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Abstract

Spectral Projection Model of Electromagnetic Scattering and Radiation
by Anthony Fascia

This dissertation presents two new methods for analyzing electromagnetic scattering from
perfect electrically conducting surfaces. The Spectral Projection Model and Direct Spectral
Projection Model are spectral techniques for analyzing the scattering patterns from two-
dimensional objects. The methods evolved from prior work done on analyzing scattering from
perfect electrical conducting surfaces in two-dimensions in the sinusoidal spatial frequency
domain using the Spatial Frequency Technique. By employing the addition theorem for Hankel
and Bessel functions, the Spectral Projection Model represents the incident and scattered electric
fields in the electric field integral equation and magnetic field integral equation as projections of
spectral signatures. Using the addition theorem, the incident fields and the scattered fields are
decomposed into the product of two matrices whose columns and rows are the spectral signatures
of current sources that are projected onto the spectral signatures of the observation points. The
Direct Spectral Projection Model, which evolved from Spectral Projection Model, identifies a set
of virtual sources that are the eigenfunctions of the scattering problem. The currents induced on
the surface are calculated by decomposing the spectral signature of the incident fields in terms of

the spectral signatures of these virtual sources.

The first analyses using the Spectral Projection Model were on infinitely long circular
cylinders and produced results that agreed well with established techniques like the Method of
Moments for transverse magnetic incident waves. Both the Spectral Projection Model and Direct
Spectral Projection Model techniques were then applied to elliptical cylinders of different axial
ratios for both transverse magnetic and transverse electric incident waveforms. The techniques
produced good agreement with Method of Moments techniques but only for small axial ratios.

The addition theorem failed to converge for ellipses with large axial ratios.

In this dissertation, it is shown that the spectral signature of a point in space, which is

represented by a vector, is equivalent to the convolution of the spectral signatures of two vectors,



which when combined result in the original vector. In order to calculate the scattered fields from
elliptical cylinders of larger axial ratios, it was necessary to use the addition theorem as a
convolution sum for both the source and observation points. To accomplish this, elliptical
patterns were generated by summing two constant magnitude vectors rotating in opposite
directions. Known as the Two Vector Sum approach, a variety of two-dimensional surfaces may
be generated using two constant amplitude vectors rotating at different rates. Elliptical surfaces
are generated using two vectors rotating at the same rate in opposite directions. The Spectral
Projection Model was extended to scattering from ellipses with large axial ratios by using the
Two Vector Sum approach to describe the model as a convolution of spectral signatures.
Calculation of the convolution operation was performed using Hadamard products in the Fourier

domain.

Far-field patterns calculated using the Spectral Projection Model are compared with those
using the Method of Moments to validate the accuracy of the method for elliptical cylinders of
both large major axis and large axial ratio. Computation of the current distribution on elliptical
cylinders of large major axis and large axial ratio using the Direct Spectral Projection Model also
indicate that Direct Spectral Projection Model and Method of Moments results closely match.
Both methods are also used with a few different two-dimensional perfect electrical conducting
cylinders other than elliptical cylinders to show the versatility of the two models.

The primary motivation for developing these models was the projection process clearly
shows the physics of the scattering process by separating the spectral signatures of the incident
sources from those of the induced currents. This allows this model to be used as a tool for
surface or target synthesis. The Spectral Projection Model and Direct Spectral Projection Model
formulation also has the potential for speeding up the computation by using the well-established
properties of the convolution operation and the Fast Fourier Transform algorithm. The
computational aspects of this model will be investigated as a follow-up to this dissertation. In the

future, the models may also be extended to dielectric objects and three-dimensional objects.
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Chapter 1: Introduction

1.1  Overview of Computational Electromagnetic Techniques

The focus of this dissertation is a new mathematical technique for solving
electromagnetic field problems called the Spectral Projection Model (SPM). Other computational
techniques such as the Method of Moments (MOM), Finite Element Method (FEM), Finite
Difference Time Domain Method (FDTD), Spatial Frequency Technique (SFT), and the Fast
Multipole Method (FMM) have all been used successfully to solve different classes of
electromagnetic problems. This dissertation presents the theoretical and mathematical basis for
the development of the new SPM technique and its offspring the Direct Spectral Projection
Model (DSPM), and describes how the proposed techniques are related to these existing
methods. The dissertation also provides the rationale for the development of this new technique
and its benefits and advantages over existing methods.

The solution of electromagnetic (EM) field problems has evolved from the employment
of empirical methods and analytical techniques to a computational science that harnesses the
power of microprocessors in less than 200 years. But the basic equations governing the physics
of electromagnetic theory have remained largely the same. They were summarized by James
Clerk Maxwell (1831-1879) in 1862 in his Treatise on Electromagnetics [1]. All electromagnetic
fields must satisfy the four Maxwell’s equations given in equations (1 — 1) to (1 — 4).
Faraday’s law, Ampere’s law, Gauss’ law for electric flux, and Gauss’ law for magnetic flux are

listed in order.

dB
VXE=-— (1-1)
oD
VXH=]+— (1-2)
V-E=p, (1-3)
V-B=0 1-4)

Maxwell’s equations are the foundation for solving all electromagnetic field problems.
The mathematics necessary for the writing and solution of these equations was developed over

centuries by many mathematicians and physicists, most notably the inventors of calculus, Isaac



Newton and Gottfried Wilhelm Leibniz [2]. The analytical solution to Maxwell’s equations for
different problems was found by numerous mathematicians and physicists. Most analytical
solutions to electromagnetic problems made use of symmetry. Unfortunately, many problems
with asymmetrical geometry were intractable because analytical solutions could not be derived

for these problems.
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Figure 1-1: Branch chart of methods in computational electromagnetics.

Computational methods involving large matrices were not possible until the 20" century
with the invention of electronic computers [3-5]. Numerical techniques are the only way to solve
many electromagnetic problems that do not have an analytical solution. In these computational
methods, analytical techniques are combined with linear algebra and discretization methods to
solve for scattered and radiated electromagnetic fields. The three most important methods are
finite volume discretization methods (FVDM), boundary element methods (BEM), and spectral
methods (SM). FVDM includes the finite element method (FEM) and the finite difference time
domain (FDTD) analysis [6,7]. The most important BEM is the Method of Moments (MOM)
first described by Harrington in his classic paper [8]. For large structures, the fast multipole

method (FMM) is an alternative boundary element method [9] technique. Spectral methods such



as the spatial frequency technique (SFT) and conjugate gradient FFT (CGFFT) are two types of
BEM’s that solve the problems either fully or partially in the spatial frequency domain [10,11].

1.2 Finite Volume Discretization Methods

Finite volume discretization methods are useful in applications where the volume of the
object is well defined, and the electromagnetic fields inside the object needs to be calculated.
FEM is a variational technique that minimizes the electromagnetic energy of a functional F to
arrive at a solution [12,13]. A functional maps elements u, w, and g of the function space U into
the scalar space of real numbers in range R. The element u is a basis function, w is a testing
function, and g is the source function. One begins with the homogeneous Helmholtz equation
(1-5),
Viu+k*u=g (1-5)
where u,w, g € U and k is a constant. The functional for the Helmholtz equation is formed by
setting f = g — V?u — k?u, and then multiplying f by the testing function w. Next f is
integrated over an element of volume V, and Green’s first identity, the divergence theorem

(1 —6), and the vector theorem in (1 — 7) are used to simplify the expression.

Ju adw
JWVZUdV—]uVZWdV= j W—dS—j u—adsS (1-16)
v v o on Iy on

ou
JWVZudV+]|7u|7de = J w—dS (1-7)
v v , on

For the Galerkin case when w = u, and integration over the Dirichlet boundary fFD wZ—ZdS =0,

the functional F is shown in equation (1 — 8).

F= W[(Vu)z k% + guldv (1-8)
\%4

If one sets u — u + Au, the minimum of the functional F occurs when Au = 0. The
illustrations in Figure 1-2 show two objects divided into triangular basis functions. The nodes are
indicated by dots on the vertices of the triangles. Electric and magnetic fields are calculated at

these points. Basis functions are generally simple linear functions defined over local elements.
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Figure 1-2: Finite Element Method grids for (a) annular ring and (b) ellipse.

The finite difference time domain method (FDTD) is a time domain method for solving
electromagnetic field problems. It is a grid-based method that approximates spatial and time
derivatives using central difference formulas [14,15]. The method calculates first the electric
field and then the magnetic field at given time steps and spatial intervals over the grid. See
Figure 1-3 for an illustration of an object on a two- dimensional grid subject to an incident

electromagnetic field.

Finite Difference Time Domain

Z-Axis

Figure 1-3: Two- dimensional grid subject to an incident electromagnetic field for FDTD

analysis. Object is colored green.



Derivation of the FDTD begins with two of Maxwell’s equations in differential form,

Faraday’s law and Ampere’s law. See Table 1-1.

Table 1-1: Faraday’s Law and Ampere’s Law in Differential Form.

Faraday’s Law Ampere’s Law
J0H, 1(0E, OE, 0E, 1(0H, O0H,
r ) =T )
oH, 1/0E, O0E, 0E, 1(0H, OHE,
=255 Fra Cra
0H, 1(0E, OE, 0E, 1(0H, O0H,
3t =‘;<E‘@> 3t :E<W_W_“EZ>

An illustration of two grid cells for calculating TM? and TE? travelling waves impinging on an
object is shown in Figure 1-4.
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Figure 1-4: Finite Difference Time Domain grid elements for infinitely long cylinders. a) TM wave
FDTD element. b) TE wave FDTD element.

In transverse magnetic wave analysis case, i.e. TM? waves, boundary conditions are given in
equation (1 — 9a). The central difference formulas are applied to equations (1 — 9b) to (1 —
9d).




E, = E,=0 H,=0 5 =0 (1-9a)
0H,  10E,
ot  udy
n+s n-< At Er(i,j+1,k) —ER(i,j, k)
H 2 .' . — H 2 .' .’k _ Z ) ) VA ) 1 _ 9b
0H, 10E,
ot u ox
n+s n-< At [EFGi+1,j,k) —ERGi,j, k)
H 2 .' . — H 2 .' . k Z  J) VA 1)) 1 _ 9
y (l ],k) y (l I ) + ‘Ll(l,], k) l Ax ( C)

0E, 1(0H, 0H,
at e\ ox dy

EF*(i,j, k) =

1 1 1 1
n+s n+> = >
At |H, %G k) —H, 2G—1,7,k)  H, 2(i,j,k) — H, 2(i,j — 1,k)
(i, j, k) Ax Ay

Ez (i), k) +

(1—-9d)
A full list of the 3D equations and applications of the Finite Difference Time Domain method
may be found in the references [7].

A benefit of the FDTD method is that the algorithm does not require the formulation of
integral equations, and relatively complex scattering problems can be solved without inverting
large matrices. Because it is grid based, each element may have different values of permittivity
and permeability. So, it may be used for solving problems involving linear and non-linear
materials. Also, derivatives are approximated by the central difference formula, and successive
grid points are calculated from previous ones. This makes it excellent for calculating the time
response of electromagnetic field problems, and for displaying waveform propagation through
animation.

A drawback of this approach is that the grid size can grow very large depending on the
problem domain, and the code must satisfy time restraint conditions, i.e. the Courant-Friedrichs-
Lewy (CFL) stability criterion [16].



1.3 Boundary Element Methods

Boundary element methods are useful in calculating the electromagnetic fields around an
object and the approximate calculation of fields and currents on the boundary. Once the current
distribution on the surface of the object is calculated, the far-field radiation pattern may be
found.

Most boundary element methods solve integral equations using a mathematical technique
called the method of weighted residuals. The most popular BEM is the Method of Moments [17-
22]. Objects subjected to radiation and scatterers are first discretized into elements. Examples of

one-dimensional discretized objects typically solved using the MOM are shown in Figure 1-5.

Loop Antenna
Three Element Linear Array

i -5 X-Axis -2 0 2

a) b)
Figure 1-5: a) Discretized linear array using Method of Moments. b) Discretized circular loop

using Method of Moments.

Solving problems using the Method of Moments often begins with the Helmholtz vector
wave equation (1 — 10) for the vector form of the magnetic vector potential A(r) and its integral

Green’s function solution (1 — 11). See Figure 1-6.



Figure 1-6: Magnetic vector potential and its 3D Green’s function integral representation.
VZA+k3A =]y (1-10)

A = [Vf Jy () G = rav’ (1-11)

After the object is discretized over its entire domain, basis functions representing local
current amplitudes and phases may be solved using matrix algebra. Source and observation
points are coincident, and calculation of current values requires the inversion of a matrix. The
matrix is diagonally dominant because of the existence of a singularity in the Green’s function.
Different techniques have been developed to assist in inverting these diagonally dominant
matrices [23,24].

1.4 Spectral Methods

Another way to calculate the electromagnetic fields on an object is by spectral methods.
They use continuous or “smooth” whole domain basis functions. If the basis functions are
sinusoidal, they take advantage of the speed of the FFT to reduce calculation time. These
methods begin with the differential or integral equations describing the EM fields and transform
them into the spatial frequency domain [25-28]. For the vector wave equation (1 — 10), its
spatial frequency representation is the scalar differential equation (1 — 12).
k2A(k) + k§A(k) = Jy (k) (1-12)

The variable k is the spatial frequency, and k, is the wavenumber.



For the integral equation (1 — 11), the integration can be viewed as a convolution
operation in the spatial domain. This simplifies the matrix algebra because convolution in the
spatial domain is performed as multiplication in the spatial frequency domain. To transform the
problem into the spatial frequency domain, one can often use the discrete Fourier transform.
Using the FFT algorithm speeds up the solution to the problem. After transformation into the

spatial frequency domain, equation (1 — 11) may be written as equation (1 — 13).

AW = =G (0] (0 (1-13)

Next the Green’s function matrix inverse is taken, and the result is transformed back into the
spatial domain to calculate the current distribution.

Even though spectral techniques are accurate due to their use of continuous functions,
they are limited as to the geometries they can handle. In order to take advantage of the speed of
the FFT, the algorithm requires a uniform grid. The FFT grid for one-dimensional problems must
have equal length segments. In two dimensions, the 2D FFT grid must be divided into equal
sized rectangles. Figure 1-7 shows illustrations of a rectangular and triangular object whose
sampling points fall on a square grid, and an elliptical object whose sampling points do not. The
conductor region is in green and the sampling points are the dots. The FFT algorithm may be
used to calculate the discrete Fourier transform of the rectangular and triangular objects. In the
case of the ellipse, the discrete Fourier transform must be calculated directly for points on the
object, slowing down the analysis time considerably.

Because the spectral method uses the discrete Fourier transform, the object is assumed to
be periodic in space. Thus, sampling must satisfy the Nyquist criterion. The last illustration
shows a square object and its periodicity in space. The green region is the conductor space, and
the gray region is called the complementary space. For 2D problems, the complementary space is

analogous to adding zeros for the 1D case.
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Figure 1-7: Two dimensional spatial grids for a) rectangular b) triangular, and c) elliptical object.
d) A periodic rectangular object is the fourth illustration. Dots are the sampling points on each

object.

1.5  Spatial Frequency Technique vs. FDTD and FEM

The Spatial Frequency Technique begins with the differential form of Maxwell’s
equations to develop a set of equations similar to the Finite Difference Time Domain method and
the Finite Element Method, but that is where the similarity ends. The FDTD uses approximations
to derivatives to solve for the time domain response of electromagnetic systems, and the Finite
Element Method uses a variation technique to minimize a functional written from the differential

equations.
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The SFT applies the discrete Fourier transform to a discretized object with fields
characterized by spatial frequencies k. For example, the electric field E (k) shown in equation
(1 — 14) can be written in the spatial frequency domain, reducing the solution of the system for

J (k) to an algebraic expression. The wavenumber is k.

E(k) = - (=K% + k3G ()] (0 (1-14)
0
) =22k + RGO E ) (1-15)

In addition, the power of the FFT can be used to improve the speed of the calculations as
long as objects are considered periodic and properties of circulant matrices are exploited.
Combining spatial frequency analysis with the conjugate gradient method (CGFFT) has shown to
produce even faster results. This technique was investigated and different iterative methods were
implemented to improve the calculation of the surface currents. These will be discussed in

Chapter 4, was well as the limitations of these iterative methods for SFT analysis.

1.6 Boundary Element Method Adapted to Large Systems of Equations

The Fast Multipole Method is an extension of the Method of Moments in that it expedites
the calculation of the off-diagonal terms in the impedance matrix [29,30]. This is useful for
problems with many source/observation points that generate large matrices. The method is based

on a form of the Hankel Addition Theorem given below in equation (1 — 16).

HP@lp=pD) = ) Ju(BpIHD (Bp)ein =) p<p (1-16)

n=—oo
As seen in Figure 1-8 below, the singularity in the Hankel function causes diagonal terms to take
on very large values. These terms are calculated using the Method of Moments. The other terms
are calculated using an expanded form of the Hankel Addition Theorem. The illustration in
Figure 1-8 shows the singularity in yellow along the main diagonal of the impedance matrix. The

off-diagonal terms are much smaller and calculated using the Fast Multipole Method.

11
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Figure 1-8: Surface plot of impedance matrix comparing the a) Method of Moments and b) Fast

Multipole Method.

The Fast Multipole Method groups terms around the object being analyzed. This is all
done by expanding the summation on the right side of the addition theorem equation (1-13) into
three parts. The three parts are formed as matrices called Aggregation, Translation, and

Disaggregation (ATD). See equation (1 — 17).

N
z Zm,n]n =
n=1

D Zuaa + mp(ar) > Apg@) ) fona (1-17)
qEBp NEGy r=1 q¢Gp neGq
D T A

The illustration in Figure 1-9 shows how source points in Group 1 are aggregated to q=1
and then translated to the other five group centers p = 2 to p = 6. Figure 1-10 illustrates how
sources in Group 1 are aggregated to the center of Group 1, translated to the center of Group 5,

and then disaggregated to observation points in Group 5.

12



Pog Vectors from Group 1 Source to Groups 2-5 Observation

G2
8 L
p=2
6 O Tk,
/ \
Y \
4 xR
4 r ‘// \\\ \\Q
2 3 O
G3 p=3f----- z=-4--=-49g=1 |G1
? Poa P13, .2 1%
0 é’ #% ‘
i -7 7
Uo7
Pad b
=4 ¥ ! o=
2F G4 p46\ : épe G6
S| f
§ Y
4+ ] b4
N 7S
] //
6 o o’
p=5
8 |-
G5
8 6 4 2 0 2 4 6 8

Figure 1-9: Grouping of source and observation points on an elliptical surface using the Fast
Multipole Method.

Aggregation G1, Translation G1— G5, Disaggregation G5

Figure 1-10: Example of aggregation group G1, translation from group G1 to G5, and

disaggregation group G5 using the Fast Multipole Method.
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1.7 Spectral Projection Method Model and Direct Spectral Projection Model

This dissertation investigates new hybrid BEM/SM computational techniques called the
Spectral Projection Model [30] and Direct Spectral Projection Model. The Spectral Projection
Model (SPM) has its foundation in the Hankel form of the addition theorem as shown in equation
(1 —16), and its antecedent known as Graf’s addition theorem [31,32]. The addition theorem is
a method for calculating a Bessel or Hankel function as an infinite sum of Bessel and Hankel
functions.

The addition theorem for Bessel functions has been used by different authors to solve
electromagnetic scattering problems. Mittra and Wilton used the addition theorem to solve for
surface currents on both circular and elliptical infinitely long 2D PEC and dielectric surfaces of
using modal methods [33,34]. Harrington explained how to use modal methods to solve for the
currents induced on the surfaces of 2D PEC circular cylinders in his classic text [35], and Balanis
detailed modal solutions to the EFIE and MFIE for TM? and TE? fields incident on PEC circular
cylinders [36]. Examples of modal equations for incident and scattered electric fields for the

electric field on a circular cylinder are given in equations (1 — 18) and (1 — 19).

Ei=Ey  jBlphel e (1-18)
o hBlaD o

ES=-E k RNV g jk(-9") 1-19

0 E ] HO @lan BlpDe ( )

The modal methods implemented by Wilton worked well for elliptical cylinders of small axial
ratio, but unlike SPM and DSPM failed for larger axial ratios. Wilton delved into the limits of
the addition theorem used as a convolution product, but SPM and DSPM exploit Graf’s addition
theorem to solve 2D surfaces of large axial ratio that still achieve good convergence.

In the Spectral Projection Model, the addition theorem equation is not written as a sum,
but instead as a projection of the spectral signature of source points onto the spectral signature of
observation points along the surface of the object. For the incident fields, the H-spectral
signature of source points are projected onto the J-spectral signature of observation points along
the surface of the object. For the induced fields, the J-spectral signature of source points are
projected onto the H-spectral signature of observation points along the surface of the object.

Equations (1 — 20) to (1 — 22) define these new terms for the induced fields described above.

14
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HO@Blo—pD = ) JeBoHD B # 9 = el e,y p>p  (1-20)
k=—K
where the two vectors,
! —j ’ ! ikadr ! j IT
esn = [J(Bp)eTK . Ji(Bp)el " .. J_x(Bp")elk®'] (1-21)
and
. . . T

eom= [HRBIe* .. HP (Bp)el .. HP (Bp)e*?| (1-22)

The vector e, is called the J-spectral signature of the induced current source point at (p’, ¢")
and the e, vector is called the H-spectral signature of the surface observation point at (p, ¢).
The condition p = p’ must be satisfied to ensure convergence of equation (1 — 19). The addition
theorem may also be written as the projection of the H-spectral signature of the external source
points (p’, ¢") onto the J-spectral signature of the surface observation points (p, ¢) for incident

fields, as long as the condition (p’ > p) is satisfied.

p Vectors for SPM - Source(x) and Obs (o) Points Coincident 5 p Vectors for SPM - Source(x) and Obs (o) Points Different

Figure 1-11: Examples of source and observation points for two different 2D infinitely long

elliptical cylinders using the Spectral Projection Model. a) coincident points b) different points

The observation and source points in (1 — 20) may or may not be coincident so long as
the condition p’ < p for the addition theorem is satisfied. See Figures 1-11a and 1-11b.
15



In the Spectral Projection Model, the projection of the J-spectral signature es,, of all
source points p,," onto the H-spectral signature e, of all observation points p,,, are expressed as

a matrix product. For scattering from PEC conductors in EFIE problems, the incident electric

field is related to the matrix l HP Blp - p'D) l as is the induced electric field and
surface current density coefficients l] (Pn')l on the object (1 — 23).

(1-23)

=%[... HE (B1pm — P21 l [](p:n’)

E'(pm)

The term [ Héz) Blpm — P’ l is the Green’s function matrix which relates the

electric fields to the currents. The incident and scattered electric fields can be written in terms of
the J-spectral signature of the induced surface current. The J-spectral signature of the induced

surface current is a linear transformation on the actual surface currents [] (pn')], and the far-field

pattern of the scattering problem may be solved directly by calculating the spectral signature,
without need for calculating the surface current.

A more versatile technique which originated from the SPM is the Direct Spectral
Projection Model (DSPM) described in Chapter 6. It is summarized in the equation (1 — 24)

below:

: | | | :

ff ! ~

Lsswirsum| = || H]EZ) Blpa'D | [lind,sum] (1-24)
: | | | 5

This technique directly calculates the induced currents on the surface of an object by
setting the weighted sum of the H-spectral signature of the virtual currents equal to the spectral
signature of the equivalent electric field generated either by an incident plane wave or a set of
infinite line sources. The DSPM may be used for arbitrarily shaped objects and fields generated
by convolving multiple vectors in opposite directions.

The SPM and DSPM are new hybrid spectral/BEM approaches that differ from ordinary
boundary element methods, and are simpler to solve than Fourier spectral methods like the SFT

and the CGFFT. They are different from other BEMs like the MOM and FMM in that the source
16



and observation points do not need to coincide. Consequently, when calculating the Hankel
function, the singularity at p = 0 may be avoided. For SPM there is no need to calculate the
surface current. The far-field scattered and radiated fields outside the object can be found
directly from the J-spectral signature of the source current. The SPM is a spectral method
because the spectral signature of the surface currents defined by J,,(8p")e /"¢’ are analogs to the
complex exponentials found in the Fourier series. But these functions have the advantage that the
two-dimensional spectrum is defined by one set of modal terms, at p’e /"¢’ and not two sets of
spatial frequency terms k, and k,,. Also, source and observation points do not have to lie on a
uniform spatial grid as required by the FFT. Moreover, the number of source and observation
points may differ.

The DSPM offers advantages over the SPM in simplicity, and it facilitates direct
calculation of the surface currents for arbitrary geometries as an alternative to other boundary
element methods. It also offers the potential to solve antenna and electromagnetic field synthesis
problems.

The first three computational technigques explained in this dissertation are the Method of
Moments, the Fast Multipole Method, and the Spatial Frequency Technique. Their importance
and relevance are discussed next with respect to the development and implementation of the
Spectral Projection Model and Direct Spectral Projection Model.

17



Chapter 2: Method of Moments

2.1  Foundational Mathematics of Computational Electromagnetics

There are three classes of electromagnetic field problems: propagation, scattering and
radiation. In this dissertation only electromagnetic scattering from objects that are perfect electric
conductors (PEC) are considered. To determine the electromagnetic fields around a conducting
object, one must apply Maxwell’s equations to the region of interest with appropriate boundary
conditions. Depending upon the problem, the region may or may not contain sources.

A fundamental equation of mathematics used to solve many electromagnetic field
problems is the Fredholm integral equation [37]. Equation (2 — 1) is the inhomogeneous

Fredholm equation of the first kind.
b

f(o = f K(t, &) (t)dt’ @-1)

Here K (t,t") is a continuous function called the kernel, the function f(t) is a known excitation,
and the term J(t") is a function to be determined. The kernel is usually a Green’s function, which
carries special properties. The unknown function J(t") is usually the current density on the

surface of the object.

2.2  Differential Form of Electric and Magnetic Field Equations

By applying Maxwell’s equations, the electromagnetic fields around a perfect electric
conductor are generally characterized by a partial differential equation. BEM next transform this
equation into an integral equation. The conductor space is then discretized, and the integral
equation is solved by numerical methods for parameters such as the electric field, magnetic field,
or current density distribution.
The partial differential equations describing electric field intensity E 4 and magnetic field

intensity Hy are commonly given in equations (2 — 2) and (2 — 3).

1
E,=—jwuA+—V(V-A 2-2
A= —jou +jw‘S (V-A) ( )

1
Hp = —jwF+—V(V-F 2—3
P = —joF +5 (V- F) 2-3)
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In these two equations, A is the magnetic vector potential, and F is the electric vector
potential. E, is the electric field given as a function of the magnetic vector potential, and Hg is
the magnetic field as a function of the electric vector potential.

The Helmholtz wave equations for vector potential plane waves are as follows:
VZA+B*A=yu Magnetic Vector Potential (2-4)
VEF+B*F=—cM Electric Vector Potential (2-75)

The Green’s function solution to Helmholtz equation (2 — 4) is the integral product of
magnetic vector potential A and current density/(r") seen in equation (2 — 6). The Green’s

function G(r,r") may also written G(r — ).

A(r) = %]ﬂ](r’) G(|r—r'|)av’ (2-6)
4
The 3D Green’s function for a point source is given in (2 — 7),
' e—jklr—r'l
GGT_TD:W 2-7)

This can be written as the zeroth order spherical Hankel function of the second kind
(2 —8).

e—jﬁ|r—r'|

W (Bl — 1)) = 2-89)

lr — 7|
The Green’s function G (r — r’) solution to the Helmholtz equation (2 — 5) in terms of electric

vector potential F is shown in equation (2 — 9).

F(r) =%]‘ﬂ M) G(|r—7r|)av’ 2-9)

So, equations (2 — 6) and (2 — 9) are the Green’s function integral solutions for each of

the differential electromagnetic field equations.
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Table 2-1: Vector Potentials and Helmholtz Equation.

Vector Symbol Helmholtz Equation
Potential
Magnetic A(T) VZA+B2A=yf
Electric F(r) VZF+pB?’F=—cM

2.3 Electric and Magnetic Field Integral Equations

As mentioned earlier, the Method of Moments is a BEM that solves partial differential
equations describing the behavior of electromagnetic problems as integral equations
[18,20,21,36,38]. The two most common integral equations used to calculate scattering of fields
from conducting bodies are called the Electric Field Integral Equation (EFIE) and the Magnetic
Field Integral Equation (MFIE). The EFIE and MFIE will now be discussed.
The three-dimensional EFIE [36] for point sources scattering from a surface is given in equation
(2 —10).

Ei(r=1) = % p? ] j J()G(ry, 1)ds' + ¥ J j V' GGy ) ds’ (2 —10)
S S

The three- dimensional MFIE [36] for point sources scattering from a closed surface is

given in equation (2 — 11).
AxXH@=1r)=]Js(@") - rlTS lﬁ X J Js(r") x{V'G(r,r")}ds’ (2-11)
S

The Method of Moments is a BEM useful in calculating the current distribution on a
variety of structures. Once the current distribution is calculated, the far-field pattern may then be
calculated from the current distribution. Starting with the 3D EFIE, the MOM analysis of a finite
length discretized dipole antenna [39] is shown in Figures 2-1 and Figure 2-2. The dipole
depicted in Figure 2-1a is a half wavelength dipole aligned with the Z-axis. It is subdivided into
eight segments, and is excited by a voltage across the gap shown in Figure 2-1b.

As shown in Figure 2-2b for the case of the half wavelength dipole antenna, the far-field
radiation pattern is symmetrical around the axis of the dipole structure. If the dipole antenna is
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Figure 2-1: a) Dipole antenna discretized into 8 segments. b) Illustration of dipole antenna shown

with gap where voltage source is placed.
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Figure 2-2: a) Current distribution along a dipole antenna discretized into 8 segments. b) Three-

dimensional radiation pattern of dipole antenna.

acting as a passive receiver of an incident electric field polarized in the Z-direction, the induced

current on the antenna would be the same as in Figure 2-2a. When an electromagnetic structure
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absorbs radiation and emits an electric field due to induced currents, it is referred to as

electromagnetic scattering.

2.4 Scattering on Infinitely Long Structures by TM? and TE? Waves

Two-dimensional electromagnetic scattering problems for infinitely long structures are
often divided into two classes by the polarization of the incident electric and magnetic fields.
Transverse magnetic waves TM are those in which the magnetic field is oriented in the plane of
incidence (across the structure) and the electric field is parallel to the radial axis of the structure.
Transverse electric field waves TE are those in which the electric field lies in the plane of

incidence and the magnetic field is parallel radially to the structure. See Figure 2-3 for examples.

TE and TM Polarization

] E
: E J/
0. Z H
TE
o ™
Lo H
>l- 0.4

Plane of

Incidence

) 2 Z-Axis
X-Axis

Figure 2-3: Vector representation of TM* and TE? waves on an infinitely long rectangular cylinder
travelling in the +Y direction. The plane of incidence is normal to the E-field for TM?* waves, and

is normal to the H-field for TE* waves.
A TM? plane wave incident on an infinitely long perfectly conducting cylinder is

illustrated in Figure 2-4. The wave is illustrated passing by the cylinder with the electric field in

the cylinder’s radial direction.
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Incident Electromagnetic Wave (Real) Incident Electromagnetic Wave (Imaginary)

—— P=ExH — P=ExH

W

Figure 2-4: a) Incident plane wave travelling in the y-direction incident upon an infinitely long
conducting elliptical cylinder. b) The wave is travelling in the direction of the major axis, and the

cross section is shown below the wave and traced on the waveform.

The two-dimensional EFIE for scattering of TM?* polarized waves from infinitely long

cylindrical structures is derived from the three-dimensional EFIE and given in equation (2 — 12).
Note for 3D problems, the spherical Hankel function hgz)(R) is used as the Green’s function.
_H "Ny (2) '
4,(p) = o || 1. (eORE? (R)dS (2-12)
TJ)s
R for the 3D case is defined in equation (2 — 13).

R=\lp—p' I+ (z—-2)° (2 - 13)
Substituting the term R from (2 — 13) into equation (2 — 12), one may integrate with

respect to z in equation (2 — 12) and expand equation (2 — 12)

u oo e_]ﬁ |p_p,|2+(2_2,)2
A0 =4 160 | dz'| dp @2-14)
4m J; —o \/Ip—p’|2+(z—z’)2

to find a simplified expression (2 — 15) for the electric field by substituting A,(p) into equation
(2 — 2) and applying boundary conditions.
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B () = 5 § LGOS Blp - pDde’ 2 15)
Ccr

For a more detailed explanation, see Appendix B. Here C " is the radial cross section of the

scattering antenna, p,,, is an observation point, and p’ is the source point variable.

Current Density Cylinder MOM N=64 a=2)\ b=1)
Infinitely Long Elliptical Cylinder 1.2
a=2ib=1)

o o
b
a
o

o
@

o
o

Current Density

°
IS
T

Figure 2-5: a) Elliptical cylinder cross section with major axis a = 24, minor axis b = 14. The
elliptical cylinder on the left shows 8 source/observation points. The source/observation points
are indicated by 0’s, and are spaced at equal angles. b) Current distribution along an infinitely

long elliptical cylinder discretized into 64 segments.

Shown in Figure 2-6 is an incident electromagnetic plane wave in the +Y direction
passing through an infinitely long elliptical cylinder. The real and imaginary parts are shown
separately to emphasize its oscillatory nature. Below the wave is a sketch of the elliptical
cylinder cross section.

An electric field around a PEC object can be written as the sum of two waves, the
incident electric field E' and the scattered electric field ES. Shown in Figure 2-7a is a surface plot
of the magnitude of the electric field pattern of a TM?* plane wave incident on a conducting
circular cylinder of infinite length, whose cross section is indicated by the dashed circle. The
scattered near-field pattern of the radiated electric field is shown in Figure 2-7b. In Figure 2-7c¢

calculation of the sum of the incident E' and scattered ES electric fields inside the cylinder.
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Figure 2-6: a) Real part of a plane wave incident upon an infinitely long elliptical conducting
cylinder. b) Imaginary part of an incident plane wave upon the same infinitely long elliptical
conducting cylinder.
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Figure 2-7: a) Incident electric field near and inside a circular conducting cylinder. b) Scattered
electric field due to induced current near and inside a circular conducting cylinder. ¢) Zero

electric field predicted by the extinction principle.
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As shown in Figure 2-7a, the magnitude of the calculated total electric field E; inside the
cylinder equals zero, i.e. |[ET| = |E' + E*|, where E* is the scattered field due to the induced
current and E* is the incident electric field plane wave. This calculation is consistent with the
extinction principle, i.e. the total electric field inside the cylinder must equal zero, shown in
Figure 2-7b.

Illustrations of an infinitely long strip and infinitely long cylindrical structure subjected to
a TM? polarized wave are shown in Figure 2-8.

2D Infinite Strip and Cylinder

Y-Axis

Z-Axis
X-Axis \—l/
Z

™

2,

Figure 2-8: Infinitely long strip and infinitely long circular cylinder excited by TM? incident

wave.

The two-dimensional EFIE [36] for scattering of TM? polarized waves from an infinitely

long strip with normalized electric field, E, = 1, is given in equation (2 — 16).
w

e/Pmeos$i) = % j JoGVHE (Bl — ')’ (2 - 16)
0

See Figure 2-9a for an illustration of incident angle and observation points on a strip from a TM?
polarized wave incident at angle ¢;. The strip is width w. The current distribution on a strip of

width w = .51 is shown in Figure 2-10.
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Figure 2-9: Finite width strips with incident a) TM? polarized wave and b) TE? polarized wave
[36].
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Figure 2-10: a) An infinitely long strip divided into 6 segments with observation points on the top
surface. b) Current distribution along the width of an infinitely long strip .51 wide excited by TM?

wave.

The two-dimensional EFIE for scattering from infinitely long structures by TE? polarized
waves are sometimes derived from the three-dimensional EFIE [36]. The equation and its

associated Green’s function are given in equations (2 — 17) and (2 — 18).
(om) = 15| j [ 1c0)1em - e6 U o DIdC + 1 f [ v-1c02¢600m pDaC
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(2-17)
GUpm P') = Hy” (Blom — p'1) (2-18)
For the specific case of TE” scattering from the surface of an infinitely long strip [36], the

solution to equation (2 — 17) is given in equation (2 — 19).
: jBxmcos(d;) _ﬁ / 2 N (2) N ’
sin(¢pelFoneos@) = 2| [ 1. HE Blom = p'1) + H? (Blom = p'cos($) Jdx
0

(2-19)
The angles and points associated with equation (2 — 19) is shown in Figure 2-9b. An
example of a current distribution along an infinitely long conducting strip subject to an incident

TE? polarized wave is plotted in Figure 2-11.

Infinitely Long Strip d = 0.5\ Infely Loog Strip d=05)
TE Wave - Cross Sectional View s TE Wave using MOM and Simpson Composits Rule

Y-Axis
& S B « 8 8 & 8

D5 04 03 02 01 0 0.1 02 03 04 05
X-Axis

a) b)
Figure 2-11: a) Infinitely long strip divided into 6 segments with observation points on the top

surface. b) Current distribution along an infinitely long strip .54 wide excited by TE* wave.
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Figure 2-12: a) Circular cylinder cross section with radius 14. The circular cylinder on the left
shows 8 source/observation points. b) TE* wave current distribution along an infinitely long

circular cylinder discretized into 64 segments.

The two-dimensional MFIE for infinitely long cylindrical structures subject to plane
waves with TE? polarization is derived from the three-dimensional MFIE. It is shown in equation

(2 — 20). Integration is performed around a cross section of the surface along contour C.

; B JjB lim
—H)| =) |+, L

j Je(p")cosVHP (Blom — p'dc’ 2 - 20)
C C c

The solution of the two-dimensional MFIE for TE? scattering from the surface of an infinitely

long cylinder along contour C is given in equation (2 — 21).

_Jc (pm)

~11Gp) =228 B [ 1eorcos(rIH® Blon — e (2 21)

C-AC
Illustrations of a cylinder subject to an incident TE? polarized wave and its current distribution is

shown in Figure 2-12. The MFIE and is derivation are presented at the end of tis chapter.

2.5 Discretization of Objects into Elements and Coupling of Elements

In the procedure for MOM analysis, an infinite strip or cylinder is first divided into
segments, inner products are taken, boundary conditions are applied, and finally induced fields
are calculated from each segment element to itself (self-impedance term) and every other

29



element. An example of an infinite strip divided into 6 segments is shown below in Figure 2-13.
Arrows between different elements represent coupling of fields between segments, the circle
above a single element represents a self-coupling term. When the impedance matrix is formed,
coupling between different elements results in mutual impedances, and the self-coupling term

results in a self-impedance term.

o ¢ MOM Infinite Strip
MOM Infinite Strip 5

a) b)
Figure 2-13: Mutual coupling on an infinitely long conducting strip divided into six elements
using the Method of Moments. a) Source is located at element one on the left. b) Source is

located at element three near the center.

2.6 Subdomain Basis Functions

Once discretization is complete, the fields are calculated by representing the current
sources on each segment by a subdomain basis function with amplitude «,, over domain D. The
subdomain function is usually a real valued waveform over the segment, and zero over the rest of

the object’s domain.

N-1
J=) aun (2-22)
n=1

The subdomain basis functions J,,(x) and J,, (x) are orthogonal in the following inner

product space over the problem domain D. See equations (2 — 23a) and (2 — 23b).

(I, Jn (@) ) = f I GO () dx if m=n 2 - 230)
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(Jm(x),Jn(x) ) =0 if m#n (2 —23b)
Shown in Figure 2-14 is an example of pulse basis functions over the domain D. Domain D
is the interval [-.5,.5]. Note these basis functions are orthogonal and cover the entire

domain. Subdomain basis functions are not necessarily orthogonal.
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1k
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Figure 2-14: Pulse subdomain basis functions over domain D for a linear object subdivided

into five segments.

Other types of basis functions are shown in Figure 2-15. These include the delta
basis function (used for point matching at specific sets of coordinates), pulse basis function,
sine basis functions, and triangle basis functions. Green’s functions typically have a
singularity that must be integrated in any MOM formulation. Various approaches have been
used to calculate these values for different basis functions, including a commonly used

approximation calculated by Harrington [8].
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Figure 2-15: a) Delta basis function, b) pulse basis function, c) sine basis functions, and

d) triangle basis functions.

2.7  Assembling the Impedance Matrix using Inner Products
The general method for solving an electromagnetic scattering problem is to define

the linear operator, L, below in equation (2 — 24).

Lj = j Gjdv (2 —24)
14
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In equation (2 — 21), J is the current density, and G is the Green’s function. One may also

consider this operation as an inner product shown in equation (2 — 25).

(G,]) = f Gjdv (2-25)

v

The linear integral operator may be applied to a set of subdomain basis functions, i.e.

equation (2 — 26),

N
] = Z Anfn (2 —26)
n=1

to obtain the expression in equation (2 — 27). Equation (2 — 27) is a general solution to an

electromagnetic scattering problem using the MOM technique.

N
L= ZanL]n =F (2-27)
n=1

To enforce the boundary conditions at the testing or observation points (or the testing
intervals), j € {1,2, ..., N}, one takes the inner product of both sides of equation (2 — 27) with
weighting functions. For one-dimensional problems, these weighting functions are often are delta
functions w; = 6(x - xj) for measurements made at specific points on the object, or pulse basis
functions over intervals of the object w; = p(xj,jﬂ).

i <Lj,w; >=<E,w; > (2-28)

The inner product of each integral operator L over a subdomain with the weighting
function wy;, and the inner product of each weighting function w; with the electric field E; is

entered into a matrix.

< L_]l! Wq > < L]z, Wq > < L]N' wq > aq < El, wWq >

<L]1,W2 > <L]2,W2 > b b aZ <E2,W2 >

< L]lle > oee “oo “oo < L]NlWN > aN < ETUWN >
(2-29)

The next step is calculating the terms of the square impedance matrix with the number of
elements in each row corresponding to the impedance of each self-impedance term Z,,, ,,, and
induced-impedance term Z,,, ,,.
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(2 — 30)

Figure 2-16 shows the relationship between coupling terms and elements using MOM analysis.
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Figure 2-16: Mutual coupling between elements using the Method of Moments and their

corresponding impedances.



The complete integral equation for a single source (s"), to observation point (s), ona
surface S’ is given in equation (2 — 31). The source or basis function are b,,(s"), the testing or

observation function are t,,,(s), and the Green’s function is G(B|s — s']).

Znn =22 [ ) [ GBI = DS s (2-31)
4 J s

Note that the testing functions are projected onto electric field and onto the subspace of inner

products of the Green’s function and basis functions.

2.8 Whole Domain Basis Functions
Basis functions need not always be subdomain, but may also be whole domain. See
Figure 2-17. A common type of whole domain function is the sinusoid.

" Whole Domain Ba.sis_Funcuon cos(x/2) . Whole Domain Basfs_ Function cos(3x/2)
08
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0
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D¢
0 ) 0 0.5 0
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4 wWhv:»lo Domain Basl_s_ Function cos(Sx/Z)_' i Wholg Domain Basi_s Function co;(h/2)
) 0.5
) ! 0
|
) 0
{ ) 0.5 J.9
X-Axis X-Axis
c) d)

Figure 2-17: Examples of four types of whole domain basis functions: a) cos(x/2), b) cos(3x/2),
c) cos(5x/2), and d) cos(7x/2).
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The sum of the basis functions approximates the current distribution. The current
distribution of the object is usually calculated by inverting the impedance matrix, and the far-
field pattern can be calculated from the current distribution [40]. Iterative methods have also
been developed to solve for the current distribution without inverting the matrix. One of these
techniques, the conjugate gradient method (CG), has gained importance in this field. See

Appendix G on the conjugate gradient.

2.9  Two-Dimensional Solutions for Flat Objects

The Method of Moments is not restricted to one-dimensional objects and infinitely long
two-dimensional objects. More general shapes of two and three-dimensional objects may also be
analyzed. An example of a finite length two-dimensional object is shown in Figure 2-17, a

conductive plate.

Conductive Plate 12x12

Figure 2-18: Illustration of a discretized 14 x 14 conductive plate 12x12 square segments.

To solve the two-dimensional conductive plate problem, the MOM implemented basis
functions such as 2D pulse and rooftop functions initially. RWG basis functions are triangular in
shape and are much more versatile for calculating electromagnetic scattering from asymmetrical
and three-dimensional objects. They are used extensively to model EM scattering from aircraft

and ships because the triangular shape adapts well to three-dimensional geometries [41].

36



Current Magnitude J
Current Magnitude J MOM RWG Basis 16x32

MOM Pulse Basis 12x12

Current Magnitude
Current Magnitude

e - 02
X-Axis e BR Y-Axi

b) C)
Figure 2-19: a) Current distribution Jx on the conductive plate using the Method of Moments pulse
basis functions. b) Current distribution Jx on the conductive plate using the Method of Moments
RWG basis functions.

2.10 TM? Incidence on Infinitely Long Cylinders using the EFIE
To calculate the current distribution on infinitely long PEC cylinders, one begins with
equations in the spatial domain. Starting with the magnetic vector potential, A,(p), and the

e_jﬁR

R

spherical Hankel function h(()z) (R) = , one utilizes the symmetry to evaluate the integrand

over its infinite limits in the Z-direction of polarization [36]. Beginning with equation (2 — 32)
and integrating along the Z-direction in equation (2 — 34), the new integral equation and

Green’s function are shown in equations (2 — 35) and (2 — 36).

A,(p) = f—n j JS J.(pOhP (BRYAS’ (2 —32)

R=\lp—p?+ (z—z)? (2 -33)
U e e—jﬁﬂllp—p’lzﬂz—l')z I

10) =4 [16) | T | (2-34)

1.0) = =% [| 1Y 1 (Blo = o (2-35)
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G(p,p") = Hy® (Blp = p) (2 - 36)

2.11 TE? Incidence on Infinitely Long Cylinders using the MFIE

In this section the Magnetic Field Integral Equation (MFIE) is derived by subjecting a
PEC object to a TE* wave. When the PEC object is subjected to an external stimulus like a TE?
wave, currents are induced on the surface of the conductor. Let vectors H* and H® be incident
and scattered magnetic field intensities, respectively. At the surface of the cylinder, the induced
current density, J, is equal to the discontinuity in the tangential component of the magnetic
field.
Js = fi x (H' + H®) at boundary (2 — 37)

Boundary conditions for a transverse magnetic TE* wave are shown in Figure 5-8. The
incident magnetic field, HY = H}2, is parallel to the cylinder axis for TE? plane waves, as is the
scattered magnetic field HS = H; 2.

To calculate the scattered magnetic field for TE? incidence [21], one begins with a
differential magnetic vector potential at an observation point (x, y, z) from a current element

source oriented in the I direction at source location (x',y’, z") is given in equation (2 — 38).
dA = h,'"? (B|RDIdl (2 - 38)

R=Jlx-x)+ (—y)+(z~2) (2-39)
For an induced differential current element of length dl on the surface of an infinitely

long cylinder excited by an incident TE wave, the appropriate Green’s function is HO(Z)(,BlRl).

The magnetic vector potential may be written as (2 — 40). See Figure 2-20.
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Magnetic Vector Potential - Current Element Diagram
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Figure 2-20: Illustration of magnetic vector potential with an incremental current contribution

along an incremental length [21].

dA, = H,®(B|R|)!1dl (2 — 40)

In this case, the differential current element I/dl and resulting magnetic vector potential
dA; are both in the Y-direction, and tangent to the cylinder surface. The normal vector to the
surface is in the X-direction. For this illustration of an incident TE* plane wave, the plane of
incidence is the X-Y plane, and the resulting magnetic field may be calculated using the relation

given in equation given in (2 — 41).
1
HZ=;V><At (2 —41)

The term H,, is the Z-component of the magnetic field, calculated from the tangential component
of the magnetic vector potential.

The differential magnetic field may be written as equation (2 — 42). See reference [21].

1
dH, = ;V X dA,; (2—-42)
Expanding using the curl operator in rectangular coordinates,
0A, 04, 0A, 04, 0A, 0A,
VXA=X —— A( — ) 2| ——— 2—143
% x(@y az>+y dz  0Ox +z 0x dy ( )
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and defining
dA; = dA, X + dA,)y (2 -44)
equation (2 — 42) may be expanded into equation (2 — 45).
dH, = (aA an) (2 — 45)
0x dy
If the differential current element is aligned with the Y-axis and the normal vector with
the X-axis, then dA, = 0, and

dA, = 4%_ H® (BIR)Id! (2 — 46)
with the variable R now in two dimensions.
R=yx—-x)+ (y—y) (2 - 47)
Applying differentiation, equation (2 — 45) may be written as (2 — 48).
dH, = — H®"
2= il (BIR)Idl (2 —48)

where the prime indicates the partial derivative with respect to x.

After taking the partial derivative, equation (2 — 48) is then written as

1dl
an, =" ¥ H(Z)(BIRI) (2 - 49)
with
dR  x -
dx R ( )
2 = cos) (2-51)

This results in the differential expression given in equation (2 — 52),

1dl

an, = 5 M7 (BIRDcos(y) (2 - 52)

and angle y is the angle between normal vector n and the R vector. The normal vector n is
aligned with the X-axis in Figure 2-20.
Now one can change to cylindrical coordinates, with p being the observation point vector

and p' being the source point vector,
R=p-p (2—-53)
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For an observation point p,,,, and current element dc’ along contour C (instead of dl), one

can integrate and find the scattered magnetic field along the contour of the cylinder.

83 (on) = 2 [ 1e@)cosIHE Blow - e (2-54)
(o

Thus, substituting into equation (2 — 54), the MFIE for TE* waves at observation point

Pm Can now be written as (2 — 55). See Chapter 5 and Appendix B for illustrations of angles.

B =222 T [ (heos I (Bl — oD 255

C-AC

Table 2-2: EFIE and MFIE for TM* and TE* Waves [36].

Transverse Magnetic Waves (TM?) for 2D Scattering

Ei(p) = l%njg J(pYHP (BRYdc EFIE
C
i _ jB .. , ) ,
H@)| =10 +itim| [ L)cospH R MFIE
C C C-AC

Transverse Electric Waves (TE?) for 2D Scattering

~Elp) = 35 ﬁ239h(p')[e-e'Hé”(ﬁR)]dc'+% V- Jnendrlac|t  BriE
c c

]C (pm)
2

+%ﬁ j Je(p)cos()Hy” (Blom = p'Ddc’ MFIE
C-AC

—H;(p) = H(pm) =
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Chapter 3: Fast Multipole Method

3.1  Comparison of the Method of Moments and Fast Multipole Method

The fast multipole method (FMM) is a hybrid approach used in computational
electromagnetics based on the Method of Moments and the addition theorem [27]. It’s main
advantage over the MOM is that it speeds up populating the terms of the impedance matrix for
large systems. The Method of Moments approach requires each current element of the scattering
object to act as a source upon itself and every other current element. The current elements of the
scattering object that act as a source upon themselves are called the self-impedance terms Z,, ,,,
and those that act on other elements are called mutual-impedance terms Z,,, ,,. See the Figure 2-
12. The self-impedance terms occur along the main diagonal of the impedance matrix, and the
mutual impedance terms are the off-diagonal elements.

For an infinitely long cylinder, the regions over which the source (basis) functions and
testing (observation) functions are defined are P’ and P, respectively. For the surface shown in

Figure 3-1, the source and testing function regions are defined along the same contour, P = P’.

Surfaces P and P’ traced by vectors p and p'

Figure 3-1: Cross-sectional view of a symmetrically shaped infinitely long cylinder with source
points x and observation points 0. A single source vector, p’, and observation vector, p, are

illustrated.
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The impedance matrix for FMM analysis shares many similarities to MOM. For electric
field incidence, the EFIE is used to calculate the terms of the impedance matrix (Chapter 2). For
an infinitely long perfectly conducting cylinder, the FMM terms of the impedance matrix are
given as equation (3 — 1). The basis and testing functions are b, (p") and t,,,(p), respectively
[27].

_b%

Z
mn 4

f tn(0) f HP (Blp — p'1) b(p)dP'dP B-1)
P P’

Except for the self-impedance term, point matching is used for both the basis functions

and testing functions and are delta functions, i.e. b,,(p") = §(p' — p,") and t,,,(p) =

50" = pm".
BZ,As ,
Zmn=—4—Hy"Blp —p'D) (3-2)

For the self-impedance term, n = m in which p — p’ = 0, the integral expression in equation
(3 — 1) must be evaluated. The well-known approximation given by Harrington [17] is

employed.

Zym =" ZZAS ll - %(’8 Z’eAsﬂ (3-3)

The term y' = 2.7183 is Euler’s constant, and As is the arc length.

3.2  Fast Multipole Method and the Addition Theorem

The Fast Multipole Method is a computational electromagnetic technique that groups
discrete points on the surface of an object and their basis functions to calculate the radiated fields
of an object. Basis functions for source points are first grouped together and their collective
contributions are calculated at the center of their group. This aggregate contribution is used to
represent a radiated wave from the center of the group to the center of an observation group that
is not a nearby neighbor. The field at the center of the observation group is then distributed to
the points in the observation group.

The Fast Multipole Method decomposes the impedance integral using the addition
theorem, or sometimes called the summation theorem. Then the impedance matrix is calculated

as groups of sources and groups of test points. To understand the addition theorem, begin with
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the law of cosines given in equation(3 — 4) and the scalene triangle shown below in Figure 3-2
[29].

R = /p2 + (p)2 — 2pp’cos(¢r) (3-4)
The sides and angles of the scalene triangle in Figure 3-2 can be associated with the

arguments R, p, and p’ of the summation theorem for Bessel functions [27]. The angles ¢,, ¢,

and ¢y correspond to the phase term arguments of the summation theorem.

M H(BR) = D Je (B Hm i (Bp)el (3-5)
k=—o0
The arguments p, p’, ¢ have conditions given in (3 — 6) and (3 — 7).
p>p (3-6)
T i p J— p’e_j¢R
— 2jpp =7 © -
0<g1.’)R<2 and e*/PR o= pleldn 3-7)

Law of Cosines

Figure 3-2: Scalene triangle and sides associated with the addition theorem.
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Addition Theorem Subtraction of Vectors
R=p-p'

8 N

71 p—Rasp' -0

"< >
o'l <1el R =\/p*+ p* = 2ppl cos(n)

Figure 3-3: Addition theorem expansion for Hankel function Héz)(ﬁlp —-p'D.

If the addition theorem equation is written for the zeroth order Hankel function of the

second kind, m = 0, it takes two forms shown in equations (3 — 8) and (3 —9).

HO@Blo—pD = ) JBoH (Bp)e @9 p<p (3-89
k=—00
HOBlo—pD = ) JeBpOHS (Bpel =9 pr<p (3-9

Figure 3-3 illustrates the addition theorem vectors and corresponding angles

p, p',¢,and ¢’ for Héz)(ﬁlp — p']) given in equations (3 — 8) and (3 — 9).

3.3  Fast Multipole Method Grouping of Sources and Observation Points
The best way to explain the FMM is through an example. Start with an infinitely long
PEC cylinder with 24 source/observations points. For the circular cylinder illustrated in Figure 3-

4, the sources and observation points are grouped together in sets of four. See Table 3-1.
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DAT Vectors from Group 1 Groups 2-5

051

-0.5

Figure 3-4: Example of infinitely long circular cylinder with 24 source/observation points with

groupings of 4 points.
In this FMM example, groups G1 through G6 are rotated as the source groups one at a
time acting on the remaining groups which become observation point groups. Points in the

source groups are g ’s and observation groups p'’s.

Table 3-1: Groupings of Sources and Observation Points on Figure 3-4.

Group Points
Gl 1,234
G2 5,6,7,8
G3 9,10,11,12
G4 13,14,15,16
G5 17,18,19,20
G6 21,22,23,24
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In Figure 3-4, G1 is the source group and G2 to G6 are the observation groups. The
center of the source group is designated g1, and the centers of the observation groups are p2 to
p6. Points 1-4 along the circle are the location of the source elements, and points 5 — 24 are the
location of the testing or observation points.

3.4  Governing Equations for Fast Multipole Method

The FMM process is often referred to as Aggregation, Translation, and Disaggregation,
or ATD for short. It calculates the fields by starting from a group of vectors aggregated to a
common center g (Aggregation Matrix), then translated to a new center point distant from the
aggregation center p (Translation Matrix), and then disaggregated from the new center to a new
group of current elements (Disaggregation Matrix). Once again refer to Figure 3-4. The source
vectors in group G1 are aggregated to the center g1 of group G1, then translated from g1 to
centers of the target groups G2 to G6, and lastly the vectors are disaggregated from the centers of
groups G2 through G6 to the observation points of these target groups.

The Hankel function is written as a sum using the addition theorem and is shown in
equation (3 — 10). This equals equation (3 — 9), with (p’, ¢") replaced by (de’™, ¢,).

1

HO Blo+dD == D JBDHP (Bp) e/ ¥~dam pl>1dl  (3-10)

k=—o0

Bessel’s definition of J, (p) is given in equation (3 — 11).

1 27T
Jolp) =5 | eosthd — psind)ds G-11)

Using the appropriate trigonometric identities, equation (3 — 11) can be transformed into
equation (3 — 12). See the Appendix E Fast Multipole Method for detailed derivation. Equation

(3 —12) is in the form of a Fourier transform.

21
Je(Bd)e Ik(batm) — i e~ JBd-jk(a+m/2) g (3-12)
21 ),
Substituting equation (3 — 12)into equation (3 — 10), a new expression for the Hankel

function H'? (B|p + d|) is given below:

1 - oo
Ho” (Blp +dl) = o— Z H (Bp) el*® f e~ IBd=j(a+T/2) g p>d  (3-13)
0

k=—o00
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with the corresponding vectors defined by equations (3 — 14) to (3 — 18)

B = B(Rcos(a) + ysin(a))
d=(p—pp)+(Pg—p)

p—p =(p—pp)+Ppg+(Pq—p)
P—Pp=|p—Pplitpm

Pq—P = |pg—P'|4Png

(3—14)
(3 —15)
(3-16)
(3-17)
(3-18)

For the example started above, with source group G1 and observation group G3, Figures

3-5a and Figure 3-5b illustrate the angles and vectors used in solving the example FMM

problem.
- p vectors of groups G1 and G3
Ppq = PpPq
L
G1
3 G3 o ®—_ Source Group

Observation P
2| Groupp-p Q/
b/

Vector d calculated from vectors of G1 and G3

Ppq = Pa3,61
pq ; =
G3
Observation e Source Group
Grou g S j
d ® il N Pe12
311 of 5

P \
- \{—> o
PPy Py P %

/ D

-O—1—O~
o
7
/
p\d
o

8 4

A d=p=p, +pgp' s

a)

b)

Figure 3-5: a) Elements in source group G1 excite observation elements in group G3. b)

Ilustration of the vector sums and angles in equations (3 — 14) to (3 — 18).

Equation (3 — 13) can be rewritten after substituting for p — p’ from equation (3 — 16)

under the conditions set in equations (3 — 14) to (3 — 18), |p| > |d|, yielding the new equation

(3 — 19).

2T

21
Héz)(ﬁlp —p'D= if e~ 1B (p—pp) Apg (@)e B Pa=r)dq (3 —19)
0



with the condition in equation (3 — 20)

|Po.al > |(p = po)| + g = £/l (3 - 20)
and with the aggregate term, 4, ,(a), defined in equation (3 — 21).

L

Apg@ = " HEP (Bpy ) (ra=2) (3-21)
l=—L

The impedance matrix for the Fast Multipole Matrix can be calculated using equation
(3 — 22), by first integrating with respect to the testing functions t,,, (p) and source basis

functions b,,(p") over the range of a values from 0 to 2.
Bz [ (0-v) i (pg=p)
T = f f t,(p)e 7B P=Po)gp 4 q(a)f b, (p")e 1B Pa=P)dp da (3-122)

Equation (3 — 22) can be broken up into three different integral expressions given in equations
(3 —23)to (3 —125),

Z 2T
Zm,n = %] tmp (a) A(a)fq,n(a)da (3—23)
0
tp(@) = B0 tn(pe PO (3—24)
fun(@) = E20 e o rap (3 25)

The expression for impedance can be further simplified with equation (3 — 26). In this

equation, the impedance block Z,, ,, is defined as a combination of MOM and FMM terms.

szn/n =S Zd 450 fo tp(®) Y Apg(@) Y fyn(@]uda

qE€Gp NEGy q€Gp neGy
(3 —26)
The first term in the summations qugp ZnEGq ZmnJn Tor the right side of equation (3 —
26) is the MOM term, and the second summation is the FMM term. Here G, is a source group
and G, is an observation group. The integral in equation (3 — 26) can be replaced by a

summation, and the final expression is equation (3-27).

sznfn = > D T 452D tnp(@) D Apg(@) ) fon(@dn  (3-27)

qEBp NEG, r=1 q€Gp neGq
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DI e D Apa(@) ) fanl@

qEBy NEG, r=1 qéGp neGy

MOM Disaggregation Translation Aggregation

3.5  Aggregation, Translation, and Disaggregation Matrices

The FMM term in equation (3 — 27) can be expressed in matrix notation using three
matrices called the aggregation, translation, and disaggregation matrices (ATD), all shown in
equation (3 — 28).

Disaggregation ][ Translation ] Aggregation ] H

(3 — 28)

Equation (3 — 29) shows the actual ATD matrices for numerical calculation of FMM [29].
[ e iBPipcos(ai=d1p) =i pipcos(az=¢up) i eiBpipcos(ar—dip) |
I e B P2pcos(ar=d2p)  g—iBp2pcos(az—dzp) i e IBpapcos(ar—dap) |.
le_jﬂ'Pm,pCOS(a1_¢m,p) e‘jﬁ'Pm,pCOS(az_d’m.p) e‘jB'Pm,pCOS(ar_¢m,p)J
[Ap q(aq) 0 0 0

0 Apglay) 0 0

0 0 0

0 0 0 Apglar)
'e—jﬁ'Pq,1C05(a1—¢q,1) e—fﬁ'Pq,ZCOS(Cﬁ—‘ﬁq,z) ) e‘fﬁ'pq.ncos(a1_¢q.n) 1A
e—jﬁ-pqllcos(az—¢q,1) e—jﬁ-pq,zcos(az—¢q.2) : e—jﬁ'pq,ncos(“2_¢q,n) ]2 (3 _ 29)
_e_jB'Pq,lcos(ar_¢q,1) e_jB'pq,ZCOS(ar_¢q,2) e—jﬁ'Pq,nCO:S'(“r_‘i’q,n) N

Each matrix block for the FMM matrix is calculated and substituted into the impedance
matrix. The FMM procedure is used to fill in blocks of the impedance matrix. Self-impedance
terms are denoted Mmowm-nn and lie along the main diagonal of the matrix. Off diagonal blocks
are calculated using the Fast Multipole Method. These FMM blocks calculated using matrix

equation (3 — 27) to (3 — 29) are designated Mrmm-mn. FOr symmetric bodies, the same
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impedance blocks may be calculated once and then substituted into the impedance matrix

multiple times. Figure 3-6 depicts the block matrix formulation of a MOM/FMM impedance

matrix for an infinitely long PEC cylinder divided into the same 6 groups shown in the previous

illustrations.

MOM__and FMM
p.a

Block Matrices
P.9

MOM-1,1

FMM-1,2

MFMM-1,3

MFMM-1 4

FMM-1,5

FMM-1,6

MFMM-2,1

MOM-2,2

MFMM-2,3

MFMM-2,4

MFMM-2.5

MFMM-Z,G

FMM-3,1

FMM-3,2

MOM-3,3

FMM-3.4

FMM-3,5

FMM-3,6

FMM-4,1

FMM-4,2

FMM-4,3

MOM-4,4

FMM-4,5

FMM-4,6

FMM-5,1

FMM-5,2

FMM-5,3

FMM-5,4

MOM-5,5

FMM-5,6

FMM-6,1

FMM-6,2

FMM-6,3

FMM-6,4

FMM-6,5

MOM-6,6

Figure 3-6: Fast Multipole Method matrix structure.

Method of Moments.

The main diagonal is calculated using the

TM wave analysis was performed on infinitely long elliptical cylinder using FMM and

MOM. Figure 3-7 shows the FMM grouping of elements in an ellipse with a major axis of 24, and

a minor axis of A for specific groups. The ATD matrices for Groups 1 and 3 depicted in Figures

(3-7) are shown in the matrix equation (3-30) below when G, = G; form € {9,10,11,12} in G5,

Gq = Gy, andn € {1,2,3,4} in G;.

tos(a;) to3(ay)  93(az)
t103(ay) t103(ay) £103(ar)
t113(a;) t113(ay)  t11,3(as)
t12,3(a;) t123(ay)  t12,3(as)

to,3(ay) A3,1(a1)
110,3(ay) 0
t11,3(ay) 0
t12,3(ay) 0
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A3 1(ay)
0
0

0
0

A3z 1(a3)

0

0
0
0

Az 1(ay)



f1,1(a1) f1,2(a1) f1,3(a1) f1,4(a1)
f1,1(a2) f1,2(a2) f1,3(az) f1.4(az)
(3 — 30)
fiie) [z [i3@)  fiaas)
fiiey [z fis@) fiaw

Translation Pog Vectors

Group 1 Source to Groups 2-5 Observation Aggregation Vector G1, Translation Vectors G1-G5
Disaggregation Vectors G5
8 8
6 G2 6
4 p=2 4+ G2
o—0—0 5 p—o—0—0—6—g
G3| pz3-d---- === F%wqz1 |G1 G3 " W G1
#7 ’ ' ’
g B G ] P 5
0 > At 0 P
- .
.
o, > 4 ’ ¥ & s O, 4, ¥
= Ga4| pael, , P26 |G6 2 G4 . 7 o GB
4 p=5 4| G5
6 G5 6
8 8
. 8 6 4 2 0 2 4 6 8
8 6 4 2 0 2 4 6 8

Figure 3-7: Infinitely long elliptical cylinder with major axis a = 24, and minor axis b = 1A1. a)
Translation vectors for a 24 element ellipse with groups of four. b) Aggregation, translation, and

disaggregation (ATD) vectors from source group G1 to observation group G5.

3.6 FMM vs. MOM Results

As can be seen from Figure (3-8), the MOM and FMM analyses agree perfectly. In the
FMM analysis, the main diagonal elements were calculated using the MOM. Off diagonal elements
were calculated using the FMM technique outlined in this chapter. Equations (3 — 27) to (3 —
29) were employed and assembled as a DAT matrix. Delta basis functions were used for point
matching the source to observation points.

The FMM formulation provided the motivation for the spectral projection model. The
addition theorem was utilized extensively in modal analysis by Wilton, Harrington and Balanis
[34-36]. Like the FMM formulation the Spectral Projection Model rewrites the addition theorem

in a form that takes advantage of its ability to translate vectors from source points to observation
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points. In SPM, the addition theorem is used to match the boundary conditions by writing
spectral signatures as projections of sources onto the spectral signature of the observation points.
Different forms of the addition theorem are used to decompose vectors into vector sums to solve

a large variety of EM scattering problems.

Elliptical Cylindera=2\,b =1\ Circular Cylinder radius = 1
Surface Current N =32 Seg iz Surface Current N =32 Seg

MoM

MOM |
- = FMM

- = FMM

Figure 3-8: a) MOM vs. FMM analysis of TM wave excitation on an infinitely long elliptical
cylinder with major axis a = 24, and minor axis b = 11. b) MOM vs. FMM analysis of TM wave

excitation on an infinitely long circular cylinder with radius = 14.
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Chapter 4: Spatial Frequency Technique

4.1  Method of Moments vs. Spatial Frequency Technique

The Spatial Frequency Technique was developed in 1971 by N.N. Bojarski as a method
of solving large integral equations iteratively [10,25,26]. The technique was intended to increase
the convergence rate and size of the domain over other techniques and previous problem
formulations. For N data points on an object, the SFT made the following in memory and speed
over the MOM. See Table 4-1.

Table 4-1: Comparison between MOM and SFT of Memory and Computer Operations needed
for Processing.

Computer Resource SFT MOM
Memory Locations N N 2
Multiplication Addition Operations N log2N N3

The Method of Moments normally formulates its impedance matrix in the form of a
Toeplitz matrix. Some spectral methods have been developed to invert Toeplitz matrices using
the FFT. Circulant matrices are special types of Toeplitz matrices [42,43]. See Figure 4-1a and
Figure 4-1b for examples. In a Toeplitz matrix each diagonal is from left to right and is a
constant. In a circulant matrix, each row has the same elements but rotated by one element each
row down.

The SFT technique differs from the Method of Moments in that it requires the Green’s
function be expressed in circulant matrix form, G, so that its matrix representation can be
calculated using the FFT and its eigenvalues [40,44]. The eigenvalues are in a diagonal matrix
form D,

Ge = F ' DepqiF (4-1)

This technique was investigated in this research along with other attempts at improving
the convergence rate of integral equation problems.
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a) b)

Figure 4-1: a) Example of Toeplitz matrix. b) Example of circulant matrix.

4.2 Continuous Fourier Transforms
For the case of an aperiodic function the continuous spatial Fourier transform in one and

two dimensions is given below in equations (4 — 2) and (4 — 3), respectively.

Gr(k) = fooc(x) e Tk dx (4-2)

Gr(ky ky) = f f G(x,y) e TkxXe=IkyY dxdy (4 —3)

If the continuous function is periodic with a spatial period of A, one may calculate the
Fourier series representation of the function. The Fourier series coefficients ¢, are related to the
Fourier transform, and the frequency spacing of the coefficients are A4k = 2z/J1.. These Fourier
series coefficients can be calculated directly by sampling the Fourier transform in spatial
frequency. The continuous domain and discrete spatial frequency domain are linked by the fact
that the coefficients of the Fourier series of a continuous periodic object are equal to the
coefficients of the discrete Fourier transform [45,46].

The spatial frequency technique requires treating a continuous object in space as a
function and then taking the discrete Fourier transform of the function. Figure 4-2 is an
illustration of this process. In this illustration a continuous pulse f(x) is transformed from the
spatial domain to the spatial frequency domain by the discrete time Fourier transform (DTFT),
(a) and (b). Discretization of a continuous function f(x) into the sequence f(n) is accomplished by
multiplying the function f(x) by a delta pulse train in space, i.e. sampling it with a delta pulse
train (c) and (d). The Fourier transform of a delta pulse train in space is another delta pulse train

in the spatial frequency domain (e). Convolution of the spatial frequency delta pulse train with
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the spatial Fourier transform of the function f(x) generates a periodic representation of the spatial
Fourier transform (f). This is the discrete time Fourier transform (DTFT) of the pulse. This
modulated waveform resembles a repeated spatial Fourier transform passed through an ideal

lowpass filter with passbands from —m/AAto w/AA.

Continuous Object 4 Hommallzed Spatial Fourler Traneform Fiig

5 q L5 L s3] Bom 2l

a) b)
Maodulsting Pulss Train - Spatial Doman Continueue Object 7x) and Diecretized Objed fn)
el ’ Mm5
4 o
I -
s M. =30
A5
A
c) d)
Maoduisting Pulss Train - Spatisl Fraquancy Doman Nomallzad DTFT Re™v)
- . M\/\M
s iy, NI 2 PLEY
10X K 00 = 5 5
€) f)

Figure 4-2: a) Continuous pulse function. b) Continuous pulse function normalized spatial
Fourier transform. c¢) Pulse train in the spatial domain. d) Product of the pulse train and the
continuous pulse function. €) Corresponding pulse train in the spatial frequency domain. f)

Normalized discrete time Fourier transform.

4.3 Discrete Sequences and Fourier Transforms
Note in Figure (4-2) the spatial sampling rate is 44, 4k is the spacing in the spatial
frequency domain of the modulating pulse train, and w is the spatial frequency normalized to a
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period of 2z. The Fourier transform and discrete Fourier transform functions of a continuous
pulse are shown on the diagram as well.

The Fourier transform equation of a one-dimensional sequence is shown in equation (4 —
3) below.

o)

X(ef@r) = Z x[n]eJ@kn 4-3)

n=-—oo

Its inverse is given in equation (4 — 4).
s

x[n] = f X(e/@r)el®rdw,, (4—4)
-1

For a one-dimensional continuous time-sampled signal in the spatial domain, the spatial
frequency normalized to 2z becomes wy,
wy, = kAL (4-95)
The letter k is the continuous time spatial frequency and AA is the spatial domain spacing of the
modulating pulse train in wavelengths.

Substituting for w; and making note that the waveform multiplied by the pulse train is
now discrete, the expression for the DTFT of a pulse train is given in equation (4 — 6).

e -5 3 r(1G-59) a-9

n=—oo
The discrete Fourier series and discrete Fourier transform (DFT) are the most effective
ways of dealing with discrete waveforms. The DFT is a sampled version of the DTFT. The
spatial frequency technique employs the DFT specifically to analyze continuous objects. The
DFT transformation can be applied to discretized objects the same way the Fourier transform is
applied to continuous waveforms. In the spatial frequency domain, these discretized objects can
be thought of as frequency sampled discrete waveforms in space.
Shown in Figure 4-3 is an example of a discretized object, a periodic discretized object, five
spatial frequency period of its DTFT, and five spatial frequency periods of its discrete Fourier
transform (DFT).
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a) b)

Prodicdic Discretied Obgect Kin) Marmalized DFT

c) d)
Figure 4-3: a) Discretized pulse function. b) Normalized discrete time Fourier transform of pulse

function. c) Periodic discretized pulse function. d) Normalized discrete Fourier transform.

As mentioned above, the discrete Fourier transform (DFT) is a version of the continuous
Fourier transform for sequences and sampled waveforms g(n). These waveforms must meet the
Nyquist criteria to accurately represent the waveform being represented. The DFT for one and

two dimensions can be calculated using equations (4 — 7) and (4 — 8) below, respectively.

N-1
1 .
Gorr(le) =% ) glw)e™ken/ (4-7)
n=0
N-1M-1 ] )
1 Jkxn Jkym
Gorr (ke ky) =M g(n,m) (e N )<e M > (4—-8)
n=0 m=0
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4.4  Continuous Fourier Transforms and the Spatial Frequency Technique

The Spatial Frequency Technique can be applied to electromagnetic problems in two
different ways. One way is that it may be used to transform a partial differential equation in
spatial coordinates to the spatial frequency domain, i.e. complex exponential representation. For
example, it can be used to solve the Helmholtz equation (4 — 9). The integral solution to
equation (4 — 9) is given in equation (4 — 10). The wavenumber symbol for this section is k.
V2A(r) + k§A(r) = = (r) (4-9)

A(r) = %jﬂ](r’) G(r —r)dV’ (4 — 10)
|4

Firstly, one takes the spatial Fourier transform of both sides of equation (4 — 10). Next,
one takes the Fourier transform of the convolution expression between the current J(r") and the
Green’s function G (r — r"). Through the DFT, convolution in the spatial domain is performed as
multiplication in the spatial frequency k domain. See equation (4 — 12).

—k?A(k) + k§A(k) = —pJ (k) (4-11)

AW = 506 () (4—12)

Then one substitutes the spatial Fourier transform of A(r) into equation (4 — 11) to
solve for J(k). The resulting spatial frequency current distribution is finally transformed back
into the spatial domain, and the far-field pattern is calculated from the spatial current
distribution.

Another method begins with the electric field differential equation (2 — 2). Once again,

the Fourier transform of each side of the equation is taken, and one arrives at equation (4 — 13).
E(k) = - (k2 + kG0 () (4-13)
0

Then (4 — 13) is solved for J(k). The result is again transformed back into the spatial domain,

and the far-field pattern can once again be calculated from the spatial current distribution.

4.5 Discrete Fourier Transforms and the Spatial Frequency Technique
When employing the Spatial Frequency Technique, objects are first discretized and so

considered as periodic in spatial frequency. The DFT requires the object be periodic in space
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because it is discrete in frequency. An example problem solved using the SFT is the periodic

finite length strip shown below in Figure 4-4.

Y-Axis

Periodic Finite Length Strip SFT

| - Periodic Spacing - |
1 - |

Conductor : \ Complementary Spacé

L i I i 1 1

0 01 02 03
X-Axis

Figure 4-4: Periodic representation of an infinitely long strip in spatial domain.

The periodic structure domain is both conductor and free space. The domain is divided

into a conductor subspace and a complementary subspace. The complementary subspace is a

sequence of zeros equal in length or greater to the sequence specifying the object. This is

necessary to satisfy the Nyquist criterion. It can be lengthened by padding the sequence of data

with additional zeros. By zero padding, although the amount of information on the object is not

increased, it enables one to use the FFT algorithm to calculate the DFT because the FFT

algorithm uses data length equal to 2". Also, zero padding the DFT allows interpolation between

the points of the sequence, but the additional zeros unfortunately alter the phase of the result. So,

resulting curves generally look smoother, but at a cost.

For objects whose surface does not lie on grid points, such as the ellipse shown in Figure

4-5, the Fourier domain convolution property must be used. The discrete Fourier transform of the

ellipse is first calculated, then the FFT is used to transform the Green’s function matrix to the

frequency domain. Then two Fourier transforms can be multiplied in the frequency domain and

convolution in the spatial domain is avoided. Next inversion of the matrix product follows by

transformation into the spatial frequency domain to calculate the current distribution.
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Figure 4-5: Elliptical object in the spatial domain.

4.6  Scattering with TM* Waves and the Spatial Frequency Technique Theory
Shown in Figure 4-5 are illustrations of several different infinitely long conducting
objects in X,Y,Z coordinates along with the orientation of TM? and TE? polarized waves. The

plane of incidence is also indicated on the diagram.

TE and TM Polarization
2D Infinite Structures

Planeof ..
Incidence-

0

7 Axis ) o T Z-Axis

Figure 4-6: a) Polarization of TM? and TE* waves. b) Infinitely long conducting structures:
rectangular box, parallel plates, and circular cylinder.

As mentioned earlier, for TM* wave incidence on infinitely long cylindrically symmetric

conducting bodies, the appropriate Green’s function is the zeroth order Hankel function of the
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second kind Héz)(x). For the structures analyzed in Figure 4-6b, the electric field is polarized in
the Z-direction. See also Figure 4-6a.
To calculate the current distribution on the objects in Figure 4-5b, the Spatial Frequency

Technique begins with equations in the spatial domain. Starting with the magnetic vector potential,

—jkoR
A,(p), and the spherical Hankel function th) (R) = %, one utilizes the symmetry to evaluate

the integrand over its infinite limits in the Z-direction of polarization. As shown in Chapter 2 for
the MOM, application of the SFT begins with equation (4 — 14).

1:0) = % [| 10 Ha ol — p ) (4-14)

G(p,p) = Ho® (kolp = p) (4~ 15)
The Fourier transform of the zeroth order Hankel function of the second kind for two-

dimensional problems is shown below in equation (4 — 16).
Gr(Ky) = f HP (koy/x? + y7) e To¥dx (4 — 16)
Equation (4 — 16) can be simplified into equation (4 — 17),

Gr(Ky) =2 fooH(EZ) (kov/X% +¥7) cos(K,x)dx (4—17)

0

and integrated to find the Fourier transforms given in equations (4 — 18) and (4 — 19).

—jlyl [kE-KZ

Gr(K,) = ————— ko > K (4—-18)
ze—jlyl /K;?—kﬁ
Gr(K,) = ko < K, (4-19)

VK2 — k2

4.7  Scattering with TM?* Waves and the Spatial Frequency Technique Results
In this investigation, although formulas (4 — 18) and (4 — 19) were available, instead of
using the Fourier transform of the Hankel function of the second kind, H'? (ko\/x2 + y2), the
Fourier transform for infinitely long conducting bodies was calculated by first generating a
matrix containing the integral of the Green’s function over the conductor and complementary
subspaces. The complementary space is required to ensure that the Nyquist criterion is met for
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analyzing periodic structures. Then using the FFT algorithm, the discrete Fourier transform of
the entire problem space is calculated.

The conductor region and the complementary space region are both subspaces of a vector
space that defines the whole problem. The complementary space region, which is a zero-padded
region, is orthogonal to the conductor subspace. See Figure 4-7 for examples of the

complementary spaces of a two-dimensional and a one-dimensional object.

Conductive Box (Infinite Length) Conductive Strip (Finite Length)

125 25
1425} 225
1 2L = ;
0875 P + | €—— Complementary Subspace.
075 15+ .
, 0625 Y 125 4
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I os Fow =
0375 075 -
025 05 .
0125 025 .
ot 0 ekl
v et e R SR SR e SR S 025}
025 i i L i i L i i i i I i 05 I i L i i I i 1 i i L i
1025 0125 0 0125 025 0375 05 0625 075 0875 1 1425 125 05 025 0 025 05 075 1 125 15 175 2 225 25
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Figure 4-7: Conductor (shaded) and complementary space for a) infinite length rectangular

cylinder and b) finite length strip.

Calculated results of the current density distribution for TM? polarization are shown
below for the following infinitely long cylindrical objects: parallel strips, rectangular cylinder,

and circular cylinder [47]. See Figures 4-8, 4-9, and 4-10.
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a) b)
Figure 4-8: 3D Current density along infinite parallel plates using a) MOM and b) SFT [47].

The SFT and MOM techniques produced the identical results for two infinite parallel

strips and an infinite rectangular cylinder placed on evenly separated spatial gridlines produced.

Infinite Square Cylinder SFT NSeg=64 N=128

EETEEELN

Infinite Square Cylinder MOM NSeg =64 15
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=
@

X-Axis (M) Y-Axis (L) X-Axis (1) Y-Axis (1)
a) b)
Figure 4-9: 3D Current density along infinite rectangular cylinder a) MOM and b) SFT [47].

For points on an infinitely long cylinder that did not lie on grid points, the FFT could not
be utilized. Instead, the discrete Fourier transform was used to perform frequency domain

calculations. In this other approach for using the Spatial Frequency Technique, the DFT was
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applied directly to points of the calculated Green’s function that lay on the perimeter of the
cylinder. Points on the circular conductor were separated by the same arc length, similar to the
way points on the rectangular grid were evenly spaced for the other geometries. This approach
was necessary for an infinitely long conducting cylinder since no off-grid techniques for the SFT
have been developed as yet. Preconditioning techniques have been developed for electrostatic
problems, but not time harmonic problems as yet [48]. Figure 4-8 shows plots of the current
distribution calculated using the MOM technique and the SFT. Both the conjugate gradient
method and direct matrix inversion were used to solve for the current distribution. All three

calculations produced identical results.

Infinite Circular Cylinder SFT NSeg=32 N=128 a=0.5x
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Figure 4-10: a) 3D Current density along infinitely long circular cylinder d = .5 A using SFT

method 3D view. b) Linear plot of current density along the circumference of the cylinder [47].

When calculating the DFT in two-dimensions, careful attention must be paid in keeping
track of each column of angular spatial frequency variables k. »and k,,, to ensure their agreement
with matrix calculations throughout the solution. Sub-matrices were generated within the DFT

operator for angular spatial frequencies and (x,y) coordinates shown below in Figure 4-11.
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Figure 4-11: Two-dimensional discrete Fourier transform matrix representation.

4.8  Fast Algorithms for the Spatial Frequency Technique

The aim of the research on the SFT was to develop fast algorithms implementing iterative
techniques to calculate current distributions using the Spatial Frequency Technique. Illustrated in
Figure 4-12 is an infinite length strip shown with its axes and complementary space region. In a
conference paper, a fast algorithm for calculating the current distribution on a 2D infinitely long
conducting strip was shown to have significant speed improvement over former methods [49,50].
Figure 4-13 shows plots comparing the rate of convergence of the SFT using the conjugate
gradient algorithm [51] versus the new fast iterative method known as the Fast-SFT algorithm.
See the Appendix G on the conjugate gradient method for more information.
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Figure 4-12: Two-dimensional infinite length strip with incident TM? electromagnetic wave.

Fast SFT - Convergence Error

C FastSFT, w=42A
107" #* Conjugate Gradient, w=42
<] oo
=R
W g oo o™
o
@ o ’S's.*w
T 10? ap Fhig 1
E ’”’m
S G
= it o mw
g @ *y
o
S 4gs 3 #ﬂe*
= o
z pre) Mo
1g =] j'EJM.
o ¥
107
0 10 20 30 40 50 50

Number of Iterations

a)

Average Normalized Error

108

Fast SFT - Convergence Error

< FastSFT, w=4X
#* Conjugate Gradient, w=4x

0,005 om 0.5 0.02 0.025

Time, sec.

0.0z

b)

Figure 4-13: a) Average normalized error versus number of iterations when calculating the

current distribution of an infinitely conducting strip with the SFT method using the fast

convergence algorithm and conjugate gradient approach. b) Convergence time [49,50].

The governing equation for the infinite length strip using the SFT is written below. Note
the change in notation, F, ) = Fiand F(x) = F>.

f(x) = F'HpFye(x) + F,HDFZFZILFGDFj(x)
fn+1 = fo + F,HDFZFZILFGDan

Gp = HS? (koR)
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Hp = Gyt (4 —23)

The iterative routine in the paper [50] is shown below.

Start

Jo = F'HpFe(x) (4 —24)
Repeat until 4] < tolerance

Jn1 =Jo + Fy'[Hp x (Fy X F,")LgGp X Fy'Jiy (4 — 25)
Af = |Jnsr = Jul (4 —26)
End

The Fast-SFT algorithm takes the same form as a basic iterative method for solving a

matrix equation (4 — 27).

AR =b (4—27)
Given an initial vector xo one can generate a sequence with variable x, that can converges to the
solution.

Alh =% (4 —28)

The value of x.; Is fast and efficient to compute. The convergence criteria depend on the
operator norm|| R||, of the iterative equation below,
Xms1 = RXy + € (4 —-29)

that is defined below in terms of the vector space norms || || [52],
(4 —30)

Besides another aim of this method was to investigate further the relationship between the
convergence criteria and the spectral radius of R, defined as p(R) below,
p(R) = max|A| (4 -31)
which is the absolute value of the maximum value of the eigenvalues of R.

Although the Fast-SFT worked well for the infinite strip problem, it did not work well for
2D and 3D problems. The geometric series implemented in the algorithm shown in equation
(4 — 29) did not converge for the 2D and 3D geometries. The application of the Fast-SFT
algorithm to 2D and 3D structures resulted in eigenvalues that were greater than one, which
caused the recursive algorithm to fail to converge. Without the introduction of some form of
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preconditioning or lowpass filtering by the introduction of basis functions, this method proved to

be limited to 1D structures.

4.9  Numerical Electromagnetic Analysis in this Dissertation

This dissertation presents a new method of analyzing electromagnetic structures and their
scattering properties called the Spectral Projection Model. The first chapter presents an overview
of different electromagnetic methods and their differences. Some techniques are best for finding
the electromagnetic fields confined within an object or region. Others are suitable for calculating
electromagnetic fields induced by currents on the surface of objects. Still others are developed to
calculate the electromagnetic fields absorbed and reflected off boundaries. The finite element
method is used often for calculating the electromagnetic fields within closed regions containing
different media, for example magnetic and dielectric materials. The finite difference time domain
method is a technique used to calculate the propagation of fields within an object or region as it
varies in time and space. The method of moments is a boundary element method used to
calculate the scattering and radiative properties of different electromagnetic structures. For large
objects, the fast multipole method speeds up the process of populating the impedance matrix of
BEM problems by grouping sources and observation points together.

The Spectral Projection Model and its successor Direct Spectral Projection Model
originated from using the method of moments and point matching to compute the Green’s
function for source and observation points. By avoiding numerical integration of different shaped
basis functions, the simplicity of calculating the impedance matrix is greatly improved. The fast
multipole method is similar to the method of moments in that it is a boundary element method,
and uses MOM techniques for calculating the Green’s function of near-field sources and
observation points. But for points farther away, it employs the addition theorem to aggregate
source points to a central points, then translate them to another central point, and fnally
disaggregate their effects to observation points, thereby speed up populating the impedance
matrix.

The Spectral Projection Model is a spectral method that applies a linear transformation to
source and observation points and in order to represent them as Bessel and Hankel function

spectral signatures. It uses the addition theorem to calculate the Green’s function by projecting
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the source spectral signatures onto the observation point spectral signatures. It also uses the
translation property to circumvent the restrictions that the addition theorem places on the source
and observation point vectors in polar coordinates.

Research on spectral methods began with the Spatial Frequency Technique which uses
complex exponentials and discrete Fourier transform methods to solve integral equation
electromagnetic field problems. This technique used the DFT in the spatial domain, and the basis
functions were complex exponentials in the X-direction and the Y-direction. The FFT was
widely used to make gains in the speed of calculating results. By using iterative methods to
invert matrices, some results were seen to converge faster for certain classes of problems. These
improvements were not applicable to a more a general class of problems, which was the aim of
the research.

Investigation into this spectral technique was then modified by representing source and
observation points in polar coordinates with the family of Bessel functions through the addition
theorem. This new spectral approach is named the Spectral Projection Model, and it enables one
to analyze different object shapes without the restriction of uniform grid spacing in two
dimensions imposed by FFT algorithms. Far-field patterns can be calculated directly from the J-
spectral signature of the current distribution. SPM also applies to a broader spectrum of problems
than traditional modal methods by using rotating vectors and the convolution property of the
addition theorem to generate incident fields for a variety of object geometries.

SPM spawned a simpler technique called the DSPM which calculates the current
distribution on a wide variety of PEC objects. This has the advantage of still using the projection
of the modal spectral signatures in polar coordinates and avoiding integration of basis functions.
DSPM also offers promise as a synthesis technique because by using a set of rotating vectors,
any incident waveform and object geometry can be specified.
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Chapter 5: Spectral Projection Model

5.1  Genesis of the Spectral Projection Model

The Spectral Projection Model (SPM) is a new technique for solving problems in
electromagnetic scattering and radiation. The analysis is different from the Method of Moments
(MOM), spatial frequency technique (SFT), and hybrid techniques like the Fast Multipole
Method (FMM), but incorporates many of the same principles. The previous three methods set
up integral equations with appropriate Green’s functions and then discretize the surface of the
scattering object. Once discretized, inner products are taken with basis functions to set up an
impedance matrix. The impedance matrix is then solved to calculate the current distribution on
the surface of the object. Once the surface current is calculated, other useful parameters such as
the far-field radiation pattern, directivity of the radiation pattern, radar cross-section, etc. are
determined from the current distribution.

In two-dimensions, the Spectral Projection Model is based on the addition theorem for
Bessel and Hankel functions and can be applied to electromagnetic scattering and radiation from
infinitely long, two-dimensional PEC objects. An addition theorem is the expansion of a Bessel or
Hankel function into an infinite sum of Bessel and Hankel functions. Equations (5 — 1) and (5 —
2) are two forms of Graf’s addition theorem. By changing the direction of the vector p’ and its
rotation around the origin, the two forms are interchangeable. Various other forms of the addition
theorem are explained in detail in Appendix A: SPM and Graf’s Equation.

Considering the vectors p and p’, Figure 5-1 and Figure 5-2 illustrate the subtraction

|p — p'| and the addition |p + p'| and these factors, respectively. For the particular Green’s

function, Héz)(ﬂlp + p'|), the sum can be approximated by truncating the addition theorem to

2K+1 terms, as shown in equation (5 — 1).
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Graf's Addition Theorem
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Figure 5-1: Graf’s addition theorem for |p — p'|.

Graf's Addition Theorem
R=|p+ p|
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Figure 5-2: Graf’s addition theorem for |p + p’|.

Equation (5—1) is a form of Graf’s addition theorem may be viewed as a correlation

operation due to the m+k order on the Hankel function sum.

o)

HPBlo—pDe™” = 3" B2 BloDL Bl D/l ms kT s g (5-1)

k=—0o0
Equation (5 — 2) is another form of Graf’s addition theorem. This version may be viewed as a

convolution operation because of the m-k order on the Hankel function sum.

co

HY @lp+pDe™" = > B, (BlpDk(BlpDe/m 09T o> ot (5-2)

k=—o0
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For computational purposes, the particular Green’s function, Héz) (Blp — p'|) can be

approximated by truncating it to 2K+1 terms.
K

HOBlo—p'D = ) J(Blo'DHD (BlpDei< @9 p>p  (5-3)
k=—K

This summation in equation (5 — 3) can be written in vector form as a projection or inner product.

The Spectral Projection Model uses the truncated form of the addition theorem to represent
the Green’s function as the projection of the H or J-spectral signatures of the source points (p’, ¢")
onto the H or J-spectral signatures of the observation points (p, ¢). lllustrated in Figure 5-3a is a
depiction of the J-spectral signature of source point (p’, ¢") projected onto the H-spectral signature
of observation point (p, ¢) using the addition theorem in equation (5 — 3). Note that the inner
product (or projection) is not the dot product shown in Figure 5-3b. The inner product using SPM
is the projection of one spectral signature vector onto another, and it obeys the law of cosines. This
is explained in further detail in Appendix A: SPM and Graf’s Equation.
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Figure 5-3: a) Projection p of vector v onto b using dot product. b) Projection of J,(B|p’|) onto

H® (Blp)) to yield H? (Blp — p']). The value of |R| = |p — p'| is calculated using the law of

cosines, i.e. R = \/pz +p'? = 2pp’cos(y).

The method is called the Spectral Projection Model because the incident fields and the

scattered fields are related to the incident and induced currents as projections of spectral signatures.
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For scattering analysis in two-dimensions, the spectral signatures may be viewed as the spectral
description of the fields and currents in a cylindrical coordinate system. The Spectral Projection
Model enables one to calculate the far-field pattern without calculating the impedance matrix or
electric current distribution on the conductor. Instead, the model requires calculation of the spectral
signatures of the surface currents. The far-field pattern can be calculated from the spectral
signature of the surface currents directly by a linear transformation.

These spectral signatures in SPM are analogous to spatial frequency representations using
Fourier analysis when solving problems in the spatial frequency domain. However, in Fourier
analysis, once the Fourier transform of current is calculated, the spatial domain equivalent must
be found using the inverse Fourier transform in order to calculate the far-field pattern.

The Spectral Projection Model approach in electromagnetics may be used to solve for
electromagnetic fields scattered from cylindrical objects of various axial ratios. In this

dissertation, the first objects to be considered are infinitely long perfectly conducting cylinders

with axial ratios% ~ 1. See Figure 5-4 for an illustration of several cylinders with different axial

ratios.
TMZ and TE* Waves

on Infinitely Long Elliptical Cylinders
with Different Axial Ratios
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Figure 5-4: Elliptical cylinders with various axial ratios. Axial ratio % = 1 isacircular cylinder.

For the purpose of clarity, scattering from objects with axial ratios% =1, i.e. circular

cylinders, which are excited by electric line sources and TM? electromagnetic waves are
analyzed first. Then scattering from circular cylinders by magnetic line sources and TE* waves
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are discussed next. An illustration of a TM# wave with the electric field in the axial Z-direction,
the transverse magnetic field in the Y-direction, and propagation in the X-direction, is shown in
Figure 5-5a. An illustration of a TE#? wave with the magnetic field in the axial Z-direction, the
transverse electric field in the Y-direction, and propagation in the X-direction, is shown in Figure
5-5b.

Transverse Magnetic Wave Transverse Electric Wave
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Figure 5-5: a) Transverse magnetic wave TM? propagating in the X-direction impingent on an
infinitely long PEC cylinder. b) Transverse electric wave TE? propagating in the X-direction

impingent on an infinitely long PEC cylinder.

After the introductory remarks, a short exposition on electric/magnetic line currents is
given, followed by application of the SPM to electromagnetic boundary conditions. The chapter
continues with a discussion of the relationship between the far-field spectral signature of a plane

wave and discrete Fourier transform. SPM results for axial ratios % = 1 are validated by

comparing them with modal analysis of circular cylinders illuminated by a plane wave. Next,
limitations of SPM and methods for dealing with these limitations are discussed, including a
method for translating the origin of the problem to analyze structures with large axial ratios.

Lastly, results for elliptical cylinders with large axial ratios excited by TM? and TE? incident

waves are presented.
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5.2  Spectral Projection Model Applied to Line Currents
In 2D analysis, the Spectral Projection Model postulates that all incident electromagnetic

fields are generated by infinitely long line current sources. Shown below in Figure 5-6 are three

independent line sources and their radiated fields.

Multiple Line Sources
Radiating Cylindrically Symmetric Waves

Z-Axis
a:J:.I{JONh

Figure 5-6: Three infinitely long line sources and their radiated fields with an elliptical

cylindrical cylinder centered at the origin.

These impressed current line sources produce incident electric and magnetic fields that
scatter off PEC objects either in the near-field or far-field depending on the problem statement.
The waves are cylindrically symmetric and so can be described by Bessel and Hankel functions.
Bessel and Hankel functions are frequently used to represent electromagnetic waves propagating
through space they satisfy Maxwell’s equations in 2D problems. As p — oo, Hankel functions

are used to represent planar wavefronts.
The impressed currents do not change in the presence or absence of the scattering object,

and are independent of the total electromagnetic field. The top-view of an infinite line source and

its radiated fields is shown in Figure 5-6.
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Far and Near Electromagnetic Fields
From Line Source at Origin
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Figure 5-7: Far-field and near-field electromagnetic waves produced by an infinitely long line
source. Near-fields radiate as cylindrical waves, far-fields are approximated as plane waves. The
far-field plane wave approximation is indicated by the dotted line in the boxed region subtended

by the angle 6.

Electric and magnetic line current sources generate electric and magnetic fields that are
aligned with the axis of the line source. In order to calculate the electric and magnetic fields
scattered by the PEC cylinders, boundary conditions must be applied to the fields at the surface
of the PEC cylinders in the presence of these line sources. This process lends itself to application
of the addition theorem for solving scattering problems. It will be shown that the addition
theorem in equation (5 — 3) is useful for representing the incident and induced electromagnetic
fields.

5.2.1 Representation of Electric and Magnetic Fields using the Spectral Projection Model
For a single electric current line source of current magnitude I, aligned in the Z-direction,

the radiated electric field is given in equation (5 — 4) from [36].

ZIe
EBlp—pl) =~

The spatial parameters of equation (5 — 4) are defined below:

H (Blp — p')e/P#=4" G-

!

p' - vector from the reference origin to the line source at coordinates (p’, ¢")

p -  vector from the reference origin to an observation point at coordinates (p, ¢)
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The zeroth order Hankel function of the second kind Héz) (Blpl) is a cylindrically symmetric
function. In the near-field, the radiated electric field E, can be approximated as a cylindrical

wave front. See Figure 5-8. The E,,, E, and H, components of the electric and magnetic field

equal zero for an electric current line source.

Electric Line Source (Ie)

03—
02— /

0.1 H W ORI =7 ==

0.1
4
02—
0
03 —— -1

05 1 Y-Axis

Z-Axis
|

- 0.5

D)(-Axis
Figure 5-8: Illustration of an electric current line source with electric field, E,Z, magnetic field,

H¢<7>, and direction of propagation B = p positioned at the origin.

In the far-field, the radiated electric field E, is a plane wave, as illustrated before in Figure 5-6.
Using the principle of duality with substitutions given in equation (5 — 5),
£— U EL - HL I, - I, (5-5)
from equation (5 — 4) one can find the magnetic field produced by an equivalent magnetic
current line source. The magnetic near-field radiated by a magnetic current line source aligned in
the Z-direction is given in equation (5 — 6).

’ '82] l j —¢r
He (Blp = p'l) = ==L He” (Blp — /e (04 (5-6)

The components of the electric and magnetic field of the magnetic current line source that equal

zero are H,, Hy, and E,. An illustration of a magnetic current line source is shown in Figure 5-8.
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Magnetic Line Source (Im)

Z-Axis

T
Y-Axis

0.5 1

X-Axis
Figure 5-9: Illustration of a magnetic current line source with magnetic field, H,2, magnetic

field, E¢<7>, and direction of propagation g = p.

The addition theorem applied to Héz) (Blp — p’|) may be viewed as a projection of one
infinitely long vector onto another infinitely long vector. For computational purposes when
implementing SPM, the two vectors are truncated at some finite number of 2K+1 modes. This
limits the number of modes in the summation expansion, and is adjusted dependent on the size of

the object being analyzed. Two forms of a truncated addition theorem are given in equations

(5—7)and (5 — 8).

K
HOBlo— oD~ ) HP @Dl Do) p>p  (5-7)
k=-K
K
HPBlp=pD) ~ ) HPBlp Dj(Blphe @) p'>p  (5-8)
k=-K

The addition theorem for a single source location (p’, ¢") and single observation location (p, ¢)

with p’ > p is an inner product. See equation (5 —9).
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P Blp—p'D) =~
HE Bl el '
U_k@Blple . Ji (Blphe’™® .. J (BlpDe’*?]| HP (Blp’ e’ (5-9)
L1 Blp' e 4|
This inner product is the projection of two vectors, the H-spectral signature (or Hankel

spectral signature) of a source point, (p’, ¢"),

. , i T
esn = [HR BN .. HP@Blp'e™ .. HPBlp'De ] (5-10)
onto the J-spectral signature (or Bessel spectral signature) of an observation point, (p, ¢).
eom = [_kBlpDe™™® .. J(Blpl) . Jc(BlpDe/ ] (5-11)
The Green’s function Héz) (Blp — p') may now be written as equation (5 — 12).
Hi? (Blp = p'I) = elmeen p>p (5-12)

In general, when p’ > p the electric or magnetic field radiated by a line source can be
calculated by projecting the H-spectral signature of the line source at (p’, ¢") onto the J-spectral

signature of the observation point (p, ¢).

5.2.2 Fields due to Electric Line Sources

This section discusses the derivation of the electromagnetic fields produced by infinitely
long electric line sources. Electric line sources radiate cylindrical waves in the near-field and
TM? plane waves in the far-field. For two-dimensional TM-wave scattering, the electric field
may be described by a Green’s function, the zeroth order Hankel function of the second kind,
Héz) (Blp — p'|). The magnitude variable |p — p’|of Héz) (Blp — p'|) is the distance between the
line current source p’ and the observation point p where the fields are calculated. The distance
R = |p — p’| is also defined by the law of cosines discussed later in this chapter.

The radiated electric near-field of an electric current line source was given in equation

(5 — 4), and for a specific line source location (pj, ¢o") and observation point (o, ),

, B?1
E,(Blpm — po'l) = —E;

and using the addition theorem, the electric field can be expressed as the projection below:

Héz)(ﬁlpm — po' e B@=bon (5—-13)
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] ﬁzle T !
Ez(ﬁlpm —Po |) = _%eomesn p > p (5 - 14‘)

According to equation (5 — 14), the electric field at the m™ observation point is the
projection of the electric line current source at n = 0, i.e. (pg, ') onto the m™" observation
point. The H-spectral signature of the source point ey, and J-spectral signature of the

observation point e,,, are defined by the equations below:

esm = [HOBlpo DX .. HOBlpoDel® .. HP(Blpy'De ¥]  (5-15)
and
eom = [J_x(BlpmDeKem . L (BlpmDe*®m .. Jx(Blpml)e’XPm]" (5 — 16)

The radial and azimuthal components of the radiated magnetic fields, H, and Hy, due to

the electric line source can be calculated using Faraday’s law.

VXE= _9B (5—17)
at

Using cylindrical coordinates and rearranging, one can find the p and ¢ components of the

outward magnetic field.

~1
H=ja)_‘uVXEZ (5—18)
i _10E, . 0E, c 19
~jou\P o o9 ap ( )
H, = 1 9k 5—20
P joup ¢ ( )

The Hankel function Hé”’(ﬁlpl) is cylindrically symmetric and does not have azimuthal

dependence, so Z;—';f = 0. Thus, the p component of the magnetic field must be zero.

H,=0 (5-21)
To calculate the ¢ component of the magnetic field, Hg, one uses equation (5 — 22).
Hy = 1 0k (5-22)
¢ jou dp
JBI , :
Hy == Hy” (Blp — p'I) (5-23)
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where %Héz)'(ﬁlp — p'|) is the derivative of the zeroth order Hankel function of the second
kind with respect to the variable p.
The azimuthal field, Hg, may be written as a projection of the H-spectral signature of the

source vector eg, onto the J-spectral signature of the observation vector e, .

en = [H2Blpg D ®0 .. HP Blpy e/ .. HS(Blpg e %] (5-24)
¢'om = U_'(BlpmDe¥m . J/(BlpmDe™®m .. Jk'(BlpmDe®®m]" (5 —25)

Similar to the electric field, the azimuthal magnetic field at the m™ observation point will
be the contribution of the magnetic line current source at (p, ¢,") onto the m™ observation point.
JBle
Hd)(pmr Po) = Teeor'I;Lesn (5—26)
5.2.3 Hankel Prime Function
One can rewrite the derivative in the expression for Hy using the relation in equation

(5=27),

H?' Blp - p') = —H,” Blp — p'I) (5 —27)
The expression in (5 — 28) is of importance in solving MFIE problems using SPM.
Hg?'(B1p = p'I) cos(y) = —=H{* (Blp — p']) cos(¥) (5 - 28)

The angle y is defined in Figure 5-10. The function Héz)'(ﬁlp — p'|) will be referred to as the

zeroth order Hankel Prime function of the second kind. The addition theorem for derivative

H®'(Blp — p'l) can be written as

B Blo = pDeos() = ) B BIODI BloDe @) pi>p (5=29
k=—o0

and

B Blo = pDeos(N = ) B BlaDIBlo D@~ p>p (5-30)
k=—c0

The Hankel Prime function Héz)'(ﬁlp — p'|) is of major importance to the Spectral
Projection Model, especially in the application of the MFIE. This Green’s function relates the Z-

directed electric currents to transverse magnetic fields in TM? waves. It also relates the Z-
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directed magnetic currents to transverse electric fields in TE* waves. The Spectral Projection

Model is founded on the addition theorem representations of the Green’s functions
HPBlp —p') and H?'(Blp — p'l) cos(y). In this chapter, the addition theorem relation for
Hl(z)(ﬁlp — p'|) cos(y) is used in developing the SPM expression for TE* waves from the

MFIE. Figure 5-10 illustrates the important vectors and angle y for the SPM Green’s function.

Thevector R=p —p'.

TE Wave Incident upon Ellipse
MFIE

WAl

R
H-Ass

Figure 5-10: Diagram of vectors on an ellipse for MFIE equation.

5.2.4 Fields due to Magnetic Line Sources
The Z-component of the magnetic field of a magnetic line source aligned with the Z-axis
is described by equation (5 — 31),

l :821 4 j —¢o’
Ho(Blom = po'D) = =7 He” (Blom — po' e P#=#07 (5-31)

It can be expressed as the projection ey, onto e,,, below for a line source location at n = 0, i.e.

(po,¢0), and observation point (py, d)-
! ﬁzlm T ’
H,(Blpm — po’l) = ~ Ty omCen p'>p (5-32)

The vectors eg, and e,,, are defined the same as in equations (5 — 15) and (5 — 16).
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The H, component may be used to solve for the radial and azimuthal components of the

radiated electric field. Using Ampere’s law one can find the p and ¢ components of the outward

electric field.
1
E=—VXH, (5-33)
Jwe
1 ( 10H, _0H, 5 - 34
= joe\Pp ¢ ¢ ap )
1 0H, (5 35
P jwep ¢ )
E,=0 My o 5—36
and the azimuthal component of the radiated electric field is given in equation (5 — 37).
Ey = 1 oA, 5—137)
¢~ jwe dp (
JBI ' '
Ep == Hy" (Blp— oD (5-38)

The expression for Ey includes the derivative of the zeroth order Hankel function of the second
kind as did the magnetic field Hy for the electric line source. Using the same relation for
H®'(Blp — p'l), and the addition theorem for derivatives of H(8]p — p'|), the azimuthal
electric field for a magnetic line source is given by the projection of e, onto e’,,,, in equation
(5 -39),

JBLm ,
Tmeorq;lesn (5 - 39)

with the vector e, being the spectral signature of the magnetic line current source at (po"q.’)o')

Ey =

and e’,,,,, the spectral signature of the m™" observation point. The two spectral signatures were

defined previously in equations (5 — 25) and (5 — 26).
5.3  Boundary Conditions Described as Spectral Projections

In this section boundary conditions for SPM will be discussed. A summary of electric

field and magnetic field boundary conditions at the surface of a PEC are given in Table 5-1
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below. Both transverse magnetic TM* and transverse electric TE? plane waves travelling toward

an infinitely long cylinder are considered. See Figure 5-11 for illustrations of both.

TM? and TE? Incidence
pv
z
TE e Iy
g
=
pY

—

S

X-Axis

Z-Axis

Figure 5-11: TM? and TE? incident waves on an infinitely long PEC cylinder of elliptical shape.

The direction of propagation is the same as Py, the Poynting vector. The rectangular box shown

around the cross section is the plane of incidence.

Table 5-1: Boundary Conditions for PEC’s.

Boundary Field Equations Field Conditions
Tangential Electric Eign =0 nxE=0 Continuous Electric
Field E;qn, Field
Tangential Magnetic | Hyqn = Js nxXH=]Js Discontinuity in
Field Hyyp, Magnetic Field

equals Surface

Current Density /¢
Normal Electric Flux | D, prm = ps n-D = pg Discontinuity in
Density D,,orm Electric Flux Density

equals Surface

Charge Density pg
Normal Magnetic Bhorm = 0 n-B=0 Continuous Magnetic
Flux Density By,o;m Flux Density
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5.3.1 Electric Field Integral Equation for TM? Incidence on PEC Cylinders

For a TM? wave, the angle of incidence ¢; and the scattering angle ¢, are both defined
with respect to the positive horizontal axis, as shown in Figure 5-12. TM plane waves are E-
polarized because the electric field is perpendicular to the plane of incidence and the magnetic
field is transverse or parallel to the plane of incidence. The electric field is aligned with the Z-

axis for TM? waves.

TM? Plane Wave
Incident Electromagnetic Fields

Plane of Incidence

3
Y-Axis

Figure 5-12: Illustration of incident TM? wave.

Consider an infinitely long PEC cylinder with ¢ — oo in free space being excited by a
TM?Z plane wave. An incident Z-polarized electric field E* = 2E,, is parallel to the cylinder axis.
The scattered electric field is designated E®. From the above discussion, the electric field inside
the perfect electric conductor (medium 2) is E PEC, and this electric field E PE¢ = 0 inside the
conductor and at the boundary.

The boundary condition for the electric field at the surface of a PEC conductor requires
that the total tangential electric field must equal zero, i.e. E¢,,, = 0. The vector relation is given
in equation (5 — 40).

Ax(E'+E)=0 (5 —40)
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For TM? waves, the incident electric field EL2 is polarized only in the Z-direction. The
boundary condition for the E, component at every surface point (p, ¢) is given in equation (5 —
41). Refer back to Chapter 2 on the Method of Moments for details.

EL+ES=0 (5—41)
The scattered electric field, which was derived in Chapter 2, is related to induced currents and

given in equation (5 — 42).

BP) =~ § L.Up DA Blp — p'Dde (5-42)
CI

Substituting into equation (5 — 42) for the boundary conditions, one arrives at the electric field

integral equation, EFIE, for TM? waves.

Eo) = § 10 DHS (Bl - p e 2-15)
Cr

The boundary conditions for the EFIE equation are given in matrix equation (5 — 43). The

discretized form of the boundary condition can be written as

[EQ,}}] __ [EQ,'{d] (5 — 43)

5.3.2 Magnetic Field Integral Equation for TE* Incidence on PEC Cylinders

TE? Plane Wave
Incident Electromagnetic Fields

Figure 5-13: lllustration of incident TE* wave.
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An incident TE? polarized plane wave is illustrated in Figure 5-13. It is oriented with H-
polarization because the magnetic field is perpendicular to the plane of incidence and the electric
field is transverse or parallel to the plane of incidence.

In this section, the magnetic field integral equation (MFIE) is derived by subjecting a
PEC object to a TE* wave. When the PEC object is subjected to an external stimulus like a TE?
wave, currents are induced on the surface of the conductor. Let vectors H* and H* be incident
and scattered magnetic field intensities, respectively. At the surface of the cylinder, the induced
current density, J, is equal to the discontinuity in the tangential component of the magnetic
field. The surface current is illustrated in Figure 5-14.

Js =nx (H' + H) (5 —44)

Surface Current
J_=nxH
s tan

Z-Axis

B

e
; 05
X-Axis

Figure 5-14: Illustration of Surface Current J3 = n X Hyyy,.

For a Z-directed transverse electric TE? wave, the incident magnetic field, H: = H}2, is
parallel to the cylinder axis for TE? plane waves, as is the scattered magnetic field HS = H 2.

For an observation point (p,,,, ¢,,), and current element dc’ along contour C, one can
integrate and find the scattered magnetic field along the contour of the cylinder. See Chapter 2

on the Method of Moments for the derivation of the MFIE.

H; (pm) = ’Zﬁ f Je(Up'Deos(H;” (Blpwm — p'Ddc (5 - 45)

C-AC
Then, substituting into equation (5 — 45), the MFIE for TE* waves at observation point p,, can
now be written as equation (2 — 20),
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Je(

1) =20 I [ o DeosHPD Bl - pee 2 - 20)
C-AC
where the incident field at observation point (p,,, ¢.n) is H:(pp).
The term /. is the current along the contour C. For the self-term p,,, = p,,’, the integral
goes to zero because y = 90°. The current at the self -term is calculated using the Kronecker
delta function, and because of this the surface current term can be expressed as in equation (5 —

46).

5mnr
Je(pm = pn') = > (5 — 46)

The term, J-(p,, = p,,’) = 0.5, is the coefficient of the basis function for the surface current at
the self-term, and J equals the integral when m # n and y # 90°. This integral term thus
includes the coefficients J¢ ,, , for all m # n, and the self-term for the case p,, = p,’. Thus,
upon discretization, integral terms can be represented by a single matrix when coding as long as

the Green’s function is set to 0.5 at m = n, i.e. Kronecker delta function. This matrix relation is

given in the matrix equation (5 — 48), where lHincl and [Hindl are M x 1 vectors.

lecl = - lHind +]C.(;)m = pnl)l (5-47)

5.3.3 Summary Table of EFIE and MFIE for TM? and TE* Waves

The Electric Field Integral Equation (EFIE) and Magnetic Field Integral Equation
(MFIE) may both be used to solve TM and TE wave problems. An EFIE may be written by
enforcing the electric field boundary conditions at the surface of the conductor, and a MFIE may
be written from enforcing the magnetic field boundary conditions just inside the surface of the
conductor. The four equations are given in Table 5-2.

From Table 5-2, application of the EFIE* is the most direct way to solve TM? wave
problems, and the MFIE™ is usually the best way to solve TE* wave scattering problems through

enforcement of the boundary conditions.
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Table 5-2: EFIE and MFIE for TM? and TE? Waves.

Transverse Magnetic Waves (TM?)

EL(p) = % jg J.(pHHP (BR)dc EFIE®
C
HEP)| = 1,(p) +’Zﬁyg& f J2(p"cos(H (BR)dc’ MFIE
Cc Cc C—-AC

Transverse Electric Waves (TE?)

~EL(p) = 35 ﬁzjﬁ/c<p')[e-a'H§2>(ﬁR)]dc'+% V- Jenengrlac|t  BriE
c c

Je(om)
2

~1(p) = HiGon) = ZE 4 [ (o5 rIH® Blow - e MFIE"

C-AC

5.3.4 Spectral Projection Model Applied to the Electric Field Integral Equation
The boundary condition for EFIE using (2 — 15) is that the incident electric field, E;,,
at each point on the PEC boundary surface must equal negative the scattered or induced wave

Einq- From equation (5 — 40), for N external source points and N induced source points, this is

given in matrix equation (5 — 43), where lEincl and [Eindl are N x 1 vectors.

lEincl = — lEindl (5 - 48)
The incident or external electric field on the surface of the conductor may be illuminated by a
nearby external electric line current source or plane wave from the far-field.

As stated earlier for infinitely long conducting structures, the Green’s function for TM?

waves is Héz)(ﬁlp — p']). The Spectral Projection Model applies the addition theorem to
decompose this Green’s function into the sum of products of Bessel and Hankel functions. The
relative positions of p and p’ determine whether the addition theorem for the induced or the

addition theorem for the incident fields must be employed. Both equations are shown below.
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HOBlo=p'D = D JeBloDHE (BlpDei =) p>p  (5-49)

k=—o0

Induced Fields

HEBlo—p'D= ) JeBloDHD (Blp/Dei= p<p  (5-50)
k=—o0

Incident Fields

5.3.4.1 Scattered Electric Field and Spectral Signature of Induced Electric Currents from the
EFIE using the Spectral Projection Model
The scattered or induced electric field can be calculated by applying the boundary
conditions in this EFIE. The induced electric field at the surface of the conductor as the
projection of the J-spectral signature of the source points (p’, ¢") onto the H-spectral signature

of the observation points (p, ¢). The amplitude and phase of the induced currents at the surface
of the conductor are contained in the vector Iii.r.l.dl.
lEindl — % H,EZ)(,BIpI)ef’“’5 l I Je (Blp')e=7*¢’ l [iindl

ey s
In equation (5 — 52), the columns of l Jx (ﬁlp.'lll)e‘fkqb’ l are the J-spectral signature of

the source points,

| | I
| Ji Blp'De™/*® || =
| | I

]—K(,Blpoll)ejl(d)o Lo ]—K(:Bleo—lll)ejK¢N0‘1

(5 — 52)

x (Blpo'De TK®o" + v ]K(ﬁ|pNo_1’|)e_jK¢No-1’
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The left side of equation (5 — 52) illustrates this concept of columnar spectral signature in a

descriptive matrix with the | vertical bar symbol.

The rows of the matrix transpose [ H;EZ)(ﬁ Ipl)e/*® l are the H-spectral signature of the

observation points.

—— H Bloher :]T:
HEZ,Q(BIpoI)e‘f’“’") HI((Z)(3|Po|)€jK¢“ ]
| -
B Blows D805 o e B (Blony-a )05

The H-spectral signature subspace is organized in rows as shown with the — slash symbol.

Equation (5 — 51) may now be written with the descriptive matrices below:

. - —— — =T | r |
[%4=%P—IukaM —4|hwﬂmﬂ¢wh4
a | | L

p>p"  (5—-54)

In most numerical electromagnetic methods, the scattering problems are solved for the
induced surface current [ii.r.l.dl. In the Spectral Projection Model, it is only necessary to solve for
the spectral signature of th.e. induced surface current.

The J-spectral signature of the induced current [iis;:;ndl on the surface of the conductor is

found from equation (5 — 54) by applying the linear transformation and shown in equation (5 —
55).

i' a)[,l ’: ke i ,

iss,ind | = T . ('B|p |)e i |tind p>p (5-155)
The induced electric field is equal to the J-spectral signature of the induced surface current
[iiss,indl projected onto the H-spectral signature subspace l Hie (BlpDe®® .| of the

observation points at (p,,, m)-
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Thus equation (5 — 55) may be written as (5 — 56).
[Eindl = [ Hy (Blp))e/*® l [iiss,indl p>p  (5-56)
Equation (5 — 56) describes the scattered electric fields as a projection of the J-spectral

signature of the current onto the H-spectral signature of each observation point where the field is

to be evaluated.

5.3.4.2 Incident Electric Field and Spectral Signature of Incident Electric Currents from the EFIE
using the Spectral Projection Model
A Z-directed electric line source le generates an electric field E = E,Z in the near field,

and a TM? plane wave if placed in the far-field. See Figure 5-15a and 5-15b.

Elliptical Cylinder with Electric Line Current

Top View
8-
Electric Line Current
7 R=p'-p
6
P=p, 6 p'=p,
‘ ~
1 =y 5k P = Pops
8 Dy !
%) ar
ELR X%
< X 4
N <= <
2 S N >
2
4
Incidence 1F
BN
A Line Current ok _
2N |
K D\\ 1
AN o
= 6 8 1o 2 L
Y-Axis 27, 0 2 ¢ 3 2 1 0 1 2 3 4 5 6 7
XoAxis X-Axis
a) b)

Figure 5-15: a) Illustration of electric line current and elliptical cylinder. b) Top view of electric

line source near a PEC elliptical cylinder and a TM? plane wave impingent on the cylinder.

Shown in Figure 5-15 are two views of an elliptical cylinder excited by two external
sources, a line source and a TM? plane wave. In Figure 5-15a the surface of the cylinder radius is
a function of the azimuthal angle ¢, p = f(¢), and the dotted square around the cross section of
the cylinder is the plane of incidence. In Figure 5-15b is a top view of the cylinder showing

vectors p, p’, and , R. The distance from the origin to the line source p’ = p, is illustrated, as
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well as its angle of incidence, ¢,. The angle of incidence of the E; plane wave is also shown as
bo-

The H-spectral signature of the line source at (pg, ¢o") shown above is given in equation
(5-57),

e = [HQBlpo D% .. HPBlpg Do .. HP(BlpyDe %] (5-57)

and the J-spectral signature of an observation point (pm_qu) on the surface of the cylinder is

given in equation (5 — 58).

eom = U_k(BlpmDe . [ (BlpmDe™ ™ .. Jx(Blpml)e/ ém]" (5 - 58)
For a single electric current line source at (pg, ¢o’) and single observation point at

(pm,qu), the incident electric field was shown to be the projection given in equation (5 — 14).

7 18218 T /
Ez(ﬁlpm — Po D = _%eomesn p>p (5 —14)

This vector product is the made up of two vectors, the H-spectral signature (or Hankel spectral
signature) of the source point projected onto the J-spectral signature (or Bessel spectral
signature) of the observation point.

The Spectral Projection Model applies the addition theorem to represent the incident
electric field at the surface of the conductor as the projection of the H-spectral signature of all
the source points (p’, ¢") onto the J-spectral signature of all the observation points (p, ¢). For

external sources, this relationship can be expressed in matrix form as equation (5 — 59).
lezy.hmeW¢.¢[mfuwm®aﬂw %kal p<p  (5—59)
The vector liinc,lel is the incident line electric current source vector. The matrix

l HP (Blp ek l in equation (5 — 60) is the matrix representation of the H-spectral

signatures of the N source points and 2K + 1 modes. The size of the H-spectral signature matrix
is (2K + 1) X Ng.

| | |

| HOBlp' e ke || =

| I I
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HE (Blpy'De %" : - HK(Blowg el
Hy (Blp'e 7 " : (5—-160)
HI({Z)(,3|P0’|)e_jK¢°' : : : HI((Z)(,B|pNS_1’|)e_jK¢Ns—1’
Each column vector is the H-spectral signature of a single source at (p,,’, ¢,,"), as indicated by
the | symbol in the matrix.

From equation (5 — 59), one can calculate the H-spectral signature of the incident

current on the surface of the conductor using the relation as shown in equation (5 — 61).

iss,inc,]el = l H}EZ)(ﬁlp,l)e_jk(p, l [iinc,lel p < p' (5 - 61)
given
Eincl = l ]k(ﬁlpl)e]k¢ l [iss,inc,lel p < ,0’ (5 - 62)

. e wq T
The matrix l J(Blp)e/*® l in equation (5 — 62) is the matrix representation of

the corresponding J-spectral signature subspace for M, observation points. This is given in

equation (5 — 63). The size of the J-spectral signature matrix is (2K + 1) X M.

—— - = — —T

—— Ji(Blphes ——] _
J-k(BlpoDe™/ %o .. o Je(Blpoleik o
o JuBlphe - . 5—63)
L BlomDe e 1(Blog e o

Each row vector is the J-spectral signature of a single observation point (p,,,, ¢.,). SO, one can
rewrite equation (5 — 59) in terms of column and row spectral signatures in (5 — 64),

—— [l | I |
l lncl l_ - ]k(ﬁlpl)ejkq5 - | Héz)(ﬁlpll)e_jkd)l | iinc,le
o | |
p<p  (5—-64)

or in terms of the spectral signature of incident currents,
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[ mcl [— - ]k(ﬁlpl)ef"¢ - = iss,i7|16,le p<p" (5-65)
- |
Equation (5 — 65) describes the incident electric fields as the projection of the H-
spectral signatures of the sources onto the J-spectral signatures of the observation points where
the fields are to be evaluated.
For the external electric fields, p < p’, the observation points are on the surface of the
cylinder, and the sources p,,' for n € {0,1, ..., N — 1} are outside the target cylinder. Returning to

a single electric current line source, the external electric field E;,,. for this line source may also
be written as the projection of the H-spectral signature of the incident current [iss,;r.l.c,lel from
line source location at (p,’, ¢,") onto the J-spectral signature of all the observatior'llpoints.

o] [ gt T [t b<r G560

Now one can write equation (5 — 67) from (5 — 64) for the incident current spectral signature.

iss,inC.Iel = [ H;EZ)(.3|P’|)9_jk¢' l [iinc,lel p<p (5-67)
For a single electric line source, the vector liinc,le] contains all zeros except for the row
corresponding to angle ¢,’. This non-zero row of the vector liinc,lel will correspond to the

column of the l H, (Blp')e/*¢’ l matrix with the source (p,’, ¢o") coordinates.

For the example, below in equation (5 — 68), the source coordinates are in the first row
of liinc,lel.
! 1 ! 1 j 11l 21 i
HEBlpo' Neikbo’ oo o s Hleg(mplvs_l |)e/Xons-1 _i e
weE

[lss,inc,lel = . . . . . 0

H Blpo' e /K4 oo oo HP (Blpwg—a'[)e s ]|

(5—-168)
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Simplifying the matrix product (5 — 68), the vector Iiss,inc,zel for a line source is given in

equation (5 — 69).

L HE (Bl py’)elkPo’ |

o 2] : .
[lss,inc,lel = —iw; Héz)(ﬁ|p0'|)e_]k¢°’ (5-169)

HE (B1py')e ™K' |
This vector liss,inc,lel represents the H-spectral signature of a single line source located at

(po’, Do)

For an external electric line source at infinity p," — oo, the resulting electric field is a
plane wave. The large argument approximation for a Hankel function is given in equation
(5—-70).

HP (B190' Dl pyrmen = € (P 72) (5 —70)

In order to represent a plane wave incident from an angle ¢’ in terms of its spectral

signature, one substitutes the large argument approximation in equation (5 — 70) for
H,EZ)(ﬁIpo’I)e‘f""’O’ . The H-spectral signature of the incident electric field may be calculated

using equation (5 — 71).

o K(¢o—3) . . . giK(dng-1-3)]r 1
. . . . . 0
i;csjjinc,le =Ej : Do : (5-71)
L ejK(d)O’_%) oo ejK(d)NS‘l’_%) . 0
or
-e_jK(qbo’_g)-
il ere| = Eo| e/¥(90-3) (5—72)
| K (P0—7) |
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This represents the H-spectral signature of a TM? electric field plane wave source in the

direction ¢,.

5.3.5 Spectral Projection Model Applied to the Magnetic Field Integral Equation
For the Spectral Projection Model, the general form of the boundary condition for the
MFIE is that the incident magnetic field, H;,, at each point on the PEC boundary surface must

equal negative the scattered or induced magnetic field H;,4. This is given in the matrix equation

(5 —47), where [Hincl and IHindl are M x 1 vectors.

Hine | = = |Hing +Jc(om = pn’)] (5—-47)
As was the case for MOM analysis, for SPM the electric current term /. is absorbed into
the [ H;,q | Vector.

For infinitely long conducting structures, the Green’s function for incident TE* waves is

Héz)(ﬁlp — p'|). Once again, the Spectral Projection Model applies the addition theorem to

decompose this Green’s function into the sum of products of Bessel and Hankel functions. For

induced fields, the derivative of the Green’s function is the proper function Héz)'(ﬁ |p — p'|) due
to the physics. Recall equation (5 — 30). The relative positions of p and p’ determine whether

the addition theorem for induced or incident fields must be employed.

[0e]

B Blo—pDcosw'= ) HE BloDIBlp D @) p>p  (5-73)

k=—o0

Induced Fields

HOBlo =D = ) JBloDH Blp/Del 09 p<p (=74

k=—o0

Incident Fields
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5.3.5.1 Induced Magnetic Field and Spectral Signature of Induced Electric Currents from the
MFIE using the Spectral Projection Model
As stated earlier for the MFIE and TE? waves, the induced surface currents may be
calculated using the Green’s function Hl(z) Blp-p') = Héz)'(ﬁlp — p']). The Spectral
Projection Model applies the addition theorem and decomposes this Green’s function into the
sum of products of Bessel and Hankel functions also. The addition theorem is used to represent
the induced magnetic fields on the surface of the conductor as the projection of the J-spectral

signature of the source points (p’, ¢") onto the H-spectral signature of the observation points

(0, P).

To calculate the scattered (induced) magnetic field IHindl due to induced currents, one

refers back to the MFIE equation. This may now be rewritten as equation (5 — 75).
lHind l:
%([ cos(y) l l H,EZ)’(,BIpl)efk‘l’ D I T (Blp'De 7ke" ., iindl

p>p  (5-75)

In equation (5 — 75) the VeCtOI’liindl is the induced electric current vector. It represents

the amplitudes and phases of the induced current on the surface of the conductor due to the
incident magnetic field.

From equation (5 — 75), the spectral signature of the induced electric current vector
[iiss,indl is derived as the projection of Iiindl onto the J-spectral signature of the source points,

and written as (5 — 76).

liiss,indl = ]I'B l ]kﬁlpll)e_jkd), l liindl p > ,0’ (5 - 76)
Each column of l JkBlp' e Tk’ l is the J-spectral signature of an electric current source
point.
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The projection of the J-spectral signature of the induced current sources at source points
(p', ®") onto the H-prime-spectral signature of the observation points (p, ¢) can be expressed in

matrix form as equation (5 — 77).
[Hindl = <[ cos(y) l [ H;EZ)’(MPD@jm D [iiss,indl p>p (5=77)
Each row of l H'(Blpl)el*® ---lis the H-prime spectral signature of an observation point

at (p, ¢).

5.3.5.2 Incident Magnetic Field and Spectral Signature of Incident Magnetic Currents from the

MFIE using the Spectral Projection Model

The incident or external magnetic field on the surface of the conductor may be generated
by a nearby external magnetic line current source or magnetic plane wave from the far-field. As
stated earlier for infinitely long line currents sources at p’ > p, the Green’s function for TE?
waves is Héz)(ﬁlp — p']). The Spectral Projection Models applies the addition theorem to
decompose this Green’s function into the sum of products of Bessel and Hankel functions. The
addition theorem is used to represent the incident magnetic fields on the surface of the conductor
as the projection of the H-spectral signature of the source points (p,’, ¢,,") onto the J-spectral
signature of the observation points (p, ¢ )-

The incident magnetic field from a magnetic line source H. from angle ¢,’ was

previously written as equation (5 — 31).

B I

(2) 14 ] m— ’
Ton Hy? (Blpm — po'])e/F(Em=¢o7) (5-31)

H,(Blpm — po'l) = —

The H-spectral signature (or Hankel spectral signature) of the source point, (p,,’, ¢,,"), and the J-
spectral signature (or Bessel spectral signature) of the observation point, (pm,q.’)m), for the

incident magnetic field are given in equations (5 — 78) and (5 — 79).

. . rin i T
esn = [HDBlp DX .. HPBlpy el .. HPBlp,/De ] (5-78)
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eom = J_kBlpmDe ™ m .. Ju(BlpmDe ®m .. Jx(BlpmDe/*Pm]" 5-79)
A single Z-directed magnetic line source In generates a magnetic field H = H,Z in the near field,

and a TE* wave if the line source is placed in the far-field. See Figure 5-16a and 5-16b.

Elliptical Cylinder with Magnetic Line Current

Top View
Magnetic Line Current 8r
s 7 R=p"-p
P=Epy, . .
‘ ~ . P
P =pg | =
2. 5 P pobs |
] Al
<% 2
N <77 < 3
? N >
s 2l
- Plane of
Incidence 1
Bl
2" AN ' Line Clurrent or ——
17N 1 m
AN |
A o
1 \‘77_777_,,_4T—————< s 8 10 5
Y-Axis 2 5 0 2 ! 3 2 4 0o 1 2 3 4 5 6 7
X-Axis X-Axis
a) b)

Figure 5-16: a) Illustration of magnetic line current and elliptical cylinder. The dotted square
around the cross section of the cylinder is the plane of incidence. The surface of the cylinder is at
radius p(¢). b) Magnetic line source near an elliptical cylinder and a TE? plane wave impingent
on an elliptical cylindrical conductor (top view). A cross-sectional view of the elliptical cylinder

with vectors p, p’, R is also illustrated. The angle of incidence is ¢,.

For external sources impingent upon a target, this relationship can be expressed in matrix

form as equation (5 — 80).
lecl _ [ J(Blphei ] [ HP Blp' e/ ] [imc,,m] p<p  (5-80)
In equation (5 — 80) the vector [iinc,lml is the incident magnetic current vector due to a

magnetic current line source. The columns of l HE (Blp' e ke’ l are the H-spectral
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signature of all the source points, and rows of the matrix transpose |- Jk(B1pDe’ ® .| are

the J-spectral signature of the observation points as shown descriptively in equation (5 — 79).

—— —— —— |l I I I
[Hincl = [_ - ]k(.BIpI)ejkd) - _l | Hk (ﬁlp’l)e‘f’“”' | iinc,lm
T I | L

p<p  (5-81
Equation (5 — 81) may also be written as the projection of the spectral signature of incident
magnetic currents onto the J-spectral signature of the observation points,

- — - — — —T |
[Hincl = l_ - ]k(,BIpI)ejk(I> - _l ’iss,inc,lm p< ,0’ (5—82)
cee —_ |

In equation (5 — 82), the incident magnetic field is described as the projection of the H-spectral

signatures of the incident fields onto the J-spectral signatures of the observation points.

The spectral signature of the incident magnetic currents [iiss,inc,lml equals the projection

of the incident magnetic current source amplitudes and phases [iinc,zml onto the H-spectral

signature of the source points.

Iiiss,;{alml _ [:: HP (Blp/ e ko :::I [im';.}ml b<p  (5—83)
The i.rIcident m:;c.]netic field |s then the pII;jectiorI .of the spectral signature of the incident
magnetic currents [iiss,i.r.l.c,lm] onto the J-spectral signature subspace l Jx (B I;I)ej w ]
of the observation poinIs..

IH;;LCI - IZZZ J(Blpher ZZZIT ImI p<p (5-84)

If the external stimulus is a single incident magnetic field from a nearby magnetic current

line source, recalling section 5.2, the radiated magnetic field, H:, from a single magnetic line I,,,
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source at polar coordinates (p,, ¢»;) projected onto an observation point (pm’qu) IS given in

equation (5 — 32).
2

, B
Hé(pm' pl) = _ﬁegmesn (5 - 32)

The external field H;,. for this magnetic line source may be written as the projection of
the H-spectral signature of the incident magnetic currents onto the J-spectral signature of all the

observation points.
lHl’ncl = l ]k(ﬁlpl)eﬂ“p l liss,inc,lml p <p1 (5—-185)
For the case of the MFIE and a line source at (p,’, ¢»,'), one may write the incident magnetic

current spectral signature as shown in equation (5 — 86).
liss,inc,lml = l H]EZ)(ﬁlplDe_jkd)l l Iiinc,lml p < p' (5 - 86)
As an example, for a single magnetic line source at (p,’, ¢,"), vector Iiinc,zml is all zeros

except for the row with the phase term ¢,’. The row of the vector Iiinc,zml must correspond to

the column of the l HP (Blp e k¢! l matrix with the source (p,’, ;") coordinates.

Equations (5 — 87) and (5 — 88) illustrate this concept.

! ] ! 14 ] _11 [ 0 )

H£213(3|p0 DeiKbo’ . HSZ;?(5|PN5—1 |)31K¢NS 1 g1

liss,inc,lml = . H H H . 4(')0‘)'[’4
HS Blpg e8! oo oo HE (Blpwg-a e PNl

(5-87)

The VeCtOI‘liss,inc,Iml is now defined for a magnetic line source in equation (5 — 88).
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[ HE(Blpy])el ®1 ]

o 2] : .
[lss,inc,lml = —iw;n H,EZ) (,B|p1|)e_1k¢1 (5—-88)

HZ (Blpyl)e /K1 |
This is the near-field H-spectral signature of a single line source located at (p,, ¢1).
For an external line source at infinity p,;" — oo, the resulting magnetic field is a plane

wave. The large argument approximation for a Hankel function is given in equation (5 — 89).

. T
H® (191Dl pyroee = e H#172) (5 — 89)

For a plane wave incident from an angle ¢, , using the large argument approximation for
H,EZ)(ﬁIpl’I)e‘f""’l’ , the spectral signature of the incident magnetic far-field is calculated

using equation (5 — 90).

: o ik(e03) L, e—fK(cpNS_lr-g)-[g]
igi’..‘”m “to| H (5 90)
Lo L steen ]l
or
(o= IK(#17-3)]
iff: = H, e}'k(diu—%) PO

ss,inc,Im

| JK(#17-3) |

This is the H-spectral signature of a plane wave from the direction ¢, .

5.3.6 General Solution to Spectral Projection Model using the EFIE and MFIE
In this section a general matrix equation for solving electromagnetic scattering problems
from surfaces using the Spectral Projection Model is given. The first set of equations is for the

EFIE. The second set of equations applies to the MFIE.
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5.3.6.1 General Solution to Spectral Projection Model using the EFIE
To solve the EFIE, begin by defining two matrices in order to represent the spectral
signatures as row vectors instead of column vectors. The matrices are written below descriptively

to show their composition as row and column vectors.

T
H? (Blpob]) —J:i %W%mﬁ i (5-92)
= == == [ 10
- fk(ﬁjp_obD ::l = : ]k(Bllme) : (5-93)
Next apply the boundary condition for the EFIE.
[é;]=_Fﬁ4 (5 — 43)

Using the matrices [ HP (B1pos) l andl--- Jk(Blponl) |, equation(5 — 43) , (5 —

56) and (5 — 62), one may write equations (5 — 94) to (5 — 96).

Emcl = l ]k(ﬁlpobl) l liSS,;;;c,Iel (5 - 94)
Elndl = l HP (Blpob)) l IiSSI,.i.ndl (5—95)
hwbwb:JFJ@4=_P:H9¢EMD:JF;4 5—96)

5.3.6.2 General Solution to Spectral Projection Model using the MFIE

To solve the MFIE, once again one begins by defining two matrices in order to represent
the spectral signatures as row vectors instead of column vectors. The matrices are written
descriptively, and note that the Hankel Prime spectral signature subspace matrix is used instead

of the Hankel spectral signature subspace matrix.
T
| | I

HPBlpos) ——=|={1 HPBlpnl) | (5 - 97)
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H®"(B1Pob]) —J=

| | "
| HP'BlpmD) | (5 —98)
| | |

T
Sttt T | N
—— JkBlpos) — —l = ll J(Blpml) I‘ (5-99)
- | | |

Next apply the boundary condition for the MFIE.

lHl’ncl = — lHl’nd +Jc(pom = pn,)l (5—-47)
Using the matrices [ H' (Blpob)) l andl--- J(Blpon)) l equation (5 — 47) and

(5 —77),and (5 — 82), one may write equation (5 — 100) to (5 —102)

Hincl = l ]k(ﬁlpobl) l [iSS,inc,Iel (5 - 100)

Hina +Je(om =pn’)l = [ H®' (B1pos]) l [::: cos(y) :::l [issl,.i;ftdl (5 —101)

]k(,@i;’obD l [iss,;c,lel = [ H,EZ)I(,BIpobI) l I COgé)’) l liss:,.i.ndl
(5—-102)

Table 5-3: Summary of Line Sources.

Line Source Scattering EFIE

Electric Line Source (5 —4) , B2 —
E,(Blp —p')) = = —2H” (Blp — p')e/F 44"

Electric field TM?

Line Source Scattering MFIE

Magnetic Line Source (5 — 6) oy Bl
H,(Blp—p'D) = Ton

Magnetic field TE?

Hg” (Blp — p'e/F#=4"

106



Table 5-4: Summary of Addition Theorem Equations.

K
HPBlo—pD ~ ) HP (Blo'D(BlpDes @)
k=-K

Projection of the H-spectral signature onto the J-spectral signature

Addition Theorem Equations Condition
. " - . , P > p,
HBlp—pDe™®" = > HEZ (BlpJn(Blp e/l mo-t']
n=-—oo
Correlation of Spectral Signatures
. " - , i p, > pP
HP (Blp = p'De™" = 3" HE (810 Din(BlpDel o]
n=-—oo
Correlation of Spectral Signatures
. iz - . , P > p’
HY Blp +pDem" = > HZ, (BloDji(Blpellm-0t-i0']
k=—o0
Convolution of Spectral Signatures
sl = . p, >p
HP Blo+pDe™" = 3" H (B D(Blplellm-d ko
k=—o0
Convolution of Spectral Signatures
(2 N (2 ' ! p>p
HOBlo =D~ ) HPBlpDI(Blp D09
k=—K
Projection of J-spectral signature onto the H-spectral signature
p'>p
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Table 5-5: Summary of Spectral Projection Model Equations.

EFIE

lEinc =1 Jx (,3|P|)ejk¢ l liss,inc,le

Incident Electric Field

e - . T . -
[Eind = |.. Hp (Blphel*® l liiss,ind

Induced Electric Field

MFIE

Hine :l Jk (.Blpl)ejk¢ l [iss,inc,lml

Incident Magnetic Field

_H;d;([: cos(y) ZZZHIZ H, '(Blplye s ::D [iis;,}fnd]

Induced Magnetic Field

Table 5-6: Spectral Signature Definitions.

EFIE
Uss,inc,le Spectral Signature of Incident Electric Line Source Current
lincle Incident Electric Current
EFIE & MFIE
Iss.ind Spectral Signature of Induced Electric Current
lind Induced Electric Current
MFIE
Iss,inc,im Spectral Signature of Incident Magnetic Line Source Current
lincim Incident Magnetic Current
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Table 5-7: Spectral Signature Definitions.

EFIE

[lss,inc,lel = —

Bl

4we

[ HA(Blp')e K¢ ]

HP (Blp'])ek®’

HP (Blp' e K¢ |

Spectral Signature of Incident Electric Line Source in Near-Field

ff

Lssiincle| = Ey

_e _jK(q)’_%)_

e’

L e

()

(o)

Spectral Signature of Incident Electric Line Source in Far-Field

MFIE

llss,inc,lml

B*In
4w

[ HD (Blp')elX®" ]

HP (Blp'])eke’

HP (Blp' e iKe"

Spectral Signature of Incident Magnetic Line Source in Near-Field

ff

Lssincim | = Hy

e

e

D)

| (%-2) |

Spectral Signature of Incident Magnetic Line Source in Far-Field

(#r-5)
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5.4  Far-field Scattering in Spectral Projection Model

In this section the large argument approximation of the Hankel function will be used to
derive the far-field H-spectral signature matrix. To calculate the far-field electric field pattern,
the J-spectral signature of the induced currents on the surface of a conducting cylinder are
projected onto the far-field H-spectral signature subspace matrix. Taking the far-field H-spectral
signature of the J-spectral signature of the induced currents will be shown to be the same as
taking the Discrete Fourier Transform (DFT) of the J-spectral signature of the induced currents

with a scaling factor.

5.4.1 Analytical Method for Calculating Far-field Patterns
A set of N isotropic antenna elements positioned at polar coordinates points (p,,, 6., ¢,),

n € {1,2,... N} is illustrated in Figure 5-17.

Isotropic Antenna Elements Arranged in an Elliptical Array

Z-Axis

Figure 5-17: Isotropic point source radiating elements arranged in an elliptical array.

Consider a point source at (p,, 65, ¢,) and an incident plane wave arriving from angles (8,, ¢,),

illustrated in Figure 5-18.
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Spherical Coordinates of Vectors

Vectors r,, and rn

0

0.5

0.5 4

Z-Axis

Z-Axis

0.5

054

Y-Axis o % s Y-Auls Xohis

Figure 5-18: Illustration of vectors. a) Vector r positioned at the origin and b) vector r,,

positioned at (p,, 6, ¢,,) in spherical coordinates.

If each element in the array is excited by a current of different amplitude and phase,
I,e/Vn, then the electric far-field radiation pattern, Eff , will be the sum of the radiation patterns

due to all the elements.

N
Err(6,¢) = Z I,,e/Vn JBTncos(on) (5—-103)
n=1

The angle ¢,, is defined by the law of cosines,

e =715 + pi — 2pn10c0s(@n) (5—104)
To simplify calculation of r;,, one may use a square root approximation for p,, < 1.
T =T~ pncos(<pn) (5—-105)
Now substituting for cos(¢,,) from Figure 5-18, one obtains equation (5 — 106).
Ty =15 — Pysin (9)C05(¢0 - ¢n) (5—-106)
Then the electric far-field can be written as (5 — 107).
N

Er(6,9) = Z I eJvn giBTo giBpnsin (8)cos(do—tn) (5 — 107)

n=1
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A circular array of line sources is shown in Figure 5-19.

Electric Line Currents on the Surface
Circular Cylinder

Z Axis

Figure 5-19: Line source antennas arranged in a circular array.

The total electric far-field for a circular array of line sources is given in equation (5 — 108).

N
Erp(0,6) = ) Ine*n Hi(Ipy = pl) e /F@o-0) (5 — 108)

n=1

This differs from Ef; for point sources by the Green’s function, and is a form of the discrete

Fourier transform.
5.4.2 Far-field Spectral Signature and the Discrete Fourier Transform

To calculate the Hankel function for the far-field case p — oo, one uses the asymptotic

approximation of the Hankel function for large arguments.

2 , m\ jkm
HP Blpl) ~= /W‘J(BP'ﬂeT pow (5-109)

Let H,EZ) (BlpDI - Symbolize the asymptotic expansion of H,EZ) (p) for p being the distance

from the line source in the far-field to the cylinder.

@ Jkm Jkm
H=BlpD]pse~ f(p)e 2 = f(ple 2 (5—-110)
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The symbol for the k" order asymptotic expansion of the Hankel function of the second kind is

given in equation (5 — 111).
@) JL1
HZBlpDlpsw =€ 2 p—oo (5-111)
with the amplitude term £ (p) omitted.
For an external electric line source receiver at infinity p," = o and angle of incidence

¢o, the large argument approximation for a Hankel function is given in equation (5 — 112).

HP 19D e = & 4(%073) (5 —112)
To write the far-field H-spectral signature matrix, |- H”(B1P' Dl prseo -], for incident

angles ¢ € {¢o, 1, ... n,—1}, ONe begins by substituting the large argument approximation into
the matrix for | H” (8] py' e ~7k®n' .

—e_jK(d)O’_%) e_jK(qus—l'_%)_

(5 —113)

HP (B10'D] prseo

L ejK(qu,_g) cee cee cee ejK(quS_l,_%) _
This far-field H-spectral signature matrix may be used in two applications. One can

project the J-spectral signature of the induced currents onto the far-field H-spectral signature to
calculate the radiated electric far-field due to induced currents, E/” . Let E!J | be defined for

multiple infinitely long induced line sources at equally spaced angles on the surface A¢ =
¢Pn+1 — dn, and for N angles, and n = {0,1,2, ... N — 1},
21

fn =Tk (5 - 114)

An illustration of N = 16 points separated by equal angular spacing A¢ in the far-field is shown

in Figure 5-20.
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Far Field Observation Points
for Hy Spectral Signature

Figure 5-20: Observation points in the far-field uniformly spaced at equal angles for N = 16

receiving points.

One can calculate the H-spectral signature of an electric far-field for multiple sources using
equation (5 — 115).

_e‘f’((%’—%) e‘fK(‘i’Ns—l"%)_[i]
isfsj,ci;nc,le = [In‘ (5 —115)
0 Lk L e [l
Each column in the matrix H]EZ)(Bl;lll)lpl—wo l is the far-field H-spectral signature of a

line source at infinity at a different angle ¢,,’. For a single source I, at angle ¢,’, the current

magnitude and phase vector | I, | for incident line current n = 0 takes the form of equation

(5—-116).
Iy
: 0
L=1: (5—-116)
0
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In this case, one may write the far-field H-spectral signature of iginc,,e as (5 —117), which is

the spectral signature of an incident plane wave incident from angle ¢,. It is equal to a single
column of the | ... H,EZ) Blp'Dlprsc -] matrix weighted by the line source magnitude and

phase coefficient I,.

_e _jK(d)o'_%)_

il =1Ip| ik(#0-3) (5—117)

ssjincle| = Iy

| eﬂ<(¢o"%> |

The discrete Fourier transform for the sequence x[n] is given in equation (5 — 118).

N
X[k]l= ) x[n]wyk® (5-118)
n=0
and Wy are the roots of unity for n € {0,1, ..., N — 1} defined as Wy = ej(zﬁn).
For any spatial frequency ¢,," = 2mn/N, notice that the angular spacing of the roots of unity for
N points in Figure 5-21 are positioned the same as those shown in Figure 5-20, the far-field H-

spectral signature.

16 DFT Roots of Unity in Complex Coordinates

Figure 5-21: DFT roots of unity Wy*" for N = 16 points.
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For the case in which the sinusoidal modes are k = -K/2, -K/2+1, ...K/2, the shifted discrete

Fourier transform operator, [ F l is shown in equation (5 — 119).

o JK$o e @ JKN-1/
CE L ke 5119
oiKbor ejK¢:>N_1,

This new shifted Fourier operator l F ] is the matrix product of the Fourier operator

l F l and a matrix l S l that shifts the rows downward by K /2.

l F l = l S l l F l (5 —120)
The columns of l F l take the same form as the [ H]EZ)(ﬁlp,l)lpl—)oo l matrix with

a phase shift of the angle ¢,, = ¢, + g The far-field H-spectral signature matrix is equal to

.. 0 0 Sl .0 0 o
matrix product|0 Ds 0 l F l where the diagonal matrix [0 Ds 0| applies the e’*z
0 0 . 0 0 .
phase shift to each column.
.0 0 0 0
0 Ds 0|=|g &3 o (5-121)
0 0 0 0

Thus, the matrix equality between the far-field H-spectral signature matrix and the DFT Fourier

operator exists as given in equation (5 — 122) and (5 — 123).

@ B N 0

HOBIpDlpow | =l0 Dy of|~ S - l F l 5—122)
J o o -JL. .. dL.

HPB1oDlpow | =]0 Dg of|+ F - (5 — 123)
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5.5  Waves Incident on a Circular Cylinder

Illustrated in Figure 5-22a are an incident and scattered TM?wave. The incident wave
angle is ¢; and the scattered wave angle is ¢. Both are measured with respect to the positive X-
axis. The unit vector B; is the phase constant (or wave constant) normal to the plane of the
incident TM*wave. The unit vector B, is the phase constant (or wave constant) normal to the
plane of the scattered TM?wave. The incident and scattered electric fields parallel to the axis of
the circular cylinder are EL and E3, respectively. lllustrated in Figure 5-22b are an incident and
scattered TE* wave. The incident wave angle is designated ¢; and the scattered wave angle is
designated ¢, as was the case for the TM?* wave. Similarly, the unit vectors f; and B are the
phase constant (or wave constant) normal to the planes of the incident and scattered TE* waves.
The incident and scattered magnetic fields parallel to the axis of the circular cylinder are H and

H3, respectively.

Transverse Electromagnetic Wave

Transverse Electromagnetic Wave
Incident and Scattered Wave Angles

Incident and Scattered Wave Angles

Z-Axis 0.5 1 Z-Axis

Figure 5-22: Illustration of incident and scattered. a) TM* waves upon circular cylinder. b) TE*

waves upon circular cylinder. Direction of incident waves is ¢;.
5.5.1 Spectral Projection Model using the EFIE for TM? Waves incident upon a Circular

Cylinder
For the discussion on circular cylinders, begin with the following matrix equation.
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]k(ﬁlpobl) l [iSS,inc,Iel = l H]EZ)(.BlpobD l [iss,indl (5 - 96)
It is possible to solve this equation for a circular cylinder and reach a closed form
solution for p,, = a, or p,, = |ale/®ob. Here |a] is the radius of the cylinder and ¢,,, is the
phase of each observation point.

Begin with the induced currents and examine again the H-spectral signature column

space matrix for observation points p,, - {po, p1, --- Pm—1} @S Written as equation (5 — 124).

| HPBloml) |
| | |

HEBlpole <%0 - = HEBlow-1he )
HP Blomhe/om ; !
| HP (8| pol)ek®o .- o HP Blpm_1))elxom-1 |
(5—124)
| I I
Each column of || HIEZ)('B|pm|) || is the H-spectral signature of an observation point.

For a circular cylinder p,, = a for m = {0, ..., M — 1}, and equation (5 — 124) may be

diagonalized into equation (5 — 125).

| I I
| HP@Blal) || =
| I I
(HZ(Blal) - 0 0 e iKbo . i o iKMo
0 0 0
0 HP (Blal) 0
0 0 0 E : : : i
0 . 0 HI((Z)(,BWD- elKbo ... . .. pJKPM-1

(5 —125)
The exponential matrix on the right of equation (5 — 125) is a column shifted version of the

Fourier operator and will be designated as l F l for observation points.
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e JKbo . i . o JKGM
lﬁﬁﬁ F Zﬁﬁlz L (5 — 126)
E A 7
The diagonal matrix in equation (5 — 125) may denoted as l DH l and is given in

equation (5 — 127).

HZ@Bla) -~ 0 0
.0 0 0 0 0
0 Dy 0]= 0 . HP(Blal) 0 (5 —127)
0o 0 - 0 0 0
o -~ 0 - HP@laD]

From (5 — 126) and (5 — 127), matrix equation (5 — 125) can take the form of a new equation
(5 —128).
| | I

.0 0] v e
| | | O O . . .
Because the rows of I— — H,EZ) Blpop) — —l are the spectral signatures of the observation

points, to write the induced field using this form one must take the conjugate transpose of both

sides of (5 — 129), This operation will be designated as [ ]¥ to distinguish it from a transpose.
[ H® Blpos]) l _ [ HP (Blal) l _ [ F l [ D, l G — 129)
One may now rewrite the induced electric field vector lEindl by substituting into

equation (5 — 95),

lElndl = [— — HPBlpop)) - —l liSS.,.i.ndl (5 — 95)

and for a circular cylinder

o[- 7 ]

0 Dy O IlSS,indl (5—-126)
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The matrices on the left-hand side of equation (5 — 96) represent the incident electric
field. The rows of matrix l Jk(Blponl) l in equation (5 — 96) represents the J-spectral

signature subspace of the observation points,

[E] _ [—— Je(Bloos)) ——]

I
iSS,inc,Ie (5 - 94)
I

The column vector [iSS,inc,IeliS the H-spectral signature of the incident external source. For

circular cylinders, analogous to equation (5 — 125), one may write equation (5 — 127).

v H e e eqH 0 0
[ J(B1pas) ] _ [ J(Blal) ] _ [ F ] 0 D 0 (5 - 127)
where
e e wH W 00
l Jk(Blpon)) l = [ F l 0 D, O (5—-128)
. 0 0
Matrix |0 D, 0] is defined as a diagonal matrix (5 — 129).
0 O
J-k(Blal) 0 0
.0 0 0 0 0
0 D, 0|= 0 J.(Bla)) 0 (5-129)
0o 0 - 0 0 0
0 0 = Jx(Blal)
Now one can solve equation (5 — 96) for liSS,indl.
[iSS,indl = l H]EZ)(ﬂlpobl) l I Igz)(ﬁlpobl) l liss,inc,lel (5 - 130)

Next substituting for l HE (B1pos) l and l 12 Blpon)) l one obtains equation

(5 —131).

R N N e N e |



(5 —131)

Since the shifted Fourier matrix [ F l IS unitary,

7)) 5-1

then one can rewrite (5 — 131) as (5 — 133).

e “ 0 01 r~ 0 O .
llss,indl =|0 Dy O] 0 D O llss,inc,lel (5—-133)
o 0 O 0 0 "

For plane wave incidence, the spectral signature of the source can be written using the

far-field approximation to the Hankel function, with ¢;’ equal to the angle of the incident wave.

liff l:{e—jwir—nm  plk@u-mn)  @IK@u-m/2)]T (5 — 134)

lssjincle

Affm

One can observe from the complex exponentials, thelliss inclel vector for plane waves is a

Fourier series.
The expression for the k™ element of the spectral signature of the induced current igg inq x

is written as (5 — 135).

Iss,inak = |... (5—-135)

e~y (Blal) ekt ]
HP (Blal)

jkm

Note thate™ 2z = j~k,

For the induced currents, the J-spectral signature of the induced source currents liSS,indl
is related to the actual surface currents, liindl, as equation (5 — 136),
[tss,md] _ [ J(Blpos)) ] [iind] 5 - 136)
and using the linear transformation in equation (5 — 127), one may write
[iss,md] _ [ Je(Blal)) ] liind] 5 — 137)
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S ~ 0 0
llss,indlz 0 D] 0

0 O

lﬁﬁﬁ F ﬁﬁﬁl [z{,;'dl (5 - 138)

The expression for the actual surface currents, iindl, becomes

= R G IR U I 7
[lindl = [ F l 0 D, O llss,ind (5 —139)

The SPM expression for the surface current on a circular cylinder excited by an electric

field plane wave may be written from equation (5 — 139) as equation (5 — 140).

koik(¢- ¢l’)

This normalized result agrees with the equation given by Balanis using modal analysis in
reference book [36].

jkeik(@n=0i)
S ) = o z HE (Blal) (5 —141)

For a near-field line current source at (p,’, ¢,'), the spectral signature of this external

source is given in equation (5 — 142).

o . , , . T
[‘ss»’nc]=[HE§3<ﬁ|po'|>eﬂ<¢°'  HPBlpo'De k0 HZ (Blpg'De O]

(5 —142)
The H-spectral signature of the surface current on the circular cylinder is given by equation (5 —
143),

[iss,mdl - [ H® (Blpos) ] lEind] (5 — 143)
and thus [iSS,indl for a near field source excitation is given in equation (5 — 144).
liSS,indl =1..

Once again solving for the actual surface currents, Ifindl,

HE Blpop e (Blal) e 74 ] 5 144)

HP (Blal)
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s we e wmH[W 0 077 e
[lindl = [ F l 0 D, 0 llSS,ind] (5 — 145)

The normalized surface current on the circular cylinder excited by a near-field line

current source is written as (5 — 146).

K (2) / ik(p—o!
. H.” (Blpy']) e/*(@= o)
i(p, @) = Z —— (5 — 146)
K=—K H,” (Blal)
This solution agrees with the equation given by Balanis in reference book [36].
had (2 N ,jk(Pp—r
N (5 - 147)

& HOBD)
5.5.2 Spectral Projection Model using the MFIE for TE? Waves
To apply the boundary conditions for the Spectral Projection Model to the MFIE, one

may begin with the same linear matrix equation as (5 — 102).

P.hwmwn.whwm4=b %&wmw)~HOcm@)O]Pm4

0 0
(5—-102)
For the case of the circular cylinder, y = % , SO the equation may be rewritten as
l ]k(;glpobl) l [iSS,inc,Iel = [ H]EZ)I(,BlpobD l [iss,indl (5 - 148)

To calculate liSS,indl, one again one substitutes p,, = a, or p,, = |ale/®ob, where a is

the radius of the cylinder and ¢,,, is the phase of each observation point.
The N x 1 element vector, iss inq, IS the J-spectral signature of the induced electric current
sources on the surface of the conductor, as was the case for the EFIE.

Solving the MFIE the same way as the EFIE, one arrives at a similar expression for the

diagonal matrix, except the diagonal terms are instead derivatives of the Hankel function.

(H'(Blal) 0 0 0 0
. 0 0 0 0 0 0
0 Dy 0]= 0 0 H®'(Blal) © 0 (5 — 149)
0 0 - 0 0 0 0
0 0 0 0 HP,'(Blal)]
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To solve for the normalized surface current on a circular cylinder at observation points
(p, ¢) excited by a magnetic field plane wave coming from incident angle ¢’ = ¢’ using
MFIE, one uses the same steps as for the EFIE. The surface current may be written as equation
(5- 150).

Jk(¢ $o”)

This agrees with the equation given by Balanis in reference book [36].

j(pn=0i7)
Jo(a, ¢p) =1nﬁa z J- izw(ﬁa) (5—151)

k=—o0

For a near-field magnetic line source, the actual normalized induced surface current on

the circular cylinder at observation points (p, ¢) is given in equation (5 — 152).

K yg® " ik (d-dor)
A H,”(Blpo'l) e’ 0
o, $) = ) -

, (5 —152)
L HP'(Blal
This agrees with the equation given by Balanis in reference book [36].
; Z H®D (") elk(dn—¢1)
JIn H; (Bp") e’
Jo(a, ) = =5 ) : (5 - 153)
2nma & H,EZ) (Ba)

5.5.3 Simulated Far-Field Patterns from SPM and Modal Analysis for Circular Cylinders

The Spectral Projection Model is applied here for calculating the electric far-field pattern
for circular cylinders excited by plane wave with normal incidence at, i.e. ¢; = 90°. Results of
the Spectral Projection Model agree well with analytical modal solutions excited by both TM?
and TE? plane waves for circular cylinders of different radii. Shown in Figure 5-22a, 5-22b, and
5-22c are the far-field patterns of different radii circular cylinders. Angle of incidence is 90°.

Forward scattering is observed at ¢g.q; = 270°.

124



TM? Incidence

90
120 1
0.8
150 0.6
0.4
180
210
240
270

a)

TM? Incidence

90
120 1
0.8
150 0.6
0.4
s
180
210
240
270

c)

rad =1\ Far Field Pattern

60

30

330

300

rad =2\ Far Field Pattern

60

30

——Modal
:
330

300

TEZ? Incidence rad =1)\ Far Field Pattern

210

150

210

90
120 1 60

0.8

0.6 30
0.4
02
Modal
R
330
300
270
TEZ? Incidence rad =2\ Far Field Pattern
90
120 1 60
0.8

0.6 30

0.4

0.2

——Modal
:
330
240 300

270

Figure 5-23: a) Polar plots of a) TM* and b) TE? far-field patterns for circular cylinders.

Cylinders have radius 14. Polar plots of ¢) TM? and d) TE? far-field patterns for circular

cylinders. Cylinders have radius 2A.
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Figure 5-24: Polar plots of a) TM? and b) TE? far-field patterns for circular cylinders. Cylinders

have radius 3A1.

5.5.4 Validation of the Spectral Projection Model for Near-Field TM* Wave
A near field electric current line current source I, radiates an electric field with TM?
polarization upon a PEC infinitely long circular cylinder as in Figure 5-18a. The current density
on the surface of a cylinder due to the incident TM? polarized wave from angle ¢, is given in
equation (5 — 154).
le i M o Jl(pr=¢on)
2na = H,EZ)(ﬁa)

The modal spectral signature of an infinitely long circular cylinder solved by analytical

Js(a,¢") = -2 (5 — 154)

techniques, MOM and SPM for TM? scattering are shown to have excellent agreement. See
Figure 5-25.
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Figure 5-25: Spectral signature of an infinitely long circular cylinder with radius = 11 excited by
a near-field TM* wave from a line source calculated using a) analytical method b) Method of

Moments and c) Spectral Projection Model.

In Figure 5-26 is shown the far-field pattern of the infinitely long circular cylinder of radius 1A.

calculated using the SPM and MOM. Angle of incidence is 90°.
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Figure 5-26: Calculated linear plot of far-field pattern for an infinitely long circular cylinder with
radius = 11 excited by a near-field TM* wave from a line source calculated using the Method of

Moments and Spectral Projection Model.
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5.5.5 Validation of the Spectral Projection Model for Near-Field TE* Wave

A near field magnetic current line current source I,,, radiates a magnetic field with TE*
polarization upon a PEC infinitely long circular cylinder as in Figure 5-18b. The current density
on the surface of a cylinder due to the incident TE? polarized wave from incidence angle ¢, is

given in equation (5 — 155). For these plots, angle of incidence is 90°.

Ly < H® _
(@) = —pIm (BoT)  jior-gun (5 — 154)
SE 2 na ()
U] { H,”'(Ba)
Circular Cylinder Spectral Signature Circular Cylinder Spectral Signature Circular Cylinder Spectral Signature
TE Analytic TE MOM TE SPM
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Figure 5-27: Spectral signature of an infinitely long circular cylinder with radius = 11 excited by
a near-field TE* wave from a line source calculated using a) analytical method b) Method of

Moments and c) Spectral Projection Model.
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Figure 5-28: Calculated linear plot of far-field pattern for an infinitely long circular cylinder with
radius = 11 excited by a near-field TE* wave from a line source calculated using the Method of

Moments and Spectral Projection Model.

Comparison of the modal solution of an infinitely long circular cylinder with MOM and
SPM for TE? scattering is shown to have excellent agreement. See Figure 5-27. In Figure 5-28 is
shown the far-field pattern of the infinitely long circular cylinder calculated using the SPM and

MOM.

5.6  Limitation of SPM due to Bessel and Hankel Function Modes

The Spectral Projection Method as presented is limited by properties of the Bessel and
Hankel functions much like the Method of Moments. The electric field for an infinitely long line
source in the near and far-field are characterized using the zeroth order Hankel function of the

second kind.
Plotted below in Figure 5-29 are the real and imaginary parts of the Hankel function

HP Blp)).
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Hankel Function Hf}(p} Real Hankel Function HE}m(p} Imaginary

q . + Line Source

Singular at p'=0

a) b)
Figure 5-29: The figure shows the real and imaginary components of the function

Héz)(ﬁlp — p'|) with p’ = 0. a) Real part. b) Imaginary part.

The electric field from an electric line current source is illustrated in Figure 5-29. In this
figure, the imaginary part of the electric field from the line source is singular at p” = 0. Hankel
functions are cylindrically symmetric, and vary only with the p components.

The magnitude of a Bessel function increases as the absolute value of the mode number
increases for near field arguments, i.e. small p values. In Figures 5-30a and 5-30b below, the
decrease in magnitude is about 5-10 between Bessel function order -30 to 30. In the far-field, the
magnitude of the Bessel functions decreases to zero, as seen in Figure 5-30c. This ensures
convergence of the addition theorem, and thus the projection of the J-spectral signature onto the
H-spectral signature.

The main obstacle limiting implementation of SPM for non-circular objects of small
wavelength is the increase in magnitude of the Hankel function as the absolute value of the mode
number increases. As seen in Figure 5-31a below, unlike the Bessel function, the magnitude of a
Hankel function increases as the absolute value of the mode number increases for small

wavelength p. In the far-field for increasing values of p, the magnitude of the Hankel function
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decreases but the magnitude of the amplitude of each mode trends to the same absolute value,
verifying the asymptotic approximation given in equation (5 — 70). See Figures 5-31b, 5-31c
and 5-32.
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Figure 5-30: Magnitude plots of Bessel functions versus modes for a) p = .54 b) p = 501 ¢)
p = 500004.
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Figure 5-31: Magnitude plots of Hankel functions versus modes for a) p = .54 b) p = 501 ¢)

p = 500004.
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Figure 5-32: Asymptotic expansion approximation to the far-field patterns for a) Hankel

functions and b) Bessel functions.

5.6.1 Convergence of the Addition Theorem

For small radii, the higher order modes of the Hankel function increase in amplitude and
decrease the numerical accuracy of the addition theorem. This is evident from conditions set by
the addition theorem on requirements for the p and p’ vectors. Recall the addition theorem in

equation (5 — 3). Equation (5 — 156) writes the addition theorem as an infinite summation.

HOBlo—p'D = ) JeBloDHE (BlpDei -4 pzp (5-156)

k=—o00
Figure 5-31 illustrates this requirement p = p’ when satisfied by a circular cylinder.

For a circle as in Figure 5-33, simply defining two circles with p > p’ satisfies the
addition theorem. For the ellipse plotted in Figure 5-34, the p vectors in red are not always
smaller than the p vectors in blue. The addition theorem given in (5 — 156) is not satisfied if the
p' vectors are chosen on the surface of the elliptical cylinder. For this ellipse, p, is the major

axis, and ps is the minor axis.

132



Addition Theorem Vectors
p vs. p' on Circle

Y-Axis

Figure 5-33: Vectors p and p’ around a circular cylinder.

Addition Theorem Vectors
p vs. p' on Ellipse

Y-Axis

\\

X-Axis

Figure 5-34: Vectors p and p’ around an elliptical cylinder.

In Figure 5-35 the p’ vectors in red are all smaller than the p vectors in blue. So, the
addition theorem given in (5 — 156) is always satisfied because the p’ vectors fall inside the
circular cylinder. In order to satisfy the addition theorem, the condition p’ < p for all p’ must

be met.
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Addition Theorem Vectors
p vs. p' on Ellipse
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20

Figure 5-35: Vectors p and p’ around an elliptical cylinder and inside circular cylinder.

5.6.2 Convolution Model for Spectral Signatures

In order to use the addition theorem for cases in which the cylinder shape is not circular,
it is necessary to ensure that p’ < p using a different approach. The addition theorem given in
equation (5 — 2) may be written as a convolution. Equation (5 — 157) gives the addition
theorem in this form, with the symbol & signifying convolution.

H(m,p+p")=Hm,p) ®J(n,p") p=p (5-157)
Using this notation for convolution, methods of translating the origin for elliptically shaped
surfaces will be discussed.

As stated earlier, the condition of the addition theorem states that in order for it to work
for source point p and observation point p’, the p vector with the larger radial distance from the
origin will be the argument of the Hankel function and the smaller p must be for the Bessel
function. This inequality p = p’ must be satisfied for the summation to converge.

For a closed conducting surface, the source (surface currents) and observation points
(boundary conditions) are all located on the surface. Ideally, one would like the Hankel function
to depend on the farther point, while the Bessel function will depend on the closer one. This is to
ensure that the condition p > p’ stated in equation (5 — 157) is complied with. But for a
geometric shape other than a circle, depending on the angle, the distance of observation points
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and source points from the origin changes. Since the radial distance depends on the origin, by
translating the origin one can ensure that the condition p > p’ is always satisfied.

Figure 5-36a shows two source points, so; and so,, and a single observation point ob, .
Begin by using O as the origin. Since p,,, > ps,,, in order to calculate the contribution of the
source point so; at oby, p,p, Must be the argument of the Hankel function and pg,, must be the
argument of the Bessel function. However, when calculating the contribution of ps,, at p,p, since
Pso, > Pob,» the vector p,;, cannot be used as the argument of the Hankel function with origin
O1.

Now consider Figures 5-36b and 5-36¢. If the origin is translated to O via vector ps ans,
P ob, > P50, and p’op,. can be used as the argument for the Hankel function, while p'g,, is used
to calculate the Bessel function.

At the beginning of this chapter, two general forms of Graf’s addition theorem were
given in equations (5 — 2) and (5 — 3). Graf’s addition theorem for Hankel functions of order m

for the difference between two vectors is given in (5 — 3),

(0]

HY Blo—pDe™" = 3" HEOL BlpD Bl D/l msnd] > pr (53

n=-—oo

and for the sum of two vectors the general form is (5 — 2).

HY Blo+pDe™" = 3" B BloD Bl Dellmmome] gz p (5-2)

n=-—oo

Vectors associated with the |p + p’| form of the addition theorem are illustrated in Figure 5-36.
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Figure 5-36: a) Original origin, O1, source and observation points. b) New origin, O, source and

observation vectors. ¢) Translation of source and one observation point with new origin Oa.
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Graf’s addition theorem for the addition of two vectors |p + p’| may be thought of as a
discrete convolution between the H-spectral signature of an observation point at (p, ¢) and the J-
spectral signature of a source point at (p’, ¢"). Equation (5 — 2) may be expressed in new
notation as equation (5 — 158).

H(m,p+p") =H(n,p) ®J(n,p") p=p (5-158)
To describe the convolution of two J-spectral signatures, the notation for the addition theorem is
given in equation (5 — 159).

Jm,p+p") =](n,p) ® (n,p") p=p (5-159)
The convolution operation permits one to define a relationship between two spectral signatures
with respect to two separate origins.

The function H(m, p + p') represents the H-spectral signature with respect to the origin,
O’, and H(n, p) is H-spectral signature with respect to origin, O. J(n, p') represents the J-
spectral signature of the translation vector representing the translation of the origin from O’ to O.

See Figure 5-37 for an illustration.

Addition Theorem Translation of Origin
R=p+/p

obs
point

Figure 5-37: Illustration of Graf’s addition theorem for |p + p’| showing the translation of the

origin.
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The addition theorem may be written as the convolution of several Bessel functions as

long as the condition p = p’ is met. For example if, p’ = p;' + p,’, one may write

J,p' +p2") =7(q,p1") ®J(q p2") p=p  (5-160)
And then one can write the Hankel function as the result of three convolutions.
Hm,p+p")=Hnp) Q@ J(q,p1) ®J(qp)) p=p (5-161)

A proof is given in Appendix A: SPM and Graf’s Equation.

5.6.3 SPM and the Hadamard Product
To take advantage of the property of Graf’s addition theorem to shift the origin, the
Hadamard product of matrices in the DFT domain may be used to calculate the convolution of

two vectors.

I I
Assume a vector | h, | equals the convolution of two vectors, | A, | and [jb].

I I I
I |
h.|=|h, ®H (5—162)
I I |

The convolution can be performed in the Fourier domain by taking the DFT of both sides of

equation (5 — 162 ), and writing it as the Hadamard product given in equation (5 — 163).

7 |- Afelel F A

To solve the matrix equation given below:

- %

where matrix l Hc .| equals the column by column convolution of two matrices,

|1
| He
.

I
| He |

one can write

|1
Q¢ [I o I] (5—165)
|
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| | I 1 T\ e
[eil =< | Hoe ||®c [I o I])[‘ssl (5 —166)
o DA
.. 0 0
Now a diagonal matrix [0 D;; 0] and its companion vector consisting of its diagonal
o o0 -

elements ldzl, in which every element D;; = d;.

- 0 0
[dil =diag|0 D; 0 (5—167)
0o o0 -

Then substituting lissl = [dil into equation (5 — 166) one obtains

(-3 % el 4 D

Next define the discrete Fourier transforms of the following matrices and vectors:

1
| Ho |
1

| FHq I=l--- F ll Hy | (5 —169)
| Flp | =l F l [I Ip I] (5 -170)
| FD; I=l--- F l 0 D; O (5-171)

Al 7

£ 7 I

and then multiply both sides of (5 — 166) by the Fourier operator,

o JE-E A el 4

|
| Hy |
|
Equation (5 — 174) may be written as a Hadamard product,
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1 P\

[Feil = < 0) [| FJ, |D [dil (5-175)
cee | I I | s

Using another property of Hadamard products one can rewrite equation (5 — 175) as

(5 —176)..

|
| FHq
.

I B o oyl | |
[Feilzdiag | FH, |||o0 D; Ol|l FJ, | (5—176)
[ R AV I

Where diag refers to the diagonal elements of the matrix in parentheses, and the diagonal

.0 0 I
elements of the matrix |0 D;; 0] are the elements of column vector [di].
o o0 - |
I
Recall that by applying singular value decomposition (SVD) to matrix || FH, ||,
I
it can be decomposed into three matrices shown below:
I . . o oyl I I
| FHq |[[=]|l Ua I{|0 Dru, Of|l Vo | (5-177)
I || o o |
where
I I .0 0
| U, [|and|| V, []|areunitary matrices, while |0 Dgy, O is a diagonal matrix
I I 0 0
whose diagonal entries are the singular values of the SVD.
I
One may use singular value decomposition on matrix || J, || as well.
I
I T | L o oyl I |
| FJp ||=]l U, [|{O0 Dy, Of| Vb | (5-178)
U oo .

Substituting into equation (5 — 176) one obtains equation (5 — 179).
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| o oyl | K~ o oyfl | | o oyl I Nn
diag| || Us. [[|O Dy, O | Vo | 0 Dy Ol ¥ 1]]0 Dy, offl Up |
| o o | | |llo o | | Hlo o |
(5—-179)

This expression may now be written in terms of diagonal element vectors corresponding to the

diagonal matrices defined above.

0

0 O7r1

0 0 O0}f..

l =10 0 D 0 O}f1 (5 -180)

0 0 ..
l0 0 O 0 J 1

K 0O 0 O 0][1]

= 0 ~ 0 0 0]..
[d]bl= 0 0 D, O OH (5 —181)
. 0o 0 =~ 0l

l0 0 0 0 ||}

Now equation (5 — 179) may be written using the property given in equations (5 — 175)

and (5 — 176) in a new form as the vector ldHal projected onto a Hadamard product.

I N~ 0 0

| 1 R0 o oyl I\

[Fei]= |®|Ub|OD,,,0|Vb|ouii0|va|[dHa

I Hlo o | [ to o ollf [ [/t~
(5 -182)

Then rearranging (5—-175) into (5 — 183),

- 4 o o

| FHq |
one can write (5 — 183) as a different but equal matrix expression in which the vector Id]bl IS

|
F]b Il O,
|

projected onto a different Hadamard product.

I o oyl I Ko o M\
[Feil= Ol Ua |10 Dy, Of|l Vo I| [0 Dy I ldfbl
| | Hlo o | | H1lo o I .

(5 — 184)
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Thus, if the vector Ieil represents either the incident or induced electric or magnetic field,

the projection of the H-spectral signature of the incident current [dHal onto the J-spectral
signature of the observation points equals the projection of the J-spectral signature of the
induced current lfz]bl onto the H-spectral signature of the observation points. This is the

foundational principle of the Spectral Projection Model.

5.6.4 SPM with Translation for Ellipses of High Axial Ratio
The equation for the Spectral Projection Model that was given earlier is shown below:

[ J(BlponD) ] liss,incl _ [ HP((B1Pos) ] [iss,ind] (5 — 185)
with the spectral signature vectors Iiss,mcl and [iss,indl being M X 1 element vectors,

and the matrices in (5 — 186) are equal.

T
-—1 |l I I

[—— HP ((B1Pob) ——]=| H, (Blp)e’ ¢ | (5 — 186)
- - - - -=1 | |

The observation matrix l— — H,EZ) Blpop) — —I consists of a set of row vectors which are

the H-spectral signatures of the observation points. This may be written alternatively as

o HEZK)(ﬁIPoDe_jKd)O HI((Z)(,3|P0|)€jK¢°
L-kame-4= 0 - 5
HE Blpw-1le /<4 B (Blpy-1l)e/ P

(5—-187)
with each row being the H-spectral signature of an observation point p, ,,.
To generate an ellipse two constant radius vectors rotating in opposite directions may be
summed together.

Pame’Pam = qe/MAP m € {0,1,2,..,M — 1} observation points along circle of radius a
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ppme’Pom = pe~ImLP m € {0,1,2,..,M — 1} observation points along circle of radius b
Pem€’®em =po o+ ppm  mE{0,12,..,M—1} observation points along ellipse e
For further details on how cylinders with non-circular cross sections can be generated using the

sum of multiple vectors, see Appendix F and Figures 5-38, 5-39, and 5-40 below.

Circle of Radius Pan

2ei280

1F ael1de

0A¢p

ae/

Y-Axis

5 2 E 0 : > 5
X-Axis
Figure 5-38: Counterclockwise rotating vector used to generate a circle with radius p = a.

Circle of Radius Py n

bei0As

Y-Axis

be»ﬂAm

RS be»jZAc‘;

I I I I I I I
-3 -2 -1 0 1 2 3

X-Axis
Figure 5-39: Clockwise rotating vector used to generate a circle with radius p = b.
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Concentric Circles with Resulting Ellipse
Radii p

a,n’ pb,n’ pe,n

pb,n

1A
) peeJ )

b el089

Y-Axis

-4 -3 -2 -1 0 1 2 3 4
X-Axis

Figure 5-40: Sum of two vectors to generate an ellipse.

The resulting vector from both constant radius circles traces in Figure 5-36a and Figure 5-36b is

an ellipse, so the observation points p, ,, on the ellipse are given below.

Pob,m = Pem

me{0,1,2,..,.M -1} points along ellipse e

The Hankel spectral signature of the sum of the two rotating vectors at any discrete angle

mAg¢, and radius p, ,,, may be calculated using the addition theorem shown in equation

(5 —188) for pym = pam-

B (Bloonm )™ =" B (Bl0nm] e (8o e/ 107092t

k=—o0

(5—-188)
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The addition theorem in equation (5 — 188) for observation point (o, m, Popm) May be
written as a convolution between the H-spectral signature of (o, $5 ) and J-spectral
signature of (pg m, am)-

H(pr pob,m) = H(k: pb,m) ®](k' pa,m) (5—189)
In the equation (5 — 189), the H-spectral signature vector defined in truncated form for point
(Pbm> B.m ) is defined as
H(k, pom) = [HR Blpple K Pom .. HP(BlppDel ®om .. HE (Blpy)e/kPom]

(5 —190)
and the J-spectral signature vector defined in truncated form for point (pa,m, ¢>a,m) as
J(k, pam) = U-x(Blpal)e™¥Pam .. Ju(Blpgl)e/Pam ... [ (Blpgl)eXPam]

(5—-191)

For a cross-sectional contour generated by two rotating vectors, each row of the

H-spectral signature observation point matrix, |- H;EZ)(ﬁ |pobl) |, equals the convolution

of the Hankel spectral signature of point (pb,m, ¢b,m) and Bessel spectral signature of point
(pa,m, ¢a,m). This matrix consisting of all observation points may be decomposed into two

matrices using the convolution product in equation (5 — 189), and written as equation (5 —
192).

—— HZBlposD ——l=[—— HP (Blps) ——l@[—— Jk(Blpal) ——

(5—192)
The matrices in (5 — 192) are written with -- notation to emphasize that each row is the spectral
signature of an individual observation point.

In order to efficiently perform this convolution, one may use the relationship in equation

I I
(5 — 162). For a column vector lﬁob that equals the convolution of column vectors fla,l and
| |

|
ljb'l , ie.
|
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| | |
Iﬁob = |Ags| ® s (5 - 193)
| | |
|

the discrete Fourier transform of the column vector |k, | equals the Hadamard product of the

discrete Fourier transform of the column vectors Ea,l and |jp1].

I I
l F l hop | = [ F l ﬁa,l O) [ F l Joa (5 — 194)

with O denoting the Hadamard product operator.

In order to use this property to calculate the H-spectral signature and J-spectral signature

given equation (5 — 194) consider the following matrixl— - M - —l. First one takes the

transpose of the matrix, and it can be subdivided into columns as shown in equation (5 — 195),

rtyrpty bty
|
I_ - M - _l = Mia| | [Mim| | |Mim (5—195)
- -0 - I I I I I
I I I I I
each column being the spectral signature of a point,
| M—K,m
I |
My | =| Mkm (5 —196)
| |
| MK,m
—_— — = = =T
The Fourier transform of matrixl— - M - —l is the Fourier transform of each column

given that | My ., | is column m of the matrix corresponding to observation point m-1.
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7 -
(S -

M1 |-
Now one can apply this property to the transpose of the Hankel observation matrix

ceen T
HP ((B1pob)) l using the shifted Fourier operator.

H H® (Blpos) l -

[ F l l H® (B1py]) I o [ F l I JeBlpal) l 5 198)
The matrices on the right of (5 — 198) are defined below. Each column of

_— _— — —.T

l— — H,EZ) Blppl) - —l is the spectral signature of a point (pp, 1, 5 ,) ON the circle with

radius b.

- = - = — —.T

I—— HP ((Blps)) ——I ~

(2)(ﬁIpr 1I)e JKPpM-1]T
|

| H? (Bl p1])e’<%om-s |
(5 — 199)

HE(Blpsm])e*or]
I
|
|

L, (Blpom|)e o |

(H2 (B|pyo0|)e 7K #po]
I
I
I

| 1P (Bpyol)e/ o |

- — - — T
Each column of|— — Jk(Blpopl) — —| is the spectral signature of a point (g m, Bam) ON

the circle with radius a.
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- — - — — — T

—— JkBlpep) ——| =

J-k(Blpao|)e™Pro]
|

L Jk(Blpao|)e P |

/-« (ﬁ IPa,M—1 I)e_jK‘I’b'M—l'
I
I
I

| Ji(Blpam—1])e/ Pom-1
(5 —200)
Next one needs to use this convolution principle to examine cylinders generated by

/- (B|Pam|)e™7#rm]
I
I
|

L ]K(ﬁlpa,ml)eﬂ(d)b‘m i

circles of different radii. Thus, for the induced electric field, IEindl,

l— — HP(Blps)) - —l liSS.,.i.nd_ = [Emd] (5 —201)
The term [— — H,Ez)(ﬁlpbl) — —| may be reformed by the matrix equation in (5 — 202).
- — - — - — vy — — - — — =\ e
I— - HP@losD) - —I : (I F I I— - HP@los)) - —I ) I F I
(5 —202)

Substituting equation (5 — 202) into equation (5 — 201), one obtains

[ 7 9 s TV 7 (] oo

Now expanding using the Hadamard product, one can write the induced fields.

- 7 JF wedmn ol 7 s )

. F Ifl IISS.'I""I (5 — 204)

One can use the boundary condition to equate IEindl and lEincl,
lEincl = — lEindl (5 - 43)
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i.e. the scattered field to the incident field. Incident fields may also be defined in a similar
manner, i.e., as the J-spectral signature of two rotating vectors. One may begin with equation
(5 —205),

[E;;;c] - [333 J(Blpas) IZZ] [zs;,!m] (5 - 205)
then using similar reasoning as in equation (5 — 205), one obtains equation (5 — 206).
Eincl =<l F l l 1. Bloy) l @l... F l l 1 Blpal) l ) .

. F ZII] [zss',';ncl (5 — 206)

and the term l F l liSS,incl is the discrete Fourier transform of the spectral signature of

the incident current.

5.6.5 Generating an Ellipse by Summing Circles of Different Radii

The previous section discusses a method for translating the origin to satisfy the
requirements of the addition theorem and allow the possibility of solving problems with large
axial ratios. In this section, a brief explanation of a technique for generating an ellipse of any
major and minor axis dimensions from circular shapes is explained. To begin it is important to

review the basic terms relating to an ellipse. See Figure 5-41.
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Ellipse
= (a+b)/2 Py = (a-b)/2

25

Minor axis = b Major axis = a

05—

Y-Axis
o
T
O
[.]

2.5

Figure 5-41: Ellipse in black, and focal points are F1 and F.. Two concentric circles of radii p,

and p, are drawn overlapping.

The set of n points forming the locus of an ellipse are those points in a plane whose
distance sum d; ,, + d4 ,, from two foci always equals a constant. An ellipse can be generated by
summing vectors along two circles of different radii, one rotating clockwise and the other

rotating counterclockwise. See equation (5 — 207).

Pan + Pbn = Pen (5—-207)
Pan n€{0,12,..,N—1} points along circle of radius a

Pb.n ne{0,12,.., N—1} points along circle of radius b

Pen ne€{0,12,..,N—1} points along ellipse e

In Figure 5-42, points along two circles of radii p, and p,, with p, > p;, are illustrated.
These points are summed to generate an ellipse with major axis length p, + p, and minor axis

length p, — py, illustrated in Figure 5-43.
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Circle of Radius P,

3

oL

03‘3

1F Pan
R
>_

AF

2+

-3 1 1 L 1 1 1

3 2 1 0 1 2
X-Axis
a)
Circle of Radius Py,

30

oL

i
L
x
<F 0r Pp 1
>_

Pp2

1r Pp3

2+

_3 Il Il Il 1 1 Il

3 2 1 0 1 2
X-Axis

Figure 5-42: Two circles of different radii a) 14 and b) 2A.
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Concentric Circles with Resulting Ellipse
Radii Py Py

Y-Axis

X-Axis

Figure 5-43: Superposition of points along two circles of radius 14 and 21 to generate an ellipse.

In Figure 5-43 sampled points along circles of radii p, and p, are summed together to
form the ellipse shown in black. Vectors 1, 5, 8, and 11 for the circle of radius p, ,, are shown in
Figure 5-44a, and for p, ,, is illustrated in Figure 5-44b. Summation of all points, p, ,, + pp », for

n € {1,2, ..., N} trace out the lotus of the ellipse shown in Figure 5-44c.
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Vectors from Circle

Radius P,
.
sl
f’a,s
oL
pa,s
Al
2
x
< 0 Pan
>
Ak
5 Pa11
-3
4L
4 3 2 1 0 1 2 3 4
X-Axis
a)
Ellipse
Major Axis = ptoy Minor Axis = Py Py
Translated Vectors from Circle 4r
Radius Py
4 3
3r ps
. 2
b,5
2+ 1 Py
s
Ppg :
T @
B3
@ L0 Pq
:’E °r Pb1 >
> 1 N
~
-1 \\
. p
1
-2
) Pb,11
3l
-3
-4 L -4 .
4 -3 2 1 0 1 2 3 4 4 3 -2 1 0 1 2 3 4
X-Axis X-Axis
b) c)

Figure 5-44: a) Vectors from circle of radius p, ,, for n € {1,5,8,11}. b) Vectors from circle of

radius p,n, n € {1,5,8,11}. c) Resulting vectors generate the locus on an ellipse.

Unfortunately, although summing rotating vectors is helpful in generating different
figures, it is only sufficient to solving SPM scattering problems for geometries with small axial
ratios. For larger axial ratios, it is necessary to translate the axis of the source points to ensure
that the addition theorem condition p > p’ is met. The next section will discuss a technique for

translating the axis to new coordinates.
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5.6.6 Application of Translating of the Origin to SPM

By decomposing an ellipse into a sum of three vectors, the addition theorem may be
treated as the convolution of three vectors. The observation points p,, may be defined as in
equation (5 —208) forn € {1,2,...,N}.

Pob = Pan t Pbn (5 — 208)
The addition theorem can then be written as the convolution of three vectors (5 — 209).
H(mr p + ,0’) = H(nr pc,n) ® [](Tl, ptl,‘n') ® ](n) ptz,n')] (5 - 209)

For example, consider an ellipse with major axis a and minor axis b, and traced out by
vector function f. The vector f is the sum of three vectors, f = ¢ + t4 + t,. The vector c is a
constant amplitude vector rotating in the counterclockwise direction. The vectors t; and t; are
constant amplitude vectors rotating in the clockwise and counterclockwise directions,
respectively. See Figure 5-45.

Vector t1 Rotation Diagram
Vector ¢ Rotation Diagram

Y-Axis
Y-Axis

2 2¢
-4 2 2 1 0 1 2 3 4 -4 3 2 1 a 1 2 3 4
K-Axis A-Axis
a) b)

Vector t; Rotation Diagram Vector f Rotation Diagram

YA
Y-Axis

2 ZF
4 a3 2 a4 0o 1 2 3 4 4 3 2 4 0o 1 2 3 4
X-Axis X-Axis

c) d)

Figure 5-45: Generating circles for an ellipse from a) vector ¢ (ccw) b) vector t1 (cw) ¢) vector t2

(ccw) and d) vector f (ccw).
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The vectors meet the condition of the addition theorem, |c| = [t{ + t3|. The ellipse and

example vectors are illustrated in Figure 5-46.

c=ael? lel = a (5-210)
a—>b )
t; = ( > )e_]¢ (5-211)
b—a) .
t2=( 5 )e1¢ (5-212)
Rotation of Vectors _ Translation of Axis

L L2
g o0 Z o
> >

05 0.5+

At At

151 15

2+ 2

25 25

.
2 45 1 05 0 05 1 15 2 2 15 -1 05 0 05 1 15 2
X-Axis X-Axis

Figure 5-46: a) Rotation and b) translation of the source origin. Vector f traces out the ellipse,
vector c traces out the circle with radius equal to the length of the major axis, and vectors t; and
t, represent the translation vectors. The vertical dotted line is the actual translation from the

source on the ellipse (Bessel functions) to the outer circle (Hankel function).

From Figure 5-46, the following vector addition translates the origin in the Y-direction.

ty +t; = (b — a)singy (5 —-213)
After doing some elementary trigonometry, the equation of an ellipse is verified for function f.

fx = acos¢ (5—1214)
f, = bsing (5 — 215)

Using this formulation, the addition theorem requirement will always be satisfied as long as c is

calculated with the Hankel function, and vectors t; and t, are assigned to the Bessel functions.
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5.7  Validation of the Spectral Projection Model
In this section the relationship between axial ratio of infinitely long conducting cylinders
and the accuracy of the Spectral Projection Model will be discussed [30]. Results will be

compared to analyses using the Method of Moments.

5.7.1 Validation of the Spectral Projection Model for plane wave TM? scattering without

Translation

For an infinitely long elliptical cylinder subjected to an incident TM? wave, the current
distribution is not calculated using the Spectral Projection Model because the far-field pattern
can be calculated directly from the J-spectral signature. The surface current calculated using
MOM for a PEC elliptical cylinder with axial ratio 2:1 is shown in Figure 5-47b. Shown in
Figure 5-48a and 5-48b is the spectral signature of the surface current distribution due to the TM?
wave scattering for an elliptical cylinder with axial ratio 2:1 using MOM and SPM. This is band-
limited to the center 25% of the 128 modes, which is approximately ka = 12. The value of a is
the major axis of the ellipse, and b is the minor axis. The far-field electric field pattern calculated
using the MOM and SPM agree well too as seen in Figures 5-48c and 5-48d. Incidence angle is
90°.

. Elliptical Cylinder Cross-Section a=2\b =1\ TM? DSPM Current Distribution MOMa=2\b =1\
‘ ‘ ‘ 1 T \ \ \ \

3 .

o
®
1

o
N

Distance, \
L o a
T \
\ \
Normalized Current Density
o o
~ [«

B | | | 0
4_4 2 0 2 4 0 50 100 150 200 250 300 350
Distance, \ Azimuth Angle, degrees
a) b)

Figure 5-47: a) Infinitely long elliptical cylinder a = 21 and b = 1A. b) Current distribution

calculated using the Method of Moments for TM? polarization
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TM? Spectral Signature a=2\b=1)
Incidence Angle = 90°

——MOoM
0o - - -SPM ||

Magnitude
o
o

. . . .
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Mode Number

a)

; TM? Incidence a=2Ab=1) Far Field Pattern
r I I T I il

TM? Incidence a=2)b=1) Far-field Pattern

%0

Magnitude

—MOM
180 0 o
---SPM

0 50 100 150 200 250 300 350
Azimuth Angle, degrees

b) c)
Figure 5-48: a) Spectral signature of surface current from Method of Moments and SPM for TM*

270

polarization on elliptical cylinder a = 24 and b = 1A. b) Electric far-field pattern in polar

coordinates. c) Electric far-field pattern linear plot.

The direct application of SPM works well for small axial ratios, i.e. 4:1 or less. Results
for a TM? wave incident on an ellipse with a higher axial ratio 4:1 is shown in Figure 5-49. For
higher axial ratios, the SPM without translation does not work as well. For these larger axial
ratios, the direct application of SPM suffers from a ‘low pass’ effect in which the higher order

modes are cut-off. This cut-off is determined by the size of the minor axis, where the
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requirement p,, = ps, fails. Some translation using the convolution property of the addition

theorem is necessary to overcome this limitation. Angle of incidence is 90°

TMz1lncidence a=4)\b =1\ J-Spectral Signature Pattern
| I T

T T T
—MOM
---SPM
08} ﬂ “ =
| d
1 1
1 1
o6 A ! |
2
=
g
s 04 | ‘ —
1 A
1 1
U |
02— —
1 \
0 o | | v
-30 -20 -10 0 10 20 30
Mode Number
a)

TM? Incidence a=4Ab=1) Far Field Pattern
TM? Incidence a=4Xb=1) Far Field Pattern
T I

120 60 1 ‘ ‘ ‘ ‘
—MOM
; ---SPM
1
150 30 0.8l " i ||
[} i
[ i
I' 1 i
o) 1 i
MOM < 0.6 o i ]
: : B Il
g) ,' ' i |
© ' il
S 04 1 1 _
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! ' i |
210 330 y q i
02 B |
"
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240 300 v LY
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b) c)
Figure 5-49: a) Spectral signature of surface current from Method of Moments and SPM for TM*
polarization on elliptical cylinder a = 44 and b = 1A. b) Electric far-field pattern in polar

coordinates. c) Electric far-field pattern linear plot.
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5.7.2 Validation of the Spectral Projection Model for plane wave TE? scattering without
Translation
For an infinitely long elliptical cylinder subjected to an incident TE* wave, calculation of
the current distribution is slightly different than TM? using the Spectral Projection Model. In

equation (5 — 216), one can substitute the product of the matrix and derivative of the Green’s
function for the [ H,EZ)(ﬁlpml) l term, and then solve for the spectral signature of the

surface current as before.
[H] - ([ cos(y) ] [ H '(BlpmDe™ ]) [] (5 - 216)
Using the method of least squares, one may solve for the J-spectral signature of the current. The

right side of the equation becomes the J-spectral signature of the surface current for a TE* wave

incident on a PEC cylinder. Now define the matrix product above as (5 — 217).
l H, 'cos(y) l = <[ cos(y) l [ H, '(Blpme’*® D

(5—-217)
Next one can solve for the J-spectral signature of the induced currents.

liSS,indl =

4 (1 g\ "1 (o

w_#q H, "cos(y) l [ H, 'cos(y) l ) I H, 'cos(y) l lEmcl (5 — 218)
As mentioned earlier, to calculate the J-spectral signature of the surface current for TE*

wave scattering, one substitutes the derivative term HS?'(B|pm — p'I) for H? (Blpm — p'1).

This is because one is calculating the incident magnetic field from the electric field in Faraday’s

law which involves a curl operation. Calculation of the current distribution due to the TE* wave

scattering for an elliptical cylinder with axial ratio 1.25:1 using MOM is shown below in Figure

5-50b. A comparison of the spectral signatures using the MOM and SPM is shown in Figures 5-

50c and 5-50d. A comparison of the MOM and SPM far-field patterns is shown in Figures 5-51a

and 5-51b in both polar and linear coordinates.
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Normalized Current Magnitude

The plot of the TE* wave far-field pattern for a 2:1 axial ratio showed poor agreement
between the MOM and SPM results. Adjustments to the SPM method with translation vectors is

again required to rectify this problem, same as the TM? case. Angle of incidence is 90°.

Infinitely Long Elliptical Cylinder a =1.25\ b=1)
source/obs pts =128

0.8 [

05

Current Distribution Elliptical TE*
a=1.25Ab=1)\ Segments = 256
T T T

200
Azimuthal Angle (Degrees)
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Magnitude

05

Spectral Signature of Surface Current on Ellipse MOM TE?
modes = 256

a=1.251 b=1x

-60
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Mode Number

c)

Figure 5-50: a) Infinitely long elliptical cylinder a = 1.254 and b = 1A. b) Current distribution
calculated using the Method of Moments for TE? polarization. ¢) Spectral signature of surface

current from Method of Moments and SPM for TE? polarization.
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TE? Ellipse Far Field E-field Pattern
a=1.25) b=1) TE? Ellipse Far-Field Pattern
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a) b)
Figure 5-51: a) SPM electric far-field pattern in polar coordinates for elliptical cylinder a =

1.251 and b = 1. b) SPM electric far-field pattern linear plot.

5.7.3 Validation of the Spectral Projection Model for Plane Wave TM? Scattering with
Translation
For an infinitely long elliptical cylinder subjected to an incident TM?* wave using

translation of the source axis, larger axial ratio problems may be solved [53]. Figure 5-52 and

Figure 5-53 show the results of an ellipse with axial ratio % = 10 as good agreement with the

MOM. Angle of incidence is 90°.

TM? Incidence a=2\b=.2)

Infinitely Long Elliptical Cylinder a=2Xb=.2) .
sourcelobs pts = 360 MoM-EFIE vs. SPM Spectral Signatures
. -
[ ‘ ‘ Modes = 360
1 T T
3 MOM
0.9 SPM
2 0.8
0.7
-~ [}
N < 0.6
8 3
' z 0.5
® c
g g
-1 s 0.4
031
2
0.2
Al
0.1
L . . . . J 0 . . , )
* * 2 - ° ! 2 3 4 -30 20 -10 0 10 20 30
Dist: » A
slanee Mode Number

Figure 5-52: a) Elliptical cylinder a = 24 and b = .2A. b) Spectral signature of the surface

current using Spectral Projection Model vs. MOM for TM? polarization.
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TM? Incidence a=2\b=.2)
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Figure 5-53: a) Electric far-field pattern for SPM vs. MOM, in polar coordinates for elliptical
cylinder a = 21 and b = .24 for TM? polarization. b) Electric far-field pattern for SPM vs.

MOM linear plot.

5.7.4 Validation of the Spectral Projection Model for plane wave TE? scattering with

Translation
For an infinitely long elliptical cylinder subjected to an incident TE* wave using

translation of the source axis, the axial ratio % = 10 has good agreement with the MOM [53]. In

Figure 5-54 and Figure 5-55 are plots of the cylinder, modal spectral signature, far-field pattern,

and a polar plot of the far-field pattern.

TE? Incidence a=2Ab=.2)
MoM-MFIE vs. SPM Spectral Signatures
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sourcelobs pts = 360 1 T T -
- :
09+
08
07+
Bost
~ 2
g R T os5F
H S ————— — S
8 S 04
03f
02
0.1
0
B o b 2 s . -30
Distance, A Mode Number

Figure 5-54: a) Elliptical cylinder a = 24 and b = .2A. b) Spectral signature of the surface

current using Spectral Projection Model vs. MOM for TE? polarization.
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Figure 5-55: a) Electric far-field pattern for Spectral Projection Method vs. MOM,in polar

coordinates for elliptical cylinder a = 24 and b = .24 for TE? polarization. b) Electric far-field

pattern for Spectral Projection Method vs. MOM linear plot.
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Chapter 6: Direct Spectral Projection Model

6.1 Introduction to the Direct Spectral Projection Model
An improvement to the SPM model is presented in this section. This improvement is

known as the Direct Spectral Projection Method (DSPM). The DSPM derives a set of
eigenfunctions which are a set of solutions to scattering from cylinders of arbitrary cross-
sections. The eigenfunctions are designed to satisfy the boundary conditions for the scattering
problem. Having found the eigenfunctions for the problem at hand, any external stimulus may be
described as a weighted sum of these eigenfunctions. The weights of these eigenfunctions are
obtained by assuming the spectral signatures of the external source are approximately equal to
the collective spectral signatures of the eigenfunctions. Boundary conditions are satisfied by both
sides of the equation by being projected onto the J-spectral signatures of the observation points.
This eliminates the need to solve the boundary conditions directly. Since the eigenfunctions are
found so that they satisfy the boundary conditions, writing the external stimulus in terms of these
eigenfunctions implicitly satisfies the boundary conditions for the problem at hand [54].

With the direct SPM method, once this matrix is set up, one can calculate the vector current
distribution for many different cross-sectional geometries and external excitations, whether the

external stimuli be a single line source, multiple line sources or a plane wave.

6.2 Line Sources Near a Circular Cylinder

As shown in Chapter 5, an electric current on the surface of a PEC circular cylinder of
radius p = a is induced by an incident electric field from an external line source. If the external
line source is located at polar coordinates (p,’, ¢,'), this induced current is described by equation
(6—-1).
P HP (Blpy'|) e/e(#'~d0"
lind(p ’ ¢ ) = D) ) (6 - 1)

K= H=Blp')

Assume points (p’, ¢") on the surface of the cylinder are at discrete locations (p,,, ¢,,")

for n € {0,1, N — 1}. In the case of a circular cylinder p,, = a for all n.
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As illustrated in Figure 6-1, if the external line source at angle ¢,’ is moved close to the
surface of the circular cylinder with p," = a + €, an induced line current source flows opposite at

the same location as the electric line source p," = a — ¢,as € = 0.

Single Line Source,
Equivalent Incident and Induced on Circular Cylinder

Z-Axis
& o
\S s s

Infinite Conducting Cylinder
Opposite Parallel Electric Line Current Sources

Induced E|eetric
Line Soyrce

Y-Axis

Incident Electric
Line Source

.
e

Z-Axis

b)
Figure 6-1: a) Infinitely long external line source at (p,, ¢o) moved near the surface of an
infinitely long circular cylinder to a distance a + ¢, and the induced line current at a — &,
as € — 0. b) Infinitely long electric line source moved near the surface of an infinitely long

circular cylinder, and its induced electric line current which is equal and opposite.
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The new distance of the line source near the surface of the circular cylinder is given in
equation (6 — 2),
Poinc' =a+e g0 (6-2)
By substituting (6 — 2) into equation (6 — 1),

HP (Blpo’D = H (Blal) (6-3)
Now substituting (6 — 3) into (6 — 1), the induced current on the surface at any point (py, ¢,,")

can be described as a delta function.

[0e]

5~ 0,y = pp) = ) eMKbub) (6-4)

k=—o0
and 6(p' — a, ¢, — po) = 1 when p’ = a and ¢,, = ¢,.

As further evidence that the surface current distribution trends toward a delta function, a
plot of the surface current for line currents at different distances p from a circular cylinder is
shown in the Figure 6-2 below. From the plot of equation (6 — 1), as an electric line source
approaches the surface of a circular cylinder of radius a = 54, the induced current magnitude
approaches that of a single spike (delta function). So, it radiates only from the surface at one
point. The incident electric current at the surface distance a + & from the line source will
hereafter be referred to as the “virtual current.” Its induced surface current Ji*¢ at location
(p,', d,,") on the other side of the surface approaches a magnitude that is equal and opposite in

phase to the virtual current, and zero everywhere else.
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Current on Circular Cylinder due to Incident Line Source
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Figure 6-2: Current distribution of a line source near an infinitely long circular cylinder of radius

51 at distances p = 104, p = 5.911,p = 5.24.

For an external line source at coordinates (p,, '¢,"), the weight of each eigenfunction
5(p" — p, @' — ¢,") corresponding to a virtual current can be represented in vector form as an

N x 1 column vector of all zeros and a single value of a,, placed in the n row.

0

| |
ivir,n =|aqn (6 - 5)

| |

0

The virtual current may be written as the sum of these N x 1 column vectors,
I I ]
| | I I
ivir,sum = ivir,O + -t ivir,n + e ivir,N—l (6 - 6)
| | I I

| I L

The sum of these virtual current vectors, |, sum |, can be written as equation (6 — 7).
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xo
| I
Lyirsum| = an (6 - 7)
| I
In-1
|

Similarly, the induced current vector |inq sum | corresponding to the induced surface currents

can be written as equation (6 — 8).

[ Fo]
| | 1]
iind,sum = I Bn

| | | |
LBy-]

(6 —8)

One may write the DSPM equation as an eigenvector relation in terms of |, sum | and

Lina,sum |, in Which every a,, = —B,.

6.3  Derivation of DSPM from Modal Analysis for a Circular Cylinder
For TM? waves incident upon a PEC circular cylinder, the modal matrix solution given in

equation (6 — 1) can be written in terms of an induced current vector [iind.suml for N-1

equations as shown in equation (6 — 9).

0 H,Ez) (,BIaI) 0] l F l iind,sum‘ = liss,inc,ln (6 - 9)
0 O ... o cee | I
If the excitation is a single external current line source I, at coordinates (p,,, ¢,,'), using

equation (5 — 68) one may write
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H2@lp e/ % o o HE(Blowgr/[Je™ M5 Tro0

iss,inc,ln = : : : : . I,
| . : : : : - :
HI({Z)(ﬁlpO’De—JKCPO’ HI<<2)(5|pNs_1,f|)e—1K¢Ns_u 0

(6 —10)
As the external line source approaches the surface of the conductor, po’ = a, and the matrix

product (6 — 10) reduces to equation (6 — 11).

iind,sum = In l F l ejk(pn, (6 — 11)
| cee cee . |
where
e_jK¢n’]
| -
elkdn| = | pikdns | (6 —12)
| :
ejK¢n’J

|
If matrices |e/X®n | and [ F l are infinite dimensional in column length K — oo, the

induced current vector becomes a set of infinite sums of exponentials corresponding to Fourier

series expansions.

o)

Z I (Por=bn?)

k=—o00
| ©
iind,sum - In Z e]k(¢n'—¢nl) (6 _ 13)
| ke=—0o

Z oIk (Png_y =)

Lk=—o00

Equation (6 — 13) reduces to equation (6 — 14) according to the Fourier series expansion for a

delta function given in equation (6 — 4).
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0
I 0
iind,sum = 1 n 1

(6 —14)
0
In equation (6 — 14), the delta function has the following property, §(¢;, — ¢,,") = 1 for
§(0), and zero otherwise. Thus, we can write equation (6 — 14) as (6 — 15).
0 0
izn_d,n = I 1 (6 —15)
0 0
Equation (6 — 15) reveals that every induced current can be generated by an equal and
opposite incident current at the surface at the same location. This incident current may be
considered a virtual current. Taking equation (6 — 11), one may rewrite it using (6 — 16), in
terms of virtual currents,
e | |
[ F l byt eum | = —1 | e/ktn’ (6 — 16)
| |
When i, ,, is the magnitude of the virtual current at coordinates (p,, ¢,,), from equation

(6 — 15) one may rewrite equation (6 — 16).
0 |
ivir,n‘ = ivir,n elkén’ (6—17)

[ e

From equation (6 — 17), the virtual currents can be represented as eigenfunctions which

satisfy the electric field boundary conditions at every pair of points opposite on the surface, i.e.

virtual currents at (p,,’, ¢,,") by induced currents at (p,,,’, ¢.,"). For a circular cylinder, the

eigenfunctions are the columns of the [ F l matrix. These electric line currents generate

equal and opposite electric fields that satisfy the boundary conditions which require that the

electric field on the surface equal zero according to equation (6 — 18).

ES“®(p, ) = —E™(p', ¢") (6 —18)
If one rearranges equation (6 — 9), one obtains equation (6 — 19), for excitation of a

circular cylinder by a TM? incident wave from a near-field line source.
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0 0 | |
0 H]EZ) (Blal) 0] l F l iind,sum = iss,inc,ln (6-19)
0 0 . oo cee . I |

As shown in Chapter 5 equation (5 — 124), the matrix product in equation (6 — 19) originated

from the H-spectral signature matrix when p,,, = a.

0 07 peor oee oo

0 H(Blal) o] [ F ] (6 - 20)
0 0 .. ces cen .

Substituting into equation (6 — 19), one obtains for a circular cylinder equation (6 — 21).

H” Blpw e/ Pm ] =

: : | |
H}EZ) (.Blpmll)ejkd)m’ :] iind,sum = iss,inc,ln (6 —21)
: : | |

| |
If one replaces |iina,sum | BY |Tvir,sum | ON the surface of the cylinder, one can write the new
| |

equation for virtual sources at (p,,", ') as (6 — 22).

H}EZ) (.Blpmll)ejkd)m’ :] Lir,sum | = iss,inc,ln (6 —22)

One may expand the possibilities of this equation for TM? incidence on a circular
cylinder, by writing it for an excitation by an electric line source Ie in the far-field at angle ¢,,".
The spectral signature of an incident electric field from an electric line source in the far-field was

given earlier in equation (5 — 72).

(o)

FF om
leS]Tinc,Ie = Ej e]k(d)"'_f) (6 —23)

As long as the vector z;;f inc.1e | 1S in the column space of the H-spectral signature matrix, one

|
may replace the spectral signature |iss inc 1, | by lg inc.1e | @nd arrive at equation (6 — 24).
|
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: : | :

N A Sf

HIEZ) (,Blpm |)e]k¢m' 5] lLind,sum| = lss,inc,le (6 - 24)
: : | :

By replacing |Zing sum | bY |Tvirsum | , One arrives at the DSPM equation for a circular cylinder in

I |
equation (6 — 25).
- : . : | ff:
Hy Blpwm'Der™m" | Lyirsum | = — Lss,inc,le (6 — 25)
: : | :

Another way of stating equation (6 — 25) is in the written statement below.

H-Spectral Signature =  H-Spectral Signature of
of Virtual Sources the Incident Sources

or Eigenfunctions

6.4  Application of DSPM to TM? and TE* Waves incident upon a Circular Cylinder
For electric line source located in the near-field at (p,’, ¢,"), the H-spectral signature of

the incident field due to the line current is given in equation (6 — 26), from equation (5 — 69).

|

lgsi = 1.|H® "NeiKbo'  g@ "Neikbo = y@ ! —jK¢0’T 6— 26
ssinclo| = g _K(3|Po De e (Blpo'De e Mg (Blpo'De ( )
|

2
where p," and ¢, are the radial distance and azimuthal angle of the line source, and I, = — Bl

4we’

For an electric plane wave E, incident from a line source at the angle, ¢,’, the spectral
signature of the incident field was written earlier using the large argument approximation in
equation (5 — 71).

i’/ = Ey[e—/K@o-1/2) ... ok(bor-T/2) ... @iK(bor-m/2)]T (5 — 69)

ss,inc,le

For a circular cylinder with constant radius, p = a, the DSPM equation was given in

equation (6 — 21). For an incident line current I,

: : | |
H]EZ) (,Blpml)ejk¢m : iind,sum = iss,inc,lo (6 —27)
: : | |
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Solving equation (6 — 27) for the induced current vector l ind suml equation (6 — 28) results.

Lind,sum =[ F l [0 1/HP (Blal) 0] s inc,10 (6 — 28)
| cee coe e 0 .'. I

The induced current vector depends on the type of external source excitation. The H-

spectral signature matrix |:

H® (Bl pm|)ekém :] is the product of the inverse shifted DFT

vee eee weH -, 0 0
Fourier operator l F l and the diagonal matrix [0 1/H£2)(ﬁ|a|) 0[. The columns
cee cee e 0 0 .
. . 2
of the diagonal matrixare [0 ... L (ﬁl ) ... 0]7, and make up the spectral response of

the circular cylinder. In order to calculate the induced current distribution in the spatial domain,
one must take the inverse Fourier transform of the H-spectral signature of the incident currents
modified by the spectral response of the circular cylinder.

For electric lines source I, located in the near-field at (p,, ¢,), the spectral signature of
the incident current was given in equation (5 — 142). For this near field line source from the ¢,’
direction, the induced electric surface current in matrix equation (6 — 28) may be written in

summation form for any point (p’, ¢") as equation (6 — 29).

K @ Y pik(dr—don
. , H(Blpo'l) e’ 0
ina(a, ) = ) =~ HPGlaD (6 -29)
k=—K k

This result is also in agreement with reference text [36].

J.(a, ¢p) =

() 5 jk(pn—do’)
I H P el

e L HP(Blal)
For the case of TM? plane waves incident from the ¢, direction, the induced electric
surface current in matrix equation (6 — 28) may be written in summation form for any point
(p, ¢) as equation (6 — 30).
i~ k o jk(¢r=o)
imaa, @) = Z HOGlal) (6 —30)

This result agrees with reference text [36].
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K g jle(@ni=7)

N 2By N j ke @n—90
Jla ') = 2o 2. HP (Blal)

k=—0o0

(5—141)

where ¢; = ¢,.
See Figure 6-3 for plots of the induced current, spectral signature, and far-field pattern for

incident wave with TM? polarization upon a circular cylinder.

TM? Current Distribution
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C) d)
Figure 6-3: a) Infinitely long circular cylinder of p = 2A. b) Plot of surface current around an
infinitely long circular cylinder using DSPM, SPM and MOM for TM# Wave. ¢) Spectral
signature plot of modes using DSPM, SPM, and MOM. d) Far-field pattern using DSPM, SPM

and MOM.

For TE? plane waves incident upon a PEC circular cylinder, derivation of the induced

current on the surface follows a similar derivation. The solution of the MFIE the yields another
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diagonal matrix form of matrix

Hﬁz)’(ﬁlpml)efk"’m ] and the spectral response of the

circular cylinder consists of derivatives of the Hankel function (6 — 31).

Hﬁwmmw%:r=0H9mm>4f-F"1 (6-31)
: : 0 0
The general DSPM equation for TE? plane waves is given below in equation (6 — 32).

| e eH L 0 0 |
iind,sum = l F l [0 1/H,52)’(ﬁ|a|) 0] iss,inc,lmo (6 - 32)
| cee cee . 0 O |
For a near-field magnetic line source at (p,’, ¢,), the spectral signature of the incident
B?Im

magnetic line source is written in (5 — 88). Substituting for I, = —

| T
A 2 ' i ' 2 ’ j ’ 2 ’ —j ’
lss,inc,imo | = 17710[H£13(ﬁ|p0 Dequbo H}E )(ﬁlpo |)€]k¢° HI(()(ﬁIPO De 1K¢0]
|

4we’

(5-88)
The induced electric surface current on the circular cylinder at observation points (p, ¢) for

excitation by a magnetic line source I, is given in equation (6 — 33).

K y@ "1 eJk(dr=or)
: , H,"(Blpo'l) €/ °
iina(a, ¢') = Z T (6 —33)

oy H,'(Blal)
This agrees with the equation given by Balanis in reference book [36].
; 2 @ 'Y eik(Pn’=do")
: JIm H,~(Blp']) €’

]¢(al ¢TL ) = - Z (2), (5 - 153)

Znma £ H,”"(Blal)

For TE? plane waves incident from the ¢," direction, the H-spectral signature of the

magnetic field was given in equation (5 — 91), where ff refers to far-field.

|
3 ST = Ho[p-ix(00-3)  ik(o0-3) k(oD (5 —91)

Ss,inc,Im

For a circular cylinder excited by a TE? plane wave, the induced electric surface current in matrix

equation (6 — 32) may be written in summation form for any point (p’, ¢") as (6 — 34).
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] e]k(¢’_¢0’)
lina(a, ¢') = z (6 — 34)

HP'(Blal)
This agrees with the equation given by Balanis in reference book [36] and equation (5 — 151).
2H, jkeik(@nr=¢i)
Jp(a,dn') = ”5“ka 1 (3lah (5-151)

A comparison of DSPM and MOM plots for incident TE* waves is shown in Figure 6-4. All

three plots show good agreement for cylinder radius a = 2A.
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Figure 6-4: a) Infinitely long circular cylinder of p = 2A. b) Plot of surface current around an
infinitely long circular cylinder using DSPM, SPM and MOM for TE# Wave. ¢) Spectral
signature plot of modes using DSPM, SPM, and MOM. d) Far-field pattern using DSPM, SPM
and MOM.
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The application of DSPM works well for small axial ratios radius% < 4 . For larger axial

ratios, the direct application of SPM fails because of the ‘low pass’ effect where the higher order
modes are cut-off. This cut-off is dependent upon the size of the minor axis, where the
requirement p’ < p for the source fails. To eliminate the ‘low pass’ effect, translation of the origin
is necessary. Similar to the Spectral Projection Model, it will be shown that translation of the

origin yields better results for ellipses with larger axial ratios and larger major axes.

6.5  Derivation of Direct SPM from SPM assuming Line Sources
From equation, DSPM can be generalized from a circular cylinder to any geometry. Each
eigenfunction can be represented as an eigenvector in a matrix equation. So, each eigenvector is
a solution to the TM? scattering problem, and any incident waveform may be decomposed into a
set of weighted eigenfunctions distributed across the entirety of the object’s surface.
The electric field boundary condition for a PEC object was given previously as
E™(p, ) = —E*“**(p', ¢") (6 —35)
The EFIE for 2D infinitely long cylinders aligned with the Z-axis excited by a TM?* wave

was given in equation (2 — 15).

EPe(o) = 2§ (B0 DHE Bl — p'Ddc (2-15)
C

The left-hand side is generated by the external stimulus (incident fields) and right side of the
equation is the scattered field from the unknown induced current J(p’, ¢") which is embedded in
the integral on the right.

The EFIE can be discretized and applied to a set of known observation points (p;,,, $m)

on the boundary, and be written in matrix form (6 — 36).

Ei(pm)] = % [ H(EZ)(.Blpm - p;‘ll) ] (p;u ¢n,) (6 - 36)
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where (p,,, ¢.,) are a set of observation points on the boundary and (p,, ‘¢,,") are the locations

of the induced current sources. One can solve this matrix equation for the vector corresponding

|
to the unknown induced currents |/ (o5, ") |-

|
To solve this equation, one begins with an external stimulus that is a line source aligned

with the conductor axis (in the Z-direction) as illustrated in Figure 6-5.

Electric Line Current

p= ”y

Z-Axis

Plane of
Incidence

Line Current

X-Axis

Figure 6-5: Infinitely long electric line source at coordinates (po ¢o) near an infinitely long

circular cylinder.

From Chapter 5 the incident electric field from a line source at originating at location

(po’, Po") and measured at (p,,, ¢,,) May be described using a zeroth order Hankel function of

the second kind,

| :lee 5 |
Eincl(pm) =7 H® (Blpo’ — pml) (5 — 69)
I

where the magnitude of the current can be rewritten as I,.

Bl
Iy =~ 6—37
0= "7 ( )
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Using the addition theorem, the incident electric field from an external line source can be
decomposed into two matrices which represent the H-spectral signature of the incident line

source H,EZ)(ﬁl po']) | projected onto the J-spectral signature of the observation points (p,,, $:,)-

|
Einc(pm)] =1, l JeBlpmD) | |HP B1po'D (6 — 38)

The H-spectral signature of a single external line source |ss,inc,, | at location (p,’, ¢o") is given

2
in equation (6 — 39). This is found by taking equation (5 — 69) and then setting I, = iwI:.
HE (Blpole/
I |
Uss,inco | = Io H,EZ) (Blpo’|e ko’ (6 —39)
I |
HP (Blpo’le ']

Multiple line sources radiating from a set of infinitely long cylinders each contribute
individually to the H-spectral signature of the electric field on the surface of the conducting
cylinder. Illustrated in the Figure 6-6 is a circular cylinder excited by multiple line sources near
its surface at angles &, ¢4, and .

Multiple Line Sources
Incident on Circular Cylinder

XA

Figure 6-6: Three external line sources outside a circular cylinder.
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If these electric line sources are moved close to the surface of the conductor, each
becomes a virtual current on the surface. Every virtual current generates its own equal and
opposite induced current. The Figure 6-7 shows three virtual current sources on the surface of a

circular cylinder.

Incident Line Sources
Equivalent Surface

Figure 6-7: Three external line sources moved to a distance ¢ outside a circular cylinder.

The H-spectral signature of a single virtual current source at surface location (p,,’, ¢,,")

can be represented as a column vector, [hn].

|

O (Blon'Del ']
|

M = [H® (Blpa ek (6 - 40)

|
HP (Blpy'])elon’ |

When multiple line current sources are moved to the surface of the cylinder, the weighted

sum of the H-spectral signatures of the virtual current sources from N line sources is given in
equation (6 — 41).

| | |

| | I |
iss,vir,sum = hO ap t hl 241 + ..t hN—l an-1 (6 - 41)

| | | I

| | |

The weighting factors of the virtual current sources are a,, € {ay, a4, ..., Ay_1}-
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4]

ivir,sum =] an (6 - 42)

aN-1
These coefficients a,, are the magnitude and phase of the virtual current sources.
This is analogous to SPM in Chapter 5 using equation (5 — 69) to aggregate the spectral

signatures of multiple line sources |iss inc,re | iNto a single matrix. The sum of the H-spectral

|
signatures of multiple virtual line current sources at coordinates ¢’ = ¢,,' forn € {0,1, N — 1}

equals the H-spectral signature of the total virtual electric current. See equation (6 — 43).

[H® (Blpo’[)ek®o’] (HZ) (Blpy'|)e ko]
| | |
iss,vir,sum = H]EZ) (Blpoll)ejkq)ol IO + HIEZ) (ﬁlplll)ejkq)l’ 11 + -
| | |
HP (Blpo'|)e ™o’ | [H® (Blpy' e |

(H? (Blpy_1'[)elkon-1']

|

+ [H® Blpy-1'Del*on-" (1, (6 — 43)
|

HP (Blpn—1'])ekon-1" |

If the external stimulus is an electric field plane wave E, from a distant electric line

source I, then the H-spectral signature of the incident electric field is given in equation (6 —

44).

_e_jK(q)o'_f)
| |
i;cS]TUiTJo = Eo| ¢/4(¢0=2) (6 — 44)
| |
_ejK(q’O'_%) |

For DSPM, this equation is similar to equation (5 — 72) except that the equivalent far-field

spectral signature originates from the virtual sources on the conductor and not a line source at
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infinity. This is because DSPM differs from SPM in that the virtual currents are at the surface of
the conductor.

The weighted sum of the H-spectral signatures of the virtual current sources set up a
surface current equivalent to that of the H-spectral signature of an incident electric field. The
electric field produces induced current sources that are equal and opposite to the virtual current

sources. See Figure 6-8.

Direct SPM Circular Cylinder Line Currents

Z Axi
————
—

X Axis

Figure 6-8: Illustration of virtual current sources on an infinitely long circular cylinder in blue,
and induced surface line currents in red. Surface and induced currents are in opposite directions.

The cylinder is in green.

In DSPM the far-field H-spectral signature of an incident line source(s) can be set equal
to the H-spectral signature of a set of virtual currents on the surface of the conductor. An
illustration of a line source in the far-field generating an external plane wave incident upon an
infinitely long PEC cylinder is shown in Figure 6-9. The DSPM equation is also shown in the

figure.
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Far-field Electric Plane Wave and Virtual Currents

5
N
4
¢ E
5 z
1 (Y
—
" Incident Plane Wave <™
5 0
N
2
3
4
i\ [ ] { a2y ]
2 R \ !
) \ External Line S
0 Virtual Line Sources ern;l I’:n_eld ource
on Cylinder ar-rie
Y-Axis 2 L N o 4 6 8 10 12 14 16 18

X-Axis

Figure 6-9: External current source, virtual current sources, and H-spectral signature of the
incident plane wave set equal to the weighted sum of the H-spectral signatures of the virtual

currents.

The magnitude and phase of each induced current source equals the weighting factor

Bn € {Bo, B1, ---» Bu—1}- The vector representation of the magnitude and phase of the sum of the

induced currents imd sum | May be written as equation (6 — 45).

llnd sum] = I ﬁn (6 - 45)

where a,, = —f,.
The left side of the discretized EFIE represents the incident field. For a single line current

source I, at (py’, $o"), [Einc(Pm)l at observation point (p,,, ¢.,) equals the H-spectral signature

of the external source projected onto the J-spectral signature of the observation points.
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Einc(pm)] =1 [ Jk (ﬁlpml) l HIEZ) (ﬁ|p0'|efk¢0’ (6 — 46)
| e ces ces |

For a line current near the surface of the conductor, one can write the left side of the

I
EFIE equation for the H-spectral signature of a single virtual line current source \hn],

|

| -
where [hn is the H-spectral signature of a single virtual current source defined in equation

I
E inc
I

spectral signature of the incident current source projected onto the J-spectral signature of the

(6 — 40). This equation is equivalent to the incident electric field written as the H-

observation point (p,,, $m)-

|
E inc
|

=l T Blpml) - [iss,mc‘ SPM (6 —48)

DSPM decomposes the HSS of the incident sources into the weighted sum of the HSS of
the virtual currents. By finding the virtual currents we can easily calculate the induced currents
which are equal and opposite. Once the induced currents are calculated, one may calculate the
far-field pattern. The far-field patten is the Fourier transform of the J-spectral signature of the
induced currents. These weights are equal to the virtual current source vector and negative the
induced current vector.

The steps for calculating the induced current and therefore the far-field pattern using

DSPM can be summarized in the block diagram below in Figure 6-10.
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DSPM Block Diagram

20
18 [
16 Apply Boundary Conditions
14
12
Decompose HSS of Incident Sources
10 [ . .
into Virtual Sources
8 -
6 .
4l Calculate Induced Current Sources
from Virtual Sources
2 -
O | 1 | 1 | | 1 | | |
0 1 2 3 4 5 6 7 8 9 10

Figure 6-10: Block diagram of steps for calculating currents through DSPM process.

One may write the eigenvector matrix equation for the electric field boundary conditions
as equation (6 — 49) to ensure that the B.C.s are satisfied. Because the virtual currents represent

eigenvectors of eigenfunction solutions to the boundary value scattering problem, we can also

Em‘ as a weighted sum of a set of eigenfunctions. This is the DSPM equation shown in

addition theorem form.

write

[ Jic (B1pmD) ] lzlm‘ - [ e Glomh | o (6 — 49)
From equation (6 — 49), for a single line source, the H-spectral signature of the incident

line current can be set equal to the weighted sum of the H-spectral signatures of the virtual

currents. The weighting factors are the coefficients of the incident line current and virtual

currents.
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H}EZ) (.Blpn,virb l ivir,sum = [ HIEZ) (lglpn,incb iinc,sum (6 - 50)

Incident current sources can be either one or multiple external sources as explained in
Figure 6-11.

Single external line source (near field) |
Multiple external line sources (near field) - lincle
Single external line source (far — field) or plane wave |

Figure 6-11: External incident line sources using DSPM.

The general DSPM equation for any incident sources is given in equation (6 — 51),

Figure 6-12, and reference [54].

HE Blpnvir) - ivir,lsum = iss,inlc,sum (6 —51)
| |
Weighted sum of the H-Spectral Signature
H-Spectral Signatures of Incident
of the Virtual Sources Current Sources

Figure 6-12: General DSPM equation for incident sources.

Any external source can be represented by the weighted sum of virtual sources. So, an
equivalent electric field waveform in matrix equation (6 — 51) can be generated by a set of
virtual sources with appropriate magnitudes, phases, and locations on the surface of the
conductor. For example, the excitation generated by the virtual sources can be the equivalent of
an incident electric field plane wave E, from the far-field impingent on the surface of the
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cylinder at observation points (p,,, $.,). The virtual and induced current sources will occupy the
same surface coordinates pairs on the surface of the conductor. The excitation waveform may
also be any arbitrary incident electric field pattern generated by N external line sources. The
virtual line sources on the surface of the cylinder can also generate the same arbitrary electric
field pattern. For example, the weighted sum of the H-spectral signature of the virtual currents
equals the equivalent spectral signature of an electric plane wave produced by incident sources as

shown in equation (6 — 52) in Figure 6-13.

|
HE Blonviel) | |tvirsum | = |27 e cum (6 - 52)
Weighted sum of the H-Spectral Signature
H-Spectral Signatures of Incident Far-Field
of the Virtual Sources Current Source

Figure 6-13: General DSPM equation for far-field sources.

The actual eigenfunctions of equation (6 — 52) depend upon the geometry of the object being
analyzed.

A real incident plane can only be represented by a vector of infinite dimensional space.
But to solve any scattering problem computationally, the object and the plane wave both must be
discretized and limited to a finite number of modes. Depending on the largest radius of the
object, the value of the Hankel function increases exponentially after a certain number of modes

K. To solve a circular cylinder for its induced currents, both sides of the DSPM equation are
multiplied by the inverse of the diagonal matrix H,EZ) (Blpl). Because the inverse diagonal
matrix is made up of 1/H (8| p|) elements, the magnitude of the 1/H > (B1p|)[x-w = 0 for
higher order modes k.

Even though a plane wave occupies infinite space, when it is multiplied by1/H,E2)(ﬁ|p|),
its higher order modes are filtered out. So, one can truncate the vector representation of the

plane wave to a finite +K due to this lowpass filtering process and not affect the solution. The
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inverse of the H-spectral signature subspace matrix exhibits a lower cut-off effect for a value of
K.

In DSPM the cut-off K of the lower order modes is determined by the largest dimension
of the object. Inv of H,EZ)(ﬁl pl)causes the magnitude of the H-spectral signature to cut off at

mode number K when H,EZ) (B|p|)starts to grow large. This is where the lowpass filter effect
begins to occur.

For the initial analyses of the ellipse using DSPM, the lowpass filter effect became
pronounced because the smallest dimension of the ellipse determined the cutoff mode rendering
many of the higher order modes insignificant. By translating the origin, the largest dimension
was set with the Hankel function. This was necessary because Bessel functions do exhibit this

lowpass filter effect.

H,EZ)(Blpl)is set to the largest dimension sot it determines the cut-off of the modes and

1/H,EZ)(B|p|)|,Hoo = 0. So, we get the lowpass filter effect on the largest dimension using the
two-vector model.

We can take any waveform that is infinite space and this property of the Hankel function
provides a built-in filtering of the higher order modes. The spectral signatures are all band
limited and do not need to occupy infinite dimensional space. The incident waveforms can be
any configuration of waves, or far-field or near field waves, and for modes higher than the
cutoff, the H-spectral signature matrix will filter out all the energy over the cut-off mode.

All the higher modal energy in the incident field does not affect the solution of the
problem. Modes that are high frequency terms get filtered out. So, if the incident sources are a
set of plane waves over a range of angles ¢’ = {¢,’, 1, ..., Pp'}, it does not exhibit an infinite
spectrum, but is band limited and the higher order energy goes to zero. The scattering process
using DSPM is independent of the higher order modes.

Solving for the boundary conditions are the initial step to the DSPM solution. Scattered
fields induced by the induced currents and incident fields due to incident currents. DSPM
replaces the incident sources by virtual sources. In SPM the incident electric field is found when
one projects the H-spectral signature of the source points onto the J-spectral signature of the
observation points at the surface. DSPM uses equation 6-52 to find the equivalent electric field

due to virtual sources. Then one can project the H-spectral signature of the virtual current
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sources onto the J-spectral signature of the observation points and set it equal to H-spectral
signature of the incident sources projected onto the J-spectral signature of the observation points.
Once the equation is solved for the virtual currents, the amplitude of the virtual currents equals

the amplitude of the induced currents.

6.6  Spectral Features of 2D Circular Cylinders excited by TM* Waves using DSPM

The spectral signature of circular cylinders varies according to the radius of the cylinder
cross section. For circular cylinders, the number of modes in the spectral signature increases with
the radius of the cylinder. The cylinder exhibits a low-pass filter pattern, and the modal

magnitudes decrease for higher order spectral modes. This is due to the addition theorem product

H,EZ) BlpDJ(Blp'|) — 0 as modes k — . See Figures 6-14 and 6-15.

] Spectral Signature Circle Radius =0.5\ N =32

MoM-EFIE
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+  Direct-SPM
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08 — — —SPM
+  Direct-SPM
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Azimuth Angle, degrees

Figure 6-14: Comparison of spectral signature and far-field pattern of infinitely long circular
cylinder of p = .54 using MOM, SPM and DSPM for TM? wave.
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Figure 6-15: a) Comparison of spectral signature and far-field pattern of infinitely long circular
cylinder of p = 14 using MOM, SPM and DSPM for TM? wave. b) Comparison of spectral
signature and far-field pattern of infinitely long circular cylinder of p = 44 using MOM, SPM
and DSPM for TM? wave.
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Figure 6-14 and Figure 6-15 make clear that besides broadening the spectral signature,
increasing the radius of the cylinder also narrows the angular bandwidth of the far-field pattern.
Comparing the far-field pattern between radii p = .54 and p = 44, the angular bandwidth
decreased from about 50 degrees to 10 degrees. In order to achieve proper resolution of the peak,
the number of modes had to be increased from 32 to 64 in the calculations. The sharpening of the
peaks and greater directivity was made possible by the increase in the number of harmonics in
the spectral signature.

This lowpass filtering effect resembles the lowpass filtering caused by introduction of
basis functions when using the Method of Moments. For MOM pulse functions, the spatial
frequency domain representation was a sinc function. The MOM Fourier domain bandwidth of
these basis functions was broader for narrower spatial lengths, similar to the above results for
DSPM.

When less basis functions were used to cover the spatial domain of the scattering
problem, wider basis functions were needed. The bandwidth of the wider pulses was smaller than
the narrow pulses. This decrease in spatial frequency bandwidth came at the cost of less
resolution for the current distribution pattern. The resolution of the far-field pattern resolution
was also adversely affected by these changes.

6.7  Translation of the Origin for DSPM Solutions

The collective spectral signature of the actual sources equals the collective spectral
signature of the sources on the surface. One may use the convolution principle to examine
general 2D objects generated by circular cylinders of different radii to examine this property of
DSPM. Just as in SPM, translation of the origin enables the Direct Spectral Projection Model to
be used to analyze large axial ratio objects with good convergence of the addition theorem. TM?*
waves incident on an arbitrarily shaped cylinder will only be explained, but the results are similar

for TE? waves as well. For an induced electric current, Iiindl, the columns of the eigenvector

matrix correspond to the H-spectral signature of the virtual currents at ¢ different points (6 —

53).
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| | | HA (Blpo Delkdo’ oo o . HEZK)(ﬁles_l’l)ejK(l’NS—u

| HP@BlpD || =

| | H ' H N . . '
HE Blpo'De b0 o oo oo HP(Blpyg—y|)e /K PNsv

(6 — 53)
I | |

The H-spectral signature subspace || H,EZ) (Blpa'D) || may be rewritten as the matrix equation

in (6 — 54).
H
| | | R | | "\ e e -
| H;EZ)(Blpn,D || = [ F l | H}EZ)(ﬁlpn’D | [ F l (6 — 54)
| | | an en s | | | s en s
Substituting equation (6 — 54) into equation (6 — 51), one gets (6 — 55).
H
| | N\ e g
[ F l | H}Ez)((ﬁlpnrl) | l F l Ilvimuml = llss'inc'suml (6 — 55)

| | |
When the geometry of the object can be generated by convolving two constant magnitude
vectors p, and p,, rotating in opposite directions, as explained in Chapter 5 and Appendix M,
equation (6 — 56) may be expanded using the following property of a Hadamard product ©.

I | 1 o el
[ F l| HO(Blpul) | @[... F H 1eBlpal) l

F l [ivir,suml = liss,inc,suml (6 — 56)
This technique enables one to analyze elliptically shaped two-dimensional cylinders with large
axial ratios with good accuracy using DSPM. The following results validate this technique.

Figure 6-16 and Figure 6-17 show current flows for TM? waves in the same direction as

the electric field.
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Figure 6-16: Illustration of the Z-direction of current versus electric field for a TM? incident

wave vertical view.
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Figure 6-17: lllustration of the Z-direction of current versus electric field for a TM? incident

wave cross sectional view.
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Results for TM? incident waves for cylinders of axial ratios of = = 5 and - = 10 are

calculated and plotted in Figure 6-18 and Figure 6-19. The calculations were performed using the
Method of Moments, Spectral Projection Model and Direct Spectral Projection Model, and are in

good agreement.
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Figure 6-18: a) Infinitely long elliptical cylinder of axial ratios % = 5. b) Plot of surface current

around an infinitely long circular cylinder using DSPM, SPM and MOM for TM# wave.
¢) Spectral plot of modes using DSPM, SPM, and MOM d) Far-field pattern using DSPM, SPM
and MOM.
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Figure 6-19: a) Infinitely long elliptical cylinder of axial ratios % = 10. b) Plot of surface current

around an infinitely long circular cylinder using DSPM, SPM and MOM for TM# wave. ¢)
Spectral plot of modes using DSPM, SPM, and MOM. d) Far-field pattern using DSPM, SPM
and MOM.

The main lobe and side lobes of the far-field pattern of an antenna scatterer are
determined by the size of the scatterer with respect to the excitation wavelength, the geometry of
the scatterer, and the shape of the excitation waveform. For the same TM? plane wave excitation
on different elliptical cylinders using DSPM, larger structures produce wider spectral signature
bandwidths as evidenced by the difference in plots from Figure 6-18c, 6-19c, and 6-20. When the
size of the major axis is increased, the spectral signature broadens and thus the number of modes

also increases.
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Figure 6-20: Comparison of spectral plots of infinitely long elliptical cylinder of axial ratios a)
a

o= 5 and b) % = 10 using DSPM for TM# wave excitation.

For axial ratios% = 5and % = 10, the radiation lobe(s) are aligned with the minor axis of

the ellipse where the average current distribution is greatest. These lobes are at 90° and 270° for a
plane wave angle of incidence of 90°. See the far-field plots in Figures 6- 18 and 6-19. Higher
order modes in the spectral signature were the major contributors to the current spikes shown in
the current distribution. Current spikes along the major axis are “end effects” due to the

curvature of the scattering object, where a greater number of near-field interactions occur. The

end effect in the current distribution of the ellipse with axial ratio% = 10 in Figure 6-21b is

much greater than that in the ellipse with the lower axial ratio % = 5 in Figure 6-21a. Current

spikes do not appear in the current distribution pattern of a circular cylinder because of its
uniform geometry and curvature (Figure 6-4b).

The higher axial ratio and larger major axis, i.e. - = 10 compared to - = 5, causes the
far-field pattern of an ellipse to exhibit narrower major lobes in Figure 6-16 versus Figure 6-15.
The change in magnitude and phase appears at the ends where the major axis intersects the

ellipse, due to the greater spiking effect.
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Figure 6-21: a) Linear plot of surface current on an infinitely long elliptical cylinder using

DSPM - = 5. b) Linear plot of surface current on an infinitely long elliptical cylinder using

DSPM - = 10.

a
b
a
b
Results for TEZ incident waves incident on cylinders of axial ratios of % =5 and % =10

are calculated and plotted in Figure 6-24 and Figure 6-25. These results for incident magnetic
field waves are similar to the waveform patterns of TM* waves. Note the current flow for the TE?

excitation is azimuthal around the contour of the cylinder, as shown in Figure 6-22 and Figure 6-

23.
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Figure 6-22: Illustration of the azimuthal direction of current around the contour of the cylinder

versus magnetic field for a TE? incident wave vertical view.
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Figure 6-23: Illustration of the azimuthal direction of current around the contour of the cylinder

versus magnetic field for a TE* incident wave cross sectional view.
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Figure 6-24: a) Infinitely long elliptical cylinder of axial ratio % = 5. b) Plot of surface current

around an infinitely long elliptical cylinder using DSPM, SPM and MOM for TEZ wave. ¢)

Spectral plot of modes using DSPM, SPM, and MOM d) Far-field pattern using DSPM, SPM
and MOM.
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Figure 6-25: a) Infinitely long elliptical cylinder of axial ratio % = 10. b) Plot of surface current

around an infinitely long elliptical cylinder using DSPM, SPM and MOM for TE* wave. c)
Spectral plot of modes using DSPM, SPM, and MOM d) Far-field pattern using DSPM, SPM
and MOM.

The spectral signature bandwidth for TE* excitation resembles that of the ellipses for TM*
excitation. The side of the ellipse subject to the transverse electric field radiation experiences the
greatest current flow, and but for this TE? case it emits a front and back electric field radiation
lobe. Calculation of the current distribution and phase in Figures 6-21 and 6-26 show the
difference in current patterns for TM* and TE? excitation. The spikes in the current for TE?

incidence mimic those of the elliptical cylinders excited by TM? waves. However, the magnitude
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and phase of the current are significantly different. Recall that the current flow for TE* waves is
azimuthal around the contour, not along the axis of the cylinder. Also, the phase of the current
for the TE? incidence on the radiated side is positive, but for the TM? incidence it is mostly
negative.
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Figure 6-26: Linear plot of surface current and phase on an infinitely long elliptical cylinder

using DSPM for TE? incidence and axial ratio % = 10.

6.8  Excitation of Elliptical Cylinders using DSPM Model by Plane Wave Excitation

In this section excitation of elliptical cylinders of different major and minor axes and
axial ratios are calculated excited by TM? plane waves to examine the modal spectrum of these
geometries using DSPM.

Eight plots are calculated in Figure 6-27 and Figure 6-28. Increasing the size of the major
axis from a = 14 to a = 21 and a = 44 while keeping the minor axis at b = .24 increases the
bandwidth of the spectral signature. Comparing the plots of ellipses with a = 24and b = .24

with a = 214 and b = .44, increasing the size of the minor axis does not increase the bandwidth

of the spectral signature.
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Figure 6-27: Plots of modal spectrum for elliptical cylinders% = 10 and % = 20 under TM? plane

wave excitation. a, ¢) lllustrations of ellipses and b, d) corresponding J-spectral signatures.
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Figure 6-28: Plots of modal spectrum for elliptical cylinders % = 5 under TM? plane wave

excitation. a, ¢) Illustrations of ellipses and b, d) corresponding J-spectral signatures.

¢, = 45 significantly changes its current distribution from normal incidence, eliminating the
spike in the far-end of the cylinder, and increasing the spike at the end closest to the impingent
wavefront. This redistribution of current causes the two major sidelobes to radiate almost equally
in a direction 45° to the major axis away from the wavefront. This effect is shown in Figure 6-

29. The opposite effect results if the ellipse is radiated by a TM* wave at ¢, = 1359, as shown
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in Figure 6-30. Incidence from an angle of ¢, = 0° in Figure 6-31 yields a more directional

pattern away from the incident wave.
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Figure 6-29: Infinitely long elliptical cylinder TM? wave angle of incidence 45°. a) Current

distribution. b) J-spectral signature modal distribution. c) Far-field pattern linear plot.
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Figure 6-30: Infinitely long elliptical cylinder TM* wave angle of incidence 135°. a) Current

distribution. b) J-spectral signature modal distribution. c) Far-field pattern linear plot.

Besides circular and elliptical cylinders, applying the two-vector model to DSPM also allows

one to calculate the scattering pattern of arbitrarily shaped PEC cylinders subjected to any

incident electric or magnetic field. Some of these results are discussed next.

205



Normalized Current Density

Magnitude
o © o o o o o
© =2 @ o N ® o©
T

o
o

0.1

Mode Number

Figure 6-31: Infinitely long elliptical cylinder TM? wave angle of incidence 0°. a) Current

0° Inc TM? DSPM Current Distribution a=1XA b=.2x N =180

o
3
 —— B

)
=
\—

I c
w

MoM-EFIE

- Direct-SPM

"

e

— — ~MoM-MFIE ||

0° Inc TM? Spectral Signature a=1X b=.2\ N =180
: T T |

L L
300 350

L
250

.
150 200
Azimuth Angle, degrees

a)

L L
50 100

u)

0° Inc TM? Far-Field Pattern a=1)A b=.2)\ N =180

MoM-EFIE
~—~SPM
- Direct-SPM

4
©

Magnitude
o o o o o
5 0 o N »
T T

o
w

T
MoM-EFIE

——-SPM
- Direct-SPM

L L
50 100

. . . .
150 200 250 350
Azimuth Angle, degrees

c)

300

distribution. b) J-spectral signature modal distribution. c) Far-field pattern linear plot.

6.10 Validation of the DSPM Model for Arbitrary Shaped Cylinders

An infinitely long 2D cylinder with random corrugations, its current distribution, and its

spectral and far-field patterns are illustrated in Figure 6-32 and Figure 6-33. As shown in the

results for TM? wave excitation, the current distribution, J-spectral signature, and far-field

pattern are in good agreement. For a greater number of corrugations, the spectral signature

necessarily grows broader in order to model the abrupt changes in the current distribution with

angle.
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Figure 6-32: a) Infinitely long cylinder of arbitrary shape type A. b) Plot of surface current
around an infinitely long arbitrarily shaped cylinder using DSPM and MOM for TM# wave

excitation.
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Figure 6-33: a) For an infinitely long cylinder of arbitrary shape of A under TM? excitation, J-
spectral plot of modes using DSPM and MOM. b) Far-field pattern using DSPM and MOM.

o
T
o
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Numerous other shapes have been analyzed with DSPM and have shown good agreement
with the Method of Moments. The other shapes and their results are shown in Figures 6-34 to
Figure 6-41.
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Figure 6-34: a) Infinitely long cylinder of arbitrary shape type B. b) Plot of surface current
around infinitely long arbitrarily shaped cylinder B using DSPM and MOM for TM* wave

excitation.
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Figure 6-35: a) For an infinitely long cylinder of arbitrary shape type B under TM? excitation, J-
spectral plot of modes using DSPM and MOM. b) Far-field pattern using DSPM and MOM.
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Figure 6-36: a) Infinitely long cylinder of arbitrary shape type C. b) Plot of surface current
around infinitely long arbitrarily shaped cylinder C using DSPM and MOM for TM* wave

excitation.
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Figure 6-37: a) For an infinitely long cylinder of arbitrary shape type C under TM? excitation, J-
spectral plot of modes using DSPM, and MOM. b) Far-field pattern using DSPM and MOM.
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Figure 6-38: a) Infinitely long cylinder of arbitrary shape type D. b) Plot of surface current
around infinitely long arbitrarily shaped cylinder D using DSPM and MOM for TM# wave

excitation.
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Figure 6-39: a) For an infinitely long cylinder of arbitrary shape type D under TM? excitation, J-
spectral plot of modes using DSPM, and MOM. b) Far-field pattern using DSPM and MOM.
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Figure 6-40: a) Infinitely long cylinder of arbitrary shape type E. b) Plot of surface current

around infinitely long arbitrarily shaped cylinder E using DSPM and MOM for TM# wave

excitation.
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Figure 6-41: a) For an infinitely long cylinder of arbitrary shape type E under TM? excitation, J-
spectral plot of modes using DSPM, and MOM. b) Far-field pattern using DSPM and MOM.

Application of DSPM for arbitrarily shaped cylinders is limited by the depth of the
corrugations in their cross section. For deep corrugations in the cross section, the current density

deviates from the MOM solution significantly without translation. Therefore, in these analyses
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the corrugations were kept small compared to the radius of the cylinder. This was necessary in

order to achieve convergence of the addition theorem and stable inversion of the matrix.

6.11 Validation of the DSPM Model for Large Circular and Elliptical Cylinders

In this section large wavelength infinitely long circular structures and elliptical structures
with an axial ratio of 5:1 have been analyzed. Infinitely long 2D circular cylinder with radius =
404 is illustrated in Figure 6-42 to Figure 6-45. As shown in the results for TM? wave excitation,
the current distribution and far-field pattern for DSPM and modal analysis agree for this circular
cylinder of radius a = 40A4.
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Figure 6-42: Infinitely long circular cylinder of radius = 40A.
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Figure 6-43: Plot of surface current around an infinitely long circular cylinder with radius = 404

using modal analysis and DSPM under TM# wave excitation.
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Figure 6-44: J-spectral signature plot of an infinitely long circular cylinder with radius = 404

using modal analysis and DSPM under TM# wave excitation.
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Figure 6-45: Far-field pattern of an infinitely long circular cylinder with radius = 404 using

modal analysis and DSPM under TM# wave excitation.

For TM? wave excitation, the current distribution and far-field pattern for DSPM and
modal analysis are in good agreement for circular cylinder of radius a = 1004 in Figure 6-46 to
Figure 6-49.
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Figure 6-46: a) Infinitely long circular cylinder radius = 100A.
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Figure 6-47: Plot of surface current around an infinitely long circular cylinder with radius =

1002 using modal analysis and DSPM under TM# wave excitation.
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Figure 6-48: J-spectral signature plot of an infinitely long circular cylinder with radius = 1004

using modal analysis and DSPM for TM? wave excitation.
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Figure 6-49: Far-field pattern an infinitely long circular cylinder with radius = 1004 using modal

analysis and DSPM for TM# wave excitation.
For TM* wave excitation, the current distribution, J-spectral signature, and far-field

pattern agree for an elliptical cylinder with major axis a = 204 and minor axis b = 44, and

axial ratio % = 5. Plots are shown in Figure 6-50 to Figure 6-53.
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Figure 6-50: Infinitely long elliptical cylinder with axial ratio % =5and a = 204,
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Figure 6-51: Plot of surface current around an infinitely long elliptical cylinder with ratio % =5

and a = 204 using MOM and DSPM under TM?# wave excitation.
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Figure 6-52: Plot of J-spectral signature of an infinitely long elliptical cylinder with ratio % =5

and a = 202 using MOM and DSPM under TM# wave excitation.
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Figure 6-53: Plot of far field pattern for an infinitely long elliptical cylinder with ratio% =5and

a = 201 using MOM and DSPM under TM# wave excitation.

For TM* wave excitation, the current distribution, J-spectral signature, and far-field

pattern for an elliptical cylinder with major axis a = 404 and minor axis b = 84, and axial ratio

% = 5, are shown in Figure 6-54 to Figure 6-57.
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Figure 6-54: Infinitely long elliptical cylinder with axial ratio % = 5and a = 404.
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Figure 6-55: Plot of surface current around an infinitely long elliptical cylinder with ratio % =5

and a = 404 using MOM and DSPM under TM?# wave excitation.
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Figure 6-56: Plot of J-spectral signature of an infinitely long under cylinder with ratio% = 5and

a = 402 using MOM and DSPM under TM# wave excitation.
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Figure 6-57: Plot of far-field pattern for an infinitely long elliptical cylinder with ratio% = 5and

a = 40 using MOM and DSPM under TM# wave excitation.
In Figure 6-58 to Figure 6-61, the current distribution, J-spectral signature, and far-field
pattern agree for elliptical cylinder under TM* wave excitation with major axis a = 904 and

minor axis b = 184, i.e. axial ratio % = 5, are given.
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Figure 6-58: Infinitely long elliptical cylinder with axial ratio % = 5and a = 90A4.
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Figure 6-59: Plot of surface current around an infinitely long elliptical cylinder with ratio % =5

and a = 904 using MOM and DSPM under TM?# wave excitation.
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Figure 6-60: Plot of J-spectral signature of an infinitely long elliptical cylinder with ratio % =5

and a = 901 using MOM and DSPM under TM# wave excitation.
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Figure 6-61: Plot of far-field pattern for an infinitely long elliptical cylinder with ratio% = 5and

a = 902 using MOM and DSPM under TM?# wave excitation.

Application of DSPM for large cylinders is limited by the matrix size and the length of
the cross section in wavelengths. The current density deviates from the MOM solution at the
ends exhibiting a small spike, but the far field patterns are in better agreement except for the
minor backscattering sidelobe. To achieve convergence of the addition theorem and stable

inversion of the matrix, large modal limits and translation of the origin were necessary.

6.12 Validation of the DSPM Model for Rectangular Cylinders

Infinitely long square cylindrical structures with side lengths of 214 and 44 have been
analyzed. These infinitely long 2D cylinders exhibited current distributions and far-field patterns
similar to the Method of Moments as seen in Figure 6-62 through Figure 6-69. The DSPM failed
to properly calculate the current spikes at the ends of the major axes. The right side DSPM plot
of current distribution in Figure 6-63b has current end spikes closer to those calculated using
MOM analysis, but at the expense of greater sidelobes. The results shown are for TM* wave
excitation using DSPM and MOM only.
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Figure 6-62: Infinitely long square cylinder with edge length = 4A.
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Figure 6-63: Two plots of surface current around an infinitely long square cylinder with edge
length = 41 using MOM and DSPM for TM# wave excitation using different translations. a)

Smaller translation. b) Larger translation.
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Figure 6-64: Plot of J-spectral signature of infinitely long square cylinder (63a) with edge length
= 42 using MOM and DSPM under TM# wave excitation.
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Figure 6-65: Plot of far field pattern for infinitely long square cylinder (63a) with edge length =
4 using MOM and DSPM under TM# wave excitation.
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Figure 6-66: Infinitely long square cylinder with edge length = 84.
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Figure 6-67: Plot of surface current around an infinitely long square cylinder with edge length =
81 using MOM and DSPM under TM# wave excitation.
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Figure 6-68: Plot of J-spectral signature of infinitely long square cylinder with edge length = 84
using MOM and DSPM under TM# wave excitation.
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Figure 6-69: Plot of far field pattern for infinitely long square cylinder with edge length = 84
using MOM and DSPM under TM# wave excitation.
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Figure 6-70: a) Infinitely long semi-rectangular cylinder with rounded corners and edge length
4. b) Plot of surface current around an infinitely long semi-rectangular cylinder with rounded
corners using DSPM and MOM under TM# wave excitation.
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Figure 6-71: a) For an infinitely long semi-rectangular cylinder with rounded corners, J-spectral
plot of modes using DSPM, and MOM. b) Far-field pattern using DSPM and MOM.

6.13 Validation of the DSPM Model for Cardioid Shaped Cylinders
Infinitely long cardioid cylindrical structures with edge length of .54 and has been
analyzed. This infinitely long 2D cylinder exhibited current distributions and far-field patterns

similar to the Method of Moments as seen in Figure 6-72 to Figure 6-75.
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Figure 6-72: Infinitely long cardioid geometry cylinder.
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Figure 6-73: Plot of surface current around an infinitely long cardioid cylinder using MOM and

DSPM for TM# wave excitation.
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Figure 6-74: Plot of J-spectral signature of an infinitely long cardioid cylinder using MOM and
DSPM for TM# wave excitation.
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Figure 6-75: Plot of far field pattern for an infinitely long cardioid cylinder using MOM and

DSPM for TM# wave excitation.

Application of DSPM for cardioid cylinders is limited by the indentation and the length
of the cross section in wavelengths. To achieve convergence of the addition theorem and stable

inversion of the matrix, translation of the origin was necessary again.

6.14 Comparison Matrix Inversion Speed for DSPM Model vs. Method of Moments

Data comparing the speed of populating and inverting matrices using the Method of

Moments and DSPM are shown in Table 6-1. Ellipses of axial ratio% = 4 were analyzed. The

results are given for TM* wave excitation, and an equal number of source/observation points.
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The sampling ratio (SR) helped stabilize the matrices used in DSPM. The results of DSPM

compared faster against MOM for both population of the matrices and inversion.

Table 6-1: Timing Analysis of DSPM vs. MOM for Populating and Inverting Matrices

Major Axis MOM DSPM MOM DSPM Inversion
Length POP Timing | POP Timing | INV Timing | INV Timing | Time Ratio
20 3.1643 1.3286 0.4744 0.0189 25.0558

32 8.7049 3.9152 1.6910 0.0562 30.0653

40 13.6255 6.4856 3.1556 0.1047 30.1479

48 21.8877 11.4291 6.1098 0.2008 30.4235
60 39.249 16.3238 9.660 2755 35.064

72 53.3787 27.5159 21.9838 0.6192 35.5037

88 84.1849 43.3463 32.5841 0.8223 39.6268
100 110.0659 61.3263 50.0294 1.2643 39.5717

The same data comparing the speed of populating and inverting matrices using the

Method of Moments and DSPM is shown graphically in Figures 6-76 to Figure 6-78. The

DSPM was considerably faster for populating matrices and inverting them as seen in the graphs.

Figure 6-76: Comparison plot of speed to populate the same size matrices using MOM vs. DSPM
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Figure 6-77: Comparison plot of speed to invert the same size matrices using MOM vs. DSPM

for elliptical cylinder major axes with axial ratio% = 4. a) Linear scale. b) Logarithmic scale.

The DSPM showed considerable speed improvement (22+) for inverting matrices as seen
in the graphs shown in Figure 6-77 and Figure 6-78. The speed improvement increased with

increasing size of the cylinder and matrix size as seen from the IR trend given in Figure 6-78.
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Figure 6-78: Plot of ratio of speed to invert the same size matrices using MOM vs. DSPM for

various elliptical cylinder major axes with axial ratio % =4,
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6.15 Summary of Results for DSPM

The Direct Spectral Projection Model has been shown to be accurate in modelling
infinitely long circular cylinders in two-dimensions. The convolution property of the addition
theorem improves DSPM results significantly over those calculated using simple DSPM. Results
of the DSPM closely mimic those of MOM for elliptical cylinders of high axial ratio and
arbitrary shapes for TM? incidence. For TE? incidence, the model also performed well with
elliptical cylinders of high axial ratio. The modal bandwidth of elliptical cylinders increases with
the length of the major axis, and thus becomes a limiting factor for ellipses whose major axis is
long in wavelength. For short wavelength structures, DSPM performs well in accurately
modelling the current distribution and far-field patterns. DSPM has also been shown to populate
and invert matrices faster than MOM. DSPM is a promising alternative to other techniques for

scattering analysis of objects with different materials.
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Table 6-2: Summary of Spectral Signatures of Virtual and Induced Current Sources.
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Table 6-3: Summary of DSPM Equations.

| |
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Equation for the DSPM for scattering problems with far-field excitation

| I
~ ~
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DSPM eigenvector equation for near field electric line source excitation
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DSPM matrix equation for near field electric line source excitation and two vector convolution

model.
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Chapter 7: Conclusions and Future Work

7.1  Spectral Projection Model and Direct Spectral Projection Model Summary

This dissertation introduces a new technique for solving two-dimensional
electromagnetic field scattering problems called the Spectral Projection Model. Some techniques
like the Finite Element Method and the Finite Difference Time Domain are developed directly
from the differential form of Maxwell’s equations. The Spectral Projection Model is a boundary
element method, much like the Method of Moments and Fast Multipole Method, and a spectral
method like the Spatial Frequency Technique, explained in Chapters 2, 3, and 4. Beginning with
the differential form of Maxwell’s equations, the boundary element method enforces the
tangential electric and magnetic field boundary conditions to the surface of an object to find the
integral form solution of the electric and magnetic fields. The resulting solutions are called the
Electric Field Integral Equation (EFIE) and the Magnetic Field Integral Equation (MFIE).
Depending upon whether the excitation is a transverse electric or transverse magnetic plane
wave, an electric or magnetic line source, or multiple sources will determine the form that the
EFIE or MFIE takes. The scattering object is then discretized and a set of linear equations in

matrix form are solved.

The Method of Moments, Fast Multipole Method, and Spatial Frequency technique solve
a matrix equation for the currents on the surface of the conducting body, and then the far-field
radiation pattern may be calculated from the current distribution. The Spectral Projection Model
uses elements of all three techniques to solve for the Bessel spectral signature of the electric
current, from which the far-field pattern may be found by application of discrete Fourier
transform. The Direct Spectral Projection Model solves for the current on the surface of the

conductor directly using an eigenfunction approach.

The Spectral Projection Model and Direct Spectral Projection Model is a new spectral
domain method that has certain features with advantages over the techniques just mentioned.

These features, validation results and future research directions are listed below:
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e Electric and Magnetic Fields are written as Projections of Spectral Signatures

e The Boundary Conditions are written as Projections and not Integral Equations

e Irregular Grid Spacing and Source and Observation Points are not Collocated

e Far-field Pattern Calculated Directly from Spectral Signature (SPM Only)

e Boundary Conditions are Implicitly Enforced (DSPM Only)

e Validation of SPM and DSPM using MOM

e Application and Future Directions of SPM and DSPM for Dielectric and 3D Objects

7.2 Electric and Magnetic Field Representation using SPM and DSPM

The Spectral Projection Model (SPM) has its origin in the Hankel form of the addition
theorem, and its antecedent known as Graf’s addition theorem [56]. The addition theorem is a
method for calculating a Bessel or Hankel function as an infinite sum of Bessel and Hankel
functions. For the Spectral Projection Model, the addition theorem is used to decompose the
Green’s function in the scattered electric and magnetic fields as a projection of the J-spectral
signature of source points onto the H-spectral signature of observation points along the surface
of the object. The wave transformation equation described by Harrington [17] and the asymptotic
form of the Hankel function are used to define plane wave behavior as the weighted sum of H-

spectral signatures.

7.3  Boundary Condition Enforcement using SPM and DSPM

Boundary conditions for the Electric Field Integral Equation and the Magnetic Field
Integral Equation are written as a result of applying boundary conditions at the surface of the
PEC. For the EFIE, the incident and scattered electric fields are summed together. The equation
contains an integral with a Green’s function and basis functions. Selection of the basis functions
depends on the Green’s function, and integration of the Green’s function at the singularity must
be performed. Similarly, the MFIE sets the difference in the tangential magnetic fields equal to

e surface current, and contains an integral with a Green’s function and basis functions.
th 1 t, and t t lwitha G ’s funct db funct
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Both SPM and DSPM write the boundary conditions for the EFIE and MFIE as the
projection of one spectral signature onto another spectral signature by decomposing the Green’s
function into Hankel and Bessel functions using the addition theorem. Unlike MOM, FMM and
SFT, no basis functions are required, and there is no need to integrate the product of those
functions with the Green’s function. So, this method offers a simple solution to enforcing the
boundary conditions without the messy mathematics of integrating complex functions at the

singularity of a Green’s function.

7.4 Irregular Grid Spacing using SPM and DSPM

One disadvantage of the Spatial Frequency Technique is that in order to effectively use
the FFT in problem formulations, it is necessary to define the objects under illumination with
regularly spaced grids. Most Method of Moments problems generally use regular grid spacing,
but the Method of Moments can accommodate irregular grids with hybrid approaches. The SPM
and DSPM do not suffer from this constraint when solving scattering problems with low axial
ratios. For higher axial ratios in which the addition theorem is used as a convolution product,
angular spacing of rotating vectors must be defined before an FFT algorithm is used.

7.5  Far-field Calculations using SPM

The solution of scattering problems using the Spectral Projection Model yields the J-
spectral signature of the induced current on the surface of a PEC conductor. Rather than solve for
the induced current, the far-field pattern for the object can be calculated directly from the J-
spectral signature by using a form of the Discrete Fourier Transform. When solving for the
current distribution is necessary, the DSPM offers a simple way of calculating the induced

currents.
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7.6  Boundary Conditions are Implicitly Enforced using DSPM

DSPM analysis is a way to calculate the scattered fields by describing them in terms of
eigenfunctions. Virtual currents on the surface of a conductor act as eigenfunctions with equal
and opposite induced currents on the surface of the object sharing the same points. Virtual
currents are used to describe incident and induced currents by defining them as the weighting
factors of H-spectral signatures. The weighted sum of the H-spectral signatures of the incident
and virtual currents are set equal to each other in a matrix equation, and solving for the virtual
currents enables one to calculate the induced currents. The boundary conditions are implicitly
enforced by the eigenfunctions, because any induced current produces a scattered field equal and
opposite that of a virtual current. Projecting the H-spectral signature on each side of the equation
onto the same JT-spectral signatures defined at a set of observation points on the surface ensures

that the incident field and the scattered field cancel.

7.7 Validation of SPM and DSPM using MOM

Both SPM and DSPM have been tested and verified for scattering from 2D, conducting
objects for TM and TE waves using both EFIE and MFIE. The SPM was developed originally
and led to the development of the faster analytical tool called the DSPM. Both techniques can
solve a variety of 2D electromagnetic scattering problems, and DSPM has been shown to solve
TM? scattering from arbitrary shaped objects with the same accuracy as the MOM.

7.8 Application and Future Directions of SPM and DSPM for Dielectric and 3D Objects

SPM and DSPM are spectral techniques that have been used to solve a variety of
scattering problems on 2D conducting bodies without the necessity of integrating the singularity
of a Green’s function or specifying a regular spatial grid. By taking advantage of the convolution
property of the addition theorem, a larger class of problems has been solved with excellent
accuracy. Further study of the convolution theorem and its implementation on objects with
corrugated surfaces can expand the usefulness of these methods. These techniques show promise

in solving problems involving scattering from 2D dielectric objects by applying both the electric
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field and magnetic field boundary conditions. In order to solve 3D conducting body scattering
problems, spherical Hankel functions can be employed with application of both the electric field
and magnetic field boundary conditions. SPM and DSPM techniques can be validated for 3D
problems by comparison with results using MOM RWG elements.
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Appendix A: SPM and Graf’s Equation

A.l  Graf’s Addition Theorem — Correlation Product
The addition theorem used in Fast Multipole Method and Spectral Projection Model is

given in equation (3 — 13) below from references [56-58]. This equation is specific to

Héz)(ﬁlp — p'|), the zeroth order Hankel function of the second kind. Note the sign of the angles

are the same as the sign of the vectors p and p’.

HOBlo—pD = ) JBIpDHD BlpDe @0 p<p (3-13)

k=—o0
This addition theorem is one of Neumann’s formulas, but the addition theorem was generalized
by Johann Heinrich Graf. The addition theorem equation of Graf given by Watson [59] is shown

in equation (A-1). Figure A-1 is an illustration of the corresponding coordinates and angles.

8

7

w—Zasz—0
|ze'%] < 12|

7

\

8

7t

w—=Zasz—0
|ze'%w] < 2]

7

(]
\ w

N

b)

Figure A-1: a) Illustration of vectors and corresponding angles for Graf’s addition theorem. b)

Graf’s addition theorem with parallelogram for vector association.

H® (w)embs = z

n=-—oo

e

m+n (Z)]Tl (Z) ejn¢w
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Equation (A4 — 1) may be viewed as a discrete a correlation operation because of the (m+n) order

term on the Hankel function H?)

m+n-

To change the equation into a convolution product, the order

term needs to be (m-n).

A.2  Reflection Properties of Bessel and Hankel Functions
The reflection properties of the Bessel and the Hankel function in equations (4 — 2) to

(A — 6) may be used to change equation (4 — 1) into equation (4 — 7) [60].

(=1)" = e~Jnm (A-2)
JnW) = Jp (~w) (A-3)
Jon(w) = eI, (w) A-4
HP (W) = HP (-w) (4-5)
HZ(w) = e ™ HP (w) (A-6)

A.3  Graf’s Addition Theorem — Convolution Product

As mentioned above, equation (A — 1) is a correlation operation because of the (m+n)

order term on the Hankel function H?

m+n-

By using the reflection properties listed above,

equation (4 — 1) can be transformed into equation (4 — 7), which is the convolution product

form H,(,fzn of Graf’s generalized addition formula.

HP Weime: = 3 ., (2)a(2)el v (4-7)

n=-—oo
The correlation and convolution products of the Bessel function are given in equations (4 — 8)
and (A — 9). These equations are forms of the Neumann addition theorem, which is less general

than the Graf form of the addition theorem.

ImW)EI P = 3" Jo (D)) (A-8)
Iz = N Jo (D)@l Bw) (4-9)
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A.4  Graf’s Addition Theorem - Coordinate Change

In order to implement the Spectral Projection Model, a more convenient coordinate
system needed to be considered that defined angles from the positive horizontal X-axis rotating
counterclockwise. This section illustrates how the Graf addition theorem can be rewritten using a
different set of coordinates. Taking the difference between two vectors, R = p — p’ , to enact a
change in coordinates and angles, one can substitute from equations (4 — 4) and (4 — 6) into
equation (A — 1). Figure A-2 is an illustration of the vector subtraction.
p,=¢" —¢ (A—10)
bw=0—¢ (4-11)
The corresponding expression for R are in equations (4 — 12) and (A — 13), besides in Figure
A-2.

R = \/pz + p'* + 2pp’cos(a) (A-12)

R = \/pz +p'? = 2pp’cos(y) (A—13)

Graf's Addition Theorem Subtraction of Vectors
R=p-p'

R= \/;o2 + p% 4 2pp'cos(7)

TF p—Rasp —
10" < 1pl R= \//)3 + p? = 2ppcos(a)
6 -
a=9o, yET-9+ ¢
5 Y, =¢"-¢

A o I i
b, =¢-9¢

Figure A-2: Tllustration of vectors and corresponding angles for Graf’s addition theorem for the

difference between two vectors with a change in coordinates.
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The new equation for Graf’s addition theorem for the subtraction of vectors is in equation

(A—14).

o)

HYBlp = p'De™®" = ) HE (Blpa(BlpDellomsmo-nd'] (A-14)

n=—oo

The new equation for Graf’s addition theorem for the addition of vectors is in equation (4 — 15).

o)

H Blp -+ p e = 5 ), (BloDJa(BlpDell oo (A-15)

n=-—oo
Iustrations of Graf’s addition theorem for the addition of two vectors is shown in Figure A-3
and Figure A-4.

Graf's Addition Theorem Addition of Vectors

R=p+p'
10 =
// T k
N\ [
9h rd X
n‘/ \
| |
8 [ AT i
.\ -7
.
r p—>Rasp —0 e R= \/p2 + p'* = 2pp'cos(a)
6L 1ol < lpl - \/ — (
T =\/p>+ p'" + 2ppcos(y
b, =" )
5 -

(;)w =¢p+7-¢ p a=q,

Figure A-3: Illustration of Graf’s addition theorem for a vector sum with a change in coordinates

Y, @,y to coordinates ¢, ¢', ¢''view one.
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Graf's Addition Theorem Addition of Vectors

R=p+p
10 S

7 p— R asp' R =/p>+ p* — 2pp'cos(a)
6 o' < pl = ¢2 2
/ g =\/p?+ p'" 4+ 2pp'cos(y
v, = "0 PPty pp' cos(7)

Hh = -9 , = ¢
Q)W o+mT-0 « ow

o
1)

Figure A-4: lllustration of Graf’s addition theorem for a vector sum with a change in coordinates

Y, d,,, v to coordinates ¢, @', ¢''view two.

Equations (A — 8) and (A — 9) may be rewritten in terms of the new angle too. They are shown
in equations (A — 16) and (4 — 17).

Im(Blo = D™ = 3" Jr i (BloDIn(Blp'Dellomimo-ns' (4-16)
In@Blo+ D™ = 3" J u(BlpDI(Blp el e s (4-17)

A5 Neumann’s Addition Theorem — Convolution of Two Vectors
The connection between the spectral signature of a set of points and the Neumann

addition theorem is evident when one considers the product and sum of vectors.
lp—p1>=p@-p) (p-p") (A-18)
lp—p1>=p-p+p -p —2pp (4-19)
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p-p

lpllp'|

lp—p'I> =1pI* + 1p'I* — 2Ipllp’Icos(¢)

Similarly, one can prove for the addition of two vectors,

lp+p'I2 = Ipl*> + 1p'|* + 2|pllp'lcos(¢)

cos(¢) =

If vector p’ = p,' + p3’', the vector sum can be represented as equation (4 — 23).

lp+ (pa' +pp)I?P =P +pa' +pp) (P+pa +pb)
One can write these vector sums using the addition theorem for Bessel functions.

Jn Blp + p'elme" =

> Jen(BloDn(Blp e

m=—oo

Im (,Blpa’ + pbll)ejmd) =

> Jnes Bl DI (Blpy Dellm-Dar=19

l=—0o0

Jn Blp + pa' + pp'Ne/™?" =

D" JumB10D D S Bloa DI (Blpy eIVt

m=—oo l=—0o0

The expression in (A — 24) may be written in shorter form as equation (4 — 27).

J,p+p)=]np)QJ(n,p")

(4 = 20)
(4-21)
(4 —22)
(4 —23)
(A —24)
(A — 25)
(A — 26)
(4—=27)

with the symbol @ meaning convolution, and the arguments being the order of the Bessel

function and then the vectors.

The expression in (A — 26) may be written in shorter form as equation (4 — 28).

J,p+pd +pp) =],p) @ J(n,pa") ®J(n, py))

(A — 28)

Similarly, one can write the addition theorem for Hankel functions, and correlation ® between

spectral signatures. For equation (4 — 29),

H(m,p—p") =H(n,p) ® J(n,p) pzp

(A —29)

the equation can be seen as the discrete correlation between the H-spectral signature of the

observation point and the J-spectral signature of the source point.
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The convolution operation allows one to define a relationship between two spectral
signatures defined with respect to two separate origins.

Hm,p+p)=Hnp)® J(n,p) (A—30)
The term H(m, p + p') represents the H-spectral signature with respect to the origin, 0’, and
H(n, p) is H-spectral signature with respect to origin, o. J(n, p") represents the J-spectral
signature of the translation vector which translates of the origin.

The important conclusion of this appendix is the property that the convolution of the
spectral signature of one vector with the spectral signature of another vector will yield the
spectral signature of the vector sum. The first vector may be either the Hankel spectral signature
or the Bessel spectral signature and the second vector is always a Bessel spectral signature. This
amounts to decomposing the vector into a convolution operation, and follows from the addition
theorem. The resultant spectral signature of the sum vector will be the same as the spectral
signature of the original vector. This property may be shown to extend to the sum of any number

of vectors.
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Appendix B: TM and TE Waves on Infinitely Long Cylinders

B.1  Magnetic Field Integral Equation and Electric Field Integral Equations
This section contains the derivation of the MFIE for TE? polarized waves and the EFIE
for TM? polarized waves. The following derivations may be found in many electromagnetics

texts [27]. Two of the more popular ones are by Harrington [35] and Balanis [36].

B.2  Perfect Electric Conductor Boundary Conditions

The boundary conditions for a perfect electric conductor are stated as follows. The
tangential component of electric field is continuous across the air/conductor interface as is the
normal component of magnetic flux density. The current normal to the surface boundary equals

ZEero.

B, | E,

L | — Prond Par
B l E o s
1] l.ll__g I}|| 0 I |[':'_l [':1| 0 I |I'__l [i:l 0
By=0 E;=0 vl %0

Figure B-1: PEC Boundary Conditions: Magnetic field normal to the boundary, electric field

tangential to the boundary, and current on the surface of the interface.

B.3  Helmholtz Wave Equation
Calculation of the Helmholtz wave equation for the magnetic vector potential A in
cylindrical coordinates begins with equation (B — 1), the curl of the magnetic vector potential is

equal to the magnetic flux density B.

VxA=B (B—-1)
Now taking the curl of both sides of the equation,
VXVXA=VXB (B-2)

and expressing the magnetic flux density in terms of the magnetic field intensity H,
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VXVxXA=VxuH (B—13)

The vector A may be expanded using the identity shown in equation (B — 4).

VxVxA=V(V-4)—-V?4 (B—4)
Substituting equation (B — 3) into equation (B — 4), one gets (B — 5).
V(V-A) —V?A= VxuH (B-15)

Recall Ampere’s law in equation (B — 6).
VXH=]+ jwsE (B—6)
Assuming the medium is homogeneous, i.e. u is a constant, the right-hand side of equation

(B — 5) is replaced with the right-hand side of Ampere’s law.

V(V-A) —V?A =] + jousE (B—17)
Faraday’s law for time harmonic fields is written in equation (B — 8).

VXE=—jwB (B—-8)

Substituting equation (B — 1) into (B — 8) and rearranging one obtains equation (B — 9).

V x (E+ jwA) =0 (B-9)

Using the vector identity in equation (B — 10), with ¢, defined as the scalar electric potential,

one may write

Vx(-V¢,) =0 (B —10)

Substitution into equation (B — 9) yields equation (B — 11).

V x (E + jwA) = V x (=V¢,) (B —11)

Then an equation for electric field may be written as equation (B — 12).

E= —-V¢,—jwA (B —12)
Equation (B — 12) is substituted into equation (B — 7),

V(V-A) —V?A =] + jous(=Vep, — joA) (B—13)

The terms of equation (B — 13) when reordered becomes equation (B — 14).

V2A + w?ued = —pJ + V(V- A + jousd,) (B — 14)
Defined in equation (B — 15) is the Lorentz gauge,

V-A+ jousp, =0 (B —15)

Now substituting (B — 15) into equation (B — 14) yields the free space wave equation for the

magnetic vector potential (B — 16) where % = wjpue.
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V24 + %A = —y (B — 16)

The term S is the free space wavenumber.

B.4  Free Space Helmholtz Wave Equation Source Free
For a source free region, J] = 0, the homogeneous wave equation is given in equation
(B —17).

VZA+ B2A=0 (B—-17)
The Laplacian operator in spherical coordinates is shown in equation (B — 18).

vz—la(RZa)+ - a<,ga)+ Lo (B —18)
~ R2orR\" 3R] T Rzsin0 96 \°""" 36) T RZsinz6 992

For a plane wave using cylindrical coordinates with the magnetic vector potential aligned

04,
el

equation (source free, free space) for the magnetic vector potential A = @,A,, in which A is a

with the Z-axis, A, = constant, then Z‘ZZ = 0 and = 0. The solution of the homogenous wave

plane wave, is given in equations(B — 19) through (B — 22).

1 0 d0A

ﬁﬁ( 2 aRZ>+ ,BZAZ = O (B—19)
1 0A 924

ﬁ(ZR aRZ + RZWZZ>+ ,BZAZ =0 (B_ZO)
024, 204, ,

s T pan * BA =0 (B —21)
2

Sz (RAD) + BRA; = 0 (B — 22)

The solution to the equation (B — 22) in free space is given in equation (B — 23) in which A% is
the incident magnetic vector potential constant and A$ is the scattered magnetic vector potential

constant for the homogeneous wave equation.

.e_jBR e]kﬁR
4, = M+ A

(B —23)

The function A, is a Green’s function, specifically the zeroth order spherical Hankel
function of the second kind, and is written in equation (B — 24),
o JBR
hP(R) = —— (B - 24)
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with

R=Vlp—p'I2+(z~2)? (B - 25)
Equation (B — 16) is called the Helmholtz vector wave equation for the magnetic vector

potential with source current J. On the surface of a conducting body, J; = J. The solution to the

wave equation is an integral expression given in equation (B — 26).

" , :
A = = || 1P BRYdS (B - 26)
TJls
The excitation current for the magnetic vector potential A is J,(p"), and the Green’s function is
WP ®R).
The magnetic vector potential may then be written as
K Ny, (2) ,
4:0) = 4= || 1o BROdS (8- 27)
S

B.5  General Helmholtz Wave Equation with Sources
Starting with equation (B — 15), one substitutes from equation (B — 12) the expression
for @, to calculate the electric field equation for a source free homogeneous region, i.e. u, € are

constant.
E=—jwd———v(V-4) (B —28)
WUE

The scalar electric potential ®, wave equation is given as

Vi, + po, = p, (B —29)
For TM* incident waves, A has no normal component, and p, = 0. Therefore, from

equation (B — 29), @, = 0. The divergence of the magnetic vector potential is given in

equation (B — 30).

V-A=d, (B - 30)

and so ®, = 0, and one can then write (B — 31).

V-A=0 (B —31)
Now it follows that

V(V-4) =0 (B —32)

and equation (B — 28) can be simplified. The resulting equation becomes
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E=—jwA (B —33)
For TM* wave, because the current density on the surface of the cylinder is in the Z-
direction only, J¢ = J,Z, and the current is a function of p and ¢ only, J, = f(p, ¢). From the

continuity equation,

V-Js =2 with p, =0. (B — 34)

B.6  EFIE and TM* Waves on PEC Infinitely Long Cylinders

If the incident field has only a Z-direction, i.e. E* = ZE*, then ES = 2E*, which satisfies
the boundary condition that the tangential electric field must equal zero. Therefore, for TM?
incidence, the A must have only a Z component. Equating the 2 vectors in both sides of equation
(B — 34) one obtains equation (B — 35) for a time harmonic wave.
E,2 = —jwA,2 (B —35)
Using equation (B — 27) and substituting the term R from (B — 25) into equation (B — 27), one

may integrate with respect to z to obtain equation (B — 36)

' ap’ (B — 36)

) = ) e~ IBVIp—p'|?+(z—z1)?
Az(p) = f Jz(p j

JIp=p' P+ (z—2)?
to find a simplified expression for the magnetic vector potential for TM? incidence.

Ap) =% f f J:(p") He® (Blp = p'Ddp’ (B —37)
S

Substituting back into equation (B — 35), one obtains a new equation. For an infinitely

long cylinder, the appropriate Green’s function is the zeroth order Hankel function of the second

kind HO(Z) and the expression for the scattered electric field becomes (B — 38).

B = =) 1:0) B2 Blo i (8- 38)

B.7  MFIE and TE* Waves on PEC Infinitely Long Cylinders
A TE? polarized wave with the magnetic field aligned with the Z-axis of the cylinder is
written in equation (B — 39),

H' =2H.(p, $) (B —39)
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Enforcing boundary conditions on the surface of the infinitely long PEC cylinder, one
applies the magnetic field boundary conditions to equation (B — 40), and arrives at equation

(B — 41) along contour C.

Js(p) = x (H' + H%)|¢ (B — 40)
Js(p) = x H' + (7t X H®)|¢ (B —41)
For TE? polarization, H? = 2H, and one can write

Js(p) = X 2H} + (7 x H)|, (B —42)
Replacing the cross product with the tangential unit vector £,

Js(p) = —tH;|c + (A X HY)|c (B —43)
Now taking the dot product of both sides of the equation by £,

t-Js(p)=t1" (—szi|c+(ﬁXHs)|c) (B —44)

and one can write the surface current as Js . (p, ¢).

Jse(p, @) = —H}|c + (& -0 x H®)|¢ (B —45)
The surface current J along the cross-sectional contour € of an infinitely long cylinder

equal to the tangential current J; . and is given in equation (B — 46), with £ representing the

tangential unit vector at coordinates (p, ¢). The current is tangential to the surface along the

contour C.

]s(pl ¢) = E]S,t(p' ¢)|C (B - 46)

B.7.1 Expressing the Scattered Magnetic Field as an Integral

This section aims to rewrite the expression for the scattered magnetic field, H®. One can
then derive a simpler expression for the surface current along the cross-sectional contour C.
Several texts present different methods to approach deriving the MFIE and its associated terms
[61-65]. One begins with

1
HS=;V><A (B — 47)

For an infinitely long cylinder in the Z-direction, one substitutes for the magnetic vector
potential from equation (B — 26). Integration must be performed to infinity in the Z-direction as

shown in equation (B — 48).
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dz'dc’ (B —48)

1 U ® e JBR
H%ﬁvw—ff_mm
nu 47T C — 00 y

Once one integrates equation (B — 48) in the Z-direction, one obtains equation (B — 49),

according to the same reason as in equation (B — 37) for TM? incidence.

1P=—fo1&ﬂ¢”wmu' (B — 49)

The variable R is newly defined as

because the z term has been integrated out.

B.7.2 Leibniz Integral Rule
In order to simplify equation (B — 49) further, it is necessary to use Leibniz integral rule
[65] for differentiation to bring the curl operator inside the integral. For the variable p in

equations (B — 49) and (B — 50), one can write Leibniz integral rule as equation (B — 51).

d <jC2(P)
— f(p,p’)dp’> =
dp C1(p)

d d
F(0.600) ;0 = (0. ) 6@+ | s opan (8 - 51)
p

C2(p)

If C;(p) = C, is aconstant, and C,(p) = C, is a constant, Leibniz rule reduces to the equation
(B —52).

d [ (¢
dp( f(pp)dp>

Equation (B — 51) may be written for p’ as well.

C2

T —f(p,p")dp’ (B —52)
Cq
The curl operator may be moved inside the integral using Leibniz rule because the limits

of integration C; and C, are taken at constant points along the contour, i.e. one can say Z—; =

ac _oc _
9z adp

B.7.3 Simplifying the Scattered Magnetic Field using Leibniz Integral Rule
The equation (B — 49) may be written as follows.

261



e = f V xJ,(p")Hs? (BR)AC (B - 53)
4 C

For the term ]s(p')Héz) (BR) one can apply the vector identity given in equation
(B — 54).
VXYW =V X W+ 9PV X W (B — 54)
Substituting in the identity above, the integrand in (B — 54) may be written as (B — 55), where

the derivative is taken with respect to p.

Vx (HP (BRI(0)) = HP (BRIV X J5(p") — J(p") x VHS? (BR) (B - 55)
The curl of the surface current term with respect to p in equation (B — 56) equals zero.
VxJs(p) =0 (B —56)

which yields equation (B — 57)
=7 f Js(p') % VHo? (BR)AC (B ~57)
C

Now taking the n’ cross product and substituting (B — 46) into equation (B — 53), one arrives
at equation (B — 58).

nxHS =1 x {Z f '5.(p") x VH® (BR)dC (B — 58)
C

B.7.4 Scattered Magnetic Field Expression

To simplify the expression of the cross product of the normal vector with the scattered
magnetic field, n’ x H*, one begins by taking the dot product of both sides of equation (B — 58)
with the unit vector ¢’ tangential to the contour C. Also, one substitutes /s, = ] for current

around the contour.

N xH =t'-n' x % f . (p") x VH® (BR)dC (B — 59)
Cc

Rearranging terms, equation (B — 59) results.
o X He = e x J Je(o") (' x vHEP (8R)) dC (B — 60)
Cc

The tangential vector to the contour ¢’ for TE? waves is equal to the cross-product expression in

equation (B — 61).
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—~ -~

t'=-n'x 2 (B—-61)
Now working with the vector dot product in parenthesis in the integrand of equation (B — 61),
one obtains equation (B — 62).

t'x VHP (BR) = —n' x 2 x VH{® (BR) (B - 62)
Now one uses the vector identity in equation (B — 63)

Ax(BxC)=B(A-C)—-C(A-B) (B — 63)
with equation (B — 61) and write

—' x2 x VHP (BR) = -2 (r? . VH®? (,BR)) +n (2 . VH? (,BR)) (B — 64)

Boundary Condition Vectors of An Ellipse
MFIE

Figure B-2: Illlustration of vectors associated with TE* waves incident on an infinitely long

conducting cylinder.

The unit normal vector at (p, ¢) is n'. The gradient of Héz) (BR) is cylindrically symmetric and

cannot lie in the Z-direction. Thus, one writes
2-VHP(BR) = 0 (B — 65)

and arrives at equation (B — 66),
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&' x VHP (BR) = —2 (r? -VH®? (ﬁR)) (B — 66)

Next taking the dot product of (B — 64) with the tangential unit vector,

£n x (E' X Vng)(ﬁR)) =—{n'x2 (r? -VH® (ﬁR)) (B — 67)
and
£-n' x (€' x VHP(BR)) = n' - VH{? (BR) (B — 68)

because n’'x z = —t’and t’-t' = 1.

Now one can substitute (B — 68) into equation (B — 58), and equation (B — 69) results.

Jsi(o,@) = ~Hile + lim | Je(o) (- VP 6R)) dc (B - 69)

The slope of the surface defined by the function f in the direction of the normal unit
vector is called the directional derivative of f. The dot product of the normal vector i and the
gradient of the function, V£, equals the derivative of the function f with respect to the normal
[21,27,66].

of _
= Vf (B —70)

Using this property of the normal vector, one can rewrite the expression in parenthesis
from equation (B — 70) as
oH (BR)

on
This gives an expression for the surface current density due to TE* wave incidence on an

n'-VH® (BR) = (B —71)

infinitely conducting cylinder.
. 2
. j OH,” (BR)
Jseo,®) = ~Hile +4 [5G = de B-72)
4 C an

By taking the derivative of Héz) (BR) with respect to the vector p’, the dot product
n- VH(SZ) can be written as equation (B — 73), where R is the unit vector of R from coordinates
(p',¢") to (p, P).
n'-VHP (BR) = (n'- R)BH® (BR) (B —173)
and equation (B — 72) may be written as (B — 74),
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Je(p,®) = ~Hile +5 | Je(o) (@ - R)BH (BR) dC (B~ 74)
Cc

The dot product in equation (B — 74) may also be written as a cosine function. See
Figure B-1 for an illustration of the vectors and angle y.
n' - VH® (BR) = cos(y)BH (BR) (B — 75)
This gives another expression for the current density due to TE* wave incidence on an infinitely

conducting cylinder.

Jeo9) = ~Hile + 5 [ e costrn® @ ac (5 -76)
Cc

Method of Moments Vectors of Ellipse

Y-Axis

Figure B-3: llustration of vectors p’, ¢’, and n’ associated with TE? waves incident on an
infinitely long elliptical conducting cylinder at contour segment C. The contour current J-(p") is
tangential to the surface.
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Appendix C: SPM and Modal Analysis of Circular Cylinder

C.1  SPM for Incident Electric Line Sources and Magnetic Line Sources

In this section a comparison of the Spectral Projection Model to modal analysis for TM?
and TE? incident waves impingent upon the surface of a PEC infinitely long circular cylinder is
presented. These fields were calculated using modal analysis in Balanis [36]. Two external
sources are covered, a near-field excitation from an electric line current, and a far-field excitation
from a TM? plane wave. The same fields are then calculated using the Spectral Projection Model

and the results are compared.

Transverse Electromagnetic Wave

Electric (I ) Line Current with Circular Cylinder Incident and Scattered Wave Angles
5
4
3.
. ~
2-
’
) 1.5 |
AN
<
N 14
0.5 —
2 “
-3 § 04
=
4 0.5~ 5
5 17
2N < E; 45
\ Line Current
1 N _ Near Field 2 5 0
0 \; PEP e 2 s
TN~ s 10 1 os o
Y-Axis Zx-(2 TD 2 * ‘ oo 1 15 2 9 2
X-Axis X-Axis
a) b)

Figure C-1: a) Near-field and b) far-field TM? plane wave incident on a conducting cylinder.

C.2  Modal Analysis and SPM for Electric Line Sources

In Figure C-1 an electric line source is illustrated. The electric line source is located at
polar coordinates (p’, ') = (po, Po)- The radiated electric near-field E, of an electric line
current is parallel to the axis of the cylinder and line source (Z-axis). The electromagnetic fields

are TM? polarized in the far-field. See equation (C — 1) .

"N '82]9 (2) ’
EBlp - ') = 4 HP (Blp — p'D -1
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The electric current line source is constant magnitude, I, and time harmonic. The
magnetic field has both radial and azimuthal components which are transverse to the axis of the
cylinder.

To satisfy boundary conditions, the total modal solution for the TM? tangential
component of the electric field E£ near the surface of a circular cylinder is the sum of the
incident and scattered fields. Equation (C — 2) expresses the boundary condition for the incident
and scattered electric fields in the Z-direction for a circular cylinder of radius, p = a.

Ef(p) = EL(p) + Ei(p) =0 (C-2)

The modal solution [47] for the tangential electric field for the conditiona < p < p' is
shown below in equation (C — 3).

,821 o) )
Ei=—Goe) . HP@ID

dwe

Jk(Ba)
H® (Ba)

J(BlpD) — H® (Blp]) | e/k(#=¢") (€ -3)

Equation (€ — 3) may also be derived using the Spectral Projection Model. Firstly, begin
with the incident electric field EL written as the projection of the H-spectral signature of the source

points (p’,¢") onto the J-spectral signature of the observation points (p, ¢) multiplied by the
2
magnitude of the electric line current, I, and a scaling factor e

B2 :
Eé=_m:egmesn as=p=p (6_4‘)

The Hankel spectral signature of a source point at (p’, ¢") is designated as e,

- .y vn e T
e = [HPBlp' e %" .. HO@lp' D/ .. HABlp'De/?'] (C-5)
and the Bessel spectral signature of an observation point, (p, @), is e,y,.
. . . T
eom = [J_k(BlpDe ™ ® .. ] (BlpDe® .. Jx(BlpDe’ ?] (€ -6)
After projecting ey, onto e,,, and multiplying by a scaling factor, —f—;, the resulting

incident electric field EL is equivalent to the modal solution truncated to 2K + 1 modes. Both are
written in equations (€ — 7) and (C — 8).

Bl

El =
z 4we

D HEO @I DJ(Blple 0" a<p<p (€=

Modal Solution Electric Line Source — Incident Field
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El=—
z 4we

1 K . /
D HP @I DBlpDe -9 aspsp.  (€-8
k=—K

Spectral Projection Model Electric Line Source - Incident Field

The scattered electric field for these two points may now be written in projection form as
equation (C — 9). To determine the scattered electric field from a circular cylinder, the J-spectral
signature of every induced electric line currents at (p’, ¢') is projected onto the H-spectral

signature of the observation points located at (p, ¢).

Bl :
E; =- 4w:egmesn asp=p (€-9)

The spectral signature of an induced electric line current at (p’, ¢o") is given in equation
(C —10), with factors c;, used to satisfy the boundary conditions. The vector in equation

(C — 10) equivalently represents the J-spectral signature of the induced currents.
; ! . ! . ! T
esn = [cke K . ek’ . c_gel KD (C —10)

The H-spectral signature of an observation point, (p, @) is e,p,.

. . . T
= [HR @D HP@lpDe e . HE(BloDe?] (€-11)
To determine the terms c;,, the boundary conditions must be applied, and these c; terms
ensure that the boundary conditions at the surface of the conductor are satisfied. The term is ¢, =

Jk(BHP (Bp")

P This equals the modal reflection coefficient of the electric field at the surface of

the conductor multiplied by the Hankel function. The scattered electric field from the modal

solution is given in equation (C — 12).

zle oo . ’
£z = fingk:_m HBloD) ]fzgfﬁ))”ﬁz)(ﬁm'nejk@-"’ ) aspsp (€-12)

The equivalent J-spectral signature of an induced current source point es,, is written in equation
(€ —13).

B J-k(Ba) H® YK J-k(Ba) H® 'Y sk
esn_[Hgg T et AC
Jx(Ba) |
WP D ] o
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The projection of e, onto e,,, is now equal to the scattered electric field E3 in equation
(C — 15) truncated to 2K + 1 modes.

s ﬁzle @ J(Ba) Y ,
EZ=4wezk=_oo (2)(ﬁ| 1) ?2)(’3) IEZ)(BIP De}k(d) ¢') a<p<p ( - 14)

Modal Solution Electric Line Source - Scattered Field

s PN @ JeBD ) 1 1 il ,
EZ_4a)£Zk=_K Z(Bl D= = (2)(,6’) kz (Blp |)e1k(¢ ¢') a<p<p (C —15)

Spectral Projection Model Electric Line Source - Scattered Field

For an infinitely long circular cylinder excited by a TM? plane wave using modal analysis
the far-field solution p’ > p to the tangential electric field is given in equation (C — 16).
© Ji(Ba) oy
BS=E ) [/k(mm) - HZ (BlpD) | e/k@=40 (€ - 16)
k=-o Hk (ﬁa)
The incident plane wave from the modal solution in equation (C — 16) is shown in equation

(C — 17). This can be recognized as the wave equation.

BL=Eo ) jTu(BlpDelt @9 (c-17)

For an incident plane wave coming from (p’ — o, ¢’ = ¢;) one simply replaces the

jkm
Hankel function H,EZ) (Blp'|) with its asymptotic approximation e_]T. The Hankel spectral

signature of the plane wave source is eg,, and written as (C — 18), but instead using the
asymptotic expansion.
. ! ] ! T
e =02 (el K(943)] (€ - 18)
The Bessel spectral signature of an observation point, (p, ¢), is still e,,,.
. . T

eom = |J_k(Blpe™*® .. J Blpl) - Jk-1(BlpDe’?] (C-19)

Now projecting e,, onto e,,, and multiplying by E,, the incident electric field E. is given
in equation (C — 20).
Ezi = Eoegmesn (C —20)
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EL=Eo)  J(Blple 9 (c-21)

=—00

Modal Solution TM? Plane Wave — Incident Field

. K .
Eb=Eo) 7 I(Blphe/# =) (c-22)

Spectral Projection Model TM? Plane Wave - Incident Field

The scattered electric field may be written as the projection of e, onto e,,,, shown in
equation (C — 23).

E; = Eoegmesn (C—23)
The equivalent J-spectral signature of the induced current is given in equation (C — 24),
T
e, = J"K]_(Iz()(ﬁ—lal) UL bl ']_(I;)(IB—IaI) v e JKBlaD iy (C —24)
" H¢(Blal) H2.(Blal) H® (Blal)

and the Hankel spectral signature of the observation points given in equation (C — 25),
. i X T
eom = [HRBlpDe ¢ .. HRBlphe** ... HZ(BlpDe/*?] (€ - 25)
The modal solution to the scattered electric field ES from equation (C — 14) for the near

field is instead written as equation (C — 26) with the Hankel function term H,EZ) (Blp')eke’
replaced with j~™. The SPM scattered field in equation (C — 23) truncated to 2K + 1 modes is
E5 from SPM and shown in equation (C — 27).

« . Jk(Blal) ) Ry
ES = —E e 2T g jk(¢-¢') C—26
z 0 E . 1P (FlaD) x (BlpDe ( )

Modal Solution TM? Plane Wave - Scattered Field

K _x JkBlal) (b
ES = —F k ~ H jk(9-9¢") C —27
=B T G e Flebe (c-27)

Spectral Projection Model TM? Plane Wave - Scattered Field
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Transverse Electromagnetic Wave

Magnetic (I ) Line Current with Circular Cylinder Incident and Scattered Wave Angles
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Figure C-2: a) Near-field and b) far-field TE* plane wave incident on a conducting cylinder.

C.3  Modal Analysis and SPM for Magnetic Line Sources

In this section the tangential magnetic field on the surface of an infinitely long circular
cylinder is presented. These fields are calculated using modal analysis and can be found in
Balanis [36]. A near-field excitation from a magnetic line current and a far-field excitation from
a TE” plane wave will be the two external sources. The Spectral Projection Model is used to
calculate these fields.

In Figure C-2 a magnetic line source is shown. The magnetic line source is located at
polar coordinates (p’, ¢') = (py, Po). The radiated magnetic near-field H, from a magnetic line

current is parallel to the axis of the line source and the cylinder. From equation (C — 28) given
earlier, the magnetic field is described by a Hankel function Héz) Blp—p'D).

ZIm
H,(Blp— ') = —iTMHSZ)(ﬁIp -p'D (C - 28)

The magnetic current line source is constant magnitude, I,,,, and time harmonic. The
radiated electric field has both radial and azimuthal components which are transverse to the axis

of the cylinder.
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To satisfy magnetic field boundary conditions for TE* waves, the tangential component
of the magnetic field H; at the surface of a circular cylinder is related to the surface current by
equation (C — 29).

Js =0 x (H'+ H®) (C —29)
Equation (C — 29) expresses the boundary condition for the incident and scattered magnetic
fields in the Z-direction for a circular cylinder of radius, p = a. The term J-(p,,) is the self-term
which is normally absorbed into the scattered field expression.

H; = —[H; + Jc(pm = @)] (€ —-30)

The modal solution for the H£%" tangential components of the magnetic field are shown
below in equations (C — 31).

lem oo
4owop Lwj——

]k,(ﬁa)
HP'(Ba)

H = HPBlp'D |/ (BlpD) — HP Blpl)|e*(-¢)  a<p<p’

(€ -31)
To determine the H£%™ tangential solution using SPM, the incident magnetic field H. is
found first. It is the projection of the H-spectral signature of the source points onto the J-spectral

signature of the observation points multiplied by the magnitude of the magnetic line current I,,,

2

and a scaling factor — —.
4wu

The Hankel spectral signature of a source point at (p’, ¢") is es,, Shown in equation
(C —32).

: ! . ’ ' _ T
esn = [HQ Bl D .. HYBlp'Ne? . HP Blp'De K] (€ -32)
The Bessel spectral signature of an observation point, (p, ¢) is eym-

. . T
eom = [_k(BlpDe™*® .. ], (Blpl) - Jk(BlpDe/*?] (C-33)
By projecting e, onto e,,, and multiplying by a scaling factor, _TTIZ’ the incident magnetic

field is now be written as equation (C — 34).

. B2 '
Hé:_4wzegmesn asp<sp (C—34)

The incident tangential component of the magnetic field H: from the modal solution is
written in (C — 35).
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ﬁzlm 0o
4‘(1)# k=

Hf =  JBleDHZ Blp e (#=#) as<p<p (=35

The incident tangential component of the magnetic field H: from the SPM truncated to
2K + 1 modes is written in (C — 37).

By
4dowu

Hi= =720 JBIpDHE (Blp' e 00" aspsp  (C-36)

Modal Solution Magnetic Line Source — Incident Field

B*In
4wu

- “ @) k(¢
HL = E Je(BlpDHZ (Blp'[)ek(¢-9") a<p<p  (C-37)
k=—K

Spectral Projection Model Solution Magnetic Line Source — Incident Field

The scattered magnetic field H; is due to induced electric currents on the surface of the
conductor. From the modal solution, H; is written in equation (C — 38).

s _Bn” S (Ba)

o ——H @ (8] p' e k(#-¢") : ~
- H(BlpDH (Blp'De’ a<p< C —38)
2 4wu "=—°°H,52)'(ﬁa) k. (BlpDH,=(Blp') p<p (

Fora < p < p’, H; is equal to the J-spectral signature of the source currents projected
onto the H-spectral signature of the observation points. For the scattered tangential magnetic

field, the vector ey, is projected onto e,,, and multiplied the magnetic current I,,, and a scaling

2
factor ﬁ)—u. The scattered magnetic field is written in equation (C — 39).

B?1 '
H; = 4wzegmesn asp=sp (€—39)

The Hankel spectral signature of the observation points given in equation (C — 40),

. . i T
eom = [HRBlpDe® .. HE(Blple*® .. HZ (BlpDe /] (C - 40)
The Bessel spectral signature of an induced electric current source point at the circular
cylinder surface is ey, shown in equation (C — 41).

J-k'(Ba) J-x' (Ba)
€sn = |, @
H>'(Ba) H2'(Ba)

]K(.Ba)l
HP (Ba)’

HZ(Blp'eX?’ HZ (Blp'])elke’

T
HP (Blp'])e K’ (€ —41)
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IJn'(Ba)
HP1(Ba)

equation (C — 42).

The term

is the modal reflection coefficient. The projection product el e, is given in

I A Y (1))

2 2 ' ik(p—o¢') ’
= H7BlpDH”(Blp'De’ a<p<p (C —38)
4op Lug=-0 HP'(Ba) «

H;

Modal Solution Magnetic Line Source — Scattered Field

s _ B2, K Ji'(Ba) (2) ) "Meik(o-¢") /
HZ B WZR:_KH,EZ)’(BCI) Hk (ﬁlpl)Hk (,3|p I)ef a< p < p (C _ 42)

Spectral Projection Model Solution Magnetic Line Source — Scattered Field

For a magnetic line current source in the far-field radiates a magnetic field with TE*
polarization upon a PEC infinitely long circular cylinder the radiated magnetic field is parallel to
the axis of the cylinder and line source. The electric field has both radial and azimuthal
components which are transverse to the axis of the cylinder.

The modal solution for the Hf tangential components of the magnetic field due to far-field

excitation is shown below.

Ji'(Ba)
H?' (Ba)
The incident magnetic field is given in equations (C — 46) and (C — 48) as the

Hf = Hq Zj i [Jk (Bp) = H, (Bp) |/ (€ - 43)

projection of the Hankel spectral signature of the magnetic far-field (C — 44) onto J-spectral
signature of an observation point on the cylinder surface (C — 45) truncated to 2K + 1 modes.
This agrees with the modal solution (C — 47).

The Hankel spectral signature of the incident plane wave source is e, and written as
(C — 45).

! . ! T
e = [ KD ey (4] (C - 44
The Bessel spectral signature of an observation point, (p, ¢), is still e,,,.
. : T
€om = []—K(3|P|)9_1K¢ Tk BlpD - ]K—1(,3|P|)31K¢] (C —45)
Hti = Hoegmesn (C —46)
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H; = Ho Zk__ J ™ Tk (BlpDe’*? (C - 47)

Modal Solution TE? Plane Wave - Incident Field

t _ K .k jke _
H; —Hozk__K] Je(BlpDe (C —48)

Spectral Projection Model Solution TE* Plane Wave - Incident Field

The scattered magnetic field HS is due to induced currents on the surface of the
conductor. It is equal to the spectral signature of the source points projected onto the H-spectral
signature of the observation points multiplied by the magnitude of the magnetic field H,. Using

SPM, the spectral signature of the induced currents comes from equation (C — 49).

’ ’ , T
a T a T o
€sn = j_K ]é)(/ﬁl D ejK¢ j_k ]?Z)Sﬁl D e]k¢ jK ]_(12{) (ﬁlal) e_JK¢
H, "' (Blal) H,~'(Blal) HZ)'(Blal)

(C—-49)

The vector e, is projected onto the Hankel spectral signature of the observation points.

. , . T

eom = [HZ(BlpDe ¥ .. HD(Blphe .. HZ(BlpDe*?] (€ —50)

Thus, the scattered magnetic field may be written as the projection of e, onto e,
shown in equation (C — 51).
H; = Hoejmesn (€ —51)
Equation (C — 51), shown in summation form in equation (C — 53) and truncated to
2K + 1 modes, agrees with the modal model scattered field given in Balanis [36] equation
(C —52).

s_ * L K BD) o - _
HE= ot ™ G e Be (c-52)

Modal Solution TE? Plane Wave - Scattered Field
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s_ © _ IBa) o ;
H; = Hozk=_w1 RWHk (Bp)el*® (€ —53)

Spectral Projection Model Solution TE? Plane Wave — Scattered Field
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Appendix D: Bessel Functions

D.1  Bessel’s Equation

The following derivations may be found in many electromagnetics texts. Many years
before Bessel’s investigation into cylindrical functions, Joseph Fourier used a form of Bessel’s
differential equation in his famous work Analytic Theory of Heat [1-5]. This equation is now
known as Bessel’s equation of order n,
xgg+xg +(x2—-n?)y=0 (D-1)

Friedrich Bessel, for whom the functions are named, derived the Bessel differential
equation by investigating a problem dealing with elliptical motion and did an extensive study of
Bessel functions and their solutions [58]. Bessel’s equation and its associated Bessel functions
Jn(x) are used to describe the electric potential in objects that have cylindrical symmetry. Bessel
functions are also used in solving time harmonic electromagnetic field problems too. The
Spectral Projection Model in this dissertation deals exclusively with solving time harmonic
electric field scattering problems in 2D for objects with cylindrical symmetry. A plot of several
Bessel functions of the first kind is shown in Figure D-1.

Bessel F i of First Kind of Integer Order

0.8 -

0.6

ff MW@@/}WM /

o

-04

-0.6 1
20 -15 10 15 20

Figure D-1: Plot of Bessel function of the first kind for several orders.
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In 1824 Friedrich Bessel wrote extensively on functions describing planetary motion

[5,59]. He derived many properties of the function described below:
1 2T

Jn(x) = —f cos(n — xsin@)do (D —2)
2m J,

He also introduced the equation below, known as Bessel’s differential equation.
0%, (x dJ, (x
xz ]TL( ) + x ]TL( ) +
dx? dx

Bessel’s differential equation can be written in many forms. One differential form commonly

(x? =n®)Jp(x) = 0 (D -3)

used is shown below:
2 2
%*%%‘(”i‘z)yﬂ (D -4)
Bessel functions of the second kind, also known as Neumann or Weber functions, were
named because of the mathematical contributions of German mathematicians Carl Gottfried
Neumann (1832-1925) and Heinrich Martin Weber (1842-1913) [67-70]. The series expansion of
Neumann’s Bessel function of the second kind, N, (x), is defined below:

1< (v—k—1)!
M) = 1, @log() — 3y LD
k=0

2k—v

PRI DU B CUFUE SVRRE | Ry CRPRE SRS S | RPN
Ekzzo [( : k!(ll:)a-v)(! . k+V)]<;) 0=

Neumann functions have a logarithmic term and singularity at the origin (x = 0). Neumann’s
work, Theory of Bessel functions: An Analogue of the Theory of Spherical Harmonics (1867),
investigated these functions [71]. Many other references exist as well [72].

The Weber Bessel function of the second kind [60], Y;,( x), as shown in equation (D — 6)
below,

K,(0) = =) (In5 +7) —%;%@

2k—-v

(D —-6)

1 DR (1 gt )+ (T g+ )| gz
;z Il (ke +v)! (5)
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Weber’s Bessel function of the second kind also has a logarithmic term. Weber’s function
is that form which is most frequently tabulated and used. The gamma term y denotes Euler’s
constant (y = 1.781 ). A plot of several Bessel functions of the second kind is shown in Figure
D-2.

Bessel Function Yn(x) Bessel Function Yi(x) Bessel Function Yz(x)

2 : I 8 20
6 0 Tr
4t 1 20+

Y,(0)
Y1)

2r 1 -40
Lad
N/M\/r/—\/\v’\ 0}

-80

4t 1 -100 -
6 1 120
2 , . . Y . . . 440 . .
-20 -10 0 10 20 -20 -10 0 10 20 20 -10 0 10 20
r r
a) b) c)

Figure D-2: Plot of Weber’s Bessel function of the second kind for several orders: a) Yo(x), b)
Y1(x), and ¢) Y2(x).

The general solution to the Bessel’s equation is written as
y = AJo(x) + BY,(x) (D-=7)
where A and B are arbitrary constants.

D.2  Hankel Functions

Bessel functions of the second kind combined with Bessel functions of the first kind form
Hankel functions. Because Hankel functions are a linear combination of J,,(x) and Y;,(x),
Hankel functions are also solutions to Bessel’s equation [36,46,57,73]. See equations (D — 8)
and (D —9).
H = Ju () + Y () (D - 8)

H® = J,(x) = j¥, (%) (D —9)
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Other important properties of Bessel functions are given in the table below. These are helpful in
finding new properties of these function.

Hankel functions are used extensively in electromagnetic theory. They frequently act as
Green’s functions and have many useful properties. Because they are cylindrically symmetrical,
they are often used to characterize waves. The singularity in Weber’s function often requires
special attention when integrating self-terms especially with the Electric Field Integral Equation
and the Magnetic Field Integral Equation. The Spectral Projection Model uses Hankel functions
of the second kind in modelling electromagnetic behavior. The singularity in the function is

avoided by using the addition theorem sum to calculate the Hankel functions.

D.3  Bessel Function Properties

Bessel functions have many useful properties [60]. Some of the more important common
ones involve the even and odd nature of the modes. Listed in Table D-1 are some of these
properties. These properties were used to develop SPM theory especially when solving the MFIE

using the convolution property of the addition theorem.

Table D-1: Modes and Symmetry of Bessel Functions.

Jn() = (DY, ()

Jon() = Ju (=)

V(@) = (D)"Y ()

Yo(e*7mx) = eFmmY, (x) £ 2jcos () (x)

HM (x) = (—=1)"HEP (x)

HO 0o = (HP @)

HP () = (HO )

The * indicates the complex conjugate.

D.4  Bessel Function Derivatives
Two Bessel function derivatives are given in equations (D — 10) to (D — 13).
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n- k’_n kp'
]rrl(kpr):] 1( p)zj +1( ,0)

and

d/,(k
WD — o) = Jp)

Yr(kp’) _ Yo_1(kp') = Yoy (kp")
n B 2

and

Yy (kp)
dkp

= =Y, (kp) = Yy (kp)

The derivative term H;, (kp') is defined by equations (D — 14) and (D — 15).

Hy—1(kp") — Hniq(kp")
2

Hy(kp') =

dHy(kp')
dkp’

= —H;(kp) = Hy(kp")

Jue1(p) = "]’;(,p ) (o)

Y !
v (o) == ';(,p ) _ Yo-1(p")

H !
H (o) = ’;fp ) H (o)

Jusn(p) = ””;(,” ) (o)
2, (k')
-
2nY, (kp')
20ty
2nHy (kp')
2nth (k")

Jn-1(kp’) + Jns1(kp') =

Yo1(kp') + Yya (kp') =

Hn—l(kp’) + Hn+1(kp’) =
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(D — 19)
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D.5 Hankel and Bessel Function Asymptotic Properties

Hankel functions are important in characterizing the electromagnetic fields analyzed with
the Spectral Projection Method as outgoing waves. Hankel functions are generally the Green’s
function in integral expressions describing electromagnetic fields. The asymptotic approximation
of Hankel functions for large arguments is given in equation (D — 23). The Spectral Projection
Model uses this approximation in order to characterize the H-spectral signature of electric and

magnetic field plane waves.

2 _i(,_T) _jnm
HP (p) = ’5e i(r-7) e~ p-oow (D-23)

The asymptotic approximation of Bessel functions of the first and second kind for small

arguments is given in equations (D — 24) through (D — 27).

Jo(p) = 1 p>0  (D—24
Jn(p) = %(g)n p>0n>0 (D-25)
Y, (p) = %ln (%) p—>0y=1781 (D—26)
Y, (p) =—(p;1)!<%)n p>0n>0 (D—27)

The Bessel functions are most suitable for waves that require functions with a finite value of zero
within the solution domain. From equations (D — 26) and (D — 27) it is evident that the Hankel
functions are not suitable for this case. This is because of the singularity at zero from the
imaginary part of the function, i.e. Weber’s form of the Bessel function of the second kind

Y, (p). The Hankel functions are more suitable for waves that are outward due to the fact they are

complex valued and can be approximated asymptotically by
jnm
HP (p)~e™ 2 (D —28)
at large values of p in the far-field.
Bessel functions are best suited for waves that decay to zero because their asymptotic

approximations tend to zero at infinity. See equation (D — 29)

_ 2 T nm
Ja(p) = 5cos(p—z—7) pow  (D=29)
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Hankel functions are best for outward waves because their imaginary part equals the real part at

infinity (D — 30), and becomes a complex sinusoidal function (D — 28).

2
Y(p)=\/;—psin(p—%—n7n) p—->o (D-30)

Most time harmonic electromagnetic analysis uses the complex term e/(k7=%%) tg represent

waves in free space.
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Appendix E: Derivation of J,,(z) in the Fast Multipole Method

E.1  Bessel’s Definition of J,,(z)

This appendix details the mathematics used to derive equation (3 — 12) for the Fast
Multipole Method [27]. To begin, Bessel’s definition of J,,(z) in integral form according to
Watson [59] is (E — 1),

1 21
Jn(2) = ﬂf cos(n@ — zsinf)do (E-1)
0
and
2m+E '
@) =5 | eteesnag E—2)
2m J;

E.2  Simplification of the Integral for J,,(2)
Because the function J,,(z) is periodic in 27, we can use the trigonometric identities to
expand equation (E — 2) into equation (E — 7).
cos(n@ — zsin@) = cos(zsinB)cos(nb) + sin(zsinb)sin(nb) (E—-3)
e In0eizsind — [ cos(nh) — jsin(n@)][cos(zsinB) + jsin(zsinh)] (E-4)
e~Jzsin0oinb = [cos(zsin) cos(n@) — jcos(zsin®)sin(nd) +
jsin(zsin@)cos(n@) + sin(zsinf)sin(nb)]/4 (E-=5)
e~Jzsin0o=inb = [cos(zsind) cos(nh) — jcos(zsin®)sin(nh) —
jsin(zsin@)cos(n@) — sin(zsinf)sin(nb)]/4 (E—6)
eJzsind g=jn(6+1) — [co5(zsing) cos(n(@ + n)) —jcos(zsine)sin(n(e + n)) —
jsin(zsin@)cos(n(@ + n)) - sin(zsin@)sin(n(@ + n))]/4 (E-=7)
Now making further substitutions with equations (E — 8) through (E — 11) into equation
(E-7),

sin(n(@ + m)) = sin(nB) cos(nm) + cos(nb) sin(nm) (E —8)
sin(n(8 + m)) = sin(nh) e/™" (E-9)
cos(n(@ + m)) = cos(nB)cos (nrr) — sin(nh) sin(nmn) (E—10)
cos(n(6 + m)) = cos(nh) e/™" (E—-11)
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equation (E — 11) results.

e Jzsinb o =in(6+m) = [cos(zsind) cos(n( + m)) — jcos(zsind) sin(nh) e/™™ —
jsin(zsinf)cos(n(6 + m)) — sin(zsinf) sin(nd) e/""] /4 (E —12)
Figure E-1 shows plots of products of functions given in equation (E — 12) to determine

whether they are even or odd functions.

cos(d) Even sin(¢) Odd

-2m -T 0 ™ 27 -2m -T 0 b

)
el

cos(z*cos(d)) Even sin(z*cos(f)) Even

:
|

i
-2r -7 0 ™ 27 -2r -T 0 T 2

cos(z*sin(f)) Even sin(z*sin(¢)) Odd

B

z*
?

|
I
-2m - 0 m 2r -2m - 0

Figure E-1: Plot of products of trigonometric functions.

The plots in Figure E-1 are useful in performing the integrations in equations (E — 13)
and (E — 14).

2 21 o )
f cos(zsinf —nB)do = f e~Jzsindind qg (E—-13)
0 0
21 2 ] ]
J cos(zsinf —n6)do = J e?sindo=jnb qg (E-14)
0 0
The most common integral form of the Bessel function is given in equation (E — 15),
1 (™ .
Jn(2) = — f e~jzsind ojnd gg (E —15)
21 J,
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The integral form of the Bessel function in equation (E — 16) may be found in

Harrington [35], derived using equations (E — 17) through (E — 19) below.

jn 2 ] )
]n(Z) — _.f e—]zcose e—]nede (E _ 16)
2m ),
. TT
jn — e]ni (E — 17)
T
sin (9 + E) = cos(0) (E —18)
T
cos (9 - E) = sin(6) (E—19)

Equation (E — 20) is the precursor to the equation (3 — 12) found in the Fast Multipole
Method referenced by Jin [27].

@ =3[

2w

e=2c050 ¢In(72) g (E - 20)

E.3  Integral for J,(z) of the Fast Multipole Method

Substituting values given in equations (E — 21) and (E — 22) into (E — 20), after some
algebra one arrives at the final expression in equation (E — 25). Equation (E — 25) is consistent
with equation (3 — 12).

z =kod (E—-21)
0=a—¢, (E —22)
1 2T ] . B m
]n(Z) — %f e—]kodcos(a—¢d) e jn(a ba Z)dH (E _ 23)
0
27T
I (2)e~nmoa) — % ] o—ikodcos(a—¢a) g =in(a=ba=73) ,~jn(n+da) 4g (E — 24)
0
21
]n(z)e—jn(n+¢d) = % e ~Jkodcos(a—da) e—jn(“’f%)dg (E —25)
0
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Appendix F: Two-Dimensional Cross-Sectional Patterns

F.1  Generating Different Geometries by Addition of Opposite Rotating Vectors

One powerful feature of the Spectral Projection Model and Direct SPM methods is that
one can analyze many types of electromagnetic structures. This section describes how one can
generate these structures by rotating the coordinates of two circles around the origin. It is
possible to define different shapes as the sum of rotating vectors around circles of different radii

by rotating the vectors at different angular rates.

F.1.1 Elliptical Surface Pattern

To calculate the sum of the two rotating vectors, assume there exists two sets of vectors,
p € {pre™%, pe” 5, L pye N} and p’ € {p,'e/%1, p,'eP%!, .., py'eNé1'). For this first
example, vector p rotates clockwise and vector p’ rotates counterclockwise at the same angular

rate. They each may have a different magnitude. If one sums each pair together such that p,, =

,ejfn,

Pn + pp,e %, then the set of vector sums becomes p”’ € {p}, py, ..., pn}. The resultant
column vector p"* which is the sum of the column vector p’ and column vector p is given in

equation (F — 1).

!

pil [P1 P1
pn = [pn' |+ |Pn (F-1)

PN pn' Pn

See Figures F-1a and F-1b for a plot of the circles generated by points p,,, py, and py, .
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Addition of Points on Two Circles
To Form an Ellipse
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From Addition of Vectors Along Two Circles
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Figure F-1: a) Generating surfaces for an ellipse with axial ratio 2:1. b) Resultant ellipse pattern.
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F.1.2 Cardioid Surface Pattern
For the second example, vector p rotates counterclockwise at twice the angular rate that
vector p’ rotates. They each have a different magnitude. See Figure F-2a. If one sums each

pair together such that p,, = p,’{"j{" + ppe?én, the cardioid figure shown in Figure F-2b results.

Addition of Vectors Along Two Circles
To Form an Cardiod Figure

Y-Axis

20 -15 -10 5 0 5 10 15 20 25

Cardiod Figure

b)

Figure F-2: a) Generating surfaces for a cardioid. b) Resultant cardioid pattern.
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F.1.3 Undulating Surface Pattern
For the third example, vector p rotates counterclockwise at eight times the angular rate

that vector p’ rotates. They each have a different magnitude. See Figure F-3a. If one sums each

pair together such that p,, = p,’{"j{" + p,e®én, the undulating surface shown in Figure F-3b

results.

Addition of Vectors Along Two Circles
To Form an Undulating Surface Pattern

Y-Axis

X-Axis

a)

Undulating Surface Pattern

Y-Axis

X-Axis

b)

Figure F-3: a) Generating surfaces for an undulating pattern. b) Resultant undulating pattern for

the surface.
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A variety of patterns can be generated using this technique. The Spectral Projection Model
uses this method to analyze ellipses and randomly shaped objects. By adding more rotating vectors,
one can add more degrees of freedom to the generating function, and a greater variety of

geometries, including some that are not symmetrical.
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Appendix G: Conjugate Gradient Method

G.1  Conjugate Gradient Introduction

As mentioned earlier, iterative techniques [74-81] have been developed that improved the
speed and accuracy of solving very large systems of EM operator equations as more powerful
computers were made. One popular iterative technique used to invert matrices is the conjugate
gradient method.

The conjugate gradient method has been widely used as an alternative to Gaussian
elimination to invert complex matrices. This section describes how the conjugate gradient
method works with relevant illustrations. Research into the Spatial Frequency Technique was
done to improve the develop high speed algorithms to solve 2D infinitely long cylinder
problems. The speed of the algorithms was compared to the Method of Moment and the
Conjugate Gradient Method. The algorithm of the Conjugate Gradient Method is given in this
section as a comparison to the fast convergence algorithm in Chapter 4.

G.2  Quadratic Functions

The general formula for a quadratic function in one variable is written in equation
G-1).
f(x) =ax?+bx+c (G-1)
This function f(x) is a parabola, and the minimum value of the parabola can be determined by

setting the derivative equal to 0. See Figure G-1.

Parabolic function
50

45
40
\\
351\
F \ y=(-2%+3

2 7
<25 ) /
&

=) o =) o

Figure G-1: Quadratic function with local minimum equal to two.
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X Vector Convergence numlter =3

x(1)

Figure G-2: Directional vectors pointing to the minimum of the quadratic surface.

An example of a multivariate function is f(X), with its set of variables, X =
{x1, x5, ..., x,}. The gradient of the function, V£, is shown in equation (G — 2).

of of of1 _

d0x, 0x,  0x,

Vf = 0 G -2)

A contour plot with lines of constant value is plotted in Figure G-2 for a multivariate function of
two variables. The directional vectors illustrate the path taken to reach the surface minimum.

G.3  Positive Definite Matrices

The conjugate gradient method only works with matrices that are positive definite. To be
positive definite, a matrix A € R™™ must satisfy the following condition,
£TAZ >0 (G —3)
for all non-zero vectors x with real elements. An alternative definition is that matrix A is positive

definite if it is symmetric and all its eigenvalues are positive.
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G.4  Functionals

To understand the conjugate gradient method, one begins by defining a quadratic
functional f(x) with X € V, vector space V. A functional is a function that maps vector space V
into a scalar. An example of a quadratic functional is f (X) shown in equation (G — 4).

Matrix A € R™", vector & € R™!, and vector ¢ € R¥*. Vector ¢ may be regarded as

a scalar.
1 ~
f(x) = > £TA% — bT% + ¢ G -4
To minimize the functional, the first step is to take gradient of f(x)
1 1 ~
Vf(J’C\) = EJ?TAT + EjC\TA - bT (G - 5)

and because A is symmetrical, AT = A. Thus, using matrix algebra,
VF(®) = (A2 - b)" (G -6)
The vector £ = X,,;, is When the gradient is zero, and f (X,,;,) is the local minimum. So % is

referred to as the global minimizer. See Figure G-3 for an example of a plot of a functional f (%)
and its gradient, Vf(X).

f(@) =(1/2)2" Az — T2 + ¢

400

Figure G-3: 3D plot of a) functional f(x) and its b) gradient Vf (X).
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G.5  Iteration — Calculation of Step Size y,,
Most iterative methods use a recursive relationship to calculate the next value of some

variable. For the conjugate gradient method, a recursive sequence is used to calculate future

values of vector £ given an initial guess of £(.

gm+1) — g0m) 4 yma(m) G —-7)
The vector ™™ is called the search direction, and scalar y,, is called the step size. To

calculate new values of the step size that minimizes f (&) for £ = 2™ + yd™ substitute into
the functional,
af (R + ypd™)

5 0 (G —8)
which yields
(d(m))Tr(m)
Ym = (dM)HT Adm) =9

Ideally, the gradient of the functional would equal zero at the local minimum quickly. As
calculated earlier, it equals the result in equation (G — 10).
VF(2™) = A2™ — b (G —10)
And the remainder is defined as the residual #™.
Vf(zm) = #m) (G —11)

G.6  Iteration — Calculation of Weighting Factor a,,

The reason the method is called the conjugate gradient is because the direction vector is
chosen negative to the gradient, which is the residual. This is the direction of maximum decrease
in the value of the function that points to the new value of d™*1 closer to the minimum.

A+ = _pm+1) 4 o gm) (G —12)
The initial value of the direction vector is set as d© = —#(©,

The last step is to choose a value for a,,. If one defines an inner product of two vectors #
and w using the positive definite matrix A as in equation (G — 13), one can write
(W, All) = (@, Aw) = wT Al = 2T Aw (G —13)

The vectors @ and w are said to be A-conjugate (or A-orthogonal) when
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aTAw =0 (G —14)
The conjugate gradient method uses a process that A-orthogonalizes the direction vectors
d™*D and d™ with respect to the inner product above, thus finding the minimum of the A-

norm surface ||d — c?m”A generated by the vectors d and d,, [55]. Now substitute for 22 and w
using d™ and d™+D),
AT Agm+D = gD 430m = o (G —15)
After making the recursive substitution, d™*D = —pM+D 4 o G0 the expression for a,,
from equation (G — 11) becomes

DT 4 30m)
T (G —16)
A plot of the direction vectors, a,,,d™, for three iterations generated by the functional f (%) is
shown in Figure G- 4.

Direction Vectors a,,d"™

=

I
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x
\‘/ New Mins

00
618
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|

\/

x(1)

Figure G-4: Minimums and directional vectors to the minimum of a parabolic surface.

All the direction vectors are orthogonal and are conjugate gradient to the surface

1% — 21|, with 2 € R™. In Figure G-5 the new minimums on the surfaces ||z — ™|, for the

first three iterations are shown.
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I — 2|14

Figure G-5: Surfaces and new minimums for first three iterations of the conjugate gradient

algorithm at a) iteration m=0 b) iteration m=1 and c) iteration m=2.

The vector y,,d™ moves the vector 2™ to £™*D along the surface of the parabola
generated by the functional £(%). This vector £™+1 is a new minimum along the surface of the
A-norm. In other words, f(£™*)) is a minimum on the line passing through points £+ and

£ in the direction d™. The final iteration at m = 3 yields convergence of the algorithm to a

given tolerance [54,55].

G.7  Conjugate Gradient Algorithm

PO =420 _p (G —17)
d©® = _p0) (G —18)
50 = @720 (G —-19)
form=0,1,2,.. (G —20)
u=Adm™ (G —21)
§5m)
Ym = Ty (G —-22)
gm+1) = m) 4y, Gm) (G —23)
pm+1) — p(m) 4 o g (G —24)
sm+1) = M+ p(m+1) (G —25)
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if V8m+D < tolerance,stop &M+
5(m+1)
Um = ~sm)

A+ = _pm+D) 4 o Gm)

end
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Appendix H: Linear Algebra, Inner Product, and Projection

H.1  Projection of Vectors onto Vectors and Subspaces

To understand the Spectral Projection Model, it is important to review the concept of
projections. This next discussion defines projections with respect to vectors, subspaces,
functions, and functional subspaces [82-89]. This section on linear algebra will act as a link
between the concept of projection and the functional aspects of the Spectral Projection Model.

The projection of a vector onto another vector is a familiar tool used in physics. Figure
H-1a is an illustration of a vector v projected onto a vector b. The projection is vector p. The
projection vector p is collinear with b, and the vector orthogonal to the projection vector is o.
The vector o represents the “error” between v and b.

bTv

p:mv (H_l)

The expression bTv is referred to as a dot product of b and v, written (b,v) = bTv.

Vector Projection onto a Subspace

Vector Projection v onto b

0.8

0.4 —

Z-Axis
AN

0.2+

0

Z-Axis

-02

-04 2

<
-06 — 0 // 1
= 0

08 +—— — ———— '
T X-Axis 2 -2 i
05 .
08 06 04 02 0 02 04 o6 05 0 Y-Axis
-Axis

a) b)
Figure H-1: a) Vector projection v onto b. b) Vector projection v onto subspace S.

Shown in Figure H-1b is the vector v projected onto the subspace S defined by the plane
at z = 0. Vectors b1 and b2 are independent vectors and make up a basis or column space for the
subspace S. The vector p is the projection vector onto the subspace S, and vector o is orthogonal

to vector p, and therefore orthogonal to the subspace S. This vector o represents the “error”
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between the projection p onto subspace S and vector v. It may be viewed similar to the vector o
in Figure H-1a.

Shown in Figure H-1b is an example of a projection of vector v onto the subspace S
comprised of vectors bz, b2 and bs. The subspace S may be written in matrix form as seen in
equation (H-2). Matrix M is made up of column vectors b1, b2 and bs. Note that vector bs is a
zero-column vector and is not independent of vectors b1 and bz. The vector o is called the vector

representation of the null space of the matrix M.

b1 bz b3 \'4 (4]

1.8 0
ERSCR-
1

1.8 0 O
M=[—1.8 1.5 0] (H-3)
0 0 O

H.2  Projection of Vectors and Inner Products of Functions

Because SPM deals with Bessel and Hankel functions used to solve from Maxwell’s
equations, this next section ties the concept of projection in linear algebra to the Hankel Addition
theorem and Bessel functions used in the Spectral Projection Model.

The inner product of two functions f(x) and g(x) in L? space is often defined by the
following notation shown in equation (H — 4), and the integral product of functions shown in
equation (H — 5).

s = (f(x), g(x)) (H-4)

s = ff(x)g(x)dx (H-15)
3

In both equations s is a scalar. Take for example two sinusoidal functions. Figure H-2 shows two
continuous functions, f(x), g(x) and f(x)g(x). Figure H-3 shows the corresponding discrete
sequences, f(n), g(n) and their product f(n)g(n), which are sampled versions of the two
continuous sinusoidal functions. The inner product integration is approximated by the summation
of the product of f(n)g(n).
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(x) = sin(2mx/N) RN e

L 1 L | L L !
0 2 4 6 8 10 12 14 16 18 20
9(x)

g(x) = sin(=x/N)
! L L L L L L L L L 1
0 2 4 6 8 10 12 14 16 18 20

<f(x)g(x)>

proj = < f(x),g(x) >

proj = J, f(x)g(x)dx B e
L L L L L L 1 L 1 L
0 2 4 6 8 10 12 14 16 18 20

Figure H-2: Continuous functions f(x) and g(x) and the product f(x)g(x).

over a defined interval.

f(n)
0.31 059 081 095 1 095 081 059 031 0 031 059 081 095 -1 095 081 059 -031
e i T O O i ..
ke A T -
Lacal f(n) = sin(2=n/N)
| 1 1 | Il L |
2 4 6 8 10 12 14 16 18 20
g(n)

016 031 045 059 071 081 089 095 089 1 099 095 089 081 071 059 045 031 0416

g(n) = sin(=n/N)
| ! !
2 4 6 8 10 12 14 16 18 20
f(n)g(n)

005 048 037 056 071 077 072 056 031 0 -031 056 072 077 071 -056 037 -018 -005

Discrete proj=xN | f(n)g(n) proj = [ [g]"
1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18 20

22

22

22

The product is integrated

22

22

22

Figure H-3: Sampled continuous functions f(x) and g(x) and their discretized forms f(n) and g(n).

When performing the integration for the inner product (f (x), g(x)) numerically, each

function may be subdivided into N intervals and sampled at the midpoint of an interval of length

Ax. The interval Ax approximates the infinitesimal interval dx. The two functions are then

regarded as sequences that are multiplied and summed together.

(F,900) = ) fmg(n) Ax
n=0

(H-#6)

The sequences f(n) and g(n) may be considered as vectors because the projection (b, a) is

calculated the same as the inner product (f (n), g(n)) with Ax = %
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N
Projy, = (b,a) = z b,a, H-7)
n=1

N-1
Projrmy.gmy = (f (), g(m)) = Z f(mg(m)Ax (H-8)
n=0

When using the Method of Moments and Spectral Projection Model, this value of varies
between consecutive points along the contour being integrated depending on the geometry of the
object.

In this dissertation the term inner product of two vectors is used interchangeably with
projection of a function f(x) onto a set of points at coordinates X: x € {x, x5, ..., xy}, and its
corresponding sequence of points f(n). Bessel and Hankel functions are widely used, and they
are sampled at their midpoints over the intervals of interest. We refer to this technique as
collocation or point matching. In this way we avoid the computational difficulty of integration,
and optimize the speed of the code. As discussed earlier in Chapter 6, the speed of populating
and inverting the DSPM matrix is faster than the MOM matrix, especially if MOM needs to

implement basis functions over which the integrations are performed.
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Appendix I: FMM and Addition Theorem Convolution

1.1 Fourier Transforms and Important Relations

This section derives the relationship between the Fast Multipole Method [27] and its link
to the Spectral Projection Model and the spectral signature of currents discussed in this
dissertation.

The Fourier transform for continuous objects is defined as equation (I — 1),

o)

FIF = | feord -1
and the frequency response of a discrete spatial system is given in equation (I — 2).
H(e/*) = z h(n) e~ /ne I-2)
n=-—oo
The next three trigonometric identities (I — 3) to (I — 5) will be used in this derivation.
cos(¢) = sin (q.’) + E) (1-3)
2
i _ s
sin(¢) = cos (¢> — E) -4
" T
= (5) =Epr=e (I -5)

1.2 Fourier Transform of Bessel Functions
The exponential function in the left of equation (I — 6) is equal to an infinite sum of

phase shifted Bessel functions.

s = N o (5 e (-6)

n=—oo
Using relations (I — 3) to (I — 5), one can write expression (I — 6) as (I — 8).
. . j n

e~ Jkpsin(¢) — Z j—n]n(ﬁp) e]n(¢—§) =17
n=—oo

e~ Jkpsin(d) — Z J.(Bp) eJng o—jnn (I1-8)
n=-—oo
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The spectral signature of uniform incident electric plane wave is defined in equation

(I1-9,

E(o$) =lpp= ) Jn(Bp)e™ (1-9)

n=-—oo

and using equation (I — 6),

e—fkpcos(¢+%) _ Z 1.(Bp) eIne (I —10)

n=—oo

1.3 Fourier Transform and FMM Terms
Looking at equation (E — 16) from the Fast Multipole Method, one can expand it to

e Jkpcos(ar—¢) — p—jkplcos(ar)cos(@)+sin(ar)sin(¢)] (I-11)

Now one may define p, and p,, in equation (I — 12),

pcos(P) = px psin(¢p) = py (I1-12)
Substituting one obtains (I — 13).
e~ Jkpcos(ar—@) — o—jkpxcos(ar) p—jkpysin(ar) (I —13)

Next, from equation (I — 13) the Fourier transforms (I — 14) through (I — 16) are
defined.

Fy = e~ Jkpcos(ar—¢) (I-14)
E, = e ~Jkpxcos(ar) (I —15)
F, = e —Jkpysin(ar) (I-16)
E, = EF, (I1-17)

One can conclude from equation (I — 17) using properties of the Fourier transform that

the inverse Fourier transforms in equation (I — 18) to (I — 21) exist. The @ symbol is for

convolution.
Foy = F|£n] ® f,[n]] (1 -18)
flnl = > Ju(Bpo) lmere 2 (1-19)
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o)

fylnl = Z Jn(Bpy) e/Mere=Inm (I — 20)

n=-—oo

f[n] ® £y [n] Z Jn(Bpy) ere "7 @ Z Ju(Bpy) einare=inm (1 —21)

n=-o n=-o

The convolution of sequences f, [n] and f, [n] is performed in equation (I — 21).

Carrying out the convolution one gets the following expression (I — 22).

£nI®f [n] Z £ur) fy(n 1) (1 -22)

r=—00
For the computational purposes, the variable » — oo is truncated to |r| — R, and

equation (I — 22) is rewritten as (I — 23) by substituting from equation (I — 8).

f [n]®fy Z ]r(ﬁpx) elrare™ 2 Jn- r(ﬁp )ej(n r)are ~jn-mm (I - 23)

r=—R

with the following substitution T = —m.

f[m®f, [n] Z 1180 Jn-r(Bpy)e e (2) (1 - 24)

r=—R

As is clear from equation (I — 24), the addition theorem used in FMM is the convolution of two
functions, i.e. f;[n]®f,[n].
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Appendix J: Image Theory

J.1 Image Theory - PEC as the Ground Plane

This section gives a brief discussion of the relationship between image theory [36, 90-92]
and the Spectral Projection Model. The Spectral Projection Model was initially called the
Extended Image Theory, but later renamed because of its extensive use of projections.

To begin, a line charge source or line current source radiates electromagnetic energy to
observation points in the near-field and the far-field. If the source is near a PEC object,
electromagnetic will reflect off the object or diffract around the object. If the object is a PEC
ground plane, the energy will be reflected off the ground plane. See Figure J-1.

Direct and Reflected Wave
From a Source

6 .
4 +
direct path
source iv\- ====g=s=s=== ?#observation
2F N P i
L .7 reflected path
\\ ,/
N .
0r 7
2 image i’ 1
4+
6 F
6 4 2 0 2 4 6

Figure J-1: Reflection of a vertically polarized electromagnetic wave off a ground plane.

Notice in Figure J-1 that the image current (which is virtual), lies on the opposite side of the
conducting plane, equally distant from the surface.
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J.2 Addition Theorem Conditions for the Spectral Projection Model

The Spectral Projection Model has its roots in image theory because when using the

addition theorem, the condition p > p’ must be met.

o

H (Blp —p/ D™ = 5 HZ (BlpDJa(Blp el me-n] J-1

n=—oo
In the case of image theory, p’ source vectors extend from the origin to the line current sources

and p vectors are from the origin to the observation points on the surface of the conductor. See

Figure J-2.

Circular Cylinder Source/Observation Vectors

Z Axis

Y Axis

Figure J-2: Line sources in a circular conducting cylinder, and observation points on the surface.

The similarity between Figures J-1 and J-2 comes from following. For a source above an
infinite ground plane, the image current lies beneath the ground plane where the electric field
equals zero. For a conducting cylinder, an electric line source in the near or far field generates
the incident electric field that excites the conducting cylinder. To satisfy the addition theorem the
observation points must be on the conducting cylinder where the tangential electric field equals
zero. Assume the radius of the circle is a. The observation points are on the surfaceat p = a . To
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meet the addition theorem requirement for sources p’, the relation a < p’ must be satisfied. The

induced current source points and observation points are both on the cylinder surface.

J.3 Electric Line Charges near a Conducting Cylinder
For the electrostatic case, an infinitely long line charge outside a conducting ring must
have an infinitely long image charge inside the ring to ensure the voltage potential on the ring

equals zero. See Figure J-3.

Electrodtatic Case - Ling Charge cutiide Condudtive Ring Electrogtatic Case - Ling Charge outiide Condudtive Ring
Conductve Fng Conductve Fing

L] ireags Ling Changa ¥ Imaga Ling Chasgs

3 § Souce Ling Charge 3 ®  Source Ling Charge
) ]

L L
'
-
3 2
a) b)

Figure J-3: Single line charge outside an infinitely long PEC circular cylinder, and its image line

charge inside the cylinder. a) Source charge is away from surface b) Source charge near surface.

For multiple infinitely long line charges outside the conducting ring spaced 60° apart, there
must be an equal number of infinitely long image line charges placed 60° apart inside the circular
cylinder. See Figure J-4. Each line charge produces an image charge on the inside of the cylinder

to satisfy the boundary condition that the electric field on the conductor must equal zero.
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Electrostatic Case - Multiple Line Charges outside Conductive Ring

Source Radius
Conductive Ring

®  image Line Charge
®  Source Line Charge |

Figure J-4: Multiple line charges outside an infinitely long PEC circular cylinder and their image
line charges inside the cylinder.

Similarly, each virtual current on the surface of a conductor must generate an equal and

opposite induced current for the electric field boundary conditions to be satisfied. See Figure J-5.
So, the electrostatic case is analogous to the time harmonic case for DSPM.

Direct SPM Circular Cylinder Line Currents

o
sl

Y Axis M ¥ 1

Z Ax
—
——
o ——
 — ——

Figure J-5: lllustration of virtual current sources on an infinitely long circular cylinder in blue,
and induced surface line currents in red. Surface and induced currents are in opposite directions.

The cylinder is in green.
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Appendix K: Fourier Series, Fourier Transform, DTFT, and DFT

K.1 Fourier Series and Transform in Time and Space

This section discusses the important relations of Fourier series and Fourier transforms
used in the Spatial Frequency Technique and Spectral Projection Model [90-97]. In table K-1 the
relationship between signals in the spatial domain versus the Fourier domain are listed.
Discretization in one domain transforms the signal into a periodic signal in the other domain. If a

signal is continuous in one domain, it is non-periodic in the alternate domain.

Table K-1: Signal Characteristics of Spatial Domain vs. Fourier Domain.

Spatial domain Fourier domain

Continuous and non-periodic Fourier transform

Continuous and non-periodic

Continuous and periodic Fourier series

Discrete and non-periodic

Discrete and non-periodic Discrete time (space) Fourier transform

Continuous and periodic

Discrete and periodic Discrete Fourier transform

Discrete and periodic

K.2  Discrete Fourier Transform of a Function

The discrete Fourier series and discrete Fourier transform are the most effective ways of
dealing with discrete waveforms. These transformations can be applied to discretized spatial
waveforms analogous to the way the Fourier transform is applied to continuous waveforms in
space. In the spatial frequency domain, these discretized waveforms can be thought of as
frequency sampled discrete waveforms. Both the Spatial Frequency Technique and the Spectral
Projection Model use the properties of the Discrete Fourier Transform and the Fourier Operator
in their methodology.
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The discrete Fourier transform for sequence x[n] is defined in equations (K — 1) and

(K -2).

x[n] & X(k) (K—1)
X[k] = Z x[n]e_jk"(%n) (K—2)

Shown in Figure K-1 is an example of a discretized object over one period, its discrete
time (space) Fourier transform (DTFT), and five spatial periods of the discretized object, and

five spatial frequency periods of its DFT.

Continuous Object f(x) and Discretized Object f(n) Normalized DTFT F(e"'u)
vvvvv 14
N=5
0 AA=05 0.5
N,=20
0 ——————— L ——————e— (
)5 05
sml.._(N"2_|_\"sm(_lu20 v, =kAA

-1

0 0.2 04 0.6 0.8 1 15 -10 0 5 10 15

\ 5 w 5

a) b)
Periodic Discretized Object f(n) ) Normalized DFT

sin((2xk IN_N2)ysin(2=k /(2N ))

0 20 40 60 80 100 0 20 40 60 80 100

c) d)
Figure K-1: a) Discretized pulse function. b) Normalized discrete time (space) Fourier transform

of pulse function. c) Periodic discretized pulse function. d) Normalized discrete Fourier

transform.
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The two-dimensional discrete Fourier transform is written in equations (K — 3) and (K — 4).

x[n,m] & X(ky, ky) (K —3)

X[ky, k] = x[n, mle~7n(3) g 7kan(57) K — 4)

In order to use the DFT to analyze a PEC object like a finite length strip, one must
assume that the structure is periodic in space. It is necessary to discretize the strip into
sufficiently small segments so that its maximum spatial frequency is large enough to satisfy the
Nyquist criterion.

The DFT is a linear transformation that maps a set of shifted delta functions at points

Xm, € {x0, x4, ... X3y 1} located equally spaced on a grid, to a set of complex exponentials
—j2mkm

functions e Mx . It also has the properties of the Fourier Transform, including the
differentiation and convolution. The DFT mapping for one-dimensional and two-dimensional

objects is illustrated in Figure K-2.

(f -"-\-,\ ’f‘ "'"-n.\
, | If |
| I _ |
I
! S0¢-m) | — g JkmM :
I [ : [
t“""-—. -—"’J “""--. .-‘_}
a)
o S T e h-"'\\ B e e T e ol
LY & ~
r I If I
I I I
; y y
: 8(x-m,y-n) I —— MMMy
I I l I
l"“'-—. --"'JJ \""'!-.. .-"}
b)

Figure K-2: Mapping from spatial domain to spatial frequency domain for a) one-dimensional
DFT and b) two-dimensional DFT.
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K.3  The Discrete Fourier Transform and the Roots of Unity
If one substitutes the term W, from equation (K — 5) into equation (K — 2), equation
(K — 6) results.

WN = ej(zﬁn) (K - 5)
X[kl = ) x[n]wym (K —6)

The terms Wy n € {0,1, ... N — 1} are called the N roots of unity. lllustrated in Figure K-
3 are the roots of unity for a 4-point DFT and an 8-point DFT.

4 DFT Roots of Unity in Complex Coordinates 8 DFT Roots of Unity in Complex Coordinates
T I T I
15f ! 5
1
11 21
W4: W8l
1 L ] 1
. , w,
1
Ws ° [ ]
1
05 ! 1 0.5
0 0
o 1 Vg wo
Or---;® & ----+ 0 [l el e
W4 WB
05+ ! 1 05+
1
° ® \\7
5 Y
1 ° At We '
3 6
W4 W8
15 F i 15
. . : . .
1.5 1 0.5 0 0.5 1 1.5 1.5 1 0.5 0 0.5 1 1.5
a) b)

Figure K-3: Roots of unity for a a) 4-point DFT and a b) 8-point DFT.

For a four-point DFT, the roots of unity calculated in equations (K — 7) through (K — 10).

W = O _ 4 (K —7)
Wi = LW _ (K — 8)
Wi = S - 4 (K —9)
we =GO = (K — 10)

These points given in equations (K — 7) to (K — 10) are plotted in Figure K-3.
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K.4  Fourier Operator
In order to calculate the discrete Fourier transform of a vector containing points
Xm» € {X0, X1, ... Xpy—1 }, ONe May project the vector x given in equation (K — 11)

x(0)
x(1)
x(2)
x(3)

onto the Fourier operator given in equation (K — 12).

=
I

(K —11)

(K —12)

/N N
D
J‘N
~[§
N——
NS
VoS
aQ
| |
[\S]
~[§
YR N W
(o)}

The resulting discrete Fourier transform X of the vector x is shown in equation (K — 13).

1 12 ) 12 , 12 3‘
_j_” _j_” _j_TL'
: <e .21)2 (e .;)4 (e .;)6 ;CE(B :[j((ggg] K —13
1 (e-,T) (e_fT) (e_]T> x|~ [xky) ( )
2m\ 3 21\ © 2m\ 9 X(3) X(K3)
1 () (7F) ()

One advantage to transforming calculations to the Fourier domain is the ability to use the
FFT algorithm [98,99] to speed up calculations. This was used in formulating the SFT analysis,
and used in the SPM and DSPM analysis in calculating Hadamard products.

K.5  Fourier Transform of Some Important Green’s Functions

The Fourier transform of important Green’s functions used in this dissertation are
presented next. These Fourier transforms were used extensively in the development of the Spatial
Frequency Technique for analyzing various one dimensional and two-dimension structures. For
two dimensional problems, the Hankel function of the second kind and first kind are usually

used. The Fourier transform of each is given below in equations (K — 14) through (K — 17).
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F{Héz) (ko /xz + y2 >}
_ f f H? <k0 /x +y >ejxkxejykydxdy (K —14)
FIHP [k, [x2 +y2 |} = - (K — 15)
o o Y 2 (k2 — k2 — k3)
J (D
F 4H ko x% +y?

.] f f H(l) (kO x + y )ejxkxejykydxdy (K - 16)

F {i H® (& ( >} 1 (K —17)
4 27'[(k2 kf,)

For three dimensional problems, the Hankel function of the second kind is used often

also. The Fourier transform of this function is given below in equations (K — 18) to (K — 19).

F{Héz) (ko\/xz + y? + 72 )}

= ] ] H® <k0\/x2 +y?% + 22 > eJ¥kxgiYky iZkz dxdydz (K—18)

-1
2 2 2 2
F<H k\/x + +z = K —19
{" ( Y >} 2m(k3 — k2 — k3 — k2) ( )

For one dimensional problems with symmetry around the origin, the Hankel function

Héz) (kolx|), is the correct choice of Green’s function. The corresponding Fourier transform is

given in equations (K — 20) and (K — 22).

F{Héz)(kolxl))} =f HE? (ko x[) e /¥ dx (K — 20)
@) 2
F{HP (o)} = === ko>k  (K=21)
2
F{Héz)(ko|x|))} " ko <k (K-22)
— o
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For two dimensional problems in which one integrates only the x variable, the Fourier

transforms in equations (K — 23) to (K — 25) may be used.
F{Héz) (ko x2 + yz)} = f Héz) (ko x2 + yz) e Tkxdyx (K —23)

—jlyl |k5—k?
2e 0

UG (ko7 +57)) = =
0

ko >k (K —24)

. —jlyl [k2-k3

P (S (7)) - 2
0

For three dimensional problems from point sources, the spherical Hankel function is

ko <k (K—25)

important to use. Below in equations (K — 26) to (K — 28) is the Fourier transform taken with

respect to only the x variable.

F {h(()z) (km/x2 + yz)} = foohgz) (km/xz + yz) e kxdx (K — 26)

2
P (ko7 57)) = = i (b i ) >k K-

(A (k57 +57)} = - jk_
0

For spherical Hankel functions integrated with respect to two variables, equations
(K —29) and (K — 30) are used.

F {] ] h(()z) (kov x? + yz)} = J j h((,z) (km/x2 + yz) e TkxXe=ikyY dxdy (K — 29)
FU j h (km/xz + yz)} = 4k ko > /k,% +k2 (K —30)

k2 — k2 — k2

K, <|y| k2 — kg) ko <k (K—28)

K.6  Discrete Fourier Transform for Non-Grid Objects

The following discrete Fourier transforms were used for objects which when discretized

did not have uniform spacing, and non-uniform grids with dx = % and dy = % could be used.
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1 _.
Gprr(ke) = ) g(x[nDe™ axn (K —31)
n=0
1T~ jkexfnly [ _Iky¥Im]
Gorr(kx fey) = 327 g(x[n],y[m]) (e dxN )(e dy-M ) (K —32)
n=0 m=0
For discretization along an angle ¥ from 0 to 2x with dy = %"
1= jkyinl
Gprr(k) = Nz e daPN (K —33)
n=0

317



Appendix L: Hadamard Product, Fourier Operators, and Convolution

L.1  Definition of a Hadamard Product

The Hadamard product o is an element-by-element multiplication of two M x N matrices.
The symbol o will represent the multiplication operation. An example is given in equation
(L-1).

[Ccl Z [; h] [cg dh] 4 (L-1)

L.2  Hadamard Product Properties
The Hadamard product [100] has many properties which are stated below in equations
(L — 2) through (L — 6).

C=AoB=BoA (L-2)
Cx = [AoB]x (L-3)
Co(A+B)=CoA+CoB (L—4)
a(AoB) = (aA) o B = Ao (aB) (L—5)
D(A o B)E = DAE o B = (DA) o (BE) (L —6)

L.3  Spectral Projection Model and the Hadamard Product
The J-spectral signature and H-spectral signature may be written as the Hadamard

products shown below in equations (L — 7) to (L — 10).

Je(Blpal)esktn

J-k(Blpol)e7¥%0 : . J_c(Blpn_1De KON
= ? . JBloaDel P 2 L7

Jx(Blpoe o : e (Blpn_yDeKon-1
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Je(Blpal)er o
J-k(Blpol) J-xBlpn-1D1 [e-iK¢o
' JeBlpaD) A

]K(ﬁlII)N—lD J l ejl;(l’o

LJx(Blpol)

H® (8| p,|)el*en
[HE (Bl pol)e Ko

H® (B|p,[)e*n

| HD (B pol)e ko

H® (B|p,)el*n

H%(Blpol) H2Blpy_1D] [e-ikeo

H® (Blpnl) : °

HE (Blpol) HP (Blpn_aD] Lerkoo

e JKdo e JKON-1 —jK ¢,

elk¢n = exp ]k¢n

oiKdo oJKbN_1 Koo

The shifted Fourier operator l F

¢, n€{0,1,..N — 1} where ¢, = 2mn/N.
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H£213 (ﬁ |pNo—

HP (Blpng-1])e N1 |

e_jK¢N—1
plkdn

ejK(.pN—l J

(L—8)

1|)e_jK¢N—1_

(L=9)

o—iKbN-1
Sk
eiKdN-1
(L - 10)
—jK -1
' (L—11)
Kby

l is defined by equation (L — 12) for the angles



]K¢0 : : : e_jK¢N—1
] [ : eﬂé% o L -12)

e]Kd)O ' ' ' e]K¢N—1

L.4  SPM and Unitary Matrices

As mentioned earlier in this appendix, a unitary matrix U has the unique property U* =
U~1. This leads to the fundamental property of unitary matrices: the inverse of U equals the
conjugate transpose of U, or
Uut =1 (L —13)

The Fourier operator matrix l F l is unitary. For the N roots of unity defined in

equation (L — 14),

Wy = el /M) (L-14)
the Fourier operator matrix for N = 4 becomes equation (L — 15).
[ 1 1 1
1 WN_1 WN_Z WN_3
- F = —
BEC -
Wy Wy Wy

and the inverse Fourier operator matrix for N = 4 becomes equation (L — 16)

1 1 1 1
H 1 WNl WNZ WN3
wen F e = 2 4 6 (L - 16)
'Erl “es s 1 WN WN WN
1 Wy Wyt w,°

This matrix satisfies the following equation for unitary matrices,

l F l l F l = l I l (L-17)
The unitary property of the Fourier Operator, l F l is shown graphically in

Figure L-1.
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Product of Fourier Operators F o FT
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a) b) C)

Figure L-1: Fourier operator matrices. a) Fourier operator. b) Phase of the inverse conjugate

transpose of Fourier operator. ¢) Magnitude product of the two matrices.

The shifted Fourier operator matrix [ F l described in equation (L — 18) is

unitary, and satisfies the following equation,

R

wH

The matrix l F .| isashifted version of the inverse Fourier operator. The matrix

rae] s ey H
S .| shifts the rows of |- F l downward by K /2.

F .| = [ S l [ F l (L —19)
An example of the shifted Fourier matrix is shown below. A shift matrix is defined in
equation (L — 20),

RN

0 01 0 O
and Fourier operator in equation (L — 21).

row shift down?2 (L —20)

= o O O
o o O O
oo O
(el )
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1 1 1 1 1

I & B (/S /S (/A /'

l F l {1 Wy wy* wy® w,® (L —21)
1 WN3 WNG WN9 WN12
11 wyt wy® w,t? WN16J

The shifted inverse Fourier operator is shown in equation (L — 21).
WN3 WNG WNg WN12—
WN4 WN8 WN12 WN16
(L —22)

—
T
e—

=
Il

e e

&
[=)
&
(=)
&
(=)
&
o

oy H
Now multiply the first two rows of l F l in equation (L — 21) by multiples of n - 2 /N

with N = 5, and rewrite equation (L — 23).

1 Wy ™2 Wy™ Wy w,®
o el |1 W WY W W
[ F l ={1 wmy* W W w° (L —23)
1 WNl WNZ WN3 WN4
1 W2 Wyt Wt w,B

.qH
After comparing the functions exp l F l and equation (L — 11), the expressions are the

same for both.
0 -2 -4 —-6 -8

T 0O -1 -2 -3 —4 2T
exp l F l =expjl0 0 0 0 0+ (L—24)
0 1 2 3 4

0 2 4 6 8
It is clear that the shifted inverse Fourier operator in equation (L — 11) is the same as

that in (L — 23) when ¢,,.1 — ¢, = 2 /N and ¢, = 0. Depending upon whether the modes are
ordered from {—K ...k ...K} or {K ...k ...— K} will determine whether the exponential matrix for

the spectral signatures is the shifted Fourier operator or the shifted inverse Fourier operator.
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The large argument approximation for a Hankel function with angle ¢, is given in equation
(5-70).

HP (816D pyroen = *(#075) (5 — 70)
The H-spectral signature matrix for large arguments is given in equation (L — 25).
e_jK(¢0_%> e e_jK(d)NS—l_g)
H]EZ)(,Blanlpn—wo :] = : oo : (L —25)
l ejK((PO_%) cor ejK(d)NS_l_%) J

If each column of the shifted inverse Fourier operator is multiplied by the phase shift e /%2, one
obtains the far-field H-spectral signature matrix.

The far-field H-spectral signature matrix is equal to matrix

0 O 0 O

product]0 Ds 0 l FH l where the diagonal matrix [0 Ds 0/ applies the e ~/*2
0 0 - R P
phase shift to each column.
- . I

~ 0 0 0 O e’®2 0 0 0 0
0~ 0 0 0 o ~ 0 0 0
0 0 Dg 0 0|=| g o e’z 0 (5 —121)
O O 0 e 0 O 0 O ) 0

- T
0O 0 0 0 -~ | o 0 0 ey

Thus, the matrix equality between the far-field H-spectral signature matrix and the DFT Fourier

operator exists as given in equation (5 — 122) and (5 — 123).

e e . O 0 ee e e
HP (B(p - ) l =lo Ds 0© l FH l (5 —122)

L.5 Hadamard Product and Convolution

Two important properties used in SPM and DSPM is that the addition theorem is a form

of convolution. Define a matrix l H,p l which is the convolution = of the matrices

e ]
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[ I e Y L 26
If one converts these to the Fourier domain, one can write the convolution as a Hadamard

product,

[ZZZ F ZZZHIII H., Iﬁﬁlzlﬂﬁﬁ F IZZHIII H III]@lIII F H 7 Iﬁﬁl
(L —27)
and calculate the product by equation (L — 28).

e N N G| LI )

(L —128)
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Appendix M: Enforcement of Boundary Conditions for DSPM Equations

M.1  Incident and Scattered Fields for the DSPM Model

For an infinitely long cylinder, when an external line source is moved close to the surface
of a conducting cylinder, each induced current source can be represented as a delta function.
These excitation sources at the surface act as virtual sources, and so can be thought of as
eigensources.

External line sources and incident electric fields outside the cylinder may be decomposed
into a collection of virtual currents or eigensources. The basis of the Direct Spectral Projection
Model is that the H-spectral signature of any external line source or incident electric field can be
expressed as the weighted sum of the H-spectral signatures of a set of virtual sources. The
induced currents are the output function. Because each induced current source is a scaled version
of an equal and opposite eigensource, by finding the weights of the virtual currents one can
calculate the induced currents on the surface of the cylinder.

Unlike the Spectral Projection Model, it is not necessary to write the full addition
theorem to characterize the incident and scattered electric fields at the surface of the conducting
body. Boundary conditions are implicit in the formulation of the Direct Spectral Projection
Method because virtual and induced currents produce equal and opposite electric fields at every

observation point on the surface. This is illustrated in Figure M-1.

M.2  Enforcing Boundary Conditions with DSPM
To meet the electric field boundary conditions on the surface of the PEC cylinder, the
following equation must be satisfied between the incident and scattered fields at points n €

{1,2,..,N}.

Einc,l Escat,l
Einc,n = - Escat,n (M - 1)
Einc,N Escat,N
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DSPM Mutual Coupling of Fields - Virtual Currents

Z-Axis

DSPM Mutual Coupling of Fields - Induced Currents

Z-Axis

b)
Figure M-1: Contributions to electric field from a virtual source on an infinitely long cylinder. b)

Contributions to electric field from a virtual source on an infinitely long cylinder.
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In the case of DSPM, the incident fields are represented by virtual sources that generate
an electric field equivalent to that of the external sources. Scattered fields are produced by

induced currents. So, boundary conditions in equation (M — 1) can be written as (M — 2).

Evir,l Eind,l
Evir.n = - Eind,n (M _ 2)
Evir,N Eind,N

The electric fields produced by the virtual sources | E,,;; , | are equivalent to the electric

[Einc,l]
fields produced by the incident sources | Eincn | To calculate the equivalent electric field from

lEinC,NJ
the virtual sources, one must project the collective H-spectral signature of the virtual sources
(M — 3) onto the J T-spectral signature of the observation points (M — 4) at the surface. The
incident field at the boundary is equal to the weighted sum of the H-spectral signature of the
incident sources projected onto the J T-spectral signature of the same observation points at the
surface. Because the same J T-spectral signature matrix is used in this equality, it does not appear
in the final DSPM equation. But its importance must be emphasized because it is responsible for
the convergence of the solution in the DSPM equation.

HP (Bl pyl)elkn

HE (Blpol)e %0 : : R (Blong-1])e 7]
= : L HP(Blpalelktn : (M —3)
| H (Blpohe o : : H(Blowg-a|)er o |
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Je(Blpnl)esktn

J-k(Blpol)e

Tk (Blpolyer %

Je(Blpalektn

J_x(Blpy_1)e iKen-17"

(M —4)

Je(Blpn_1]) e on-s

The spectral signature of an incident plane wave from direction ¢, can be represented by

an infinitely long vector in C1** space, and the H-spectral signature subspace of the M+1

observation points on the surface is also made up of infinite dimensional columns k — co. The

magnitude of the H-spectral signature grows larger |Ess,M,—K| — oo for K — oo, This is shown in

matrix equation (M — 5) below.

|hss,0,—K| — @

hss,O,k

L |hss,0,K| - ®

~

hss,m,k

~

|hss,m,—K| - @

|hss,m,1< | - ©

o |Rss x| = ] lefkbo| =1 k > —oo
e [
ESSfM,k | a:m | = eﬂi%
S
o Vhssm] = 0. /90| =1k — oo
(M —5)

Similarly, the J T-spectral signature subspace of the M+1 observation points on the

surface is made up of infinite dimensional rows. The magnitude of the J-spectral signature in this

case grows smaller |fs 01| = 0 for K — oo. This is shown in matrix equation (M — 6) below.

|]ss,0,—K| -0

a
] ss,m,—K

]ss.M,—K| -0

|jss,0,k| -0

o
] ss,;mk

jss,M,kl -0

T

]ss,O,Kl -0

(M —6)

a
] ss,mK

]ss,M,Kl - 0]
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The magnitude plot of the Hankel functions vs. modes is shown in both matrix form and

graphically in Figure M-2. The magnitude of the H-spectral signature increases as the mode

number increases.

|hss,0,—K | - ®

~

hss,O,k

L |hss,0,K| - ®

Magnitude Plot
Log, H? (p)]
p=0.5 Near-Field

(]

2
n

log,  IH

b)

|hss,m,—1<| - ®

hss,m,k

~

|hss,m,K | - ©

a)
Magnitude Plot

Log,HP(p)l
p =25 Near-Field

o |hssm—k| =

|hss,M,K| — 0 |

hss,M,k

Magnitude Plot
H@(p)l
p=5 Far-Field

180

160

140

120

Modes

d)

Figure M-2: Magnitude plot of H-spectral signature modes for different axial lengths p = .5,p =

2.5, p = 5. a) Matrix representation. b, ¢, d) Modes vs. magnitude.

The plot of modes -K to K vs. magnitude of Bessel functions is shown below in Figure

M-3. The matrix is shown as the J T-spectral signatures of the observation points.
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- | A - O N N 0 N - 0—
]ss,O,—K ]ss,O,k ]ss,O,K
N . N . N
Jssm,—K . Jss,m,k . Jssmk
N N N
L ]ss,M,—Kl -0 - |]ss,M,k| -0 .. |]ss,M,K| - 0]
a)
Magnitude Plot Magnitude Plot Magnitude Plot
YL (el J (o)l N, (el
=0.5 Near-Field = 2.5 Near-Field =5 Far-Field
15 P ‘ear ie 15 P ?ar ie 15 P ar-Fiel
1 1F 1
= = =
= =" =
0.5 1 0.5 1 05
0 0 ! 0 !
-50 0 50 -50 0 50 -50 0 50
Modes Modes Modes
b) c) d)

Figure M-3: Magnitude plot of J T-spectral signature modes for different axial lengths p =

.5,p = 2.5, p = 5. a) Matrix representation. b, ¢, d) Modes vs. magnitude.

In the magnitude plot of the J T-spectral signatures, the value of the bessel function
approaches zero for the higher order modes. This means that this matrix acts as a low-pass filter,
and multiplying the H-spectral signature vector by this matrix drives this product to zero and
thus provides for the convergence of the addition theorem. The electric field boundary conditions
are enforced by projecting the H-spectral signatures onto the J-spectral signatures at the surface
over a defined number of modes. This is similar to the way higher order sinusoidal harmonics are
filtered out by the basis functions when implementing the Method of Moments and the Spatial

Frequency Technique. See Figure M-4 below.

330



Pulse Basis Function Fourier Transform
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Sinusoidal Basis Function Fourier Transform
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Figure M-4: Fourier transforms of different basis functions: rectangular pulse waveform,

triangular waveform, sinusoidal wave, and truncated cosine waveform.
When both sides of the DSPM equation are multiplied by the J T-spectral signatures the

boundary conditions are enforced. On the left side of the equation, the matrix product becomes
M —-7).
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[ |jss,0,—K| -0 |jss,0,k| -0
jss,m,—K jss,m,k
-|jss,M,—K| -0 - |jss,M,k| -0

|jss,0,1(| - 0]

A
] ssmK

|jss,M,K| - 0-

|hss,0,—K| - ®

hss,O,k

L |hSS.0,K| - ®

|hSS.m,—K| - ®

hss,m,k

|hss,m,K | - ®

|hss,M,—K| — 00

hss,M,k

|hss,M,K| — ]

M=7)

Figure M-5 illustrates how the outer modes of the J T-spectral filter the higher order

modes of the H-spectral signature to zero, and ensure convergence of the matrix product.

-Ijas.-:].—h'l -0 Usa.n.kl -0 Ijss.l:l.ffl =2 U-T
A
il
.hssuw.—xl -0 Ijs*s..'«f.ifl =0 Ijss..'«f.f:l —= 0]

-I'Es*s.l:l.—ffl b

hseok

L Ihss.[:-.xl — @

e

™

S

P

T

-~

e

N
ik

Iﬁss.m.—xi — 0]

hss.r-f.k

lhss.M.HI — o2

Figure M-5: Filtering of the outer modes of the product of the J T-spectral subspace and H-

spectral signature subspaces.

The spectral signature of the incident field from a current source at (p,, ¢o) was given

earlier and written again in equation (M — 8).

Bl

dwe

[lss,inc,lel = —

[HZ) (Blpol)eK®o]
HP (Bl pol)e¢o

H® (Blpol)e/®o

(M —8)

In order to represent a plane wave incident from an angle ¢,’, the matrix expression in equation

(M —9) is shown.
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_e _jK(d)o’_%)_

Ff ) : s
l_g,cinc,le =E, e]k(d)ol_?) (M—9)

| o7K(03) |
The actual magnitude of the incident field is defined by the infinite vector on the right-

hand side of the matrix equation, and is a constant value of one.

eJkbo - 1 (M —10)

The spectral signatures of each observation point m is defined by an infinitely long
spectral signature column vector Flss,m,k- The spectral signature s for s, € {—K, ...k, ...K}
represents the region in which the boundary conditions are applied. As the length of the column
vectors gets larger (for greater K modes), the magnitude of the H-spectral signatures goes to
infinity |s,| = oo, as shown in Figure M-5. By multiplying both sides by J T-spectral signature
subspace, the electric field boundary conditions are met through the low-pass filter effect. For
large axial ratios, the number of modes in the spectral signature of an object increases. This
limits application of the DSPM by the larger axial dimension, unless translation is performed to
mitigate its effects.

This procedure forces the vectors representing the H-spectral signatures of the induced
currents on the left-hand side of the equation to be equal to the vectors representing the H-
spectral signatures of the incident currents on the right-hand side of the equation. Moreover, it
can be used to force any two vectors representing the H-spectral signature of the induced and

incident currents to satisfy the boundary conditions at the surface of the conductor.
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