

cluster when using Nginx Package, and you can delete nginx installed in the gateway cluster

with the —a delete option.

$ kupboard kollection package —-c kupboard-kollection-nginx —-n nginx -
a <deploy|delete>

Default Packages

The default kollection of kupboard includes many packages for various open source.

https://docs.kupboard.io/docs/kollection/packages/argocd
https://docs.kupboard.io/docs/kollection/packages/dashboard
https://docs.kupboard.io/docs/kollection/packages/elastic
https://docs.kupboard.io/docs/kollection/packages/fluentd
https://docs.kupboard.io/docs/kollection/packages/harbor
https://docs.kupboard.io/docs/kollection/packages/influxdb
https://docs.kupboard.io/docs/kollection/packages/istio
https://docs.kupboard.io/docs/kollection/packages/kafka
https://docs.kupboard.io/docs/kollection/packages/keycloak
https://docs.kupboard.io/docs/kollection/packages/minio
https://docs.kupboard.io/docs/kollection/packages/mongodb
https://docs.kupboard.io/docs/kollection/packages/mysql
https://docs.kupboard.io/docs/kollection/packages/nginx
https://docs.kupboard.io/docs/kollection/packages/prometheus
https://docs.kupboard.io/docs/kollection/packages/redis
https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/package.md

ArgoCD

ArgoCD is a GitOps CD(Continuous Delivery) tool for applications deployed on Kubernetes. It
provides various functionality for deploying and managing applications based on manifests
or Helm charts stored in github repos.

Reference:

Package Deployment

$ kupboard kollection package -n argocd -a <action>

Pakcage Name @ Cluster Action @ Default

argocd service deploy | true

delete

https://argoproj.github.io/argo-cd

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/argocd.md

Dashboard (k8s)

Dashboard is a web-based Kubernetes user interface. You can use Dashboard to deploy
containerized applications to a Kubernetes cluster, troubleshoot your containerized
application, and manage the cluster resources. You can use Dashboard to get an overview of
applications running on your cluster, as well as for creating or modifying individual
Kubernetes resources (such as Deployments, Jobs, DaemonSets, etc). For example, you can
scale a Deployment, initiate a rolling update, restart a pod or deploy new applications using a
deploy wizard.

Reference:

o % =1 @ :

+creATE | @O

Persistent Volumes CPU usage Memory usage ©

Roles

0.135 644 Mi
Storage Classes 0120 . 572 Mi
?

3
0.090 3 420Mi

0.060 2 286 Mi

CPU (cores)

- g
kube-system 0.030 2 143 Mi

0
s 11:10
Overview

Workloads

Cron Jobs

Daemon Sets
N

Node Status Restarts A
Deployments w 9e

Jobs shboard-7b9c¢7b minikube Running 27 minutes I 19.746 Mi
IFEEE minikube Running 27 minutes _ 18.004 Mi

minikube Running 27 minutes ‘ Ao - 43.926 Mi
Replication Controllers

Stateful Sets L ¢ minikube Running 20 hours 0.0 I 1930 Mi

Discovery and Load Balancing b minikube Running 20 hours oo B 55445 vi

Replica Sets

Package Deployment

$ kupboard kollection package -n dashboard —-a <action>

Pakcage Name @ Cluster Action A Default

https://kubernetes.io/ko/docs/tasks/access-application-cluster/web-ui-dashboard

Pakcage Name | Cluster Action | Default

dashboard service deploy | true

delete

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/dashboard.md

Elasticsearch

Reference:

Elasticsearch

Whether you're looking for actions from a specific IP address, analyzing a spike in
transaction requests, or hunting for a taco spot in a one-mile radius, the problems we're all
trying to solve with data boil down to search. Elasticsearch lets you store, search, and

analyze with ease at scale.

@ Elastic
ciouds Deployments — Create deployment

Deployments What do you want to do with your data?

Create Deployment

Extensions) ‘l] =

Account Elastic Enterprise Search Elastic Observability Elastic Security Elastic Stack

Help

Machine Learning

Deployments

Health Version Stack Configuration

Name Version Configuration Stack

enable

security-cluster-3 -———

observability-cluster-1

observability-cluster-2

Kibana

Start exploring your data with stunning visualizations in Kibana, from waffle charts and
heatmaps to time series analysis and beyond. Use preconfigured dashboards for your

https://www.elastic.co/

diverse data sources, create live presentations to highlight KPIs, and manage your
deployment in a single Ul.

[Logs] Web Traffic

Full screen Share Clone Edit

Filters Search @ v Last 7 days Show dates G Refresh

+ Add filter

Source Country [Logs] Visitors by OS

Select...

osx (20.74%)

ios (19.5%) ‘
win xp (20.19%)

[Logs] Traffic Overtime [Logs] Heatmap

I

[Logs] Source and Destination Sankey Chart

Package Deployment

$ kupboard kollection package -n elastic —-a <action>

Pakcage Name | Cluster Action | Default
elastic elastic deploy | true

delete

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/elastic.md

Fluentd

Fluentd is an open source data collector, which lets you unify the data kollection and

consumption for a better use and understanding of data.

Reference:

Access logs Alerting
Apache Nagios

) “/‘/ b rsyn ’l ‘\
AT \ i "8 . App logs \ / Analysis
‘ | 7o Frontend MongoDB
: R/ Backend , MysQL
System logs /f lu entd\ Hadoop

N log-n: < sy C i = f
£ syslog-ng i ‘ syslogd Q

filter / buffer / routing

Archiving

) amazon Databases Amazon S3

webservices™

After Fluentd

Before Fluentd

Package Deployment

$ kupboard kollection package -n fluentd -a <action>

Pakcage Name | Cluster Action | Default
fluentd service deploy | true

delete

https://www.fluentd.org/
https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/fluentd.md

Harbor

Harbor is an open source registry that secures artifacts with policies and role-based access
control, ensures images are scanned and free from vulnerabilities, and signs images as
trusted. Harbor, a CNCF Graduated project, delivers compliance, performance, and
interoperability to help you consistently and securely manage artifacts across cloud native

compute platforms like Kubernetes and Docker.

Reference:

Install Harbor

To deploy your application to the service cluster, you must install Docker Contains Registry.

The kupboard uses Harbor as the default registry.

Kupboard provides a kollection package to install the harbor registry.

$ kupboard kollection package —-n harbor

G) NOTE

Before install the harbor registry, ssl certification should be prepared in [EE-YAL-Iad

and ETg I uTee I EIAelll is updated in your DNS management system to point to
Codnin-rode1]

Package Deployment

$ kupboard kollection package -n harbor -a <action>

Pakcage Name | Cluster Action @ Default

harbor admin deploy | true

https://goharbor.io/

Pakcage Name | Cluster Action | Default

delete

Setting

First, you need to access https://harbor.mycompany.com to create an user and project.

Project Information

#it

kube_registry_username: kupboard
kube_registry_password: Kupboardl234
kube_registry_email: username@email.com
kube_registry_domain: harbor.mycompany.com
kube_registry_url: harbor.mycompany.com/myproject

Secrets
#it
harbor_admin_password: kupboard

Login with the admin account. Its default username is admin and password is the value of

harbor_admin_password .

Harbor) English v

() Remember me

More info...

Then create a new user with kube_registry_username and

kube_registry_password .

New User

Username kupboard

Email user@mycompany.com

First and last name

Password

Confirm Password

Comments

Create a new project. In this example, the project name should be myproject .

New Project

Project Name myproject

Access Level (D (3 Public

Storage Quota ()

Proxy Cache @

Add a new user to the project.

New Member

Add a user to be a member of this project with specified role

kupboard

© Project Admin
O Maintainer
QO Developer

O Guest

O Limited Guest

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/harbor.md

Influxdb

InfluxDB is a time series platform InfluxDB empowers developers to build loT, analytics and
monitoring software. It is purpose-built to handle the massive volumes and countless

sources of time-stamped data produced by sensors, applications and infrastructure.

Reference:

Package Deployment

$ kupboard kollection package -n influxdb —-a <action>

Pakcage Name | Cluster Action | Default

influxdb service deploy | true

delete

https://www.influxdata.com/
https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/influxdb.md

Istio

Istio is an open source service mesh that layers transparently onto existing distributed
applications. Istio’s powerful features provide a uniform and more efficient way to secure,
connect, and monitor services. Istio is the path to load balancing, service-to-service
authentication, and monitoring — with few or no service code changes. Its powerful control

plane brings vital features, including:

Secure service-to-service communication in a cluster with TLS encryption, strong
identity-based authentication and authorization

Automatic load balancing for HTTP, gRPC, WebSocket, and TCP traffic

Fine-grained control of traffic behavior with rich routing rules, retries, failovers, and fault
injection

A pluggable policy layer and configuration API supporting access controls, rate limits

and quotas

Automatic metrics, logs, and traces for all traffic within a cluster, including cluster
ingress and egress

Reference:

Service A

A

l

Envoy proxy

Service B

A

l

Envoy proxy

A

metrics

A

Istio
control plane

R —————

metrics

https://istio.io/

Package Deployment

$ kupboard kollection package -n istio —-a <action>

Pakcage Name @ Cluster @ Action | Default

istio service deploy | true

delete

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/istio.md

Kafka

Apache Kafka is an open-source distributed event streaming platform used by thousands of
companies for high-performance data pipelines, streaming analytics, data integration, and

mission-critical applications.

Reference:

AKHQ (Kafka GUI)

Kafka GUI for Apache Kafka to manage topics, topics data, consumers group, schema
registry, connect and more...

Reference:

Package Deployment

Kafka

$ kupboard kollection package -n kafka —-a <action>

Pakcage Name @ Cluster Action @ Default
kafka service deploy | true

delete

AKHQ

$ kupboard kollection package -n kafka-akhq —-a <action>

Pakcage Name | Cluster @ Action | Default

https://kafka.apache.org/
https://akhq.io/

Pakcage Name | Cluster Action | Default

kafka-akhq service deploy | true

delete

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/kafka.md

Keycloak

Keycloak is an Open Source Identity and Access Management solution for modern
Applications and Services.

Keycloak provides the flexibility to export and import configurations easily, using a single
view to manage everything. Together, these technologies let you integrate front-end, mobile,
and monolithic applications into a microservice architecture. In this article, we discuss the
core concepts and features of Keycloak and its application integration mechanisms. You will
find links to implementation details near the end.

Reference:

Master

General Login Keys Emai Themes Cache Tokens Client Registration Security Defenses

i Realm Settings * Name
Clients
Display name master
Client Scopes
Roles HTML Display name master realm
Identity Providers Frontend URL

r F ration
User Federatio Enabled m

Authentication
User-Managed
Access

Groups Endpoints OpenlID Endpoint Configuration

SAML 2.0 Identity Provider Metadata
Users .

Sessions ﬁ Cancel

Package Deployment

$ kupboard kollection package -n keycloak —-a <action>

Pakcage Name @ Cluster Action & Default
keycloak service deploy | true

delete

https://www.keycloak.org/

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/keycloak.md

MinlO

MinlO is a High Performance Object Storage released under GNU Affero General Public
License v3.0. It is APl compatible with Amazon S3 cloud storage service. Use MinlO to build
high performance infrastructure for machine learning, analytics and application data

workloads.

Reference:

Package Deployment

$ kupboard kollection package -n minio —-a <action>

Pakcage Name | Cluster Action @ Default
minio service deploy | true

delete

https://min.io/
https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/minio.md

MongoDB

MongoDB is a document database, which means it stores data in JSON-like documents. We
believe this is the most natural way to think about data, and is much more expressive and

powerful than the traditional row/column model.

Reference:

Package Deployment

$ kupboard kollection package -n mongodb -a <action>

Pakcage Name | Cluster Action | Default
mongodb service deploy | true

delete

https://www.mongodb.com/
https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/mongodb.md

MySQL

MySQL is the world's most popular open source database. Whether you are a fast growing
web property, technology ISV or large enterprise, MySQL can cost-effectively help you

deliver high performance, scalable database applications.

Reference:

Package Deployment

$ kupboard kollection package -n mysql —-a <action>

Pakcage Name | Cluster Action | Default
mysql service deploy | true

delete

https://www.mysql.com/
https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/mysql.md

Nginx

NGINX accelerates content and application delivery, improves security, facilitates availability

and scalability for the busiest web sites on the Internet.

Reference:

Package Deployment

$ kupboard kollection package -n nginx —-a <action>

Pakcage Name @ Cluster | Action @ Default
nginx gateway | deploy | true

delete

https://www.nginx.com/
https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/nginx.md

Prometheus

Prometheus is an open-source systems monitoring and alerting toolkit originally built at
SoundCloud. Since its inception in 2012, many companies and organizations have adopted
Prometheus, and the project has a very active developer and user community. It is now a
standalone open source project and maintained independently of any company. To
emphasize this, and to clarify the project's governance structure, Prometheus joined the
Cloud Native Computing Foundation in 2016 as the second hosted project, after Kubernetes.

Reference: https://prometheus.io/

p

Service discovery Prometheus —
Shortfved J alerting _» pagerduty
jobs e batahand

|

kubernetes file_sd
push metrics] Alertmanager [~ > Email
at exit] -)
; discover -
v targets M notify_
N etc
Pushgateway : Prometheus server
. 2 push
;algrts
---------- puII Retrieval |- TSDB HTTP
metrics server
PromQL

i |
i i g I Prometheus
! web Ul
) Node Grafana Data
Jobs/ | . e
\ exporters T =\ visualization

and export

Prometheus :
targets foeemmeneeaes API clients

Package Deployment

$ kupboard kollection package —-n prometheus -a <action>

Pakcage Name Cluster Action Default

prometheus service deploy true

https://prometheus.io/

Pakcage Name Cluster Action Default

delete

/2" Edit this page

https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/prometheus.md

Redis

Redis is an open source (BSD licensed), in-memory data structure store, used as a database,
cache, and message broker. Redis provides data structures such as strings, hashes, lists,
sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and
streams. Redis has built-in replication, Lua scripting, LRU eviction, transactions, and
different levels of on-disk persistence, and provides high availability via Redis Sentinel and

automatic partitioning with Redis Cluster

Reference:

Package Deployment

$ kupboard kollection package -n redis -a <action>

Pakcage Name | Cluster @ Action | Default
redis service deploy | true

delete

https://redis.io/
https://github.com/kupboard/kupboard-docs/edit/main/docs/kollection/packages/redis.md

