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Abstract 

Spectral Projection Model of Electromagnetic Scattering and Radiation 

by Anthony Fascia 

This dissertation presents two new methods for analyzing electromagnetic scattering from 

perfect electrically conducting surfaces. The Spectral Projection Model and Direct Spectral 

Projection Model are spectral techniques for analyzing the scattering patterns from two-

dimensional objects. The methods evolved from prior work done on analyzing scattering from 

perfect electrical conducting surfaces in two-dimensions in the sinusoidal spatial frequency 

domain using the Spatial Frequency Technique. By employing the addition theorem for Hankel 

and Bessel functions, the Spectral Projection Model represents the incident and scattered electric 

fields in the electric field integral equation and magnetic field integral equation as projections of 

spectral signatures. Using the addition theorem, the incident fields and the scattered fields are 

decomposed into the product of two matrices whose columns and rows are the spectral signatures 

of current sources that are projected onto the spectral signatures of the observation points. The 

Direct Spectral Projection Model, which evolved from Spectral Projection Model, identifies a set 

of virtual sources that are the eigenfunctions of the scattering problem. The currents induced on 

the surface are calculated by decomposing the spectral signature of the incident fields in terms of 

the spectral signatures of these virtual sources. 

The first analyses using the Spectral Projection Model were on infinitely long circular 

cylinders and produced results that agreed well with established techniques like the Method of 

Moments for transverse magnetic incident waves. Both the Spectral Projection Model and Direct 

Spectral Projection Model techniques were then applied to elliptical cylinders of different axial 

ratios for both transverse magnetic and transverse electric incident waveforms. The techniques 

produced good agreement with Method of Moments techniques but only for small axial ratios. 

The addition theorem failed to converge for ellipses with large axial ratios.  

In this dissertation, it is shown that the spectral signature of a point in space, which is 

represented by a vector, is equivalent to the convolution of the spectral signatures of two vectors, 
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which when combined result in the original vector. In order to calculate the scattered fields from 

elliptical cylinders of larger axial ratios, it was necessary to use the addition theorem as a 

convolution sum for both the source and observation points. To accomplish this, elliptical 

patterns were generated by summing two constant magnitude vectors rotating in opposite 

directions. Known as the Two Vector Sum approach, a variety of two-dimensional surfaces may 

be generated using two constant amplitude vectors rotating at different rates. Elliptical surfaces 

are generated using two vectors rotating at the same rate in opposite directions. The Spectral 

Projection Model was extended to scattering from ellipses with large axial ratios by using the 

Two Vector Sum approach to describe the model as a convolution of spectral signatures. 

Calculation of the convolution operation was performed using Hadamard products in the Fourier 

domain. 

  Far-field patterns calculated using the Spectral Projection Model are compared with those 

using the Method of Moments to validate the accuracy of the method for elliptical cylinders of 

both large major axis and large axial ratio. Computation of the current distribution on elliptical 

cylinders of large major axis and large axial ratio using the Direct Spectral Projection Model also 

indicate that Direct Spectral Projection Model and Method of Moments results closely match. 

Both methods are also used with a few different two-dimensional perfect electrical conducting 

cylinders other than elliptical cylinders to show the versatility of the two models. 

The primary motivation for developing these models was the projection process clearly 

shows the physics of the scattering process by separating the spectral signatures of the incident 

sources from those of the induced currents. This allows this model to be used as a tool for 

surface or target synthesis. The Spectral Projection Model and Direct Spectral Projection Model 

formulation also has the potential for speeding up the computation by using the well-established 

properties of the convolution operation and the Fast Fourier Transform algorithm. The 

computational aspects of this model will be investigated as a follow-up to this dissertation. In the 

future, the models may also be extended to dielectric objects and three-dimensional objects. 
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Chapter 1: Introduction 

1.1  Overview of Computational Electromagnetic Techniques 

The focus of this dissertation is a new mathematical technique for solving 

electromagnetic field problems called the Spectral Projection Model (SPM). Other computational 

techniques such as the Method of Moments (MOM), Finite Element Method (FEM), Finite 

Difference Time Domain Method (FDTD), Spatial Frequency Technique (SFT), and the Fast 

Multipole Method (FMM) have all been used successfully to solve different classes of 

electromagnetic problems. This dissertation presents the theoretical and mathematical basis for 

the development of the new SPM technique and its offspring the Direct Spectral Projection 

Model (DSPM), and describes how the proposed techniques are related to these existing 

methods. The dissertation also provides the rationale for the development of this new technique 

and its benefits and advantages over existing methods. 

The solution of electromagnetic (EM) field problems has evolved from the employment 

of empirical methods and analytical techniques to a computational science that harnesses the 

power of microprocessors in less than 200 years. But the basic equations governing the physics 

of electromagnetic theory have remained largely the same. They were summarized by James 

Clerk Maxwell (1831-1879) in 1862 in his Treatise on Electromagnetics [1]. All electromagnetic 

fields must satisfy the four Maxwell’s equations given in equations (1 − 1) to (1 − 4).  

Faraday’s law, Ampere’s law, Gauss’ law for electric flux, and Gauss’ law for magnetic flux are 

listed in order. 

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
                                                                                                                                       (1 − 1) 

∇ × 𝐻 = 𝐽 +
𝜕𝐷

𝜕𝑡
                                                                                                                                   (1 − 2) 

∇ ∙ 𝐸 = 𝜌𝑣                                                                                                                                                (1 − 3) 

∇ ∙ 𝐵 = 0                                                                                                                                                 (1 − 4) 

Maxwell’s equations are the foundation for solving all electromagnetic field problems. 

The mathematics necessary for the writing and solution of these equations was developed over 

centuries by many mathematicians and physicists, most notably the inventors of calculus, Isaac 
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Newton and Gottfried Wilhelm Leibniz [2]. The analytical solution to Maxwell’s equations for 

different problems was found by numerous mathematicians and physicists. Most analytical 

solutions to electromagnetic problems made use of symmetry. Unfortunately, many problems 

with asymmetrical geometry were intractable because analytical solutions could not be derived 

for these problems. 

 

Figure 1-1: Branch chart of methods in computational electromagnetics. 

 

Computational methods involving large matrices were not possible until the 20th century 

with the invention of electronic computers [3-5]. Numerical techniques are the only way to solve 

many electromagnetic problems that do not have an analytical solution. In these computational 

methods, analytical techniques are combined with linear algebra and discretization methods to 

solve for scattered and radiated electromagnetic fields. The three most important methods are 

finite volume discretization methods (FVDM), boundary element methods (BEM), and spectral 

methods (SM). FVDM includes the finite element method (FEM) and the finite difference time 

domain (FDTD) analysis [6,7]. The most important BEM is the Method of Moments (MOM) 

first described by Harrington in his classic paper [8]. For large structures, the fast multipole 

method (FMM) is an alternative boundary element method [9] technique. Spectral methods such 
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as the spatial frequency technique (SFT) and conjugate gradient FFT (CGFFT) are two types of 

BEM’s that solve the problems either fully or partially in the spatial frequency domain [10,11]. 

 

1.2  Finite Volume Discretization Methods 

Finite volume discretization methods are useful in applications where the volume of the 

object is well defined, and the electromagnetic fields inside the object needs to be calculated.  

FEM is a variational technique that minimizes the electromagnetic energy of a functional 𝐹 to 

arrive at a solution [12,13]. A functional maps elements u, w, and g of the function space U into 

the scalar space of real numbers in range R. The element u is a basis function, w is a testing 

function, and g is the source function. One begins with the homogeneous Helmholtz equation 

(1 − 5), 

∇2𝑢 + 𝑘2𝑢 = 𝑔                                                                                                                                     (1 − 5) 

where 𝑢,𝑤, 𝑔 ∈ 𝑈 and 𝑘 is a constant. The functional for the Helmholtz equation is formed by 

setting 𝑓 = 𝑔 − ∇2𝑢 − 𝑘2𝑢, and then multiplying 𝑓 by the testing function 𝑤. Next 𝑓 is 

integrated over an element of volume V, and Green’s first identity, the divergence theorem 

(1 − 6), and the vector theorem in (1 − 7) are used to simplify the expression. 

∫ 𝑤𝛻2𝑢𝑑𝑉 − ∫𝑢𝛻2𝑤𝑑𝑉
𝑉

=
𝑉

 ∫ 𝑤
𝜕𝑢

𝜕𝑛
𝑑𝑆

𝛤𝐷

−∫ 𝑢
𝜕𝑤

𝜕𝑛𝛤𝑁

𝑑𝑆                                                           (1 − 6) 

∫ 𝑤𝛻2𝑢𝑑𝑉 + ∫𝛻𝑢𝛻𝑤𝑑𝑉
𝑉

=
𝑉

 ∫ 𝑤
𝜕𝑢

𝜕𝑛
𝑑𝑆

𝛤𝐷

                                                                                     (1 − 7)
 

For the Galerkin case when w = u, and integration over the Dirichlet boundary ∫ 𝑤
𝜕𝑢

𝜕𝑛
𝑑𝑆 = 0

𝛤𝐷
, 

the functional 𝐹 is shown in equation (1 − 8). 

𝐹 =∭[(∇𝑢)2 − 𝑘2𝑢2 + 𝑔𝑢]𝑑𝑉

𝑉

                                                                                                    (1 − 8) 

If one sets 𝑢 → 𝑢 + ∆𝑢, the minimum of the functional F occurs when ∆𝑢 = 0. The 

illustrations in Figure 1-2 show two objects divided into triangular basis functions. The nodes are 

indicated by dots on the vertices of the triangles. Electric and magnetic fields are calculated at 

these points. Basis functions are generally simple linear functions defined over local elements. 
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a)     b) 

Figure 1-2: Finite Element Method grids for (a) annular ring and (b) ellipse. 

 

The finite difference time domain method (FDTD) is a time domain method for solving 

electromagnetic field problems. It is a grid-based method that approximates spatial and time 

derivatives using central difference formulas [14,15]. The method calculates first the electric 

field and then the magnetic field at given time steps and spatial intervals over the grid. See 

Figure 1-3 for an illustration of an object on a two- dimensional grid subject to an incident 

electromagnetic field. 

 

Figure 1-3: Two- dimensional grid subject to an incident electromagnetic field for FDTD 

analysis. Object is colored green. 
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Derivation of the FDTD begins with two of Maxwell’s equations in differential form, 

Faraday’s law and Ampere’s law. See Table 1-1. 

 

Table 1-1: Faraday’s Law and Ampere’s Law in Differential Form. 

Faraday’s Law Ampere’s Law 

𝜕𝐻𝑥
𝜕𝑡

= −
1

𝜇
(
𝜕𝐸𝑧
𝜕𝑦

−
𝜕𝐸𝑦

𝜕𝑧
)  

𝜕𝐸𝑥
𝜕𝑡

=
1

𝜀
(
𝜕𝐻𝑧
𝜕𝑦

−
𝜕𝐻𝑦

𝜕𝑧
− 𝜎𝐸𝑥) 

𝜕𝐻𝑦

𝜕𝑡
= −

1

𝜇
(
𝜕𝐸𝑥
𝜕𝑧

−
𝜕𝐸𝑧
𝜕𝑥

)   
𝜕𝐸𝑦

𝜕𝑡
=
1

𝜀
(
𝜕𝐻𝑥
𝜕𝑧

−
𝜕𝐻𝐸𝑧
𝜕𝑥

− 𝜎𝐸𝑦) 

𝜕𝐻𝑧
𝜕𝑡

= −
1

𝜇
(
𝜕𝐸𝑦

𝜕𝑥
−
𝜕𝐸𝑥
𝜕𝑦

) 
𝜕𝐸𝑧
𝜕𝑡

=
1

𝜀
(
𝜕𝐻𝑦

𝜕𝑥
−
𝜕𝐻𝑥
𝜕𝑦

− 𝜎𝐸𝑧) 

 

An illustration of two grid cells for calculating TMz and TEz travelling waves impinging on an 

object is shown in Figure 1-4. 

 

 a) b) 

Figure 1-4: Finite Difference Time Domain grid elements for infinitely long cylinders. a) TM wave 

FDTD element. b) TE wave FDTD element. 

 

In transverse magnetic wave analysis case, i.e. TMz waves, boundary conditions are given in 

equation (1 − 9𝑎). The central difference formulas are applied to equations (1 − 9𝑏) to (1 −

9𝑑). 
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𝐸𝑥 = 0                   𝐸𝑦 = 0             𝐻𝑧 = 0            
𝜕

𝜕𝑧
= 0                                                              (1 − 9𝑎) 

𝜕𝐻𝑥
𝜕𝑡

= −
1

𝜇

𝜕𝐸𝑧
𝜕𝑦

 

𝐻𝑥
𝑛+

1
2(𝑖, 𝑗, 𝑘) = 𝐻𝑥

𝑛−
1
2(𝑖, 𝑗, 𝑘) +

∆𝑡

𝜇(𝑖, 𝑗, 𝑘)
[−
𝐸𝑧
𝑛(𝑖, 𝑗 + 1, 𝑘) − 𝐸𝑧

𝑛(𝑖, 𝑗, 𝑘)

∆𝑦
]                           (1 − 9𝑏) 

𝜕𝐻𝑦

𝜕𝑡
=
1

𝜇

𝜕𝐸𝑧
𝜕𝑥

 

𝐻𝑦
𝑛+

1
2(𝑖, 𝑗, 𝑘) = 𝐻𝑦

𝑛−
1
2(𝑖, 𝑗, 𝑘) +

∆𝑡

𝜇(𝑖, 𝑗, 𝑘)
[
𝐸𝑧
𝑛(𝑖 + 1, 𝑗, 𝑘) − 𝐸𝑧

𝑛(𝑖, 𝑗, 𝑘)

∆𝑥
]                                (1 − 9𝑐) 

𝜕𝐸𝑧
𝜕𝑡

=
1

𝜀
(
𝜕𝐻𝑦

𝜕𝑥
−
𝜕𝐻𝑥
𝜕𝑦

) 

𝐸𝑧
𝑛+1(𝑖, 𝑗, 𝑘) = 

𝐸𝑧
𝑛(𝑖, 𝑗, 𝑘) +

∆𝑡

𝜀(𝑖, 𝑗, 𝑘)
[
𝐻𝑦
𝑛+

1
2(𝑖, 𝑗, 𝑘) − 𝐻𝑦

𝑛+
1
2(𝑖 − 1, 𝑗, 𝑘)

∆𝑥
−
𝐻𝑥
𝑛+

1
2(𝑖, 𝑗, 𝑘) − 𝐻𝑥

𝑛+
1
2(𝑖, 𝑗 − 1, 𝑘)

∆𝑦
] 

 (1 − 9𝑑) 

A full list of the 3D equations and applications of the Finite Difference Time Domain method 

may be found in the references [7]. 

A benefit of the FDTD method is that the algorithm does not require the formulation of 

integral equations, and relatively complex scattering problems can be solved without inverting 

large matrices. Because it is grid based, each element may have different values of permittivity 

and permeability. So, it may be used for solving problems involving linear and non-linear 

materials. Also, derivatives are approximated by the central difference formula, and successive 

grid points are calculated from previous ones. This makes it excellent for calculating the time 

response of electromagnetic field problems, and for displaying waveform propagation through 

animation. 

A drawback of this approach is that the grid size can grow very large depending on the 

problem domain, and the code must satisfy time restraint conditions, i.e. the Courant-Friedrichs-

Lewy (CFL) stability criterion [16]. 
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1.3  Boundary Element Methods 

Boundary element methods are useful in calculating the electromagnetic fields around an 

object and the approximate calculation of fields and currents on the boundary. Once the current 

distribution on the surface of the object is calculated, the far-field radiation pattern may be 

found. 

Most boundary element methods solve integral equations using a mathematical technique 

called the method of weighted residuals. The most popular BEM is the Method of Moments [17-

22]. Objects subjected to radiation and scatterers are first discretized into elements. Examples of 

one-dimensional discretized objects typically solved using the MOM are shown in Figure 1-5. 

              

a)   b) 

Figure 1-5: a) Discretized linear array using Method of Moments. b) Discretized circular loop 

using Method of Moments. 

 

Solving problems using the Method of Moments often begins with the Helmholtz vector 

wave equation (1 − 10) for the vector form of the magnetic vector potential A(r) and its integral 

Green’s function solution (1 − 11). See Figure 1-6. 
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Figure 1-6: Magnetic vector potential and its 3D Green’s function integral representation. 

 

∇2𝑨 + 𝑘0
2𝑨 = 𝑱𝑽                                                                                                                                 (1 − 10) 

𝑨(𝒓) =
𝜇

4𝜋
∭𝑱𝑽(𝒓

′)

𝑉

𝐺(|𝒓 − 𝒓′|)𝑑𝑉′                                                                                          (1 − 11) 

After the object is discretized over its entire domain, basis functions representing local 

current amplitudes and phases may be solved using matrix algebra. Source and observation 

points are coincident, and calculation of current values requires the inversion of a matrix. The 

matrix is diagonally dominant because of the existence of a singularity in the Green’s function. 

Different techniques have been developed to assist in inverting these diagonally dominant 

matrices [23,24]. 

 

1.4  Spectral Methods 

Another way to calculate the electromagnetic fields on an object is by spectral methods. 

They use continuous or “smooth” whole domain basis functions. If the basis functions are 

sinusoidal, they take advantage of the speed of the FFT to reduce calculation time. These 

methods begin with the differential or integral equations describing the EM fields and transform 

them into the spatial frequency domain [25-28]. For the vector wave equation (1 − 10), its 

spatial frequency representation is the scalar differential equation (1 − 12). 

𝑘2𝐴(𝑘) + 𝑘0
2𝐴(𝑘) = 𝐽𝑉(𝑘)                                                                                                              (1 − 12) 

The variable 𝑘 is the spatial frequency, and 𝑘0 is the wavenumber. 
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For the integral equation (1 − 11), the integration can be viewed as a convolution 

operation in the spatial domain. This simplifies the matrix algebra because convolution in the 

spatial domain is performed as multiplication in the spatial frequency domain. To transform the 

problem into the spatial frequency domain, one can often use the discrete Fourier transform. 

Using the FFT algorithm speeds up the solution to the problem. After transformation into the 

spatial frequency domain, equation (1 − 11) may be written as equation (1 − 13). 

𝐴(𝑘) =
𝜇

4𝜋
𝐺(𝑘)𝐽(𝑘)                                                                                                                         (1 − 13) 

Next the Green’s function matrix inverse is taken, and the result is transformed back into the 

spatial domain to calculate the current distribution. 

  Even though spectral techniques are accurate due to their use of continuous functions, 

they are limited as to the geometries they can handle. In order to take advantage of the speed of 

the FFT, the algorithm requires a uniform grid. The FFT grid for one-dimensional problems must 

have equal length segments. In two dimensions, the 2D FFT grid must be divided into equal 

sized rectangles. Figure 1-7 shows illustrations of a rectangular and triangular object whose 

sampling points fall on a square grid, and an elliptical object whose sampling points do not. The 

conductor region is in green and the sampling points are the dots. The FFT algorithm may be 

used to calculate the discrete Fourier transform of the rectangular and triangular objects. In the 

case of the ellipse, the discrete Fourier transform must be calculated directly for points on the 

object, slowing down the analysis time considerably. 

Because the spectral method uses the discrete Fourier transform, the object is assumed to 

be periodic in space. Thus, sampling must satisfy the Nyquist criterion. The last illustration 

shows a square object and its periodicity in space. The green region is the conductor space, and 

the gray region is called the complementary space. For 2D problems, the complementary space is 

analogous to adding zeros for the 1D case. 
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a)  b) 

 

 

c) d) 

Figure 1-7: Two dimensional spatial grids for a) rectangular b) triangular, and c) elliptical object. 

d) A periodic rectangular object is the fourth illustration. Dots are the sampling points on each 

object. 

 

1.5  Spatial Frequency Technique vs. FDTD and FEM 

The Spatial Frequency Technique begins with the differential form of Maxwell’s 

equations to develop a set of equations similar to the Finite Difference Time Domain method and 

the Finite Element Method, but that is where the similarity ends. The FDTD uses approximations 

to derivatives to solve for the time domain response of electromagnetic systems, and the Finite 

Element Method uses a variation technique to minimize a functional written from the differential 

equations. 
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The SFT applies the discrete Fourier transform to a discretized object with fields 

characterized by spatial frequencies 𝑘. For example, the electric field 𝐸(𝑘) shown in equation 

(1 − 14) can be written in the spatial frequency domain, reducing the solution of the system for 

𝐽(𝑘) to an algebraic expression. The wavenumber is 𝑘0. 

𝐸(𝑘) =
𝜂

𝑘0
(−𝑘2 + 𝑘0

2)𝐺(𝑘)𝐽(𝑘)                                                                                                   (1 − 14) 

𝐽(𝑘) =
𝑘0
𝜂
[(−𝑘2 + 𝑘0

2)𝐺(𝑘)]−1𝐸(𝑘)                                                                                           (1 − 15) 

In addition, the power of the FFT can be used to improve the speed of the calculations as 

long as objects are considered periodic and properties of circulant matrices are exploited. 

Combining spatial frequency analysis with the conjugate gradient method (CGFFT) has shown to 

produce even faster results. This technique was investigated and different iterative methods were 

implemented to improve the calculation of the surface currents. These will be discussed in 

Chapter 4, was well as the limitations of these iterative methods for SFT analysis. 

 

1.6  Boundary Element Method Adapted to Large Systems of Equations 

  The Fast Multipole Method is an extension of the Method of Moments in that it expedites 

the calculation of the off-diagonal terms in the impedance matrix [29,30]. This is useful for 

problems with many source/observation points that generate large matrices. The method is based 

on a form of the Hankel Addition Theorem given below in equation (1 − 16). 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = ∑ 𝐽𝑛(𝛽𝜌)𝐻𝑛

(2)(𝛽𝜌′)𝑒𝑗𝑛(𝜙−𝜙′)
∞

𝑛=−∞

                                            𝜌 < 𝜌′       (1 − 16) 

As seen in Figure 1-8 below, the singularity in the Hankel function causes diagonal terms to take 

on very large values. These terms are calculated using the Method of Moments. The other terms 

are calculated using an expanded form of the Hankel Addition Theorem. The illustration in 

Figure 1-8 shows the singularity in yellow along the main diagonal of the impedance matrix. The 

off-diagonal terms are much smaller and calculated using the Fast Multipole Method. 
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a)  b) 

Figure 1-8: Surface plot of impedance matrix comparing the a) Method of Moments and b) Fast 

Multipole Method. 

  

The Fast Multipole Method groups terms around the object being analyzed. This is all 

done by expanding the summation on the right side of the addition theorem equation (1-13) into 

three parts. The three parts are formed as matrices called Aggregation, Translation, and 

Disaggregation (ATD). See equation (1 − 17). 

∑𝑍𝑚,𝑛𝐽𝑛 =

𝑁

𝑛=1

 

∑ ∑ 𝑍𝑚,𝑛𝐽𝑛
𝑛∈𝐺𝑞𝑞∈𝐵𝑝

+
𝑘0𝑍0
8𝜋

∑𝑡𝑚,𝑝(𝛼𝑟)

𝑅

𝑟=1

∑ 𝐴𝑝,𝑞(𝛼𝑟)

𝑞∉𝐺𝑝

∑ 𝑓𝑞,𝑛(𝛼𝑟)𝐽𝑛
𝑛∈𝐺𝑞

                                     (1 − 17) 

 D T A 

The illustration in Figure 1-9 shows how source points in Group 1 are aggregated to q=1 

and then translated to the other five group centers p = 2 to p = 6. Figure 1-10 illustrates how 

sources in Group 1 are aggregated to the center of Group 1, translated to the center of Group 5, 

and then disaggregated to observation points in Group 5. 
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Figure 1-9: Grouping of source and observation points on an elliptical surface using the Fast 

Multipole Method. 

 

Figure 1-10: Example of aggregation group G1, translation from group G1 to G5, and 

disaggregation group G5 using the Fast Multipole Method. 
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1.7  Spectral Projection Method Model and Direct Spectral Projection Model 

This dissertation investigates new hybrid BEM/SM computational techniques called the 

Spectral Projection Model [30] and Direct Spectral Projection Model. The Spectral Projection 

Model (SPM) has its foundation in the Hankel form of the addition theorem as shown in equation 

(1 − 16), and its antecedent known as Graf’s addition theorem [31,32]. The addition theorem is 

a method for calculating a Bessel or Hankel function as an infinite sum of Bessel and Hankel 

functions. 

The addition theorem for Bessel functions has been used by different authors to solve 

electromagnetic scattering problems. Mittra and Wilton used the addition theorem to solve for 

surface currents on both circular and elliptical infinitely long 2D PEC and dielectric surfaces of 

using modal methods [33,34]. Harrington explained how to use modal methods to solve for the 

currents induced on the surfaces of 2D PEC circular cylinders in his classic text [35], and Balanis 

detailed modal solutions to the EFIE and MFIE for TMz and TEz fields incident on PEC circular 

cylinders [36]. Examples of modal equations for incident and scattered electric fields for the 

electric field on a circular cylinder are given in equations (1 − 18) and (1 − 19). 

𝐸𝑧
𝑖 = 𝐸0∑ 𝑗−𝑘𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘(𝜙−𝜙𝑖)
∞

𝑘=−∞
                                                                                        (1 − 18) 

𝐸𝑧
𝑠 = −𝐸0∑ 𝑗−𝑘

𝐽𝑘(𝛽|𝒂|)

𝐻𝑘
(2)(𝛽|𝒂|)

𝐻𝑘
(2)(𝛽|𝝆|)𝑒𝑗𝑘(𝜙−𝜙

′)
∞

𝑘=−∞
                                                        (1 − 19) 

The modal methods implemented by Wilton worked well for elliptical cylinders of small axial 

ratio, but unlike SPM and DSPM failed for larger axial ratios. Wilton delved into the limits of 

the addition theorem used as a convolution product, but SPM and DSPM exploit Graf’s addition 

theorem to solve 2D surfaces of large axial ratio that still achieve good convergence. 

In the Spectral Projection Model, the addition theorem equation is not written as a sum, 

but instead as a projection of the spectral signature of source points onto the spectral signature of 

observation points along the surface of the object. For the incident fields, the H-spectral 

signature of source points are projected onto the J-spectral signature of observation points along 

the surface of the object. For the induced fields, the J-spectral signature of source points are 

projected onto the H-spectral signature of observation points along the surface of the object. 

Equations (1 − 20) to (1 − 22) define these new terms for the induced fields described above. 
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𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = ∑ 𝐽𝑘(𝛽𝜌′)𝐻𝑘

(2)(𝛽𝜌)𝑒𝑗𝑘(𝜙−𝜙′)
𝐾

𝑘=−𝐾

= 𝑒𝑜𝑚
𝑇 𝑒𝑠𝑛                           𝜌 > 𝜌′       (1 − 20) 

where the two vectors, 

𝑒𝑠𝑛 =  [ 𝐽𝐾(𝛽𝜌′)𝑒
−𝑗𝐾𝜙′…  𝐽𝑘(𝛽𝜌′)𝑒

𝑗𝑘𝜙′…  𝐽−𝐾(𝛽𝜌′)𝑒
𝑗𝐾𝜙′]

𝑇
                                                (1 − 21) 

and 

𝑒𝑜𝑚 =  [𝐻−𝐾
(2)(𝛽𝜌)𝑒−𝑗𝐾𝜙…  𝐻𝑘

(2)(𝛽𝜌)𝑒𝑗𝑘𝜙…  𝐻𝐾
(2)(𝛽𝜌)𝑒𝑗𝐾𝜙]

𝑇

                                            (1 − 22) 

The vector 𝑒𝑠𝑛 is called the J-spectral signature of the induced current source point at (𝜌′, 𝜙′) 

and the 𝑒𝑜𝑚 vector is called the H-spectral signature of the surface observation point at (𝜌, 𝜙). 

The condition 𝜌 ≥ 𝜌′ must be satisfied to ensure convergence of equation (1 − 19). The addition 

theorem may also be written as the projection of the H-spectral signature of the external source 

points (𝜌′, 𝜙′) onto the J-spectral signature of the surface observation points (𝜌, 𝜙) for incident 

fields, as long as the condition (𝜌′ > 𝜌) is satisfied. 

 

a)  b) 

Figure 1-11: Examples of source and observation points for two different 2D infinitely long 

elliptical cylinders using the Spectral Projection Model. a) coincident points b) different points 

 

The observation and source points in (1 − 20) may or may not be coincident so long as 

the condition 𝜌′ ≤ 𝜌 for the addition theorem is satisfied. See Figures 1-11a and 1-11b. 
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In the Spectral Projection Model, the projection of the J-spectral signature 𝑒𝑠𝑛 of all 

source points 𝜌𝑛′ onto the H-spectral signature 𝑒𝑜𝑚 of all observation points 𝜌𝑚 are expressed as 

a matrix product. For scattering from PEC conductors in EFIE problems, the incident electric 

field is related to the matrix  [

… … …

… 𝐻0
(2)(𝛽|𝝆 − 𝝆′|) …

… … …
], as is the induced electric field and 

surface current density coefficients [

…
𝐽(𝜌𝑛′)
. .

] on the object (1 − 23). 

[
⋮

𝐸𝑖(𝜌𝑚)
⋮

] =
𝜔𝜇

4
[

… … …

… 𝐻0
(2)(𝛽|𝝆𝒎 − 𝝆𝒏′|) …

… … …
] [

⋮
𝐽(𝜌𝑛′)
⋮

]                                                          (1 − 23) 

The term [

… … …

… 𝐻0
(2)(𝛽|𝝆𝒎 − 𝝆𝒏′|) …

… … …
] is the Green’s function matrix which relates the 

electric fields to the currents. The incident and scattered electric fields can be written in terms of 

the J-spectral signature of the induced surface current. The J-spectral signature of the induced 

surface current is a linear transformation on the actual surface currents[
⋮

𝐽(𝜌𝑛′)
⋮

], and the far-field 

pattern of the scattering problem may be solved directly by calculating the spectral signature, 

without need for calculating the surface current. 

  A more versatile technique which originated from the SPM is the Direct Spectral 

Projection Model (DSPM) described in Chapter 6. It is summarized in the equation (1 − 24) 

below: 

  [

⋮

𝑖𝑠𝑠,𝑣𝑖𝑟,𝑠𝑢𝑚
𝑓𝑓

⋮ 

]  =  [

| | |

| 𝐻𝑘
(2)(𝛽|𝝆𝒏′|) |

| | |

]     [
⋮

𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚
⋮

]                                                                 (1 − 24) 

This technique directly calculates the induced currents on the surface of an object by 

setting the weighted sum of the H-spectral signature of the virtual currents equal to the spectral 

signature of the equivalent electric field generated either by an incident plane wave or a set of 

infinite line sources. The DSPM may be used for arbitrarily shaped objects and fields generated 

by convolving multiple vectors in opposite directions. 

The SPM and DSPM are new hybrid spectral/BEM approaches that differ from ordinary 

boundary element methods, and are simpler to solve than Fourier spectral methods like the SFT 

and the CGFFT. They are different from other BEMs like the MOM and FMM in that the source 
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and observation points do not need to coincide. Consequently, when calculating the Hankel 

function, the singularity at 𝜌 = 0 may be avoided. For SPM there is no need to calculate the 

surface current. The far-field scattered and radiated fields outside the object can be found 

directly from the J-spectral signature of the source current. The SPM is a spectral method 

because the spectral signature of the surface currents defined by 𝐽𝑛(𝛽𝜌′)𝑒
−𝑗𝑛𝜙′ are analogs to the 

complex exponentials found in the Fourier series. But these functions have the advantage that the 

two-dimensional spectrum is defined by one set of modal terms, at 𝜌′𝑒−𝑗𝑛𝜙′, and not two sets of 

spatial frequency terms 𝑘𝑥 and 𝑘𝑦. Also, source and observation points do not have to lie on a 

uniform spatial grid as required by the FFT. Moreover, the number of source and observation 

points may differ. 

The DSPM offers advantages over the SPM in simplicity, and it facilitates direct 

calculation of the surface currents for arbitrary geometries as an alternative to other boundary 

element methods. It also offers the potential to solve antenna and electromagnetic field synthesis 

problems. 

  The first three computational techniques explained in this dissertation are the Method of 

Moments, the Fast Multipole Method, and the Spatial Frequency Technique. Their importance 

and relevance are discussed next with respect to the development and implementation of the 

Spectral Projection Model and Direct Spectral Projection Model. 
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Chapter 2: Method of Moments 

2.1  Foundational Mathematics of Computational Electromagnetics 

There are three classes of electromagnetic field problems: propagation, scattering and 

radiation. In this dissertation only electromagnetic scattering from objects that are perfect electric 

conductors (PEC) are considered. To determine the electromagnetic fields around a conducting 

object, one must apply Maxwell’s equations to the region of interest with appropriate boundary 

conditions. Depending upon the problem, the region may or may not contain sources.  

A fundamental equation of mathematics used to solve many electromagnetic field 

problems is the Fredholm integral equation [37]. Equation (2 − 1) is the inhomogeneous 

Fredholm equation of the first kind. 

𝑓(𝑡) =  ∫𝐾(𝑡, 𝑡′)𝐽(𝑡′)𝑑𝑡′

𝑏

𝑎

                                                                                                                  (2 − 1) 

Here 𝐾(𝑡, 𝑡′) is a continuous function called the kernel, the function 𝑓(𝑡) is a known excitation, 

and the term 𝐽(𝑡′) is a function to be determined. The kernel is usually a Green’s function, which 

carries special properties. The unknown function 𝐽(𝑡′) is usually the current density on the 

surface of the object. 

 

2.2  Differential Form of Electric and Magnetic Field Equations 

By applying Maxwell’s equations, the electromagnetic fields around a perfect electric 

conductor are generally characterized by a partial differential equation. BEM next transform this 

equation into an integral equation. The conductor space is then discretized, and the integral 

equation is solved by numerical methods for parameters such as the electric field, magnetic field, 

or current density distribution. 

The partial differential equations describing electric field intensity 𝑬𝑨 and magnetic field 

intensity 𝑯𝑭 are commonly given in equations (2 − 2) and (2 − 3). 

𝑬𝑨 = −𝑗𝜔𝜇𝑨 +
1

𝑗𝜔𝜀
∇(∇ ∙ 𝑨)                                                                                                             (2 − 2) 

𝑯𝑭 = −𝑗𝜔𝑭 +
1

𝑗𝜔𝜀
∇(∇ ∙ 𝑭)                                                                                                               (2 − 3) 
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In these two equations, 𝐴 is the magnetic vector potential, and 𝐹 is the electric vector 

potential. 𝐸𝐴 is the electric field given as a function of the magnetic vector potential, and 𝐻𝐹 is 

the magnetic field as a function of the electric vector potential. 

The Helmholtz wave equations for vector potential plane waves are as follows: 

𝛻2 𝑨+𝛽2 𝑨 =𝜇𝑱                                   𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑉𝑒𝑐𝑡𝑜𝑟 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙                                         (2 − 4) 

𝛻2 𝑭+𝛽2 𝑭 = − 𝜀𝑴                            𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑉𝑒𝑐𝑡𝑜𝑟 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙                                             (2 − 5) 

The Green’s function solution to Helmholtz equation (2 − 4) is the integral product of 

magnetic vector potential 𝐴 and current density𝐽(𝑟′) seen in equation (2 − 6). The Green’s 

function  𝐺(𝑟, 𝑟′) may also written 𝐺(𝑟 − 𝑟′). 

𝑨(𝒓) =
𝜇

4𝜋
∭𝑱(𝒓′)

𝑉

𝐺(|𝒓 − 𝒓′|)𝑑𝑉′                                                                                              (2 − 6) 

The 3D Green’s function for a point source is given in (2 − 7), 

𝐺(|𝒓 − 𝒓′|) =
𝑒−𝑗𝑘|𝒓−𝒓′|

|𝒓 − 𝒓′|
                                                                                                                     (2 − 7) 

This can be written as the zeroth order spherical Hankel function of the second kind 

(2 − 8). 

ℎ0
(2)(𝛽|𝒓 − 𝒓′|) =

𝑒−𝑗𝛽|𝒓−𝒓
′|

|𝒓 − 𝒓′|
                                                                                                              (2 − 8) 

The Green’s function 𝐺(𝑟 − 𝑟′) solution to the Helmholtz equation (2 − 5) in terms of electric 

vector potential 𝐹 is shown in equation (2 − 9). 

 𝑭(𝒓) =
𝜇

4𝜋
∭𝑴(𝒓′)

𝑉

𝐺(|𝒓 − 𝒓′|)𝑑𝑉′                                                                                           (2 − 9) 

So, equations (2 − 6) and (2 − 9) are the Green’s function integral solutions for each of 

the differential electromagnetic field equations. 
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Table 2-1: Vector Potentials and Helmholtz Equation. 

 

Vector 

Potential 

Symbol Helmholtz Equation 

Magnetic 𝑨(𝒓) 𝛻2 𝑨+𝛽2 𝑨 =𝜇𝑱 

Electric 𝑭(𝒓) 𝛻2 𝑭+𝛽2 𝑭 = − 𝜀𝑴 

 

2.3  Electric and Magnetic Field Integral Equations 

As mentioned earlier, the Method of Moments is a BEM that solves partial differential 

equations describing the behavior of electromagnetic problems as integral equations 

[18,20,21,36,38]. The two most common integral equations used to calculate scattering of fields 

from conducting bodies are called the Electric Field Integral Equation (EFIE) and the Magnetic 

Field Integral Equation (MFIE). The EFIE and MFIE will now be discussed. 

The three-dimensional EFIE [36] for point sources scattering from a surface is given in equation 

(2 − 10). 

𝑬𝒕
𝒊(𝑟 = 𝑟𝑠) =

𝜂

𝛽
[𝛽2∬𝑱𝑺(𝒓′)𝐺(𝒓𝒔, 𝒓′)𝑑𝑠

′ + 𝛁∬𝛁′ ∙ 𝑱𝑺(𝒓
′)𝐺(𝒓𝒔, 𝒓

′)𝑑𝑠′

𝑆𝑆

]                      (2 − 10) 

The three- dimensional MFIE [36] for point sources scattering from a closed surface is 

given in equation (2 − 11). 

�̂� × 𝑯𝒊(𝑟 = 𝑟′) = 𝑱𝑺(𝒓′) −
𝑙𝑖𝑚
𝑟 → 𝑆

[�̂� ×∬𝑱𝑺(𝒓′) × {𝛁′𝐺(𝒓, 𝒓′)}𝑑𝑠
′

𝑆

]                                 (2 − 11) 

The Method of Moments is a BEM useful in calculating the current distribution on a 

variety of structures. Once the current distribution is calculated, the far-field pattern may then be 

calculated from the current distribution. Starting with the 3D EFIE, the MOM analysis of a finite 

length discretized dipole antenna [39] is shown in Figures 2-1 and Figure 2-2. The dipole 

depicted in Figure 2-1a is a half wavelength dipole aligned with the Z-axis. It is subdivided into 

eight segments, and is excited by a voltage across the gap shown in Figure 2-1b. 

As shown in Figure 2-2b for the case of the half wavelength dipole antenna, the far-field 

radiation pattern is symmetrical around the axis of the dipole structure. If the dipole antenna is 
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 a) b) 

Figure 2-1: a) Dipole antenna discretized into 8 segments. b) Illustration of dipole antenna shown 

with gap where voltage source is placed. 

 

 

a)    b) 

Figure 2-2: a) Current distribution along a dipole antenna discretized into 8 segments. b) Three-

dimensional radiation pattern of dipole antenna. 

 

acting as a passive receiver of an incident electric field polarized in the Z-direction, the induced 

current on the antenna would be the same as in Figure 2-2a. When an electromagnetic structure 
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absorbs radiation and emits an electric field due to induced currents, it is referred to as 

electromagnetic scattering. 

 

2.4  Scattering on Infinitely Long Structures by TMz and TEz Waves 

Two-dimensional electromagnetic scattering problems for infinitely long structures are 

often divided into two classes by the polarization of the incident electric and magnetic fields. 

Transverse magnetic waves TM are those in which the magnetic field is oriented in the plane of 

incidence (across the structure) and the electric field is parallel to the radial axis of the structure. 

Transverse electric field waves TE are those in which the electric field lies in the plane of 

incidence and the magnetic field is parallel radially to the structure. See Figure 2-3 for examples. 

 

Figure 2-3: Vector representation of TMz and TEz waves on an infinitely long rectangular cylinder 

travelling in the +Y direction. The plane of incidence is normal to the E-field for TMz waves, and 

is normal to the H-field for TEz waves. 

 

A TMz plane wave incident on an infinitely long perfectly conducting cylinder is 

illustrated in Figure 2-4. The wave is illustrated passing by the cylinder with the electric field in 

the cylinder’s radial direction. 
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a)                                                                b)   

 

Figure 2-4:  a) Incident plane wave travelling in the y-direction incident upon an infinitely long 

conducting elliptical cylinder. b)  The wave is travelling in the direction of the major axis, and the 

cross section is shown below the wave and traced on the waveform. 

 

The two-dimensional EFIE for scattering of TMz polarized waves from infinitely long 

cylindrical structures is derived from the three-dimensional EFIE and given in equation (2 − 12). 

Note for 3D problems, the spherical Hankel function ℎ0
(2)(𝑅) is used as the Green’s function. 

𝐴𝑧(𝜌) =
𝜇

4𝜋
∬𝐽𝑧(𝜌

′)ℎ0
(2)(𝑅)𝑑𝑆′

𝑆

                                                                                                 (2 − 12) 

𝑅 for the 3D case is defined in equation (2 − 13). 

𝑅 = √|𝜌 − 𝜌′|2 + (𝑧 − 𝑧′)2                                                                                                            (2 − 13) 

Substituting the term 𝑅 from (2 − 13) into equation (2 − 12), one may integrate with 

respect to z in equation (2 − 12) and expand equation (2 − 12) 

𝐴𝑧(𝜌) =
𝜇

4𝜋
∫𝐽𝑧(𝜌

′)
𝐿

∫ [
𝑒−𝑗𝛽√|𝜌−𝜌

′|2+(𝑧−𝑧′)2

√|𝜌 − 𝜌′|2 + (𝑧 − 𝑧′)2
𝑑𝑧′]

∞

−∞

𝑑𝜌′                                                    (2 − 14) 

to find a simplified expression (2 − 15) for the electric field by substituting 𝐴𝑧(𝜌) into equation 

(2 − 2) and applying boundary conditions. 
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𝐸𝑖 (𝜌) =
𝜔𝜇

4
∮ 𝐽𝑧(𝜌′)𝐻0

(2)(𝛽|𝜌 − 𝜌′|)𝑑𝑐′

𝐶′

                                                                                 (2 − 15) 

For a more detailed explanation, see Appendix B. Here C’ is the radial cross section of the 

scattering antenna, 𝜌𝑚 is an observation point, and 𝜌′ is the source point variable. 

 

a)    b) 

Figure 2-5: a) Elliptical cylinder cross section with major axis 𝑎 = 2𝜆, minor axis 𝑏 = 1𝜆. The 

elliptical cylinder on the left shows 8 source/observation points. The source/observation points 

are indicated by o’s, and are spaced at equal angles. b) Current distribution along an infinitely 

long elliptical cylinder discretized into 64 segments. 

 

Shown in Figure 2-6 is an incident electromagnetic plane wave in the +Y direction 

passing through an infinitely long elliptical cylinder. The real and imaginary parts are shown 

separately to emphasize its oscillatory nature. Below the wave is a sketch of the elliptical 

cylinder cross section. 

An electric field around a PEC object can be written as the sum of two waves, the 

incident electric field Ei and the scattered electric field Es. Shown in Figure 2-7a is a surface plot 

of the magnitude of the electric field pattern of a TMz plane wave incident on a conducting 

circular cylinder of infinite length, whose cross section is indicated by the dashed circle. The 

scattered near-field pattern of the radiated electric field is shown in Figure 2-7b. In Figure 2-7c 

calculation of the sum of the incident Ei and scattered ES electric fields inside the cylinder. 
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a)                                                            b) 

Figure 2-6: a) Real part of a plane wave incident upon an infinitely long elliptical conducting 

cylinder. b) Imaginary part of an incident plane wave upon the same infinitely long elliptical 

conducting cylinder. 

 

 

                           a)                                      b)                                    c) 

Figure 2-7: a) Incident electric field near and inside a circular conducting cylinder. b) Scattered 

electric field due to induced current near and inside a circular conducting cylinder. c) Zero 

electric field predicted by the extinction principle. 
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As shown in Figure 2-7a, the magnitude of the calculated total electric field 𝐸𝑇 inside the 

cylinder equals zero, i.e. |𝐸𝑇| = |𝐸𝑖 + 𝐸𝑠|, where 𝐸𝑠 is the scattered field due to the induced 

current and 𝐸𝑖 is the incident electric field plane wave. This calculation is consistent with the 

extinction principle, i.e. the total electric field inside the cylinder must equal zero, shown in 

Figure 2-7b. 

Illustrations of an infinitely long strip and infinitely long cylindrical structure subjected to 

a TMz polarized wave are shown in Figure 2-8. 

 

 

Figure 2-8: Infinitely long strip and infinitely long circular cylinder excited by TMz incident 

wave. 

 

The two-dimensional EFIE [36] for scattering of TMz polarized waves from an infinitely 

long strip with normalized electric field, 𝐸0 = 1, is given in equation (2 − 16).  

𝑒𝑗𝛽𝑥𝑚𝑐𝑜𝑠(𝜙𝑖) =
𝜂𝛽

4
∫ 𝐽𝑧(𝑥

′)𝐻0
(2)(𝛽|𝑥𝑚 − 𝑥′|)𝑑𝑥′

𝑤

0

                                                                      (2 − 16) 

See Figure 2-9a for an illustration of incident angle and observation points on a strip from a TMz 

polarized wave incident at angle 𝜙𝑖.  The strip is width 𝑤. The current distribution on a strip of 

width 𝑤 = .5𝜆 is shown in Figure 2-10. 
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Figure 2-9: Finite width strips with incident a) TMz polarized wave and b) TEz polarized wave 

[36]. 

 

 

a)                                                             b) 

Figure 2-10: a) An infinitely long strip divided into 6 segments with observation points on the top 

surface. b) Current distribution along the width of an infinitely long strip .5𝜆 wide excited by TMz 

wave. 

 

The two-dimensional EFIE for scattering from infinitely long structures by TEz polarized 

waves are sometimes derived from the three-dimensional EFIE [36]. The equation and its 

associated Green’s function are given in equations (2 − 17) and (2 − 18). 

−𝑬𝑪
𝒊 (𝝆𝒎) =

𝜂

4𝛽
[𝛽2∬𝑱𝑪(𝝆

′)[�̂�𝒎 ∙ �̂�𝐺(|𝝆𝒎, 𝝆
′|)]𝑑𝐶′ +

𝑑

𝑑𝐶
∬𝛁 ∙ 𝑱𝑪(𝝆

′)�̂�′𝐺(|𝝆𝒎, 𝝆
′|)𝑑𝐶′

𝐶𝐶

] 
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  (2 − 17) 

𝐺(|𝝆𝒎, 𝝆′|) = 𝐻0
(2)(𝛽|𝝆𝒎 − 𝝆′|)                                                                                                   (2 − 18) 

For the specific case of TEz scattering from the surface of an infinitely long strip [36], the 

solution to equation (2 − 17) is given in equation (2 − 19). 

𝑠𝑖𝑛(𝜙𝑖)𝑒
𝑗𝛽𝑥𝑚𝑐𝑜𝑠(𝜙𝑖) =

𝜂𝛽

8
[∫ 𝐽𝑥(𝑥

′){𝐻0
(2)(𝛽|𝜌𝑚 − 𝜌′|)  + 𝐻2

(2)(𝛽|𝜌𝑚 − 𝜌′|)𝑐𝑜𝑠(𝜙𝑚)}𝑑𝑥′

𝑤

0

] 

  (2 − 19) 

The angles and points associated with equation  (2 − 19) is shown in Figure 2-9b.  An 

example of a current distribution along an infinitely long conducting strip subject to an incident 

TEz polarized wave is plotted in Figure 2-11. 

 

                

a)              b) 

Figure 2-11: a) Infinitely long strip divided into 6 segments with observation points on the top 

surface. b) Current distribution along an infinitely long strip .5𝜆 wide excited by TEz wave. 
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a)    b) 

Figure 2-12: a) Circular cylinder cross section with radius 1𝜆. The circular cylinder on the left 

shows 8 source/observation points. b) TEz wave current distribution along an infinitely long 

circular cylinder discretized into 64 segments. 

 

The two-dimensional MFIE for infinitely long cylindrical structures subject to plane 

waves with TEz polarization is derived from the three-dimensional MFIE. It is shown in equation 

(2 − 20). Integration is performed around a cross section of the surface along contour C. 

−𝐻𝑧
𝑖(𝜌) |

𝐶

= 𝐽𝐶(𝜌) |

𝐶

+
𝑗𝛽

4

𝑙𝑖𝑚
𝜌 → 𝐶

∫ 𝐽𝐶(𝜌
′)𝑐𝑜𝑠(𝛾)𝐻1

(2)(𝛽|𝜌𝑚 − 𝜌
′|)𝑑𝑐′

𝐶

                        (2 − 20) 

The solution of the two-dimensional MFIE for TEz scattering from the surface of an infinitely 

long cylinder along contour C is given in equation (2 − 21). 

−𝐻𝑧
𝑖(𝜌) =

𝐽𝐶(𝜌𝑚)

2
+
𝑗𝛽

4
∫ 𝐽𝐶(𝜌

′)𝑐𝑜𝑠(𝛾)𝐻1
(2)(𝛽|𝜌𝑚 − 𝜌

′|)𝑑𝑐′

𝐶−∆𝐶

                                          (2 − 21) 

Illustrations of a cylinder subject to an incident TEz polarized wave and its current distribution is 

shown in Figure 2-12.  The MFIE and is derivation are presented at the end of tis chapter. 

 

2.5  Discretization of Objects into Elements and Coupling of Elements 

In the procedure for MOM analysis, an infinite strip or cylinder is first divided into 

segments, inner products are taken, boundary conditions are applied, and finally induced fields 

are calculated from each segment element to itself (self-impedance term) and every other 
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element. An example of an infinite strip divided into 6 segments is shown below in Figure 2-13. 

Arrows between different elements represent coupling of fields between segments, the circle 

above a single element represents a self-coupling term. When the impedance matrix is formed, 

coupling between different elements results in mutual impedances, and the self-coupling term 

results in a self-impedance term. 

 

 

a)      b) 

Figure 2-13: Mutual coupling on an infinitely long conducting strip divided into six elements 

using the Method of Moments. a) Source is located at element one on the left. b) Source is 

located at element three near the center. 

 

2.6  Subdomain Basis Functions 

Once discretization is complete, the fields are calculated by representing the current 

sources on each segment by a subdomain basis function with amplitude 𝛼𝑛 over domain 𝐷. The 

subdomain function is usually a real valued waveform over the segment, and zero over the rest of 

the object’s domain. 

𝐽 = ∑   𝛼𝑛𝐽𝑛

𝑁−1

𝑛=1

                                                                                                                                     (2 − 22) 

The subdomain basis functions 𝐽𝑚(𝑥) and 𝐽𝑛(𝑥) are orthogonal in the following inner 

product space over the problem domain 𝐷. See equations (2 − 23𝑎) and  (2 − 23𝑏). 

〈  𝐽𝑚(𝑥), 𝐽𝑛(𝑥) 〉 = ∫ 𝐽𝑚(𝑥)𝐽𝑛(𝑥)
𝐷

𝑑𝑥                  𝑖𝑓 𝑚 = 𝑛                                                     (2 − 23𝑎) 
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〈  𝐽𝑚(𝑥), 𝐽𝑛(𝑥) 〉 = 0                                                 𝑖𝑓 𝑚 ≠ 𝑛                                                     (2 − 23𝑏) 

Shown in Figure 2-14 is an example of pulse basis functions over the domain 𝐷. Domain 𝐷 

is the interval [-.5,.5]. Note these basis functions are orthogonal and cover the entire 

domain.  Subdomain basis functions are not necessarily orthogonal. 

 

Figure 2-14: Pulse subdomain basis functions over domain 𝐷 for a linear object subdivided 

into five segments. 

 

Other types of basis functions are shown in Figure 2-15. These include the delta 

basis function (used for point matching at specific sets of coordinates), pulse basis function, 

sine basis functions, and triangle basis functions.  Green’s functions typically have a 

singularity that must be integrated in any MOM formulation. Various approaches have been 

used to calculate these values for different basis functions, including a commonly used 

approximation calculated by Harrington [8]. 
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a)   b) 

   

 c)  d) 

 

Figure 2-15: a) Delta basis function, b) pulse basis function, c) sine basis functions, and  

d) triangle basis functions. 

 

 

2.7  Assembling the Impedance Matrix using Inner Products 

The general method for solving an electromagnetic scattering problem is to define 

the linear operator, 𝐿, below in equation (2 − 24). 

𝐿𝐽 = ∫ 𝐺𝐽𝑑𝑉

𝑉

                                                                                                                                      (2 − 24) 



 

33 

In equation (2 − 21), 𝐽 is the current density, and 𝐺 is the Green’s function. One may also 

consider this operation as an inner product shown in equation (2 − 25). 

〈𝐺, 𝐽〉 = ∫ 𝐺𝐽𝑑𝑉

𝑉

                                                                                                                                (2 − 25) 

The linear integral operator may be applied to a set of subdomain basis functions, i.e. 

equation (2 − 26),  

𝐽 = ∑𝛼𝑛𝐽𝑛

𝑁

𝑛=1

                                                                                                                                       (2 − 26) 

to obtain the expression in equation (2 − 27). Equation (2 − 27) is a general solution to an 

electromagnetic scattering problem using the MOM technique. 

𝐿𝐽 = ∑𝛼𝑛𝐿𝐽𝑛

𝑁

𝑛=1

≅ 𝐸                                                                                                                          (2 − 27) 

To enforce the boundary conditions at the testing or observation points (or the testing 

intervals),  𝑗 ∈ {1,2, … ,𝑁}, one takes the inner product of both sides of equation (2 − 27) with 

weighting functions. For one-dimensional problems, these weighting functions are often are delta 

functions 𝑤𝑗 = 𝛿(𝑥 − 𝑥𝑗) for measurements made at specific points on the object, or pulse basis 

functions over intervals of the object 𝑤𝑗 = 𝑝(𝑥𝑗,𝑗+1). 

∑ 𝛼𝑖 < 𝐿𝐽𝑖 , 𝑤𝑗 >=
𝑁
𝑖=1 < 𝐸,𝑤𝑗 >                                                                                                   (2 − 28)  

The inner product of each integral operator 𝐿 over a subdomain with the weighting 

function 𝑤𝑗, and the inner product of each weighting function 𝑤𝑗  with the electric field 𝐸𝑗 is 

entered into a matrix.  

[
 
 
 
 
< 𝐿𝐽1, 𝑤1 > < 𝐿𝐽2, 𝑤1 > ⋯ ⋯ < 𝐿𝐽𝑁 , 𝑤1 >
< 𝐿𝐽1, 𝑤2 > < 𝐿𝐽2, 𝑤2 > ⋯ ⋯ ⋯

⋯ ⋯ < 𝐿𝐽𝑖, 𝑤𝑗 > ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

< 𝐿𝐽1, 𝑤𝑁 > ⋯ ⋯ ⋯ < 𝐿𝐽𝑁 , 𝑤𝑁 >]
 
 
 
 

  

[
 
 
 
 
𝛼1
𝛼2
⋮
⋮
𝛼𝑁]
 
 
 
 

    =     

[
 
 
 
 
< 𝐸𝟏, 𝑤1 >
< 𝐸2, 𝑤2 >
< 𝐸𝑗 , 𝑤𝑗 >

⋮
< 𝐸𝑛, 𝑤𝑁 >]

 
 
 
 

 

 (2 − 29) 

The next step is calculating the terms of the square impedance matrix with the number of 

elements in each row corresponding to the impedance of each self-impedance term 𝑍𝑚,𝑚 and 

induced-impedance term 𝑍𝑚,𝑛. 
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[
 
 
 
 
𝑍11 𝑍12 ⋯ ⋯ 𝑍1𝑛
𝑍21 𝑍22 ⋯ ⋯ ⋯
⋯ ⋯ 𝑍𝑚𝑛 ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯
𝑍𝑛1 ⋯ ⋯ ⋯ 𝑍𝑁𝑁]

 
 
 
 

  

[
 
 
 
 
𝛼1
𝛼2
⋮
⋮
𝛼𝑁]
 
 
 
 

    =     

[
 
 
 
 
𝑒1
𝑒2
⋮
⋮
𝑒𝑁]
 
 
 
 

                                                                     (2 − 30) 

    

Figure 2-16 shows the relationship between coupling terms and elements using MOM analysis. 

 

Figure 2-16: Mutual coupling between elements using the Method of Moments and their 

corresponding impedances. 
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The complete integral equation for a single source (𝑠′),  to observation point (𝑠),  on a 

surface S’ is given in equation (2 − 31). The source or basis function are 𝑏𝑛(𝑠′), the testing or 

observation function are 𝑡𝑚(𝑠), and the Green’s function is 𝐺(𝛽|𝑠 − 𝑠′|). 

𝑍𝑚,𝑛 =
𝛽𝑍0
4
∫ 𝑡𝑚(𝑠)
𝑆

∫ 𝐺(𝛽|𝑠 − 𝑠′|)
𝑆′

𝑏𝑛(𝑠′)𝑑𝑆
′𝑑𝑆                                                             (2 − 31) 

Note that the testing functions are projected onto electric field and onto the subspace of inner 

products of the Green’s function and basis functions. 

 

2.8  Whole Domain Basis Functions 

Basis functions need not always be subdomain, but may also be whole domain. See 

Figure 2-17. A common type of whole domain function is the sinusoid. 

 

a) b) 

 

 c)    d) 

Figure 2-17: Examples of four types of whole domain basis functions: a) cos(x/2), b) cos(3x/2), 

c) cos(5x/2), and d) cos(7x/2). 
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The sum of the basis functions approximates the current distribution. The current 

distribution of the object is usually calculated by inverting the impedance matrix, and the far-

field pattern can be calculated from the current distribution [40]. Iterative methods have also 

been developed to solve for the current distribution without inverting the matrix. One of these 

techniques, the conjugate gradient method (CG), has gained importance in this field. See 

Appendix G on the conjugate gradient. 

 

2.9  Two-Dimensional Solutions for Flat Objects 

The Method of Moments is not restricted to one-dimensional objects and infinitely long 

two-dimensional objects. More general shapes of two and three-dimensional objects may also be 

analyzed. An example of a finite length two-dimensional object is shown in Figure 2-17, a 

conductive plate. 

 

Figure 2-18:  Illustration of a discretized 1𝜆 × 1𝜆 conductive plate 12x12 square segments. 

 

To solve the two-dimensional conductive plate problem, the MOM implemented basis 

functions such as 2D pulse and rooftop functions initially. RWG basis functions are triangular in 

shape and are much more versatile for calculating electromagnetic scattering from asymmetrical  

and three-dimensional objects. They are used extensively to model EM scattering from aircraft 

and ships because the triangular shape adapts well to three-dimensional geometries [41]. 
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b)    c) 

Figure 2-19: a) Current distribution Jx on the conductive plate using the Method of Moments pulse 

basis functions. b) Current distribution Jx on the conductive plate using the Method of Moments 

RWG basis functions. 

 

2.10  TMz Incidence on Infinitely Long Cylinders using the EFIE 

To calculate the current distribution on infinitely long PEC cylinders, one begins with 

equations in the spatial domain. Starting with the magnetic vector potential, 𝐴𝑧(𝜌), and the 

spherical Hankel function ℎ0
(2)(𝑅) =

𝑒−𝑗𝛽𝑅

𝑅
, one utilizes the symmetry to evaluate the integrand 

over its infinite limits in the Z-direction of polarization [36]. Beginning with equation (2 − 32) 

and integrating along the Z-direction in equation (2 − 34), the new integral equation and 

Green’s function are shown in equations (2 − 35) and (2 − 36). 

 

𝐴𝑧(𝜌) =
𝜇

4𝜋
∬𝐽𝑧(𝜌

′)ℎ0
(2)(𝛽𝑅)𝑑𝑆 ′

𝑆

                                                                                                (2 − 32) 

𝑅 = √|𝜌 − 𝜌′|2 + (𝑧 − 𝑧′)2                                                                                                             (2 − 33) 

𝐴𝑧(𝜌) =
𝜇

4𝜋
∫𝐽𝑧(𝜌

′)
𝐿

∫ [
𝑒
−𝑗𝛽√|𝜌−𝜌′|

2
+(𝑧−𝑧′)2

√|𝜌 − 𝜌′|2 + (𝑧 − 𝑧′)2
𝑑𝑧 ′]

∞

−∞

𝑑𝜌′                                                      (2 − 34) 

𝐴𝑧(𝜌) = −𝑗
𝜇

4
∬𝐽𝑧(𝜌

′)′

𝑆

𝐻0
(2)(𝛽|𝜌 − 𝜌′|)𝑑𝜌′                                                                            (2 − 35) 
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𝐺(𝜌, 𝜌′) = 𝐻0
(2)(𝛽|𝜌 − 𝜌′|)                                                                                                          (2 − 36) 

 

2.11  TEz Incidence on Infinitely Long Cylinders using the MFIE 

In this section the Magnetic Field Integral Equation (MFIE) is derived by subjecting a 

PEC object to a TEz wave. When the PEC object is subjected to an external stimulus like a TEz 

wave, currents are induced on the surface of the conductor. Let vectors 𝑯𝒊 and 𝑯𝒔 be incident 

and scattered magnetic field intensities, respectively. At the surface of the cylinder, the induced 

current density, 𝑱𝒔, is equal to the discontinuity in the tangential component of the magnetic 

field. 

𝑱𝑺 = �̂� × (𝑯𝒊 +𝑯𝒔)                                                                                          𝑎𝑡 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦       (2 − 37) 

Boundary conditions for a transverse magnetic TEz wave are shown in Figure 5-8. The 

incident magnetic field, 𝑯𝒊 = 𝐻𝑧
𝑖 �̂�, is parallel to the cylinder axis for TEz plane waves, as is the 

scattered magnetic field 𝑯𝒔 = 𝐻𝑧
𝑠�̂�. 

To calculate the scattered magnetic field for TEz incidence [21], one begins with a 

differential magnetic vector potential at an observation point (𝑥, 𝑦, 𝑧) from a current element 

source oriented in the 𝒍 direction at source location (𝑥′, 𝑦′, 𝑧′) is given in equation (2 − 38). 

𝒅𝑨 = ℎ0
(2)(𝛽|𝑹|)𝐼𝒅𝒍                                                                                                                        (2 − 38) 

𝑅 = √(𝑥 − 𝑥′) + (𝑦 − 𝑦′) + (𝑧 − 𝑧′)                                                                                          (2 − 39) 

For an induced differential current element of length 𝒅𝒍 on the surface of an infinitely 

long cylinder excited by an incident TE wave, the appropriate Green’s function is 𝐻0
(2)(𝛽|𝑹|). 

The magnetic vector potential may be written as (2 − 40). See Figure 2-20. 
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Figure 2-20: Illustration of magnetic vector potential with an incremental current contribution 

along an incremental length [21]. 

 

𝒅𝑨𝒕 = 𝐻0
(2)(𝛽|𝑹|)𝐼𝒅𝒍                                                                                                                      (2 − 40) 

In this case, the differential current element 𝐼𝒅𝒍 and resulting magnetic vector potential 

𝒅𝑨𝒕 are both in the Y-direction, and tangent to the cylinder surface. The normal vector to the 

surface is in the X-direction. For this illustration of an incident TEz plane wave, the plane of 

incidence is the X-Y plane, and the resulting magnetic field may be calculated using the relation 

given in equation given in (2 − 41). 

𝑯𝒛 =
1

𝜇
∇ × 𝑨𝒕                                                                                                                                     (2 − 41) 

The term 𝑯𝒛 is the Z-component of the magnetic field, calculated from the tangential component 

of the magnetic vector potential. 

The differential magnetic field may be written as equation (2 − 42).  See reference [21]. 

𝒅𝑯𝒛 =
1

𝜇
∇ × 𝒅𝑨𝒕                                                                                                                               (2 − 42) 

Expanding using the curl operator in rectangular coordinates, 

∇ × 𝑨 = �̂� (
𝜕𝐴𝑧
𝜕𝑦

−
𝜕𝐴𝑦

𝜕𝑧
) + �̂� (

𝜕𝐴𝑥
𝜕𝑧

−
𝜕𝐴𝑧
𝜕𝑥

) + �̂� (
𝜕𝐴𝑦

𝜕𝑥
−
𝜕𝐴𝑥
𝜕𝑦

)                                             (2 − 43) 



 

40 

and defining 

𝒅𝑨𝒕 = 𝑑𝐴𝑥�̂� + 𝑑𝐴𝑦�̂�                                                                                                                        (2 − 44) 

equation (2 − 42) may be expanded into equation (2 − 45). 

𝑑𝐻𝑧 =
1

𝜇
(
𝜕𝐴𝑦

𝜕𝑥
−
𝜕𝐴𝑥
𝜕𝑦

)                                                                                                                    (2 − 45) 

If the differential current element is aligned with the Y-axis and the normal vector with 

the X-axis, then 𝑑𝐴𝑥 = 0, and 

𝑑𝐴𝑦 =
𝜇

4𝑗
𝐻0
(2)(𝛽|𝑹|)𝐼𝑑𝑙                                                                                                                  (2 − 46) 

with the variable 𝑅 now in two dimensions. 

𝑅 = √(𝑥 − 𝑥′) + (𝑦 − 𝑦′)                                                                                                              (2 − 47) 

Applying differentiation, equation (2 − 45) may be written as  (2 − 48). 

𝑑𝐻𝑧 =
1

4𝑗
𝐻0
(2)
′(𝛽|𝑹|)𝐼𝑑𝑙                                                                                                                 (2 − 48) 

where the prime indicates the partial derivative with respect to x. 

After taking the partial derivative, equation (2 − 48) is then written as 

𝑑𝐻𝑧 =
𝛽𝐼𝑑𝑙

4𝑗
𝐻1
(2)(𝛽|𝑹|)

𝑑𝑅

𝑑𝑥
                                                                                                             (2 − 49) 

with 

𝑑𝑅

𝑑𝑥
=
𝑥

𝑅
                                                                                                                                                 (2 − 50) 

𝑑𝑅

𝑑𝑥
= 𝑐𝑜𝑠(𝛾)                                                                                                                                       (2 − 51) 

This results in the differential expression given in equation (2 − 52), 

𝑑𝐻𝑧 =
𝛽𝐼𝑑𝑙

4𝑗
𝐻1
(2)(𝛽|𝑹|)𝑐𝑜𝑠(𝛾)                                                                                                       (2 − 52) 

and angle 𝛾 is the angle between normal vector �̂� and the 𝑹 vector. The normal vector �̂� is 

aligned with the X-axis in Figure 2-20. 

Now one can change to cylindrical coordinates, with 𝝆 being the observation point vector 

and 𝝆′ being the source point vector, 

𝑹 =  𝝆 − 𝝆′                                                                                                                                          (2 − 53) 
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For an observation point 𝜌𝑚, and current element 𝑑𝑐′ along contour C (instead of dl), one 

can integrate and find the scattered magnetic field along the contour of the cylinder. 

𝐻𝑧
𝑠(𝜌𝑚) =

𝑗𝛽

4
∫ 𝐽𝐶(𝜌′)𝑐𝑜𝑠(𝛾)𝐻1

(2)(𝛽|𝝆𝒎 − 𝝆′|)𝑑𝑐′

𝐶

                                                                 (2 − 54) 

Thus, substituting into equation (2 − 54), the MFIE for TEz waves at observation point 

𝜌𝑚 can now be written as (2 − 55). See Chapter 5 and Appendix B for illustrations of angles. 

𝐻𝑧
𝑖(𝜌𝑚) =

𝐽𝐶(𝜌𝑚)

2
+
𝑗𝛽

4
∫ 𝐽𝐶(𝜌′)𝑐𝑜𝑠(𝛾)𝐻1

(2)(𝛽|𝝆𝒎 − 𝝆′|)𝑑𝑐′

𝐶−∆𝐶

                                           (2 − 55) 

 

 

Table 2-2: EFIE and MFIE for TMz and TEz Waves [36]. 

 

Transverse Magnetic Waves (TMz) for 2D Scattering 

𝐸𝑧
𝑖(𝜌) =

𝛽𝜂

4
∮ 𝐽𝑧(𝜌′)𝐻0

(2)(𝛽𝑅)𝑑𝑐

𝐶

                                                                                                    𝐸𝐹𝐼𝐸 

𝐻𝐶
𝑖 (𝜌)|

𝐶

= 𝐽𝑧(𝜌)|

𝐶

+
𝑗𝛽

4
lim
𝜌→𝐶

( ∫ 𝐽𝑧(𝜌′)𝑐𝑜𝑠(𝛾)𝐻1
(2)(𝛽𝑅)𝑑𝑐′

𝐶−∆𝐶

)                                             𝑀𝐹𝐼𝐸 

Transverse Electric Waves (TEz) for 2D Scattering 

−𝐸𝑐
𝑖(𝜌) =

𝜂

4𝛽
{𝛽2∮ 𝐽𝑐(𝜌′)[�̂� ∙ �̂�′𝐻0

(2)(𝛽𝑅)]𝑑𝑐′ +
𝑑

𝑑𝑐
[∇ ∙ ∮ 𝐽𝑐(𝜌′)[�̂�𝐻0

(2)(𝛽𝑅)]𝑑𝑐′

𝐶

]

𝐶

}       𝐸𝐹𝐼𝐸 

−𝐻𝑧
𝑖(𝜌) = 𝐻𝑧

𝑖(𝜌𝑚) =
𝐽𝐶(𝜌𝑚)

2
+
𝑗𝛽

4
∫ 𝐽𝐶(𝜌′)𝑐𝑜𝑠(𝛾)𝐻1

(2)(𝛽|𝜌𝑚 − 𝜌′|)𝑑𝑐′

𝐶−∆𝐶

                        𝑀𝐹𝐼𝐸 

 

  



 

42 

Chapter 3: Fast Multipole Method 

3.1  Comparison of the Method of Moments and Fast Multipole Method 

The fast multipole method (FMM) is a hybrid approach used in computational 

electromagnetics based on the Method of Moments and the addition theorem [27]. It’s main 

advantage over the MOM is that it speeds up populating the terms of the impedance matrix for 

large systems. The Method of Moments approach requires each current element of the scattering 

object to act as a source upon itself and every other current element. The current elements of the 

scattering object that act as a source upon themselves are called the self-impedance terms 𝑍𝑚,𝑚, 

and those that act on other elements are called mutual-impedance terms 𝑍𝑚,𝑛. See the Figure 2-

12. The self-impedance terms occur along the main diagonal of the impedance matrix, and the 

mutual impedance terms are the off-diagonal elements. 

For an infinitely long cylinder, the regions over which the source (basis) functions and 

testing (observation) functions are defined are P′ and P, respectively. For the surface shown in 

Figure 3-1, the source and testing function regions are defined along the same contour, P = P’. 

 

 

Figure 3-1: Cross-sectional view of a symmetrically shaped infinitely long cylinder with source 

points x and observation points o. A single source vector, 𝜌′, and observation vector, 𝜌, are 

illustrated. 
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The impedance matrix for FMM analysis shares many similarities to MOM. For electric 

field incidence, the EFIE is used to calculate the terms of the impedance matrix (Chapter 2). For 

an infinitely long perfectly conducting cylinder, the FMM terms of the impedance matrix are 

given as equation (3 − 1). The basis and testing functions are 𝑏𝑛(𝜌′) and 𝑡𝑚(𝜌), respectively 

[27]. 

𝑍𝑚,𝑛 =
𝛽𝑍0
4
∫ 𝑡𝑚(𝜌)
P

∫ 𝐻0
(2)(𝛽|𝝆 − 𝒑′|)

P′
𝑏𝑛(𝜌′)dP

′dP                                                            (3 − 1) 

Except for the self-impedance term, point matching is used for both the basis functions 

and testing functions and are delta functions, i.e. 𝑏𝑛(𝜌′) = 𝛿(𝜌′ − 𝜌𝑛′) and 𝑡𝑚(𝜌) =

𝛿(𝜌′ − 𝜌𝑚′).  

𝑍𝑚,𝑛 =
𝛽𝑍0∆𝑠

4
𝐻0
(2)(𝛽|𝝆 − 𝒑′|)                                                                                                         (3 − 2) 

For the self-impedance term, n = m in which 𝜌 − 𝑝′ = 0, the integral expression in equation 

(3 − 1) must be evaluated. The well-known approximation given by Harrington [17] is 

employed. 

𝑍𝑚,𝑚 =
𝛽𝑍0∆𝑠

4
[1 −

2𝑗

𝜋
(
𝛽𝛾′∆𝑠

4𝑒
)]                                                                                                    (3 − 3) 

The term 𝛾′ = 2.7183 is Euler’s constant, and ∆𝑠 is the arc length. 

 

3.2  Fast Multipole Method and the Addition Theorem 

The Fast Multipole Method is a computational electromagnetic technique that groups 

discrete points on the surface of an object and their basis functions to calculate the radiated fields 

of an object. Basis functions for source points are first grouped together and their collective 

contributions are calculated at the center of their group.  This aggregate contribution is used to 

represent a radiated wave from the center of the group to the center of an observation group that 

is not a nearby neighbor.  The field at the center of the observation group is then distributed to 

the points in the observation group. 

The Fast Multipole Method decomposes the impedance integral using the addition 

theorem, or sometimes called the summation theorem. Then the impedance matrix is calculated 

as groups of sources and groups of test points. To understand the addition theorem, begin with 
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the law of cosines given in equation(3 − 4) and the scalene triangle shown below in Figure 3-2 

[29]. 

𝑅 = √𝜌2 + (𝜌′)2 − 2𝜌𝜌′𝑐𝑜𝑠(𝜙𝑅)                                                                                                    (3 − 4) 

The sides and angles of the scalene triangle in Figure 3-2 can be associated with the 

arguments 𝑅, 𝜌, and 𝜌′ of the summation theorem for Bessel functions [27]. The angles 𝜙𝜌 , 𝜙𝜌′ 

and 𝜙𝑅 correspond to the phase term arguments of the summation theorem. 

𝑒𝑗𝑚𝜙𝑅𝐻𝑚(𝛽𝑅) = ∑ 𝐽𝑘(𝛽𝜌′)𝐻𝑚+𝑘(𝛽𝜌)𝑒
𝑗𝑘𝜙𝑅

∞

𝑘=−∞

                                                                         (3 − 5) 

The arguments 𝜌, 𝜌′,  𝜙𝑅 have conditions given in (3 − 6) and (3 − 7). 

𝜌 > 𝜌′                                                                                                                                                      (3 − 6) 

0 < 𝜙𝑅 <
𝜋

2
  𝑎𝑛𝑑   𝑒2𝑗𝜙𝑅 =

𝜌 − 𝜌′𝑒−𝑗𝜙𝑅

𝜌 − 𝜌′𝑒𝑗𝜙𝑅
                                                                                      (3 − 7) 

 

Figure 3-2: Scalene triangle and sides associated with the addition theorem. 
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Figure 3-3: Addition theorem expansion for Hankel function 𝐻0
(2)(𝛽|𝝆 − 𝝆′|). 

 

If the addition theorem equation is written for the zeroth order Hankel function of the 

second kind, 𝑚 = 0, it takes two forms shown in equations  (3 − 8) and (3 − 9). 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = ∑ 𝐽𝑘(𝛽𝜌)𝐻𝑘

(2)(𝛽𝜌′)𝑒𝑗𝑘(𝜙−𝜙′)
∞

𝑘=−∞

                                             𝜌 < 𝜌′         (3 − 8) 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = ∑ 𝐽𝑘(𝛽𝜌′)𝐻𝑘

(2)(𝛽𝜌)𝑒𝑗𝑘(𝜙′−𝜙)
∞

𝑛=−∞

                                             𝜌′ < 𝜌         (3 − 9) 

Figure 3-3 illustrates the addition theorem vectors and corresponding angles 

𝜌,  𝜌′, 𝜙, and 𝜙′ for 𝐻0
(2)(𝛽|𝝆 − 𝝆′|) given in equations (3 − 8) and (3 − 9). 

 

3.3  Fast Multipole Method Grouping of Sources and Observation Points 

The best way to explain the FMM is through an example. Start with an infinitely long 

PEC cylinder with 24 source/observations points. For the circular cylinder illustrated in Figure 3-

4, the sources and observation points are grouped together in sets of four. See Table 3-1. 
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Figure 3-4: Example of infinitely long circular cylinder with 24 source/observation points with 

groupings of 4 points. 

 

In this FMM example, groups G1 through G6 are rotated as the source groups one at a 

time acting on the remaining groups which become observation point groups. Points in the 

source groups are q’s and observation groups p’s. 

 

Table 3-1: Groupings of Sources and Observation Points on Figure 3-4. 

 

Group Points 

G1 1,2,3,4 

G2 5,6,7,8 

G3 9,10,11,12 

G4 13,14,15,16 

G5 17,18,19,20 

G6 21,22,23,24 
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In Figure 3-4, G1 is the source group and G2 to G6 are the observation groups. The 

center of the source group is designated q1, and the centers of the observation groups are p2 to 

p6. Points 1-4 along the circle are the location of the source elements, and points 5 – 24 are the 

location of the testing or observation points. 

 

3.4  Governing Equations for Fast Multipole Method 

The FMM process is often referred to as Aggregation, Translation, and Disaggregation, 

or ATD for short. It calculates the fields by starting from a group of vectors aggregated to a 

common center q (Aggregation Matrix), then translated to a new center point distant from the 

aggregation center p (Translation Matrix), and then disaggregated from the new center to a new 

group of current elements (Disaggregation Matrix). Once again refer to Figure 3-4. The source 

vectors in group G1 are aggregated to the center q1 of group G1, then translated from q1 to 

centers of the target groups G2 to G6, and lastly the vectors are disaggregated from the centers of 

groups G2 through G6 to the observation points of these target groups. 

The Hankel function is written as a sum using the addition theorem and is shown in 

equation (3 − 10). This equals equation (3 − 9), with (𝜌′, 𝜙′) replaced by (𝑑𝑒𝑗𝜋, 𝜙𝑑). 

𝐻0
(2)(𝛽|𝝆 + 𝒅|) =

1

2𝜋
∑ 𝐽𝑘(𝛽𝑑)𝐻𝑘

(2)(𝛽𝜌)

∞

𝑘=−∞

𝑒𝑗𝑘(𝜙−𝜙𝑑−𝜋)                            |𝝆| > |𝒅|         (3 − 10) 

Bessel’s definition of 𝐽𝑘(𝜌) is given in equation (3 − 11). 

𝐽𝑘(𝜌) =
1

2𝜋
∫ 𝑐𝑜𝑠(𝑘𝜃 − 𝜌𝑠𝑖𝑛𝜃)𝑑𝜃
2𝜋

0

                                                                                            (3 − 11) 

Using the appropriate trigonometric identities, equation (3 − 11) can be transformed into 

equation (3 − 12). See the Appendix E Fast Multipole Method for detailed derivation. Equation 

(3 − 12) is in the form of a Fourier transform. 

𝐽𝑘(𝛽𝑑)𝑒
−𝑗𝑘(𝜙𝑑+𝜋) =

1

2𝜋
∫ 𝑒−𝑗𝜷∙𝐝−𝑗𝑘(𝛼+𝜋/2)
2𝜋

0

𝑑𝛼                                                                       (3 − 12) 

Substituting equation (3 − 12)into equation (3 − 10), a new expression for the Hankel 

function 𝐻0
(2)(𝛽|𝛒 + 𝒅|) is given below: 

𝐻0
(2)(𝛽|𝛒 + 𝒅|) =

1

2𝜋
∑ 𝐻𝑘

(2)(𝛽𝜌)

∞

𝑘=−∞

𝑒𝑗𝑘𝜙∫ 𝑒−𝑗𝜷∙𝐝−𝑗𝑘(𝛼+𝜋/2)
2𝜋

0

𝑑𝛼                 𝜌 > 𝑑         (3 − 13) 
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with the corresponding vectors defined by equations (3 − 14) to (3 − 18) 

𝛃 = 𝛽(�̂�𝑐𝑜𝑠(𝛼) + �̂�𝑠𝑖𝑛(𝛼))                                                                                                           (3 − 14)  

𝐝 = (𝝆 − 𝝆𝒑) + (𝝆𝒒 − 𝝆′)                                                                                                              (3 − 15) 

𝝆 − 𝝆′ = (𝝆 − 𝝆𝒑) + 𝝆𝒑𝒒 + (𝝆𝒒 − 𝝆
′)                                                                                        (3 − 16)  

𝝆 − 𝝆𝒑 = |𝝆 − 𝝆𝒑|∠𝜙𝑝,𝑚                                                                                                                (3 − 17)  

𝝆𝒒 − 𝝆
′ = |𝝆𝒒 − 𝝆

′|∠𝜙𝑛,𝑞                                                                                                              (3 − 18) 

For the example started above, with source group G1 and observation group G3, Figures 

3-5a and Figure 3-5b illustrate the angles and vectors used in solving the example FMM 

problem. 

 

a)     b) 

Figure 3-5: a) Elements in source group G1 excite observation elements in group G3. b) 

Illustration of the vector sums and angles in equations (3 − 14) to (3 − 18). 

 

Equation (3 − 13) can be rewritten after substituting for 𝝆 − 𝝆′ from equation (3 − 16) 

under the conditions set in equations (3 − 14) to (3 − 18), |𝝆| > |𝒅|, yielding the new equation 

(3 − 19). 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) =

1

2𝜋
∫ 𝑒−𝑗𝜷∙(𝝆−𝒑𝒑)
2𝜋

0

𝐴𝑝,𝑞(𝛼)𝑒
−𝑗𝜷∙(𝒑𝒒−𝝆′)𝑑𝛼                                               (3 − 19) 
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 with the condition in equation (3 − 20) 

|𝜌𝑝,𝑞| > |(𝜌 − 𝜌𝑝)| + |𝜌𝑞 − 𝜌′|                                                                                                      (3 − 20) 

and with the aggregate term, 𝐴𝑝,𝑞(𝛼), defined in equation (3 − 21). 

𝐴𝑝,𝑞(𝛼) ≈ ∑ 𝐻𝑙
(2)

𝐿

𝑙=−𝐿

(𝛽𝜌𝑝,𝑞)𝑒
𝑗𝑙(𝜙𝑝,𝑞−𝛼−

𝜋
2
)                                                                                   (3 − 21) 

The impedance matrix for the Fast Multipole Matrix can be calculated using equation 

(3 − 22), by first integrating with respect to the testing functions 𝑡𝑚(𝜌) and source basis 

functions 𝑏𝑛(𝜌′) over the range of 𝛼 values from 0 to 2𝜋. 

𝑍𝑚,𝑛 =
𝛽𝑍0
8𝜋

∫
2𝜋

0

∫ 𝑡𝑚(𝜌)𝑒
−𝑗𝛽∙(𝜌−𝑝𝑝)𝑑P

P

𝐴𝑝,𝑞(𝛼)∫ 𝑏𝑛(𝜌′)𝑒
−𝑗𝛽∙(𝑝𝑞−𝜌′)𝑑P

𝑃′
′𝑑𝛼           (3 − 22) 

Equation (3 − 22) can be broken up into three different integral expressions given in equations 

(3 − 23) to (3 − 25), 

𝑍𝑚,𝑛 =
𝛽𝑍0
8𝜋

∫ 𝑡𝑚,𝑝(𝛼)
2𝜋

0

𝐴(𝛼)𝑓𝑞,𝑛(𝛼)𝑑𝛼                                                                                      (3 − 23) 

𝑡𝑚,𝑝(𝛼) =
𝛽𝑍0
8𝜋

∫ 𝑡𝑚(𝜌)
P

𝑒−𝑗𝛽∙(𝜌−𝑝𝑝)𝑑𝑃                                                                                      (3 − 24) 

𝑓𝑞,𝑛(𝛼) =
𝛽𝑍0
8𝜋

∫ 𝑓𝑛(𝜌′)
P′

𝑒−𝑗𝛽∙(𝑝𝑞−𝜌′)𝑑𝑃′                                                                                     (3 − 25) 

The expression for impedance can be further simplified with equation (3 − 26). In this 

equation, the impedance block 𝑍𝑚,𝑛 is defined as a combination of MOM and FMM terms. 

∑𝑍𝑚,𝑛𝐽𝑛

𝑁

𝑛=1

= ∑ ∑ 𝑍𝑚,𝑛𝐽𝑛
𝑛∈𝐺𝑞𝑞∈𝐺𝑝

+
𝛽𝑍0
8𝜋

∫ 𝑡𝑚,𝑝(𝜌)
2𝜋

0

∑ 𝐴𝑝,𝑞(𝛼)

𝑞∉𝐺𝑝

∑ 𝑓𝑞,𝑛(𝛼)𝐽𝑛𝑑𝛼

𝑛∈𝐺𝑞

 

 (3 − 26) 

The first term in the summations ∑ ∑ 𝑍𝑚,𝑛𝐽𝑛𝑛∈𝐺𝑞𝑞∈𝐵𝑝  for the right side of equation (3 −

26) is the MOM term, and the second summation is the FMM term. Here 𝐺𝑞 is a source group 

and 𝐺𝑝 is an observation group. The integral in equation (3 − 26) can be replaced by a 

summation, and the final expression is equation (3 − 27). 

∑𝑍𝑚,𝑛𝐽𝑛

𝑁

𝑛=1

= ∑ ∑ 𝑍𝑚,𝑛𝐽𝑛
𝑛∈𝐺𝑞𝑞∈𝐵𝑝

+
𝛽𝑍0
8𝜋

∑𝑡𝑚,𝑝(𝛼𝑟)

𝑅

𝑟=1

∑ 𝐴𝑝,𝑞(𝛼𝑟)

𝑞∉𝐺𝑝

∑ 𝑓𝑞,𝑛(𝛼𝑟)𝐽𝑛
𝑛∈𝐺𝑞

             (3 − 27) 
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∑ ∑ 𝑍𝑚,𝑛𝐽𝑛
𝑛∈𝐺𝑞𝑞∈𝐵𝑝

        
𝛽𝑍0
8𝜋

∑𝑡𝑚,𝑝(𝛼𝑟)

𝑅

𝑟=1

        ∑ 𝐴𝑝,𝑞(𝛼𝑟)

𝑞∉𝐺𝑝

        ∑ 𝑓𝑞,𝑛(𝛼𝑟)𝐽𝑛
𝑛∈𝐺𝑞

 

 MOM  Disaggregation  Translation  Aggregation 

 

3.5  Aggregation, Translation, and Disaggregation Matrices 

The FMM term in equation (3 − 27) can be expressed in matrix notation using three 

matrices called the aggregation, translation, and disaggregation matrices (ATD), all shown in 

equation (3 − 28). 

 

[
⋮ ⋮ ⋮
⋮ 𝐷𝑖𝑠𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 ⋮
⋮ ⋮ ⋮

] ⋅ [
⋮ ⋮ ⋮
⋮ 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 ⋮
⋮ ⋮ ⋮

] ⋅ [
⋮ ⋮ ⋮
⋮ 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 ⋮
⋮ ⋮ ⋮

] [
⋮
𝐽
⋮
] 

 (3 − 28) 

Equation (3 − 29)  shows the actual ATD matrices for numerical calculation of FMM [29]. 

[
 
 
 
 𝑒

−𝑗𝛽∙𝜌1,𝑝𝑐𝑜𝑠(𝛼1−𝜙1,𝑝) 𝑒−𝑗𝛽∙𝜌1,𝑝𝑐𝑜𝑠(𝛼2−𝜙1,𝑝) ⋮ 𝑒−𝑗𝛽∙𝜌1,𝑝𝑐𝑜𝑠(𝛼𝑟−𝜙1,𝑝)

𝑒−𝑗𝛽∙𝜌2,𝑝𝑐𝑜𝑠(𝛼1−𝜙2,𝑝) 𝑒−𝑗𝛽∙𝜌2,𝑝𝑐𝑜𝑠(𝛼2−𝜙2,𝑝) ⋮ 𝑒−𝑗𝛽∙𝜌2,𝑝𝑐𝑜𝑠(𝛼𝑟−𝜙2,𝑝)

⋮

𝑒−𝑗𝛽∙𝜌𝑚,𝑝𝑐𝑜𝑠(𝛼1−𝜙𝑚,𝑝)
⋮

𝑒−𝑗𝛽∙𝜌𝑚,𝑝𝑐𝑜𝑠(𝛼2−𝜙𝑚,𝑝)
⋮

   ⋮ 𝑒−𝑗𝛽∙𝜌𝑚,𝑝𝑐𝑜𝑠(𝛼𝑟−𝜙𝑚,𝑝)]
 
 
 
 

⋅ 

 

[
 
 
 
 
𝐴𝑝,𝑞(α1)   0  0          0

0 𝐴𝑝,𝑞(α2) 0          0

0
0

0
0

        
  ⋱               0  
0       𝐴𝑝,𝑞(αr) ]

 
 
 
 

⋅ 

 

[
 
 
 
 𝑒
−𝑗𝛽∙𝜌𝑞,1𝑐𝑜𝑠(𝛼1−𝜙𝑞,1) 𝑒−𝑗𝛽∙𝜌𝑞,2𝑐𝑜𝑠(𝛼1−𝜙𝑞,2) ⋮ 𝑒−𝑗𝛽∙𝜌𝑞,𝑛𝑐𝑜𝑠(𝛼1−𝜙𝑞,𝑛)

𝑒−𝑗𝛽∙𝜌𝑞,1𝑐𝑜𝑠(𝛼2−𝜙𝑞,1) 𝑒−𝑗𝛽∙𝜌𝑞,2𝑐𝑜𝑠(𝛼2−𝜙𝑞,2) ⋮ 𝑒−𝑗𝛽∙𝜌𝑞,𝑛𝑐𝑜𝑠(𝛼2−𝜙𝑞,𝑛)

⋮

𝑒−𝑗𝛽∙𝜌𝑞,1𝑐𝑜𝑠(𝛼𝑟−𝜙𝑞,1)
⋮

𝑒−𝑗𝛽∙𝜌𝑞,2𝑐𝑜𝑠(𝛼𝑟−𝜙𝑞,2)
⋮

⋮ 𝑒−𝑗𝛽∙𝜌𝑞,𝑛𝑐𝑜𝑠(𝛼𝑟−𝜙𝑞,𝑛)]
 
 
 
 

[

𝐽1
𝐽2
⋮
𝐽𝑁

]                       (3 − 29)  

Each matrix block for the FMM matrix is calculated and substituted into the impedance 

matrix. The FMM procedure is used to fill in blocks of the impedance matrix. Self-impedance 

terms are denoted MMOM-n,n and lie along the main diagonal of the matrix. Off diagonal blocks 

are calculated using the Fast Multipole Method. These FMM blocks calculated using matrix 

equation (3 − 27) to (3 − 29) are designated MFMM-m,n. For symmetric bodies, the same 
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impedance blocks may be calculated once and then substituted into the impedance matrix 

multiple times. Figure 3-6 depicts the block matrix formulation of a MOM/FMM impedance 

matrix for an infinitely long PEC cylinder divided into the same 6 groups shown in the previous 

illustrations. 

 

 

Figure 3-6: Fast Multipole Method matrix structure. The main diagonal is calculated using the 

Method of Moments. 

 

TM wave analysis was performed on infinitely long elliptical cylinder using FMM and 

MOM. Figure 3-7 shows the FMM grouping of elements in an ellipse with a major axis of 2𝜆, and 

a minor axis of 𝜆 for specific groups. The ATD matrices for Groups 1 and 3 depicted in Figures 

(3-7) are shown in the matrix equation (3-30) below when 𝐺𝑝 = 𝐺3  for 𝑚 ∈ {9,10,11,12} in 𝐺3, 

𝐺𝑞 = 𝐺1, and 𝑛 ∈ {1,2,3,4} in 𝐺1. 

 

 

[
 
 
 
 
𝑡9,3(𝛼1) 𝑡9,3(𝛼2)

𝑡9,3(𝛼3) 𝑡9,3(𝛼4)

𝑡10,3(𝛼1) 𝑡10,3(𝛼2)
𝑡10,3(𝛼1) 𝑡10,3(𝛼4)

𝑡11,3(𝛼1)
𝑡12,3(𝛼1)

𝑡11,3(𝛼2)
𝑡12,3(𝛼2)

𝑡11,3(𝛼3) 𝑡11,3(𝛼4)
𝑡12,3(𝛼3) 𝑡12,3(𝛼4)]

 
 
 
 

[
 
 
 
 
𝐴3,1(𝛼1) 0 0 0

0 𝐴3,1(𝛼2) 0 0

0 0 𝐴3,1(𝛼3) 0

0 0 0 𝐴3,1(𝛼4)]
 
 
 
 

⋅ 
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[
 
 
 
 
𝑓1,1(𝛼1) 𝑓1,2(𝛼1) 𝑓1,3(𝛼1) 𝑓1,4(𝛼1)

𝑓1,1(𝛼2) 𝑓1,2(𝛼2) 𝑓1,3(𝛼2) 𝑓1,4(𝛼2)

𝑓1,1(𝛼3)
𝑓1,1(𝛼4)

𝑓1,2(𝛼3)
𝑓1,2(𝛼4)

𝑓1,3(𝛼3) 𝑓1,4(𝛼3)
𝑓1,3(𝛼4) 𝑓1,4(𝛼4)]

 
 
 
 

                                                                                           (3 − 30) 

 

 

a)    b) 

Figure 3-7: Infinitely long elliptical cylinder with major axis a = 2𝜆, and minor axis b = 1𝜆. a) 

Translation vectors for a 24 element ellipse with groups of four. b)  Aggregation, translation, and 

disaggregation (ATD) vectors from source group G1 to observation group G5. 

 

3.6  FMM vs. MOM Results 

As can be seen from Figure (3-8), the MOM and FMM analyses agree perfectly. In the 

FMM analysis, the main diagonal elements were calculated using the MOM. Off diagonal elements 

were calculated using the FMM technique outlined in this chapter. Equations (3 − 27)  to (3 −

29)  were employed and assembled as a DAT matrix. Delta basis functions were used for point 

matching the source to observation points. 

The FMM formulation provided the motivation for the spectral projection model. The 

addition theorem was utilized extensively in modal analysis by Wilton, Harrington and Balanis 

[34-36]. Like the FMM formulation the Spectral Projection Model rewrites the addition theorem 

in a form that takes advantage of its ability to translate vectors from source points to observation 
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points. In SPM, the addition theorem is used to match the boundary conditions by writing 

spectral signatures as projections of sources onto the spectral signature of the observation points. 

Different forms of the addition theorem are used to decompose vectors into vector sums to solve 

a large variety of EM scattering problems. 

 

 

a)     b) 

Figure 3-8: a) MOM vs. FMM analysis of TM wave excitation on an infinitely long elliptical 

cylinder with major axis 𝑎 = 2𝜆, and minor axis 𝑏 = 1𝜆. b)  MOM vs. FMM analysis of TM wave 

excitation on an infinitely long circular cylinder with radius = 1𝜆. 
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Chapter 4: Spatial Frequency Technique 

4.1  Method of Moments vs. Spatial Frequency Technique 

The Spatial Frequency Technique was developed in 1971 by N.N. Bojarski as a method 

of solving large integral equations iteratively [10,25,26]. The technique was intended to increase 

the convergence rate and size of the domain over other techniques and previous problem 

formulations. For N data points on an object, the SFT made the following in memory and speed 

over the MOM. See Table 4-1. 

 

Table 4-1: Comparison between MOM and SFT of Memory and Computer Operations needed 

for Processing. 

 

Computer Resource SFT MOM 

Memory Locations N N 2 

Multiplication Addition Operations N log2 N N 3 

 

The Method of Moments normally formulates its impedance matrix in the form of a 

Toeplitz matrix. Some spectral methods have been developed to invert Toeplitz matrices using 

the FFT. Circulant matrices are special types of Toeplitz matrices [42,43]. See Figure 4-1a and 

Figure 4-1b for examples. In a Toeplitz matrix each diagonal is from left to right and is a 

constant. In a circulant matrix, each row has the same elements but rotated by one element each 

row down. 

The SFT technique differs from the Method of Moments in that it requires the Green’s 

function be expressed in circulant matrix form, 𝐺𝐶, so that its matrix representation can be 

calculated using the FFT and its eigenvalues [40,44]. The eigenvalues are in a diagonal matrix 

form 𝐷𝑒𝑣𝑎𝑙. 

𝐺𝐶 = 𝐹
−1𝐷𝑒𝑣𝑎𝑙𝐹                                                                                                                                   (4 − 1) 

This technique was investigated in this research along with other attempts at improving 

the convergence rate of integral equation problems. 
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 a)  b) 

Figure 4-1: a) Example of Toeplitz matrix. b) Example of circulant matrix. 

 

4.2  Continuous Fourier Transforms 

For the case of an aperiodic function the continuous spatial Fourier transform in one and 

two dimensions is given below in equations (4 − 2) and (4 − 3), respectively. 

𝐺𝐹(𝑘) = ∫ 𝐺(𝑥)
∞

−∞

𝑒−𝑗𝑘𝑥𝑑𝑥                                                                                                                 (4 − 2) 

𝐺𝐹(𝑘𝑥, 𝑘𝑦) = ∫
∞

−∞

∫ 𝐺(𝑥, 𝑦)
∞

−∞

𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦𝑑𝑥𝑑𝑦                                                                    (4 − 3) 

If the continuous function is periodic with a spatial period of λT, one may calculate the 

Fourier series representation of the function. The Fourier series coefficients cn are related to the 

Fourier transform, and the frequency spacing of the coefficients are Δk = 2π/λT.. These Fourier 

series coefficients can be calculated directly by sampling the Fourier transform in spatial 

frequency. The continuous domain and discrete spatial frequency domain are linked by the fact 

that the coefficients of the Fourier series of a continuous periodic object are equal to the 

coefficients of the discrete Fourier transform [45,46]. 

The spatial frequency technique requires treating a continuous object in space as a 

function and then taking the discrete Fourier transform of the function. Figure 4-2 is an 

illustration of this process. In this illustration a continuous pulse f(x) is transformed from the 

spatial domain to the spatial frequency domain by the discrete time Fourier transform (DTFT), 

(a) and (b). Discretization of a continuous function f(x) into the sequence f(n) is accomplished by 

multiplying the function f(x) by a delta pulse train in space, i.e. sampling it with a delta pulse 

train (c) and (d). The Fourier transform of a delta pulse train in space is another delta pulse train 

in the spatial frequency domain (e). Convolution of the spatial frequency delta pulse train with 
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the spatial Fourier transform of the function f(x) generates a periodic representation of the spatial 

Fourier transform (f). This is the discrete time Fourier transform (DTFT) of the pulse. This 

modulated waveform resembles a repeated spatial Fourier transform passed through an ideal 

lowpass filter with passbands from −𝜋/∆𝜆 to  𝜋/∆𝜆. 

 

 

 a)   b) 

 

 c)   d) 

 

 

 e)   f) 

Figure 4-2: a) Continuous pulse function. b) Continuous pulse function normalized spatial 

Fourier transform. c) Pulse train in the spatial domain. d) Product of the pulse train and the 

continuous pulse function. e) Corresponding pulse train in the spatial frequency domain. f) 

Normalized discrete time Fourier transform. 

 

4.3  Discrete Sequences and Fourier Transforms 

Note in Figure (4-2) the spatial sampling rate is Δλ, Δk is the spacing in the spatial 

frequency domain of the modulating pulse train, and ωk is the spatial frequency normalized to a 
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period of 2π. The Fourier transform and discrete Fourier transform functions of a continuous 

pulse are shown on the diagram as well. 

The Fourier transform equation of a one-dimensional sequence is shown in equation (4 −

3) below. 

𝑋(𝑒𝑗𝜔𝑘) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑘𝑛
∞

𝑛=−∞

                                                                                                            (4 − 3) 

Its inverse is given in equation (4 − 4). 

𝑥[𝑛] = ∫ 𝑋(𝑒𝑗𝜔𝑘)𝑒𝑗𝜔𝑘𝑑𝜔𝑘                                                                                                             (4 − 4)
𝜋

−𝜋

 

For a one-dimensional continuous time-sampled signal in the spatial domain, the spatial 

frequency normalized to 2π becomes 𝜔𝑘, 

𝜔𝑘 = 𝑘∆𝜆                                                                                                                                               (4 − 5) 

The letter 𝑘 is the continuous time spatial frequency and ∆𝜆 is the spatial domain spacing of the 

modulating pulse train in wavelengths. 

Substituting for 𝜔𝑘 and making note that the waveform multiplied by the pulse train is 

now discrete, the expression for the DTFT of a pulse train is given in equation (4 − 6).  

𝑋(𝑒𝑗𝜔) =
1

∆𝜆
∑ 𝐹 (𝑗 (

𝜔

∆𝜆
−
2𝜋𝑘

∆𝜆
))

∞

𝑛=−∞

                                                                                           (4 − 6) 

The discrete Fourier series and discrete Fourier transform (DFT) are the most effective 

ways of dealing with discrete waveforms. The DFT is a sampled version of the DTFT. The 

spatial frequency technique employs the DFT specifically to analyze continuous objects. The 

DFT transformation can be applied to discretized objects the same way the Fourier transform is 

applied to continuous waveforms. In the spatial frequency domain, these discretized objects can 

be thought of as frequency sampled discrete waveforms in space. 

Shown in Figure 4-3 is an example of a discretized object, a periodic discretized object, five 

spatial frequency period of its DTFT, and five spatial frequency periods of its discrete Fourier 

transform (DFT). 
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 a)   b) 

 

 c)   d) 

Figure 4-3: a) Discretized pulse function. b) Normalized discrete time Fourier transform of pulse 

function. c) Periodic discretized pulse function. d) Normalized discrete Fourier transform. 

 

As mentioned above, the discrete Fourier transform (DFT) is a version of the continuous 

Fourier transform for sequences and sampled waveforms 𝑔(𝑛). These waveforms must meet the 

Nyquist criteria to accurately represent the waveform being represented. The DFT for one and 

two dimensions can be calculated using equations (4 − 7) and (4 − 8) below, respectively. 

𝐺𝐷𝐹𝑇(𝑘𝑥) =
1

𝑁
∑ 𝑔(𝑛)𝑒−𝑗𝑘𝑥𝑛/𝑁
𝑁−1

𝑛=0

                                                                                                    (4 − 7) 

𝐺𝐷𝐹𝑇(𝑘𝑥, 𝑘𝑦) =
1

𝑁𝑀
∑ ∑ 𝑔(𝑛,𝑚) (𝑒−

𝑗𝑘𝑥𝑛
𝑁 )(𝑒−

𝑗𝑘𝑦𝑚

𝑀 )

𝑀−1

𝑚=0

𝑁−1

𝑛=0

                                                       (4 − 8) 
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4.4  Continuous Fourier Transforms and the Spatial Frequency Technique 

The Spatial Frequency Technique can be applied to electromagnetic problems in two 

different ways. One way is that it may be used to transform a partial differential equation in 

spatial coordinates to the spatial frequency domain, i.e. complex exponential representation. For 

example, it can be used to solve the Helmholtz equation (4 − 9). The integral solution to 

equation (4 − 9) is given in equation (4 − 10). The wavenumber symbol for this section is 𝑘0. 

∇2𝐴(𝑟) + 𝑘0
2𝐴(𝑟) = −𝜇𝐽(𝑟)                                                                                                              (4 − 9) 

𝐴(𝑟) =
𝜇

4𝜋
∭𝐽(𝑟′)

𝑉

𝐺(𝑟 − 𝑟′)𝑑𝑉′                                                                                                (4 − 10) 

Firstly, one takes the spatial Fourier transform of both sides of equation (4 − 10). Next, 

one takes the Fourier transform of the convolution expression between the current 𝐽(𝑟′) and the 

Green’s function 𝐺(𝑟 − 𝑟′). Through the DFT, convolution in the spatial domain is performed as 

multiplication in the spatial frequency 𝑘 domain. See equation (4 − 12). 

−𝑘2𝐴(𝑘) + 𝑘0
2𝐴(𝑘) = −𝜇𝐽(𝑘)                                                                                                       (4 − 11) 

𝐴(𝑘) =
𝜇

4𝜋
𝐽(𝑘)𝐺(𝑘)                                                                                                                         (4 − 12) 

Then one substitutes the spatial Fourier transform of 𝐴(𝑟) into equation (4 − 11) to 

solve for 𝐽(𝑘). The resulting spatial frequency current distribution is finally transformed back 

into the spatial domain, and the far-field pattern is calculated from the spatial current 

distribution. 

Another method begins with the electric field differential equation (2 − 2). Once again, 

the Fourier transform of each side of the equation is taken, and one arrives at equation (4 − 13). 

𝐸(𝑘) =
𝜂

𝑘0
(−𝑘2 + 𝑘0

2)𝐺(𝑘)𝐽(𝑘)                                                                                                   (4 − 13) 

Then (4 − 13) is solved for  𝐽(𝑘). The result is again transformed back into the spatial domain, 

and the far-field pattern can once again be calculated from the spatial current distribution.  

 

4.5  Discrete Fourier Transforms and the Spatial Frequency Technique 

When employing the Spatial Frequency Technique, objects are first discretized and so 

considered as periodic in spatial frequency. The DFT requires the object be periodic in space 
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because it is discrete in frequency. An example problem solved using the SFT is the periodic 

finite length strip shown below in Figure 4-4. 

 

 

 

Figure 4-4: Periodic representation of an infinitely long strip in spatial domain. 

 

The periodic structure domain is both conductor and free space. The domain is divided 

into a conductor subspace and a complementary subspace. The complementary subspace is a 

sequence of zeros equal in length or greater to the sequence specifying the object. This is 

necessary to satisfy the Nyquist criterion. It can be lengthened by padding the sequence of data 

with additional zeros. By zero padding, although the amount of information on the object is not 

increased, it enables one to use the FFT algorithm to calculate the DFT because the FFT 

algorithm uses data length equal to 2n. Also, zero padding the DFT allows interpolation between 

the points of the sequence, but the additional zeros unfortunately alter the phase of the result. So, 

resulting curves generally look smoother, but at a cost.  

For objects whose surface does not lie on grid points, such as the ellipse shown in Figure 

4-5, the Fourier domain convolution property must be used. The discrete Fourier transform of the 

ellipse is first calculated, then the FFT is used to transform the Green’s function matrix to the 

frequency domain. Then two Fourier transforms can be multiplied in the frequency domain and 

convolution in the spatial domain is avoided. Next inversion of the matrix product follows by 

transformation into the spatial frequency domain to calculate the current distribution. 
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Figure 4-5: Elliptical object in the spatial domain. 

 

4.6   Scattering with TMz Waves and the Spatial Frequency Technique Theory 

Shown in Figure 4-5 are illustrations of several different infinitely long conducting 

objects in X,Y,Z coordinates along with the orientation of TMz and TEz polarized waves. The 

plane of incidence is also indicated on the diagram. 

 

 

a)   b) 

Figure 4-6: a) Polarization of TMz and TEz waves. b) Infinitely long conducting structures: 

rectangular box, parallel plates, and circular cylinder. 

 

As mentioned earlier, for TMz wave incidence on infinitely long cylindrically symmetric 

conducting bodies, the appropriate Green’s function is the zeroth order Hankel function of the 
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second kind 𝐻0
(2)(𝑥). For the structures analyzed in Figure 4-6b, the electric field is polarized in 

the Z-direction. See also Figure 4-6a. 

To calculate the current distribution on the objects in Figure 4-5b, the Spatial Frequency 

Technique begins with equations in the spatial domain. Starting with the magnetic vector potential, 

𝐴𝑧(𝜌), and the spherical Hankel function ℎ0
(2)(𝑅) =

𝑒−𝑗𝑘0𝑅

𝑅
, one utilizes the symmetry to evaluate 

the integrand over its infinite limits in the Z-direction of polarization. As shown in Chapter 2 for 

the MOM, application of the SFT begins with equation (4 − 14). 

𝐴𝑧(𝜌) = −𝑗
𝜇

4
∬𝐽𝑧(𝜌

′)′

𝑆

𝐻0
(2)(𝑘0|𝜌 − 𝜌

′|)𝑑𝜌′                                                                            (4 − 14) 

𝐺(𝜌, 𝜌′) = 𝐻0
(2)(𝑘0|𝜌 − 𝜌

′|)                                                                                                          (4 − 15) 

The Fourier transform of the zeroth order Hankel function of the second kind for two-

dimensional problems is shown below in equation (4 − 16). 

𝐺𝐹(𝐾𝑥) = ∫ 𝐻0
(2) (𝑘0√𝑥2 + 𝑦2)

∞

−∞

𝑒−𝑗𝐾𝑥𝑥𝑑𝑥                                                                               (4 − 16) 

Equation (4 − 16) can be simplified into equation (4 − 17), 

𝐺𝐹(𝐾𝑥) = 2∫ 𝐻0
(2) (𝑘0√𝑥

2 + 𝑦2)
∞

0

𝑐𝑜𝑠(𝐾𝑥𝑥)𝑑𝑥                                                                     (4 − 17) 

and integrated to find the Fourier transforms given in equations (4 − 18) and (4 − 19). 

𝐺𝐹(𝐾𝑥) =
2𝑒

−𝑗|𝑦|√𝑘0
2−𝐾𝑥

2

√𝑘0
2 − 𝐾𝑥2

                                                                                           𝑘0 > 𝐾𝑥       (4 − 18) 

𝐺𝐹(𝐾𝑥) =
2𝑒

−𝑗|𝑦|√𝐾𝑥
2−𝑘0

2

√𝐾𝑥2 − 𝑘0
2

                                                                                           𝑘0 < 𝐾𝑥       (4 − 19) 

 

4.7    Scattering with TMz Waves and the Spatial Frequency Technique Results 

In this investigation, although formulas (4 − 18) and (4 − 19) were available, instead of 

using the Fourier transform of the Hankel function of the second kind, 𝐻0
(2)
(𝑘0√𝑥2 + 𝑦2), the 

Fourier transform for infinitely long conducting bodies was calculated by first generating a 

matrix containing the integral of the Green’s function over the conductor and complementary 

subspaces. The complementary space is required to ensure that the Nyquist criterion is met for 
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analyzing periodic structures. Then using the FFT algorithm, the discrete Fourier transform of 

the entire problem space is calculated.  

The conductor region and the complementary space region are both subspaces of a vector 

space that defines the whole problem. The complementary space region, which is a zero-padded 

region, is orthogonal to the conductor subspace. See Figure 4-7 for examples of the 

complementary spaces of a two-dimensional and a one-dimensional object. 

 

 

 

a)  b) 

Figure 4-7: Conductor (shaded) and complementary space for a) infinite length rectangular 

cylinder and b) finite length strip. 

 

Calculated results of the current density distribution for TMz polarization are shown 

below for the following infinitely long cylindrical objects:  parallel strips, rectangular cylinder, 

and circular cylinder [47]. See Figures 4-8, 4-9, and 4-10.  
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a)  b) 

Figure 4-8: 3D Current density along infinite parallel plates using a) MOM and b) SFT [47]. 

 

The SFT and MOM techniques produced the identical results for two infinite parallel 

strips and an infinite rectangular cylinder placed on evenly separated spatial gridlines produced. 

 

 

a)  b) 

Figure 4-9: 3D Current density along infinite rectangular cylinder a) MOM and b) SFT [47]. 

 

For points on an infinitely long cylinder that did not lie on grid points, the FFT could not 

be utilized. Instead, the discrete Fourier transform was used to perform frequency domain 

calculations. In this other approach for using the Spatial Frequency Technique, the DFT was 
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applied directly to points of the calculated Green’s function that lay on the perimeter of the 

cylinder. Points on the circular conductor were separated by the same arc length, similar to the 

way points on the rectangular grid were evenly spaced for the other geometries. This approach 

was necessary for an infinitely long conducting cylinder since no off-grid techniques for the SFT 

have been developed as yet. Preconditioning techniques have been developed for electrostatic 

problems, but not time harmonic problems as yet [48]. Figure 4-8 shows plots of the current 

distribution calculated using the MOM technique and the SFT. Both the conjugate gradient 

method and direct matrix inversion were used to solve for the current distribution. All three 

calculations produced identical results. 

 

 

a)    b) 

Figure 4-10: a) 3D Current density along infinitely long circular cylinder d = .5 λ using SFT 

method 3D view. b) Linear plot of current density along the circumference of the cylinder [47]. 

 

When calculating the DFT in two-dimensions, careful attention must be paid in keeping 

track of each column of angular spatial frequency variables kx,m and ky,n to ensure their agreement 

with matrix calculations throughout the solution. Sub-matrices were generated within the DFT 

operator for angular spatial frequencies and (x,y) coordinates shown below in Figure 4-11. 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[

𝑘𝑥,0, 𝑘𝑦,0, 𝑥0, 𝑦0
:

𝑘𝑥,𝑀−1, 𝑘𝑦,0, 𝑥0, 𝑦0

] [

𝑘𝑥,0, 𝑘𝑦,0, 𝑥1, 𝑦0
:

𝑘𝑥,𝑀−1, 𝑘𝑦,0, 𝑥1, 𝑦0

] . . . [

𝑘𝑥,0, 𝑘𝑦,0, 𝑥𝑀−1, 𝑦0
:

𝑘𝑥,𝑀−1, 𝑘𝑦,0, 𝑥𝑀−1, 𝑦0

]

[

𝑘𝑥,0, 𝑘𝑦,1, 𝑥0, 𝑦1
:

𝑘𝑥,𝑀−1, 𝑘𝑦,1, 𝑥0, 𝑦1

] [

𝑘𝑥,0, 𝑘𝑦,1, 𝑥1, 𝑦1
:

𝑘𝑥,𝑀−1, 𝑘𝑦,1, 𝑥1, 𝑦1

] . . .

[

𝑘𝑥,0, 𝑘𝑦,2, 𝑥0, 𝑦2
:

𝑘𝑥,𝑀−1, 𝑘𝑦,2, 𝑥0, 𝑦2

] : . . .

: :

[

𝑘𝑥,0, 𝑘𝑦,𝑁−1, 𝑥0, 𝑦𝑁−1
:

𝑘𝑥,𝑀−1, 𝑘𝑦,𝑁−1, 𝑥0, 𝑦𝑁−1

] . . . [

𝑘𝑥,0, 𝑘𝑦,𝑁−1, 𝑥𝑀−1, 𝑦𝑁−1
:

𝑘𝑥,𝑀−1, 𝑘𝑦,𝑁−1, 𝑥𝑀−1, 𝑦𝑁−1

]

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4-11: Two-dimensional discrete Fourier transform matrix representation. 

 

4.8  Fast Algorithms for the Spatial Frequency Technique 

The aim of the research on the SFT was to develop fast algorithms implementing iterative 

techniques to calculate current distributions using the Spatial Frequency Technique. Illustrated in 

Figure 4-12 is an infinite length strip shown with its axes and complementary space region. In a 

conference paper, a fast algorithm for calculating the current distribution on a 2D infinitely long 

conducting strip was shown to have significant speed improvement over former methods [49,50]. 

Figure 4-13 shows plots comparing the rate of convergence of the SFT using the conjugate 

gradient algorithm [51] versus the new fast iterative method known as the Fast-SFT algorithm. 

See the Appendix G on the conjugate gradient method for more information. 
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Figure 4-12: Two-dimensional infinite length strip with incident TMz electromagnetic wave. 

 

 

a)   b) 

Figure 4-13: a) Average normalized error versus number of iterations when calculating the 

current distribution of an infinitely conducting strip with the SFT method using the fast 

convergence algorithm and conjugate gradient approach. b) Convergence time [49,50]. 

 

The governing equation for the infinite length strip using the SFT is written below. Note 

the change in notation, 𝐹𝑒(𝑥) = 𝐹1and 𝐹𝛥𝑒(𝑥) = 𝐹2. 

𝐽(𝑥) = 𝐹′𝐻𝐷𝐹1𝑒(𝑥) + 𝐹
′𝐻𝐷𝐹2𝐹2′𝐿𝐹𝐺𝐷𝐹𝐽(𝑥)                                                                             (4 − 20) 

𝐽𝑛+1 = 𝐽0 + 𝐹
′𝐻𝐷𝐹2𝐹2′𝐿𝐹𝐺𝐷𝐹𝐽𝑛                                                                                                     (4 − 21)  

𝐺𝐷 = 𝐻0
(2)(𝑘0𝑅)                                                                                                                                 (4 − 22) 
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𝐻𝐷 = 𝐺𝐷
−1                                                                                                                                             (4 − 23) 

The iterative routine in the paper [50] is shown below. 

Start 

𝐽0 = 𝐹
′𝐻𝐷𝐹1𝑒(𝑥)                                                                                                                                (4 − 24) 

Repeat until  𝛥𝐽 ̑<  tolerance 

𝐽𝑛+1 = 𝐽0 + 𝐹1′[𝐻𝐷 × (𝐹2 × 𝐹2′)𝐿𝐹𝐺𝐷 × 𝐹1′𝐽𝑛]                                                                          (4 − 25) 

∆𝐽 = |𝐽𝑛+1 − 𝐽𝑛|                                                                                                                                 (4 − 26) 

End 

The Fast-SFT algorithm takes the same form as a basic iterative method for solving a 

matrix equation (4 − 27). 

𝐴�̂� = �̂�                                                                                                                                                 (4 − 27) 

Given an initial vector x0 one can generate a sequence with variable xm that can converges to the 

solution. 

𝐴−1�̂� = �̂�                                                                                                                                              (4 − 28) 

The value of xm+1 is fast and efficient to compute. The convergence criteria depend on the 

operator norm‖ 𝑅‖0 of the iterative equation below, 

�̂�𝑚+1 = 𝑅�̂�𝑚 + �̂�                                                                                                                                (4 − 29) 

that is defined below in terms of the vector space norms ‖ ‖ [52], 

‖ 𝑅‖0 = 𝑚𝑎𝑥𝑥≠0
‖ 𝑅�̂�‖

‖ �̂�‖
                                                                                                                   (4 − 30) 

Besides another aim of this method was to investigate further the relationship between the 

convergence criteria and the spectral radius of 𝑅, defined as 𝜌(𝑅) below, 

𝜌(𝑅) = 𝑚𝑎𝑥|𝜆|                                                                                                                                  (4 − 31) 

which is the absolute value of the maximum value of the eigenvalues of 𝑅.  

Although the Fast-SFT worked well for the infinite strip problem, it did not work well for 

2D and 3D problems. The geometric series implemented in the algorithm shown in equation 

(4 − 29) did not converge for the 2D and 3D geometries. The application of the Fast-SFT 

algorithm to 2D and 3D structures resulted in eigenvalues that were greater than one, which 

caused the recursive algorithm to fail to converge. Without the introduction of some form of 
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preconditioning or lowpass filtering by the introduction of basis functions, this method proved to 

be limited to 1D structures. 

 

4.9  Numerical Electromagnetic Analysis in this Dissertation 

This dissertation presents a new method of analyzing electromagnetic structures and their 

scattering properties called the Spectral Projection Model. The first chapter presents an overview 

of different electromagnetic methods and their differences. Some techniques are best for finding 

the electromagnetic fields confined within an object or region. Others are suitable for calculating 

electromagnetic fields induced by currents on the surface of objects. Still others are developed to 

calculate the electromagnetic fields absorbed and reflected off boundaries. The finite element 

method is used often for calculating the electromagnetic fields within closed regions containing 

different media, for example magnetic and dielectric materials. The finite difference time domain 

method is a technique used to calculate the propagation of fields within an object or region as it 

varies in time and space. The method of moments is a boundary element method used to 

calculate the scattering and radiative properties of different electromagnetic structures. For large 

objects, the fast multipole method speeds up the process of populating the impedance matrix of 

BEM problems by grouping sources and observation points together. 

The Spectral Projection Model and its successor Direct Spectral Projection Model 

originated from using the method of moments and point matching to compute the Green’s 

function for source and observation points. By avoiding numerical integration of different shaped 

basis functions, the simplicity of calculating the impedance matrix is greatly improved. The fast 

multipole method is similar to the method of moments in that it is a boundary element method, 

and uses MOM techniques for calculating the Green’s function of near-field sources and 

observation points. But for points farther away, it employs the addition theorem to aggregate 

source points to a central points, then translate them to another central point, and fnally 

disaggregate their effects to observation points, thereby speed up populating the impedance 

matrix. 

The Spectral Projection Model is a spectral method that applies a linear transformation to 

source and observation points and in order to represent them as Bessel and Hankel function 

spectral signatures. It uses the addition theorem to calculate the Green’s function by projecting 
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the source spectral signatures onto the observation point spectral signatures. It also uses the 

translation property to circumvent the restrictions that the addition theorem places on the source 

and observation point vectors in polar coordinates. 

  Research on spectral methods began with the Spatial Frequency Technique which uses 

complex exponentials and discrete Fourier transform methods to solve integral equation 

electromagnetic field problems. This technique used the DFT in the spatial domain, and the basis 

functions were complex exponentials in the X-direction and the Y-direction. The FFT was 

widely used to make gains in the speed of calculating results. By using iterative methods to 

invert matrices, some results were seen to converge faster for certain classes of problems. These 

improvements were not applicable to a more a general class of problems, which was the aim of 

the research. 

Investigation into this spectral technique was then modified by representing source and 

observation points in polar coordinates with the family of Bessel functions through the addition 

theorem. This new spectral approach is named the Spectral Projection Model, and it enables one 

to analyze different object shapes without the restriction of uniform grid spacing in two 

dimensions imposed by FFT algorithms. Far-field patterns can be calculated directly from the J-

spectral signature of the current distribution. SPM also applies to a broader spectrum of problems 

than traditional modal methods by using rotating vectors and the convolution property of the 

addition theorem to generate incident fields for a variety of object geometries. 

SPM spawned a simpler technique called the DSPM which calculates the current 

distribution on a wide variety of PEC objects. This has the advantage of still using the projection 

of the modal spectral signatures in polar coordinates and avoiding integration of basis functions. 

DSPM also offers promise as a synthesis technique because by using a set of rotating vectors, 

any incident waveform and object geometry can be specified. 
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Chapter 5: Spectral Projection Model 

5.1  Genesis of the Spectral Projection Model 

The Spectral Projection Model (SPM) is a new technique for solving problems in 

electromagnetic scattering and radiation. The analysis is different from the Method of Moments 

(MOM), spatial frequency technique (SFT), and hybrid techniques like the Fast Multipole 

Method (FMM), but incorporates many of the same principles. The previous three methods set 

up integral equations with appropriate Green’s functions and then discretize the surface of the 

scattering object. Once discretized, inner products are taken with basis functions to set up an 

impedance matrix. The impedance matrix is then solved to calculate the current distribution on 

the surface of the object. Once the surface current is calculated, other useful parameters such as 

the far-field radiation pattern, directivity of the radiation pattern, radar cross-section, etc. are 

determined from the current distribution. 

In two-dimensions, the Spectral Projection Model is based on the addition theorem for 

Bessel and Hankel functions and can be applied to electromagnetic scattering and radiation from 

infinitely long, two-dimensional PEC objects. An addition theorem is the expansion of a Bessel or 

Hankel function into an infinite sum of Bessel and Hankel functions. Equations (5 − 1) and (5 −

2) are two forms of Graf’s addition theorem. By changing the direction of the vector 𝝆′ and its 

rotation around the origin, the two forms are interchangeable. Various other forms of the addition 

theorem are explained in detail in Appendix A: SPM and Graf’s Equation. 

Considering the vectors 𝝆 and 𝝆′, Figure 5-1 and Figure 5-2 illustrate the subtraction 

|𝝆 − 𝝆′| and the addition |𝝆 + 𝝆′| and these factors, respectively. For the particular Green’s 

function, 𝐻0
(2)(𝛽|𝝆 + 𝝆′|), the sum can be approximated by truncating the addition theorem to 

2K+1 terms, as shown in equation (5 − 1). 
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Figure 5-1: Graf’s addition theorem for |𝝆 − 𝝆′|. 

 

 

Figure 5-2: Graf’s addition theorem for |𝝆 + 𝝆′|. 

 

Equation  (5 − 1) is a form of Graf’s addition theorem may be viewed as a correlation 

operation due to the m+k order on the Hankel function sum. 

𝐻𝑚
(2)(𝛽|𝝆 − 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚+𝑘

(2) (𝛽|𝝆|)𝐽𝑘(𝛽|𝝆′|)𝑒
𝑗[(𝑚+𝑘)𝜙−𝑘𝜙′]

∞

𝑘=−∞

             𝜌 >  𝜌′         (5 − 1) 

Equation  (5 − 2) is another form of Graf’s addition theorem. This version may be viewed as a 

convolution operation because of the m-k order on the Hankel function sum. 

𝐻𝑚
(2)(𝛽|𝝆 + 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚−𝑘

(2) (𝛽|𝝆|)𝐽𝑘(𝛽|𝝆′|)𝑒
𝑗[(𝑚−𝑘)𝜙−𝑘𝜙′]

∞

𝑘=−∞

             𝜌 >  𝜌′         (5 − 2) 



 

73 

For computational purposes, the particular Green’s function, 𝐻0
(2)(𝛽|𝝆 − 𝝆′|) can be 

approximated by truncating it to 2K+1 terms. 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = ∑ 𝐽𝑘(𝛽|𝝆′|)𝐻𝑘

(2)(𝛽|𝝆|)𝑒𝑗𝑘(𝜙−𝜙′)
𝐾

𝑘=−𝐾

                                      𝜌 >  𝜌′         (5 − 3) 

This summation in equation (5 − 3) can be written in vector form as a projection or inner product. 

The Spectral Projection Model uses the truncated form of the addition theorem to represent 

the Green’s function as the projection of the H or J-spectral signatures of the source points (𝜌′, 𝜙′) 

onto the H or J-spectral signatures of the observation points (𝜌, 𝜙). Illustrated in Figure 5-3a is a 

depiction of the J-spectral signature of source point (𝜌′, 𝜙′) projected onto the H-spectral signature 

of observation point (𝜌, 𝜙) using the addition theorem in equation (5 − 3). Note that the inner 

product (or projection) is not the dot product shown in Figure 5-3b. The inner product using SPM 

is the projection of one spectral signature vector onto another, and it obeys the law of cosines. This 

is explained in further detail in Appendix A: SPM and Graf’s Equation. 

 

 

a)                                                                     b) 

Figure 5-3: a) Projection p of vector v onto b using dot product. b) Projection of 𝐽𝑛(𝛽|𝝆′|) onto 

𝐻𝑛
(2)(𝛽|𝝆|) to yield 𝐻0

(2)(𝛽|𝝆 − 𝝆′|). The value of |𝑹| = |𝝆 − 𝝆′| is calculated using the law of 

cosines, i.e. 𝑅 = √𝜌2 + 𝜌′2 − 2𝜌𝜌′𝑐𝑜𝑠(𝛾). 

 

The method is called the Spectral Projection Model because the incident fields and the 

scattered fields are related to the incident and induced currents as projections of spectral signatures. 
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For scattering analysis in two-dimensions, the spectral signatures may be viewed as the spectral 

description of the fields and currents in a cylindrical coordinate system. The Spectral Projection 

Model enables one to calculate the far-field pattern without calculating the impedance matrix or 

electric current distribution on the conductor. Instead, the model requires calculation of the spectral 

signatures of the surface currents. The far-field pattern can be calculated from the spectral 

signature of the surface currents directly by a linear transformation. 

These spectral signatures in SPM are analogous to spatial frequency representations using 

Fourier analysis when solving problems in the spatial frequency domain. However, in Fourier 

analysis, once the Fourier transform of current is calculated, the spatial domain equivalent must 

be found using the inverse Fourier transform in order to calculate the far-field pattern. 

  The Spectral Projection Model approach in electromagnetics may be used to solve for 

electromagnetic fields scattered from cylindrical objects of various axial ratios. In this 

dissertation, the first objects to be considered are infinitely long perfectly conducting cylinders 

with axial ratios 
𝑎

𝑏
≈ 1. See Figure 5-4 for an illustration of several cylinders with different axial 

ratios. 

 

 

Figure 5-4: Elliptical cylinders with various axial ratios. Axial ratio 
𝑎

𝑏
= 1 is a circular cylinder. 

 

For the purpose of clarity, scattering from objects with axial ratios 
𝑎

𝑏
= 1 , i.e. circular 

cylinders, which are excited by electric line sources and TMz electromagnetic waves are 

analyzed first. Then scattering from circular cylinders by magnetic line sources and TEz waves 
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are discussed next. An illustration of a TM𝑧 wave with the electric field in the axial Z-direction, 

the transverse magnetic field in the Y-direction, and propagation in the X-direction, is shown in 

Figure 5-5a. An illustration of a TE𝑧 wave with the magnetic field in the axial Z-direction, the 

transverse electric field in the Y-direction, and propagation in the X-direction, is shown in Figure 

5-5b. 

 

 a) b) 

Figure 5-5: a) Transverse magnetic wave TMz propagating in the X-direction impingent on an 

infinitely long PEC cylinder. b) Transverse electric wave TEz propagating in the X-direction 

impingent on an infinitely long PEC cylinder. 

 

After the introductory remarks, a short exposition on electric/magnetic line currents is 

given, followed by application of the SPM to electromagnetic boundary conditions. The chapter 

continues with a discussion of the relationship between the far-field spectral signature of a plane 

wave and discrete Fourier transform. SPM results for axial ratios  
𝑎

𝑏
= 1 are validated by 

comparing them with modal analysis of circular cylinders illuminated by a plane wave. Next, 

limitations of SPM and methods for dealing with these limitations are discussed, including a 

method for translating the origin of the problem to analyze structures with large axial ratios. 

Lastly, results for elliptical cylinders with large axial ratios excited by TMz and TEz incident 

waves are presented. 
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5.2  Spectral Projection Model Applied to Line Currents 

In 2D analysis, the Spectral Projection Model postulates that all incident electromagnetic 

fields are generated by infinitely long line current sources. Shown below in Figure 5-6 are three 

independent line sources and their radiated fields. 

 

 

Figure 5-6:  Three infinitely long line sources and their radiated fields with an elliptical 

cylindrical cylinder centered at the origin. 

 

These impressed current line sources produce incident electric and magnetic fields that 

scatter off PEC objects either in the near-field or far-field depending on the problem statement. 

The waves are cylindrically symmetric and so can be described by Bessel and Hankel functions. 

Bessel and Hankel functions are frequently used to represent electromagnetic waves propagating 

through space they satisfy Maxwell’s equations in 2D problems. As 𝜌 → ∞, Hankel functions 

are used to represent planar wavefronts. 

The impressed currents do not change in the presence or absence of the scattering object, 

and are independent of the total electromagnetic field. The top-view of an infinite line source and 

its radiated fields is shown in Figure 5-6. 
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Figure 5-7:  Far-field and near-field electromagnetic waves produced by an infinitely long line 

source. Near-fields radiate as cylindrical waves, far-fields are approximated as plane waves. The 

far-field plane wave approximation is indicated by the dotted line in the boxed region subtended 

by the angle 𝜃. 

 

Electric and magnetic line current sources generate electric and magnetic fields that are 

aligned with the axis of the line source. In order to calculate the electric and magnetic fields 

scattered by the PEC cylinders, boundary conditions must be applied to the fields at the surface 

of the PEC cylinders in the presence of these line sources. This process lends itself to application 

of the addition theorem for solving scattering problems. It will be shown that the addition 

theorem in equation (5 − 3) is useful for representing the incident and induced electromagnetic 

fields. 

 

5.2.1  Representation of Electric and Magnetic Fields using the Spectral Projection Model 

For a single electric current line source of current magnitude 𝐼𝑒 aligned in the Z-direction, 

the radiated electric field is given in equation (5 − 4) from [36]. 

𝐸𝑧(𝛽|𝝆 − 𝝆′|) = −
𝛽2𝐼𝑒
4𝜔𝜀

𝐻0
(2)(𝛽|𝝆 − 𝝆′|)𝑒𝑗𝛽(𝜙−𝜙′)                                                                   (5 − 4) 

The spatial parameters of equation (5 − 4) are defined below: 

𝝆′     -       vector from the reference origin to the line source at coordinates (𝜌′, 𝜙′) 

𝝆     -       vector from the reference origin to an observation point at coordinates (𝜌, 𝜙) 
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The zeroth order Hankel function of the second kind 𝐻0
(2)(𝛽|𝝆|) is a cylindrically symmetric 

function. In the near-field, the radiated electric field 𝐸𝑧 can be approximated as a cylindrical 

wave front.  See Figure 5-8. The 𝐸𝜌, 𝐸𝜙, and 𝐻𝑧 components of the electric and magnetic field 

equal zero for an electric current line source. 

 

 

Figure 5-8: Illustration of an electric current line source with electric field, 𝐸𝑧�̂�, magnetic field, 

𝐻𝜙�̂�, and direction of propagation 𝜷 = �̂� positioned at the origin. 

 

In the far-field, the radiated electric field 𝐸𝑧 is a plane wave, as illustrated before in Figure 5-6. 

Using the principle of duality with substitutions given in equation (5 − 5), 

𝜀 → 𝜇                 𝐸𝑧
𝑖 → 𝐻𝑧

𝑖                   𝐼𝑒 → 𝐼𝑚                                                                                   (5 − 5) 

from equation (5 − 4) one can find the magnetic field produced by an equivalent magnetic 

current line source. The magnetic near-field radiated by a magnetic current line source aligned in 

the Z-direction is given in equation (5 − 6). 

𝐻𝑧 (𝛽|𝝆 − 𝝆′|) = −
𝛽2𝐼𝑚
4𝜔𝜇

𝐻0
(2)(𝛽|𝝆 − 𝝆′|)𝑒𝑗𝛽(𝜙−𝜙′)                                                               (5 − 6) 

The components of the electric and magnetic field of the magnetic current line source that equal 

zero are 𝐻𝜌, 𝐻𝜙, and 𝐸𝑧. An illustration of a magnetic current line source is shown in Figure 5-8. 
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Figure 5-9: Illustration of a magnetic current line source with magnetic field, 𝐻𝑧�̂�, magnetic 

field, 𝐸𝜙�̂�, and direction of propagation 𝜷 = �̂�. 

 

The addition theorem applied to 𝐻0
(2)(𝛽|𝝆 − 𝝆′|) may be viewed as a projection of one 

infinitely long vector onto another infinitely long vector. For computational purposes when 

implementing SPM, the two vectors are truncated at some finite number of 2K+1 modes. This 

limits the number of modes in the summation expansion, and is adjusted dependent on the size of 

the object being analyzed. Two forms of a truncated addition theorem are given in equations 

(5 − 7) and (5 − 8). 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) ≈ ∑ 𝐻𝑘

(2)(𝛽|𝝆|)𝐽𝑘(𝛽|𝝆
′|)𝑒𝑗𝑘(𝜙−𝜙

′)

𝐾

𝑘=−𝐾

                                        𝜌 > 𝜌′        (5 − 7) 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) ≈ ∑ 𝐻𝑘

(2)(𝛽|𝝆′|)𝐽𝑘(𝛽|𝝆|)𝑒
𝑗𝑘(𝜙−𝜙′)

𝐾

𝑘=−𝐾

                                        𝜌′ > 𝜌        (5 − 8) 

The addition theorem for a single source location (𝜌′, 𝜙′) and single observation location (𝜌, 𝜙) 

with 𝜌′ > 𝜌 is an inner product. See equation  (5 − 9). 
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𝐻0
(2)(𝛽|𝝆 − 𝝆′|) ≈

[𝐽−𝐾(𝛽|𝝆|)𝑒
−𝑗𝐾𝜙 . . 𝐽𝑘 (𝛽|𝝆|)𝑒

𝑗𝑘𝜙 … 𝐽𝐾 (𝛽|𝝆|)𝑒
𝑗𝐾𝜙]

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆′|)𝑒𝑗𝐾𝜙
′

. .

𝐻𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘𝜙

′
 

. .

𝐻𝐾
(2)(𝛽|𝝆′|)𝑒−𝑗𝐾𝜙

′
]
 
 
 
 
 

            (5 − 9) 

This inner product is the projection of two vectors, the H-spectral signature (or Hankel 

spectral signature) of a source point, (𝜌′, 𝜙′), 

𝑒𝑠𝑛 = [𝐻−𝐾
(2)(𝛽|𝝆′|)𝑒𝑗𝐾𝜙′ . . 𝐻𝑘

(2)(𝛽|𝝆′|)𝑒𝑗𝑘𝜙′ … 𝐻𝐾
(2)(𝛽|𝝆′|)𝑒−𝑗𝐾𝜙′]

𝑇
                   (5 − 10) 

onto the J-spectral signature (or Bessel spectral signature) of an observation point, (𝜌, 𝜙). 

𝑒𝑜𝑚 = [𝐽−𝐾(𝛽|𝝆|)𝑒
−𝑗𝐾𝜙 . . 𝐽𝑘(𝛽|𝝆|) … 𝐽𝐾(𝛽|𝝆|)𝑒

𝑗𝐾𝜙]𝑇                                           (5 − 11) 

The Green’s function 𝐻0
(2)(𝛽|𝝆 − 𝝆′|) may now be written as equation (5 − 12). 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = 𝑒𝑜𝑚

𝑇 𝑒𝑠𝑛                                                                                           𝜌
′ > 𝜌       (5 − 12) 

In general, when 𝜌′ > 𝜌 the electric or magnetic field radiated by a line source can be 

calculated by projecting the H-spectral signature of the line source at (𝜌′, 𝜙′) onto the J-spectral 

signature of the observation point (𝜌, 𝜙). 

 

5.2.2  Fields due to Electric Line Sources 

This section discusses the derivation of the electromagnetic fields produced by infinitely 

long electric line sources. Electric line sources radiate cylindrical waves in the near-field and 

TMz plane waves in the far-field. For two-dimensional TM-wave scattering, the electric field 

may be described by a Green’s function, the zeroth order Hankel function of the second kind,  

𝐻0
(2)(𝛽|𝝆 − 𝝆′|). The magnitude variable |𝝆 − 𝝆′|of 𝐻0

(2)(𝛽|𝝆 − 𝝆′|) is the distance between the 

line current source 𝝆′ and the observation point 𝝆 where the fields are calculated. The distance 

𝑅 = |𝝆 − 𝝆′| is also defined by the law of cosines discussed later in this chapter. 

The radiated electric near-field of an electric current line source was given in equation 

(5 − 4), and for a specific line source location (𝜌0 
′ , 𝜙0′) and observation point (𝜌𝑚,𝜙𝑚), 

𝐸𝑧(𝛽|𝝆𝒎 − 𝝆𝟎′|) = −
𝛽2𝐼𝑒
4𝜔𝜀

𝐻0
(2)(𝛽|𝝆𝒎 − 𝝆𝟎′|)𝑒

𝑗𝛽(𝜙−𝜙0′)                                                       (5 − 13) 

and using the addition theorem, the electric field can be expressed as the projection below: 
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𝐸𝑧(𝛽|𝝆𝒎 − 𝝆𝟎′|) = −
𝛽2𝐼𝑒
4𝜔𝜀

𝑒𝑜𝑚
𝑇 𝑒𝑠𝑛                                                                            𝜌

′ > 𝜌       (5 − 14) 

     According to equation  (5 − 14), the electric field at the mth observation point is the 

projection of the electric line current source at 𝑛 = 0, i.e. (𝜌0
′ , 𝜙0′) onto the mth observation 

point. The H-spectral signature of the source point 𝑒𝑠𝑛 and J-spectral signature of the 

observation point 𝑒𝑜𝑚 are defined by the equations below: 

𝑒𝑠𝑛 = [𝐻−𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

𝑗𝐾𝜙0′ . . 𝐻𝑘
(2)(𝛽|𝝆𝟎′|)𝑒

𝑗𝑘𝜙0′ … 𝐻𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝐾𝜙0′]
𝑇
        (5 − 15) 

and 

𝑒𝑜𝑚 = [𝐽−𝐾(𝛽|𝝆𝒎|)𝑒
−𝑗𝐾𝜙𝑚 . . 𝐽𝑘(𝛽|𝝆𝒎|)𝑒

𝑗𝑘𝜙𝑚  … 𝐽𝐾(𝛽|𝝆𝒎|)𝑒
𝑗𝐾𝜙𝑚]𝑇                  (5 − 16) 

The radial and azimuthal components of the radiated magnetic fields, 𝐻𝜌 and 𝐻𝜙, due to 

the electric line source can be calculated using Faraday’s law. 

𝛁 × 𝑬 = −
𝝏𝑩

𝝏𝒕
                                                                                                                                    (5 − 17) 

Using cylindrical coordinates and rearranging, one can find the �̂� and �̂� components of the 

outward magnetic field. 

𝑯 =
−1

𝑗𝜔𝜇
𝛁 × 𝑬𝒛                                                                                                                                 (5 − 18) 

𝑯 =
−1

𝑗𝜔𝜇
(�̂�

1

𝜌

𝜕𝐸𝑧
𝜕𝜙

− �̂�
𝜕𝐸𝑧
𝜕𝜌

)                                                                                                      (5 − 19) 

𝐻𝜌 = −
1

𝑗𝜔𝜇𝜌

𝜕𝐸𝑧
𝜕𝜙

                                                                                                                              (5 − 20) 

The Hankel function 𝐻0
(2)′(𝛽|𝝆|) is cylindrically symmetric and does not have azimuthal 

dependence, so 
𝜕𝐸𝑧

𝜕𝜙
= 0. Thus, the 𝜌 component of the magnetic field must be zero. 

𝐻𝜌 = 0                                                                                                                                                  (5 − 21) 

To calculate the 𝜙 component of the magnetic field, 𝐻𝜙, one uses equation (5 − 22). 

𝐻𝜙 =
1

𝑗𝜔𝜇

𝜕𝐸𝑧
𝜕𝜌

                                                                                                                                    (5 − 22) 

𝐻𝜙 =
𝑗𝛽𝐼𝑒
4
𝐻0
(2)′(𝛽|𝝆 − 𝝆′|)                                                                                                            (5 − 23) 
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where 
𝑗𝛽𝐼𝑒

4
𝐻0
(2)′(𝛽|𝝆 − 𝝆′|) is the derivative of the zeroth order Hankel function of the second 

kind with respect to the variable 𝜌. 

The azimuthal field,  𝐻𝜙, may be written as a projection of the H-spectral signature of the 

source vector 𝑒𝑠𝑛 onto the J-spectral signature of the observation vector 𝑒𝑜𝑚
′ . 

𝑒𝑠𝑛 = [𝐻−𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

𝑗𝐾𝜙0 . . 𝐻𝑘
(2)(𝛽|𝝆𝟎′|)𝑒

𝑗𝑘𝜙0  … 𝐻𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝐾𝜙0]
𝑇
           (5 − 24) 

𝑒′𝑜𝑚 = [𝐽−𝐾′(𝛽|𝝆𝒎|)𝑒
−𝑗𝐾𝜙𝑚 . . 𝐽𝑘′(𝛽|𝝆𝒎|)𝑒

𝑗𝑘𝜙𝑚  … 𝐽𝐾′(𝛽|𝝆𝒎|)𝑒
𝑗𝐾𝜙𝑚]𝑇             (5 − 25) 

Similar to the electric field, the azimuthal magnetic field at the mth observation point will 

be the contribution of the magnetic line current source at (𝜌0
′ , 𝜙0′) onto the mth observation point. 

𝐻𝜙(𝜌𝑚, 𝜌0) =
𝑗𝛽𝐼𝑒
4
𝑒𝑜𝑚
′ 𝑇 𝑒𝑠𝑛                                                                                                               (5 − 26) 

 

5.2.3  Hankel Prime Function  

One can rewrite the derivative in the expression for 𝐻𝜙 using the relation in equation 

(5 − 27),  

𝐻0
(2)′(𝛽|𝝆 − 𝝆′|) = −𝐻1

(2)(𝛽|𝝆 − 𝝆′|)                                                                                          (5 − 27) 

The expression in (5 − 28) is of importance in solving MFIE problems using SPM. 

𝐻0
(2)′(𝛽|𝝆 − 𝝆′|) cos( 𝛾) = −𝐻1

(2)(𝛽|𝝆 − 𝝆′|) cos( 𝛾)                                                             (5 − 28) 

The angle 𝛾 is defined in Figure 5-10. The function 𝐻0
(2)′(𝛽|𝝆 − 𝝆′|) will be referred to as the 

zeroth order Hankel Prime function of the second kind. The addition theorem for derivative 

𝐻0
(2)′(𝛽|𝝆 − 𝝆′|) can be written as 

𝐻0
(2)′(𝛽|𝝆 − 𝝆′|) cos( 𝛾) = ∑ 𝐻𝑘

(2)(𝛽|𝝆′|)𝐽𝑘′(𝛽|𝝆|)𝑒
𝑗𝛽(𝜙−𝜙′)

∞

𝑘=−∞

                    𝜌′ > 𝜌        (5 − 29) 

and 

𝐻0
(2)′(𝛽|𝝆 − 𝝆′|) cos( 𝛾) = ∑ 𝐻𝑘

(2)′(𝛽|𝝆|)𝐽𝑘(𝛽|𝝆′|)𝑒
𝑗𝛽(𝜙−𝜙′)

∞

𝑘=−∞

                     𝜌 > 𝜌′        (5 − 30) 

The Hankel Prime function 𝐻0
(2)′(𝛽|𝝆 − 𝝆′|) is of major importance to the Spectral 

Projection Model, especially in the application of the MFIE. This Green’s function relates the Z-

directed electric currents to transverse magnetic fields in TMz waves. It also relates the Z-
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directed magnetic currents to transverse electric fields in TEz waves. The Spectral Projection 

Model is founded on the addition theorem representations of the Green’s functions 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) and  𝐻0

(2)′(𝛽|𝝆 − 𝝆′|) cos( 𝛾). In this chapter, the addition theorem relation for 

 𝐻1
(2)(𝛽|𝝆 − 𝝆′|) cos( 𝛾) is used in developing the SPM expression for TEz waves from the 

MFIE. Figure 5-10 illustrates the important vectors and angle 𝛾 for the SPM Green’s function. 

The vector  𝑹 = 𝝆 − 𝝆′. 

 

Figure 5-10: Diagram of vectors on an ellipse for MFIE equation. 

 

5.2.4  Fields due to Magnetic Line Sources 

The Z-component of the magnetic field of a magnetic line source aligned with the Z-axis 

is described by equation (5 − 31), 

𝐻𝑧(𝛽|𝝆𝒎 − 𝝆𝟎′|) = −
𝛽2𝐼𝑚
4𝜔𝜇

𝐻0
(2)(𝛽|𝝆𝒎 − 𝝆𝟎′|)𝑒

𝑗𝛽(𝜙−𝜙0′)                                                     (5 − 31) 

It can be expressed as the projection 𝑒𝑠𝑛 onto 𝑒𝑜𝑚 below for a line source location at 𝑛 = 0, i.e. 

(𝜌0,𝜙0), and observation point (𝜌𝑚,𝜙𝑚). 

𝐻𝑧(𝛽|𝝆𝒎 − 𝝆𝟎′|) = −
𝛽2𝐼𝑚
4𝜔𝜇

𝑒𝑜𝑚
𝑇 𝑒𝑠𝑛                                                                           𝜌

′ > 𝜌       (5 − 32) 

The vectors 𝑒𝑠𝑛 and 𝑒𝑜𝑚 are defined the same as in equations (5 − 15) and (5 − 16). 
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The 𝑯𝒛  component may be used to solve for the radial and azimuthal components of the 

radiated electric field. Using Ampere’s law one can find the �̂� and �̂� components of the outward 

electric field. 

𝑬 =
1

𝑗𝜔𝜀
𝛁 × 𝑯𝒛                                                                                                                                 (5 − 33) 

𝑬 =
1

𝑗𝜔𝜀
(�̂�

1

𝜌

𝜕𝐻𝑧
𝜕𝜙

− �̂�
𝜕𝐻𝑧
𝜕𝜌

)                                                                                                      (5 − 34) 

𝐸𝜌 =
1

𝑗𝜔𝜀𝜌

𝜕𝐻𝑧
𝜕𝜙

                                                                                                                                  (5 − 35) 

𝐸𝜌 = 0                                             
𝜕𝐻𝑧
𝜕𝜙

= 0                                                                                     (5 − 36) 

and the azimuthal component of the radiated electric field is given in equation (5 − 37). 

𝐸𝜙 = −
1

𝑗𝜔𝜀

𝜕𝐻𝑧
𝜕𝜌

                                                                                                                                (5 − 37) 

𝐸𝜙 =
𝑗𝛽𝐼𝑚
4

𝐻0
(2)′(𝛽|𝝆 − 𝝆′|)                                                                                                            (5 − 38) 

The expression for 𝐸𝜙 includes the derivative of the zeroth order Hankel function of the second 

kind as did the magnetic field 𝐻𝜙 for the electric line source. Using the same relation for 

𝐻0
(2)′(𝛽|𝝆 − 𝝆′|), and the addition theorem for derivatives of 𝐻0

(2)′(𝛽|𝝆 − 𝝆′|), the azimuthal 

electric field for a magnetic line source is given by the projection of 𝑒𝑠𝑛 onto 𝑒′𝑜𝑚 in equation 

(5 − 39), 

𝐸𝜙 =
𝑗𝛽𝐼𝑚
4

𝑒𝑜𝑚
′ 𝑇 𝑒𝑠𝑛                                                                                                                             (5 − 39) 

with the vector 𝑒𝑠𝑛 being the spectral signature of the magnetic line current source at (𝜌0,′𝜙0′) 

and 𝑒′𝑜𝑚 the spectral signature of the mth observation point. The two spectral signatures were 

defined previously in equations (5 − 25) and (5 − 26). 

 

5.3  Boundary Conditions Described as Spectral Projections 

In this section boundary conditions for SPM will be discussed. A summary of electric 

field and magnetic field boundary conditions at the surface of a PEC are given in Table 5-1 
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below. Both transverse magnetic TMz and transverse electric TEz plane waves travelling toward 

an infinitely long cylinder are considered. See Figure 5-11 for illustrations of both. 

 

Figure 5-11: TMz and TEz incident waves on an infinitely long PEC cylinder of elliptical shape. 

The direction of propagation is the same as Py, the Poynting vector. The rectangular box shown 

around the cross section is the plane of incidence. 

 

Table 5-1: Boundary Conditions for PEC’s. 

 

Boundary Field Equations Field Conditions 

Tangential Electric 

Field 𝐸𝑡𝑎𝑛 

𝐸𝑡𝑎𝑛 = 0 n × E = 0 Continuous Electric 

Field 

Tangential Magnetic 

Field 𝐻𝑡𝑎𝑛 

𝐻𝑡𝑎𝑛 = 𝐽𝑆 n × H = 𝐽𝑆 Discontinuity in 

Magnetic Field 

equals Surface 

Current Density 𝐽𝑆 

Normal Electric Flux 

Density 𝐷𝑛𝑜𝑟𝑚 

𝐷𝑛𝑜𝑟𝑚 = 𝜌𝑆 𝑛 ∙ 𝐷 = 𝜌𝑆 Discontinuity in 

Electric Flux Density 

equals Surface 

Charge Density 𝜌𝑆 

Normal Magnetic 

Flux Density 𝐵𝑛𝑜𝑟𝑚 

𝐵𝑛𝑜𝑟𝑚 = 0 𝑛 ∙ 𝐵 = 0 Continuous Magnetic 

Flux Density 
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5.3.1  Electric Field Integral Equation for TMz Incidence on PEC Cylinders 

For a TMz wave, the angle of incidence 𝜙𝑖 and the scattering angle 𝜙𝑠 are both defined 

with respect to the positive horizontal axis, as shown in Figure 5-12. TM plane waves are E-

polarized because the electric field is perpendicular to the plane of incidence and the magnetic 

field is transverse or parallel to the plane of incidence. The electric field is aligned with the Z-

axis for TMz waves. 

 

 

Figure 5-12: Illustration of incident TMz wave. 

 

Consider an infinitely long PEC cylinder with 𝜎 → ∞  in free space being excited by a 

TMz plane wave. An incident Z-polarized electric field 𝑬𝒊 = �̂�𝐸𝑧, is parallel to the cylinder axis. 

The scattered electric field is designated 𝑬𝒔. From the above discussion, the electric field inside 

the perfect electric conductor (medium 2) is 𝑬 𝑷𝑬𝑪, and this electric field 𝑬 𝑷𝑬𝑪 = 𝟎  inside the 

conductor and at the boundary. 

The boundary condition for the electric field at the surface of a PEC conductor requires 

that the total tangential electric field must equal zero, i.e. 𝐸𝑡𝑎𝑛 = 0. The vector relation is given 

in equation (5 − 40). 

�̂� × (𝑬𝒊 + 𝑬𝒔) = 0                                                                                                                             (5 − 40) 
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For TMz waves, the incident electric field 𝐸𝑧
𝑖 �̂� is polarized only in the Z-direction. The 

boundary condition for the 𝐸𝑧 component at every surface point (𝜌, 𝜙) is given in equation (5 −

41). Refer back to Chapter 2 on the Method of Moments for details. 

𝐸𝑧
𝑖 + 𝐸𝑧

𝑠 = 0                                                                                                                                         (5 − 41) 

The scattered electric field, which was derived in Chapter 2, is related to induced currents and 

given in equation (5 − 42). 

𝐸𝑧
𝑠(𝜌) = −

𝜔𝜇

4
∮ 𝐽𝑧(|𝝆′|)𝐻0

(2)(𝛽|𝝆 − 𝝆′|)𝑑𝑐′

𝐶′

                                                                           (5 − 42) 

Substituting into equation (5 − 42) for the boundary conditions, one arrives at the electric field 

integral equation, EFIE, for TMz waves. 

𝐸𝑧
𝑖(𝜌) =

𝜔𝜇

4
∮ 𝐽𝑧(|𝝆′|)𝐻0

(2)(𝛽|𝝆 − 𝝆′|)𝑑𝑐′

𝐶′

                                                                                (2 − 15) 

The boundary conditions for the EFIE equation are given in matrix equation (5 − 43). The 

discretized form of the boundary condition can be written as 

[

…
𝐸𝑖𝑛𝑐 
⋯
] =  − [

…
𝐸𝑖𝑛𝑑 
⋯

]                                                                                                                            (5 − 43) 

 

5.3.2  Magnetic Field Integral Equation for TEz Incidence on PEC Cylinders 

 

 

Figure 5-13: Illustration of incident TEz wave. 
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An incident TEz polarized plane wave is illustrated in Figure 5-13. It is oriented with H-

polarization because the magnetic field is perpendicular to the plane of incidence and the electric 

field is transverse or parallel to the plane of incidence. 

In this section, the magnetic field integral equation (MFIE) is derived by subjecting a 

PEC object to a TEz wave. When the PEC object is subjected to an external stimulus like a TEz 

wave, currents are induced on the surface of the conductor. Let vectors 𝑯𝒊 and 𝑯𝒔 be incident 

and scattered magnetic field intensities, respectively. At the surface of the cylinder, the induced 

current density, 𝑱𝒔, is equal to the discontinuity in the tangential component of the magnetic 

field. The surface current is illustrated in Figure 5-14. 

𝑱𝑺 = �̂� × (𝑯𝒊 +𝑯𝒔)                                                                                                                          (5 − 44) 

 

 

Figure 5-14: Illustration of Surface Current  𝑱𝒔 = 𝒏 × 𝑯𝒕𝒂𝒏. 

 

For a Z-directed transverse electric TEz wave, the incident magnetic field, 𝑯𝒊 = 𝐻𝑧
𝑖 �̂�, is 

parallel to the cylinder axis for TEz plane waves, as is the scattered magnetic field 𝑯𝒔 = 𝐻𝑧
𝑠�̂�. 

For an observation point (𝜌𝑚, 𝜙𝑚), and current element 𝑑𝑐′ along contour C, one can 

integrate and find the scattered magnetic field along the contour of the cylinder. See Chapter 2 

on the Method of Moments for the derivation of the MFIE. 

𝐻𝑧
𝑠(𝜌𝑚) =

𝑗𝛽

4
∫ 𝐽𝐶(|𝝆′|)𝑐𝑜𝑠(𝛾)𝐻1

(2)(𝛽|𝝆𝒎 − 𝝆′|)𝑑𝑐′

𝐶−∆𝐶

                                                          (5 − 45) 

Then, substituting into equation (5 − 45), the MFIE for TEz waves at observation point 𝜌𝑚 can 

now be written as equation (2 − 20), 
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𝐻𝑧
𝑖(𝜌𝑚) =

𝐽𝐶(𝜌𝑚)

2
+
𝑗𝛽

4
∫ 𝐽𝐶(|𝝆′|)𝑐𝑜𝑠(𝛾)𝐻1

(2)(𝛽|𝝆𝒎 − 𝝆′|)𝑑𝑐′

𝐶−∆𝐶

                                       (2 − 20) 

where the incident field at observation point (𝜌𝑚, 𝜙𝑚) is 𝐻𝑧
𝑖(𝜌𝑚). 

The term 𝐽𝐶  is the current along the contour C. For the self-term 𝜌𝑚 = 𝜌𝑛′, the integral 

goes to zero because 𝛾 = 90𝑜. The current at the self -term is calculated using the Kronecker 

delta function, and because of this the surface current term can be expressed as in equation (5 −

46). 

𝐽𝐶(𝜌𝑚 = 𝜌𝑛′) =
𝛿𝑚𝑛′
2
                                                                                                                        (5 − 46) 

The term, 𝐽𝐶(𝜌𝑚 = 𝜌𝑛′) = 0.5, is the coefficient of the basis function for the surface current at 

the self-term, and  𝑱𝒔 equals the integral when 𝑚 ≠ 𝑛 and 𝛾 ≠ 90𝑜 . This integral term thus 

includes the coefficients 𝐽𝐶 𝑚,𝑛 for all 𝑚 ≠ 𝑛, and the self-term for the case  𝜌𝑚 = 𝜌𝑛′. Thus, 

upon discretization, integral terms can be represented by a single matrix when coding as long as 

the Green’s function is set to 0.5 at  𝑚 = 𝑛, i.e. Kronecker delta function. This matrix relation is 

given in the matrix equation (5 − 48), where [

…
𝐻𝑖𝑛𝑐 
⋯

] and [

…
𝐻𝑖𝑛𝑑 
⋯

] are 𝑀 × 1 vectors. 

[

…
𝐻𝑖𝑛𝑐 
⋯

] =  − [

…
𝐻𝑖𝑛𝑑 + 𝐽𝐶(𝜌𝑚 = 𝜌𝑛′)

⋯
]                                                                                            (5 − 47) 

 

5.3.3  Summary Table of EFIE and MFIE for TMz and TEz Waves 

The Electric Field Integral Equation (EFIE) and Magnetic Field Integral Equation 

(MFIE) may both be used to solve TM and TE wave problems. An EFIE may be written by 

enforcing the electric field boundary conditions at the surface of the conductor, and a MFIE may 

be written from enforcing the magnetic field boundary conditions just inside the surface of the 

conductor. The four equations are given in Table 5-2. 

From Table 5-2, application of the EFIE* is the most direct way to solve TMz wave 

problems, and the MFIE* is usually the best way to solve TEz wave scattering problems through 

enforcement of the boundary conditions. 
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Table 5-2:  EFIE and MFIE for TMz and TEz Waves. 

Transverse Magnetic Waves (TMz) 

𝐸𝑧
𝑖(𝜌) =

𝜔𝜇

4
∮ 𝐽𝑧(𝜌′)𝐻0

(2)(𝛽𝑅)𝑑𝑐

𝐶

                                                                                                 𝐸𝐹𝐼𝐸∗ 

𝐻𝐶
𝑖 (𝜌)|

𝐶

= 𝐽𝑧(𝜌)|

𝐶

+
𝑗𝛽

4
lim
𝜌→𝐶

( ∫ 𝐽𝑧(𝜌′)𝑐𝑜𝑠(𝛾)𝐻1
(2)(𝛽𝑅)𝑑𝑐′

𝐶−∆𝐶

)                                             𝑀𝐹𝐼𝐸 

Transverse Electric Waves (TEz) 

−𝐸𝑐
𝑖(𝜌) =

𝜂

4𝛽
{𝛽2∮ 𝐽𝑐(𝜌′)[�̂� ∙ �̂�′𝐻0

(2)(𝛽𝑅)]𝑑𝑐′ +
𝑑

𝑑𝑐
[∇ ∙ ∮ 𝐽𝑐(𝜌′)[�̂�𝐻0

(2)(𝛽𝑅)]𝑑𝑐′

𝐶

]

𝐶

}       𝐸𝐹𝐼𝐸 

−𝐻𝑧
𝑖(𝜌) = 𝐻𝑧

𝑖(𝜌𝑚) =
𝐽𝐶(𝜌𝑚)

2
+
𝑗𝛽

4
∫ 𝐽𝐶(𝜌′)𝑐𝑜𝑠(𝛾)𝐻1

(2)(𝛽|𝜌𝑚 − 𝜌′|)𝑑𝑐′

𝐶−∆𝐶

                      𝑀𝐹𝐼𝐸∗ 

 

5.3.4  Spectral Projection Model Applied to the Electric Field Integral Equation 

The boundary condition for EFIE using (2 − 15) is that the incident electric field, 𝐸𝑖𝑛𝑐, 

at each point on the PEC boundary surface must equal negative the scattered or induced wave 

𝐸𝑖𝑛𝑑. From equation  (5 − 40), for N external source points and N induced source points, this is 

given in matrix equation (5 − 43), where [

…
𝐸𝑖𝑛𝑐 
⋯
] and [

…
𝐸𝑖𝑛𝑑 
⋯

] are 𝑁 × 1 vectors. 

[

…
𝐸𝑖𝑛𝑐 
⋯
] =  − [

…
𝐸𝑖𝑛𝑑 
⋯

]                                                                                                                            (5 − 48) 

The incident or external electric field on the surface of the conductor may be illuminated by a 

nearby external electric line current source or plane wave from the far-field.  

As stated earlier for infinitely long conducting structures, the Green’s function for TMz 

waves is 𝐻0
(2)(𝛽|𝝆 − 𝝆′|). The Spectral Projection Model applies the addition theorem to 

decompose this Green’s function into the sum of products of Bessel and Hankel functions. The 

relative positions of 𝜌 and 𝜌′ determine whether the addition theorem for the induced or the 

addition theorem for the incident fields must be employed. Both equations are shown below. 
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𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = ∑ 𝐽𝑘(𝛽|𝝆′|)𝐻𝑘

(2)(𝛽|𝝆|)𝑒𝑗𝑘(𝜙−𝜙′)
∞

𝑘=−∞

                                      𝜌 >  𝜌′      (5 − 49) 

Induced Fields 

 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = ∑ 𝐽𝑘(𝛽|𝝆|)𝐻𝑘

(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙′)
∞

𝑘=−∞

                                      𝜌 < 𝜌′       (5 − 50) 

Incident Fields 

 

5.3.4.1 Scattered Electric Field and Spectral Signature of Induced Electric Currents from the 

EFIE using the Spectral Projection Model 

The scattered or induced electric field can be calculated by applying the boundary 

conditions in this EFIE. The induced electric field at the surface of the conductor as the 

projection of the J-spectral signature of the source points (𝜌′, 𝜙′) onto the H-spectral signature 

of the observation points (𝜌, 𝜙). The amplitude and phase of the induced currents at the surface 

of the conductor are contained in the vector [

…
𝑖̂𝑖𝑛𝑑
. .
]. 

[

…
𝐸𝑖𝑛𝑑 
⋯

] =
𝜔𝜇

4
[

… … …

… 𝐻𝑘
(2)(𝛽|𝝆|)𝑒𝑗𝑘𝜙 …

… … …
]

𝑇

[

… … …

… 𝐽𝑘 (𝛽|𝝆
′|)𝑒−𝑗𝑘𝜙

′
…

… … …
] [

…
𝑖̂𝑖𝑛𝑑
. .
]  

 𝜌 > 𝜌′       (5 − 51) 

In equation (5 − 52), the columns of [

… … …

… 𝐽𝑘 (𝛽|𝝆′|)𝑒
−𝑗𝑘𝜙′ …

… … …
] are the J-spectral signature of 

the source points, 

[

| | |

| 𝐽𝑘 (𝛽|𝝆′|)𝑒
−𝑗𝑘𝜙 |

| | |

] =  

 

[
 
 
 
 𝐽−𝐾

(𝛽|𝝆𝟎′|)𝑒
𝑗𝐾𝜙0 : : : 𝐽−𝐾(𝛽|𝝆𝑵𝑶−𝟏′|)𝑒

𝑗𝐾𝜙𝑁𝑂−1

: : : : :
: : : : :
: : : : :

𝐽𝐾 (𝛽|𝝆𝟎′|)𝑒
−𝑗𝐾𝜙0′ : : : 𝐽𝐾 (𝛽|𝝆𝑵𝑶−𝟏′|)𝑒

−𝑗𝐾𝜙𝑁𝑂−1′]
 
 
 
 

                                                  (5 − 52)             
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The left side of equation (5 − 52) illustrates this concept of columnar spectral signature in a 

descriptive matrix with the | vertical bar symbol.  

The rows of the matrix transpose [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆|)𝑒𝑗𝑘𝜙 …

… … …
]

𝑇

 are the H-spectral signature of the 

observation points. 

[

− − − − − −

−− 𝐻𝑘 (𝛽|𝝆|)𝑒
𝑗𝑘𝜙 −−

−− −− −−
]

𝑇

 = 

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎|)𝑒
−𝑗𝐾𝜙0 ⋯ ⋯ ⋯ 𝐻𝐾

(2)(𝛽|𝝆𝟎|)𝑒
𝑗𝐾𝜙0

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

𝐻−𝐾
(2)
(𝛽|𝝆𝑵𝑺−𝟏|)𝑒

−𝑗𝐾𝜙𝑁𝑆−1 ⋯ ⋯ ⋯ 𝐻𝐾
(2)
(𝛽|𝝆𝑵𝑺−𝟏|)𝑒

𝑗𝐾𝜙𝑁𝑆−1]
 
 
 
 
 

                               (5 − 53) 

The H-spectral signature subspace is organized in rows as shown with the – slash symbol. 

Equation (5 − 51) may now be written with the descriptive matrices below: 

[

…
𝐸𝑖𝑛𝑑 
⋯

] =
𝜔𝜇

4
[

− − − − − −

−− 𝐻𝑘 (𝛽|𝝆|)𝑒
𝑗𝑘𝜙 −−

−− −− −−
]

𝑇

[

| | |

| 𝐽𝑘 (𝛽|𝝆
′|)𝑒−𝑗𝑘𝜙 |

| | |

] [

|
𝑖̂𝑖𝑛𝑑
|
]  

𝜌 > 𝜌′       (5 − 54) 

In most numerical electromagnetic methods, the scattering problems are solved for the 

induced surface current [

…
𝑖̂𝑖𝑛𝑑
. .
]. In the Spectral Projection Model, it is only necessary to solve for 

the spectral signature of the induced surface current. 

The J-spectral signature of the induced current [

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑑
. .

] on the surface of the conductor is 

found from equation (5 − 54) by applying the linear transformation and shown in equation (5 −

55). 

[

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑑
. .

] =
𝜔𝜇

4
[
⋮ ⋮ ⋮

⋮ 𝐽𝑘 (𝛽|𝝆′|)𝑒
−𝑗𝑘𝜙′ ⋮

⋮ ⋮ ⋮

] [

…
𝑖̂𝑖𝑛𝑑
. .
]                                                        𝜌 > 𝜌′      (5 − 55) 

The induced electric field is equal to the J-spectral signature of the induced surface current 

[

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑑
. .

] projected onto the H-spectral signature subspace [

… … …

… 𝐻𝑘 (𝛽|𝝆|)𝑒
𝑗𝑘𝜙 …

… … …
]

𝑇

 of the 

observation points at (𝜌𝑚, 𝜙𝑚). 
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Thus equation (5 − 55) may be written as (5 − 56). 

[

…
𝐸𝑖𝑛𝑑 
⋯

] = [

… … …

… 𝐻𝑘 (𝛽|𝝆|)𝑒
𝑗𝑘𝜙 …

… … …
]

𝑇

[

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑑
. .

]                                                          𝜌 > 𝜌′      (5 − 56) 

Equation (5 − 56) describes the scattered electric fields as a projection of the J-spectral 

signature of the current onto the H-spectral signature of each observation point where the field is 

to be evaluated. 

 

5.3.4.2 Incident Electric Field and Spectral Signature of Incident Electric Currents from the EFIE 

using the Spectral Projection Model 

A Z-directed electric line source Ie generates an electric field 𝐸 = 𝐸𝑧�̂� in the near field, 

and a TMz plane wave if placed in the far-field. See Figure 5-15a and 5-15b. 

 

a)   b) 

Figure 5-15: a) Illustration of electric line current and elliptical cylinder. b) Top view of electric 

line source near a PEC elliptical cylinder and a TMz plane wave impingent on the cylinder. 

 

Shown in Figure 5-15 are two views of an elliptical cylinder excited by two external 

sources, a line source and a TMz plane wave. In Figure 5-15a the surface of the cylinder radius is 

a function of the azimuthal angle 𝜙, 𝜌 = 𝑓(𝜙), and the dotted square around the cross section of 

the cylinder is the plane of incidence. In Figure 5-15b is a top view of the cylinder showing 

vectors 𝜌, 𝜌′, and , 𝑅. The distance from the origin to the line source 𝜌′ = 𝜌0 is illustrated, as 
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well as its angle of incidence, 𝜙0. The angle of incidence of the Ez plane wave is also shown as 

𝜙0. 

The H-spectral signature of the line source at (𝜌0
′ , 𝜙0′) shown above is given in equation 

(5 − 57), 

𝑒𝑠𝑛 = [𝐻−𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

𝑗𝐾𝜙0′ . . 𝐻𝑘
(2)(𝛽|𝝆𝟎′|)𝑒

𝑗𝑘𝜙0′ … 𝐻𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝐾𝜙0′]
𝑇
        (5 − 57) 

and the J-spectral signature of an observation point (𝜌𝑚,𝜙𝑚) on the surface of the cylinder is 

given in equation (5 − 58). 

𝑒𝑜𝑚 = [𝐽−𝐾(𝛽|𝝆𝒎|)𝑒
−𝑗𝐾𝜙𝑚 . . 𝐽𝑘(𝛽|𝝆𝒎|)𝑒

𝑗𝑘𝜙𝑚  … 𝐽𝐾(𝛽|𝝆𝒎|)𝑒
𝑗𝐾𝜙𝑚]𝑇                  (5 − 58) 

For a single electric current line source at (𝜌0
′ , 𝜙0′) and single observation point at 

(𝜌𝑚,𝜙𝑚), the incident electric field was shown to be the projection given in equation (5 − 14). 

𝐸𝑧(𝛽|𝝆𝒎 − 𝝆𝟎′|) = −
𝛽2𝐼𝑒
4𝜔𝜀

𝑒𝑜𝑚
𝑇 𝑒𝑠𝑛                                                                          𝜌

′ > 𝜌         (5 − 14) 

This vector product is the made up of two vectors, the H-spectral signature (or Hankel spectral 

signature) of the source point projected onto the J-spectral signature (or Bessel spectral 

signature) of the observation point. 

The Spectral Projection Model applies the addition theorem to represent the incident 

electric field at the surface of the conductor as the projection of the H-spectral signature of all 

the source points (𝜌′, 𝜙′) onto the J-spectral signature of all the observation points (𝜌, 𝜙). For 

external sources, this relationship can be expressed in matrix form as equation (5 − 59). 

[

…
𝐸𝑖𝑛𝑐 
⋯
] = [

… … …
… 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 …
… … …

]

𝑇

[

… … …

… 𝐻𝑘 (𝛽|𝝆′|)𝑒
−𝑗𝑘𝜙′ …

… … …
] [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑒
. .

]        𝜌 < 𝜌′         (5 − 59) 

The vector [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑒
. .

] is the incident line electric current source vector. The matrix 

[

… … …

… 𝐻𝑘
(2)
(𝛽|𝝆′|)𝑒−𝑗𝑘𝜙′ …

… … …
] in equation (5 − 60) is the matrix representation of the H-spectral 

signatures of the 𝑁𝑆 source points and 2𝐾 + 1 modes. The size of the H-spectral signature matrix 

is (2𝐾 + 1) × 𝑁𝑆. 

[

| | |

| 𝐻𝑘
(2)
(𝛽|𝝆′|)𝑒−𝑗𝑘𝜙′ |

| | |

] = 
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[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎′|)𝑒
𝑗𝐾𝜙0′ : : : 𝐻−𝐾

(2)
(𝛽|𝝆𝑵𝑺−𝟏′|)𝑒

𝑗𝐾𝜙𝑁𝑆−1′
: : : : :

: : 𝐻𝑘 (𝛽|𝝆′|)𝑒
−𝑗𝑘𝜙′ : :

: : : : :

𝐻𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝐾𝜙0′ : : : 𝐻𝐾
(2)
(𝛽|𝝆𝑵𝑺−𝟏′|)𝑒

−𝑗𝐾𝜙𝑁𝑆−1′]
 
 
 
 
 

              (5 − 60) 

Each column vector is the H-spectral signature of a single source at (𝜌𝑛′, 𝜙𝑛′), as indicated by 

the | symbol in the matrix. 

From equation (5 − 59), one can calculate the H-spectral signature of the incident 

current on the surface of the conductor using the relation as shown in equation (5 − 61). 

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] = [

… … …

… 𝐻𝑘
(2)
(𝛽|𝝆′|)𝑒−𝑗𝑘𝜙′ …

… … …
] [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑒
. .

]                                                 𝜌 < 𝜌′       (5 − 61) 

given 

[

…
𝐸𝑖𝑛𝑐 
⋯
] = [

… … …
… 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 …
… … …

]

𝑇

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

]                                                           𝜌 < 𝜌′      (5 − 62) 

The matrix [

… … …
… 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 …
… … …

]

𝑇

 in equation (5 − 62) is the matrix representation of 

the corresponding J-spectral signature subspace for 𝑀𝑂 observation points. This is given in 

equation (5 − 63). The size of the J-spectral signature matrix is (2𝐾 + 1) ×𝑀𝑂. 

 [

− − − − − −
−− 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 − −
−− −− − −

]

𝑇

= 

 

[
 
 
 
 

𝐽−𝐾(𝛽|𝝆𝟎|)𝑒
−𝑗𝐾𝜙0 ⋯ ⋯ ⋯ 𝐽𝐾(𝛽|𝝆𝟎|)𝑒

𝑗𝐾𝜙0

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

𝐽−𝐾(𝛽|𝝆𝑴𝑶−𝟏|)𝑒
−𝑗𝐾𝜙𝑀𝑂−1 ⋯ ⋯ ⋯ 𝐽𝐾(𝛽|𝝆𝑴𝑶−𝟏|)𝑒

𝑗𝐾𝜙𝑀𝑂−1]
 
 
 
 

            (5 − 63)                  

Each row vector is the J-spectral signature of a single observation point (𝜌𝑚, 𝜙𝑚). So, one can 

rewrite equation (5 − 59) in terms of column and row spectral signatures in  (5 − 64), 

[

…
𝐸𝑖𝑛𝑐 
⋯
] =  [

− − − − − −
−− 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 −−
−− − − −−

]

𝑇

[

| | |

| 𝐻𝑘
(2)(𝛽|𝝆′|)𝑒−𝑗𝑘𝜙

′
|

| | |

] [

|
𝑖̂𝑖𝑛𝑐,𝐼𝑒
|
]  

𝜌 < 𝜌′       (5 − 64) 

or in terms of the spectral signature of incident currents, 
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[

…
𝐸𝑖𝑛𝑐 
⋯
] = [

− − − − −−
−− 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 −−
−− − − −−

]

𝑇

[

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒

|
]                                                 𝜌 < 𝜌′       (5 − 65) 

Equation (5 − 65) describes the incident electric fields as the projection of the H-

spectral signatures of the sources onto the J-spectral signatures of the observation points where 

the fields are to be evaluated. 

For the external electric fields, 𝜌 < 𝜌′, the observation points are on the surface of the 

cylinder, and the sources 𝜌𝑛′ for 𝑛 ∈ {0,1, … , 𝑁 − 1} are outside the target cylinder. Returning to 

a single electric current line source, the external electric field 𝐸𝑖𝑛𝑐  for this line source may also 

be written as the projection of the H-spectral signature of the incident current [

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] from 

line source location at (𝜌0′, 𝜙0′) onto the J-spectral signature of all the observation points. 

[

…
𝐸𝑖𝑛𝑐 
⋯
] = [

… … …
… 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 …
… … …

]

𝑇

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

]                                                          𝜌 < 𝜌′       (5 − 66) 

Now one can write equation (5 − 67) from (5 − 64) for the incident current spectral signature. 

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] = [

… … …

… 𝐻𝑘
(2)
(𝛽|𝝆′|)𝑒−𝑗𝑘𝜙′ …

… … …
] [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑒
. .

]                                                  𝜌 < 𝜌′       (5 − 67) 

For a single electric line source, the vector [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑒
. .

] contains all zeros except for the row 

corresponding to angle 𝜙0′. This non-zero row of the vector [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑒
. .

] will correspond to the 

column of the [

… … …

… 𝐻𝑘 (𝛽|𝝆′|)𝑒
−𝑗𝑘𝜙′ …

… … …
] matrix with the source (𝜌0′, 𝜙0′) coordinates.  

For the example, below in equation (5 − 68), the source coordinates are in the first row 

of [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑒
. .

]. 

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] =

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎′|)𝑒
𝑗𝐾𝜙0′ ⋯ ⋯ ⋯ 𝐻−𝐾

(2)(𝛽|𝝆𝑵𝑺−𝟏′|)𝑒
𝑗𝐾𝜙𝑁𝑆−1′

: : : : :
: : : : :
: : : : :

𝐻𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝐾𝜙0′ ⋯ ⋯ ⋯ 𝐻𝐾
(2)(𝛽|𝝆𝑵𝑺−𝟏′|)𝑒

−𝑗𝐾𝜙𝑁𝑆−1′]
 
 
 
 
 

[
 
 
 
 
 −
𝛽2𝐼𝑒
4𝜔𝜀
0
⋮
⋮
0 ]

 
 
 
 
 

 

(5 − 68) 
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Simplifying the matrix product (5 − 68), the vector [

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] for a line source is given in 

equation  (5 − 69). 

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] = −
𝛽2𝐼𝑒
4𝜔𝜀

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎′|)𝑒
𝑗𝐾𝜙0′

⋮

𝐻𝑘
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝑘𝜙0′

⋮

𝐻𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝐾𝜙0′
 ]
 
 
 
 
 

                                                                                (5 − 69) 

This vector [

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] represents the H-spectral signature of a single line source located at 

(𝜌0′, 𝜙0′). 

For an external electric line source at infinity 𝜌0′ → ∞, the resulting electric field is a 

plane wave. The large argument approximation for a Hankel function is given in equation 

(5 − 70). 

  𝐻𝑘
(2)(𝛽|𝝆𝟎′|)|𝜌0′→∞ ⇒ 𝑒−𝑗𝑘(𝜙0′−

𝜋

2
)                                                                                              (5 − 70) 

In order to represent a plane wave incident from an angle 𝜙0′ in terms of its spectral 

signature, one substitutes the large argument approximation in equation (5 − 70) for 

[

⋮

𝐻𝑘
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝑘𝜙0′

⋮ 

]. The H-spectral signature of the incident electric field may be calculated 

using equation (5 − 71). 

[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] = 𝐸0

[
 
 
 
 
 𝑒
−𝑗𝐾(𝜙0′−

𝜋
2
) : : : 𝑒−𝑗𝐾(𝜙𝑁𝑆−1′−

𝜋
2
)

: : : : :
: : : : :
: : : : :

𝑒𝑗𝐾(𝜙0′−
𝜋
2
) : : : 𝑒𝑗𝐾(𝜙𝑁𝑆−1′−

𝜋
2
) ]
 
 
 
 
 

[
 
 
 
 
1
0
⋮
⋮
0 ]
 
 
 
 

                                                (5 − 71) 

or 

[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] = 𝐸0

[
 
 
 
 
 𝑒
−𝑗𝐾(𝜙0′−

𝜋
2
)

⋮

𝑒𝑗𝑘(𝜙0′−
𝜋
2
)

⋮

𝑒𝑗𝐾(𝜙0′−
𝜋
2
)
 ]
 
 
 
 
 

                                                                                                         (5 − 72) 



 

98 

This represents the H-spectral signature of a TMz electric field plane wave source in the 

direction 𝜙0. 

 

5.3.5  Spectral Projection Model Applied to the Magnetic Field Integral Equation 

For the Spectral Projection Model, the general form of the boundary condition for the 

MFIE is that the incident magnetic field, 𝐻𝑖𝑛𝑐, at each point on the PEC boundary surface must 

equal negative the scattered or induced magnetic field 𝐻𝑖𝑛𝑑. This is given in the matrix equation 

(5 − 47), where [

…
𝐻𝑖𝑛𝑐 
⋯

] and [

…
𝐻𝑖𝑛𝑑 
⋯

] are 𝑀 × 1 vectors. 

[
⋮

𝐻𝑖𝑛𝑐 
⋮
] =  − [

⋮
𝐻𝑖𝑛𝑑 + 𝐽𝐶(𝜌𝑚 = 𝜌𝑛′)

⋮
]                                                                                            (5 − 47) 

As was the case for MOM analysis, for SPM the electric current term 𝐽𝐶  is absorbed into 

the [
⋮

𝐻𝑖𝑛𝑑 
⋮
] vector. 

For infinitely long conducting structures, the Green’s function for incident TEz waves is 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|). Once again, the Spectral Projection Model applies the addition theorem to 

decompose this Green’s function into the sum of products of Bessel and Hankel functions. For 

induced fields, the derivative of the Green’s function is the proper function 𝐻0
(2)
′(𝛽|𝝆 − 𝝆′|) due 

to the physics. Recall equation (5 − 30). The relative positions of 𝜌 and 𝜌′ determine whether 

the addition theorem for induced or incident fields must be employed. 

 

𝐻0
(2)′(𝛽|𝝆 − 𝝆′|) cos𝜓′ = ∑ 𝐻𝑘

(2)′(𝛽|𝝆|)𝐽𝑘(𝛽|𝝆′|)𝑒
𝑗𝛽(𝜙−𝜙′)

∞

𝑘=−∞

                        𝜌 > 𝜌′       (5 − 73) 

Induced Fields 

 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = ∑ 𝐽𝑘(𝛽|𝝆|)𝐻𝑘

(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙
′)

∞

𝑘=−∞

                                       𝜌 < 𝜌′      (5 − 74) 

Incident Fields 
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5.3.5.1 Induced Magnetic Field and Spectral Signature of Induced Electric Currents from the 

MFIE using the Spectral Projection Model 

As stated earlier for the MFIE and TEz waves, the induced surface currents may be 

calculated using the Green’s function 𝐻1
(2)(𝛽|𝝆 − 𝝆′|) = 𝐻0

(2)′(𝛽|𝝆 − 𝝆′|). The Spectral 

Projection Model applies the addition theorem and decomposes this Green’s function into the 

sum of products of Bessel and Hankel functions also. The addition theorem is used to represent 

the induced magnetic fields on the surface of the conductor as the projection of the J-spectral 

signature of the source points (𝜌′, 𝜙′) onto the H-spectral signature of the observation points 

(𝜌, 𝜙). 

To calculate the scattered (induced) magnetic field [

…
𝐻𝑖𝑛𝑑 
⋯

] due to induced currents, one 

refers back to the MFIE equation. This may now be rewritten as equation (5 − 75).  

[

…
𝐻𝑖𝑛𝑑 
⋯

]= 

𝑗𝛽

4
([

… … …
… cos(𝛾) …
… … …

] [

… … …

… 𝐻𝑘
(2)′(𝛽|𝝆|)𝑒𝑗𝑘𝜙 …

… … …
])

𝑇

[

… … …

… 𝐽𝑘 (𝛽|𝝆′|)𝑒
−𝑗𝑘𝜙′ …

… … …
] [

…
𝑖̂𝑖𝑛𝑑
. .
]   

  𝜌 > 𝜌′       (5 − 75) 

In equation (5 − 75) the vector[

…
𝑖̂𝑖𝑛𝑑
. .
] is the induced electric current vector. It represents 

the amplitudes and phases of the induced current on the surface of the conductor due to the 

incident magnetic field. 

From equation (5 − 75), the spectral signature of the induced electric current vector 

[

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑑
. .

] is derived as the projection of [

…
𝑖̂𝑖𝑛𝑑
. .
] onto the J-spectral signature of the source points, 

and written as (5 − 76). 

[

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑑
. .

] =
𝑗𝛽

4
[

… … …
… 𝐽𝑘𝛽|𝝆′|)𝑒

−𝑗𝑘𝜙′ …
… … …

] [

…
𝑖̂𝑖𝑛𝑑
. .
]                                                     𝜌 > 𝜌′       (5 − 76) 

Each column of [

… … …
… 𝐽𝑘𝛽|𝝆′|)𝑒

−𝑗𝑘𝜙′ …
… … …

] is the J-spectral signature of an electric current source 

point.  
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The projection of the J-spectral signature of the induced current sources at source points 

(𝜌′, 𝜙′) onto the H-prime-spectral signature of the observation points (𝜌, 𝜙) can be expressed in 

matrix form as equation (5 − 77). 

[

…
𝐻𝑖𝑛𝑑 
⋯

] = ([

… … …
… cos(𝛾) …
… … …

] [

… … …

… 𝐻𝑘
(2)
′(𝛽|𝝆|)𝑒𝑗𝑘𝜙 …

… … …
])

𝑇

[

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑑
. .

]                𝜌 > 𝜌′       (5 − 77) 

Each row of [

… … …

… 𝐻𝑘
(2)
′(𝛽|𝝆|)𝑒𝑗𝑘𝜙 …

… … …
]is the H-prime spectral signature of an observation point 

at (𝜌, 𝜙). 

 

5.3.5.2 Incident Magnetic Field and Spectral Signature of Incident Magnetic Currents from the 

MFIE using the Spectral Projection Model 

The incident or external magnetic field on the surface of the conductor may be generated 

by a nearby external magnetic line current source or magnetic plane wave from the far-field. As 

stated earlier for infinitely long line currents sources at 𝜌′ >  𝜌, the Green’s function for TEz 

waves is 𝐻0
(2)(𝛽|𝝆 − 𝝆′|). The Spectral Projection Models applies the addition theorem to 

decompose this Green’s function into the sum of products of Bessel and Hankel functions. The 

addition theorem is used to represent the incident magnetic fields on the surface of the conductor 

as the projection of the H-spectral signature of the source points (𝜌𝑛′, 𝜙𝑛′) onto the J-spectral 

signature of the observation points (𝜌𝑚,𝜙𝑚). 

The incident magnetic field from a magnetic line source 𝐻𝑧
𝑖   from angle 𝜙0′ was 

previously written as equation (5 − 31). 

𝐻𝑧(𝛽|𝝆𝒎 − 𝝆𝟎′|) = −
𝛽2𝐼𝑚
4𝜔𝜇

𝐻0
(2)(𝛽|𝝆𝒎 − 𝝆𝟎′|)𝑒

𝑗𝛽(𝜙𝑚−𝜙0′)                                                  (5 − 31) 

The H-spectral signature (or Hankel spectral signature) of the source point, (𝜌𝑛′, 𝜙𝑛′), and the J-

spectral signature (or Bessel spectral signature) of the observation point, (𝜌𝑚,𝜙𝑚), for the 

incident magnetic field are given in equations (5 − 78) and (5 − 79). 

𝑒𝑠𝑛 = [𝐻−𝐾
(2)(𝛽|𝝆𝒏′|)𝑒

𝑗𝐾𝜙𝑛′ . . 𝐻0
(2)(𝛽|𝝆𝒏′|)𝑒

𝑗𝑘𝜙𝑛′ … 𝐻𝐾
(2)(𝛽|𝝆𝒏′|)𝑒

−𝑗𝐾𝜙𝑛′]
𝑇
       (5 − 78) 
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𝑒𝑜𝑚 = [𝐽−𝐾(𝛽|𝝆𝒎|)𝑒
−𝑗𝐾𝜙𝑚 . . 𝐽𝑘(𝛽|𝝆𝒎|)𝑒

𝑗𝑘𝜙𝑚  … 𝐽𝐾(𝛽|𝝆𝒎|)𝑒
𝑗𝐾𝜙𝑚]𝑇                  (5 − 79) 

A single Z-directed magnetic line source Im generates a magnetic field 𝐻 = 𝐻𝑧�̂� in the near field, 

and a TEz wave if the line source is placed in the far-field. See Figure 5-16a and 5-16b. 

 

 

a)   b) 

Figure 5-16: a) Illustration of magnetic line current and elliptical cylinder. The dotted square 

around the cross section of the cylinder is the plane of incidence. The surface of the cylinder is at 

radius 𝜌(𝜙). b) Magnetic line source near an elliptical cylinder and a TEz plane wave impingent 

on an elliptical cylindrical conductor (top view). A cross-sectional view of the elliptical cylinder 

with vectors 𝜌, 𝜌′, 𝑅 is also illustrated. The angle of incidence is 𝜙0. 

 

For external sources impingent upon a target, this relationship can be expressed in matrix 

form as equation (5 − 80). 

[

…
𝐻𝑖𝑛𝑐 
⋯

] = [

… … …
… 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 …
… … …

]

𝑇

[

… … …

… 𝐻𝑘
(2)
(𝛽|𝝆′|)𝑒−𝑗𝑘𝜙′ …

… … …
] [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑚
. .

]       𝜌 < 𝜌′      (5 − 80) 

In equation (5 − 80) the vector [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑚
. .

] is the incident magnetic current vector due to a 

magnetic current line source. The columns of [

… … …

… 𝐻𝑘
(2)
(𝛽|𝝆′|)𝑒−𝑗𝑘𝜙′ …

… … …
] are the H-spectral 
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signature of all the source points, and rows of the matrix transpose [

… … …
… 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 …
… … …

]

𝑇

are 

the J-spectral signature of the observation points as shown descriptively in equation (5 − 79). 

 

[

…
𝐻𝑖𝑛𝑐 
⋯

] =  [

− − − − − −
−− 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 −−
−− − − −−

]

𝑇

[

| | |

| 𝐻𝑘 (𝛽|𝝆
′|)𝑒−𝑗𝑘𝜙

′
|

| | |

] [

|
𝑖̂𝑖𝑛𝑐,𝐼𝑚
|

]  

𝜌 < 𝜌′      (5 − 81) 

Equation (5 − 81) may also be written as the projection of the spectral signature of incident 

magnetic currents onto the J-spectral signature of the observation points, 

[

…
𝐻𝑖𝑛𝑐 
⋯

] = [

− − − − −−
−− 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 −−
−− − − −−

]

𝑇

[

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

|
]                                                𝜌 < 𝜌′       (5 − 82) 

In equation (5 − 82), the incident magnetic field is described as the projection of the H-spectral 

signatures of the incident fields onto the J-spectral signatures of the observation points. 

The spectral signature of the incident magnetic currents [

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
] equals the projection 

of the incident magnetic current source amplitudes and phases [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑚
. .

] onto the H-spectral 

signature of the source points. 

[

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
] = [

… … …

… 𝐻𝑘
(2)
(𝛽|𝝆′|)𝑒−𝑗𝑘𝜙 …

… … …
] [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑚
. .

]                                            𝜌 < 𝜌′       (5 − 83) 

The incident magnetic field is then the projection of the spectral signature of the incident 

magnetic currents [

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
] onto the J-spectral signature subspace [

… … …

… 𝐽𝑘 (𝛽|𝝆|)𝑒
𝑗𝑘𝜙 …

… … …
]

𝑇

 

of the observation points. 

[

…
𝐻𝑖𝑛𝑐 
⋯

] = [

… … …
… 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 …
… … …

]

𝑇

[

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
]                                                       𝜌 < 𝜌′       (5 − 84) 

If the external stimulus is a single incident magnetic field from a nearby magnetic current 

line source, recalling section 5.2, the radiated magnetic field, 𝐻𝑧
𝑖 , from a single magnetic line 𝐼𝑚 
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source at polar coordinates (𝜌1, 𝜙1) projected onto an observation point (𝜌𝑚,𝜙𝑚) is given in 

equation (5 − 32). 

𝐻𝑧
𝑖(𝜌𝑚, 𝜌1) = −

𝛽2𝐼𝑚
4𝜔𝜇

𝑒𝑜𝑚
𝑇 𝑒𝑠𝑛                                                                                                          (5 − 32) 

The external field 𝐻𝑖𝑛𝑐  for this magnetic line source may be written as the projection of 

the H-spectral signature of the incident magnetic currents onto the J-spectral signature of all the 

observation points. 

[

…
𝐻𝑖𝑛𝑐 
⋯

] = [

… … …
… 𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙 …
… … …

]

𝑇

  [

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
]                                                      𝜌 < 𝜌1       (5 − 85) 

For the case of the MFIE and a line source at (𝜌1′, 𝜙1′), one may write the incident magnetic 

current spectral signature as shown in equation (5 − 86). 

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
] = [

… … …

… 𝐻𝑘
(2)
(𝛽|𝝆′|)𝑒−𝑗𝑘𝜙′ …

… … …
] [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑚
. .

]                                               𝜌 < 𝜌′       (5 − 86) 

As an example, for a single magnetic line source at (𝜌1′, 𝜙1′), vector [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑚
. .

] is all zeros 

except for the row with the phase term 𝜙1′. The row of the vector [

…
𝑖̂𝑖𝑛𝑐,𝐼𝑚
. .

] must correspond to 

the column of the [

… … …

… 𝐻𝑘
(2)
(𝛽|𝝆′|)𝑒−𝑗𝑘𝜙′ …

… … …
] matrix with the source (𝜌1′, 𝜙1′) coordinates. 

Equations (5 − 87) and (5 − 88)  illustrate this concept. 

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
] =

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎′|)𝑒
𝑗𝐾𝜙0′ ⋯ ⋯ ⋯ 𝐻−𝐾

(2)(𝛽|𝝆𝑵𝑺−𝟏′|)𝑒
𝑗𝐾𝜙𝑁𝑆−1′

: : : : :
: : : : :
: : : : :

𝐻𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝐾𝜙0′ ⋯ ⋯ ⋯ 𝐻𝐾
(2)(𝛽|𝝆𝑵𝑺−𝟏′|)𝑒

−𝑗𝐾𝜙𝑁𝑆−1′]
 
 
 
 
 

[
 
 
 
 
 

0

−
𝛽2𝐼𝑚
4𝜔𝜇
0
⋮
0 ]

 
 
 
 
 

             

(5 − 87) 

The vector[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
] is now defined for a magnetic line source in equation  (5 − 88). 
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[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
] = −

𝛽2𝐼𝑚
4𝜔𝜀

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟏|)𝑒
𝑗𝐾𝜙1

⋮

𝐻𝑘
(2)(𝛽|𝝆𝟏|)𝑒

−𝑗𝑘𝜙1

⋮

𝐻𝐾
(2)(𝛽|𝝆𝟏|)𝑒

−𝑗𝐾𝜙1
 ]
 
 
 
 
 

                                                                                (5 − 88) 

This is the near-field H-spectral signature of a single line source located at (𝜌1, 𝜙1). 

For an external line source at infinity 𝜌1′ → ∞, the resulting magnetic field is a plane 

wave. The large argument approximation for a Hankel function is given in equation (5 − 89). 

𝐻𝑘
(2) (𝛽|𝝆𝟏′|)|𝜌1′→∞ ⇒ 𝑒−𝑗𝑘(𝜙1′−

𝜋
2
)                                                                                               (5 − 89) 

For a plane wave incident from an angle 𝜙1′ , using the large argument approximation for 

[

⋮

𝐻𝑘
(2)(𝛽|𝝆𝟏′|)𝑒

−𝑗𝑘𝜙1′

⋮ 

], the spectral signature of the incident magnetic far-field is calculated 

using equation (5 − 90). 

[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚
𝑓𝑓

⋮ 

] = 𝐻0

[
 
 
 
 
 𝑒
−𝑗𝐾(𝜙0′−

𝜋
2
) : : : 𝑒−𝑗𝐾(𝜙𝑁𝑆−1′−

𝜋
2
)

: : : : :
: : : : :
: : : : :

𝑒𝑗𝐾(𝜙0′−
𝜋
2
) : : : 𝑒𝑗𝐾(𝜙𝑁𝑆−1′−

𝜋
2
) ]
 
 
 
 
 

[
 
 
 
 
0
1
0
⋮
0 ]
 
 
 
 

                                              (5 − 90) 

or 

[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚
𝑓𝑓

⋮ 

] = 𝐻0

[
 
 
 
 
 𝑒
−𝑗𝐾(𝜙1′−

𝜋
2
)

⋮

𝑒𝑗𝑘(𝜙1′−
𝜋
2
)

⋮

𝑒𝑗𝐾(𝜙1′−
𝜋
2
)
 ]
 
 
 
 
 

                                                                                                       (5 − 91) 

This is the H-spectral signature of a plane wave from the direction 𝜙1′. 

 

5.3.6  General Solution to Spectral Projection Model using the EFIE and MFIE 

In this section a general matrix equation for solving electromagnetic scattering problems 

from surfaces using the Spectral Projection Model is given. The first set of equations is for the 

EFIE. The second set of equations applies to the MFIE. 
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5.3.6.1 General Solution to Spectral Projection Model using the EFIE 

To solve the EFIE, begin by defining two matrices in order to represent the spectral 

signatures as row vectors instead of column vectors. The matrices are written below descriptively 

to show their composition as row and column vectors. 

[

− − − − − −

−− 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) − −

− − − − − −
] = [

| | |

| 𝐻𝑘
(2)(𝛽|𝝆𝒎|) |

| | |

]

𝑇

                                                           (5 − 92) 

[

− − − − − −
−− 𝐽𝑘(𝛽|𝝆𝒐𝒃|) − −
− − − − −−

] = [

| | |

| 𝐽𝑘(𝛽|𝝆𝒎|) |
| | |

]

𝑇

                                                                    (5 − 93)      

Next apply the boundary condition for the EFIE. 

[

…
𝐸𝑖𝑛𝑐
. .
] = − [

…
𝐸𝑖𝑛𝑑
. .
]                                                                                                                               (5 − 43) 

Using the matrices [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
] and[

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

], equation(5 − 43) , (5 −

56) and (5 − 62), one may write equations (5 − 94) to  (5 − 96). 

[

…
𝐸𝑖𝑛𝑐
. .
] = [

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

]                                                                                    (5 − 94) 

[

…
𝐸𝑖𝑛𝑑
. .
] = [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
] [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                                                                                  (5 − 95) 

[

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

] = − [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
] [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                                 (5 − 96) 

 

5.3.6.2 General Solution to Spectral Projection Model using the MFIE 

To solve the MFIE, once again one begins by defining two matrices in order to represent 

the spectral signatures as row vectors instead of column vectors. The matrices are written 

descriptively, and note that the Hankel Prime spectral signature subspace matrix is used instead 

of the Hankel spectral signature subspace matrix. 

[

− − − − − −

−− 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) − −

− − − − − −
] = [

| | |

| 𝐻𝑘
(2)(𝛽|𝝆𝒎|) |

| | |

]

𝑇

                                                           (5 − 97) 
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[

− − − − −−

−− 𝐻𝑘
(2)′(𝛽|𝝆𝒐𝒃|) − −

− − − − −−
] = [

| | |

| 𝐻𝑘
(2)′(𝛽|𝝆𝒎|) |

| | |

]

𝑇

                                                         (5 − 98) 

[

− − − − − −
−− 𝐽𝑘(𝛽|𝝆𝒐𝒃|) − −
− − − − −−

] = [

| | |

| 𝐽𝑘(𝛽|𝝆𝒎|) |
| | |

]

𝑇

                                                                    (5 − 99)      

Next apply the boundary condition for the MFIE. 

[

…
𝐻𝑖𝑛𝑐 
⋯

] =  − [

…
𝐻𝑖𝑛𝑑 + 𝐽𝐶(𝜌𝑚 = 𝜌𝑛′)

⋯
]                                                                                            (5 − 47) 

Using the matrices [

… … …

… 𝐻𝑘
(2)′(𝛽|𝝆𝒐𝒃|) …

… … …
] and[

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

], equation (5 − 47) and 

(5 − 77), and (5 − 82), one may write equation (5 − 100) to  (5 − 102) 

[

…
𝐻𝑖𝑛𝑐 
⋯

] = [

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

]                                                                                (5 − 100) 

[

…
𝐻𝑖𝑛𝑑 + 𝐽𝐶(𝜌𝑚 = 𝜌𝑛′)

⋯
] = [

… … …

… 𝐻𝑘
(2)′(𝛽|𝝆𝒐𝒃|) …

… … …
] [

… … …
… cos(𝛾) …
… … …

]

𝑇

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]             (5 − 101) 

[

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

] = [

… … …

… 𝐻𝑘
(2)′(𝛽|𝝆𝒐𝒃|) …

… … …
] [

… … …
… cos(𝛾) …
… … …

]

𝑇

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]             

(5 − 102) 

 

Table 5-3: Summary of Line Sources. 

Line Source Scattering EFIE 

Electric Line Source  (5 − 4) 
𝐸𝑧(𝛽|𝝆 − 𝝆′|) = −

𝛽2𝐼𝑒
4𝜔𝜀

𝐻0
(2)(𝛽|𝝆 − 𝝆′|)𝑒𝑗𝛽(𝜙−𝜙′)         

Electric field TMz 

Line Source Scattering MFIE 

Magnetic Line Source (5 − 6) 
𝐻𝑧(𝛽|𝝆 − 𝝆′|) = −

𝛽2𝐼𝑚
4𝜔𝜇

𝐻0
(2)(𝛽|𝝆 − 𝝆′|)𝑒𝑗𝛽(𝜙−𝜙′)         

Magnetic field TEz 
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Table 5-4: Summary of Addition Theorem Equations. 

Addition Theorem Equations Condition 

𝐻𝑚
(2)(𝛽|𝝆 − 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚+𝑛

(2) (𝛽|𝝆|)𝐽𝑛(𝛽|𝝆′|)𝑒
𝑗[(𝑚+𝑛)𝜙−𝑛𝜙′]

∞

𝑛=−∞

 

Correlation of Spectral Signatures 

𝜌 >  𝜌′ 

𝐻𝑚
(2)(𝛽|𝝆 − 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚+𝑛

(2) (𝛽|𝝆′|)𝐽𝑛(𝛽|𝝆|)𝑒
𝑗[(𝑚+𝑛)𝜙′−𝑛𝜙]

∞

𝑛=−∞

 

Correlation of Spectral Signatures 

𝜌′ >  𝜌 

𝐻𝑚
(2)(𝛽|𝝆 + 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚−𝑘

(2) (𝛽|𝝆|)𝐽𝑘(𝛽|𝝆′|)𝑒
𝑗[(𝑚−𝑘)𝜙−𝑘𝜙′]

∞

𝑘=−∞

 

Convolution of Spectral Signatures 

𝜌 >  𝜌′ 

𝐻𝑚
(2)(𝛽|𝝆 + 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚−𝑘

(2) (𝛽|𝝆′|)𝐽𝑘(𝛽|𝝆|)𝑒
𝑗[(𝑚−𝑘)𝜙′−𝑘𝜙]

∞

𝑘=−∞

 

Convolution of Spectral Signatures 

𝜌′ > 𝜌  

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) ≈ ∑ 𝐻𝑘

(2)(𝛽|𝝆|)𝐽𝑘(𝛽|𝝆′|)𝑒
𝑗𝑘(𝜙−𝜙′)

𝐾

𝑘=−𝐾

 

Projection of J-spectral signature onto the H-spectral signature 

𝜌 >  𝜌′ 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) ≈ ∑ 𝐻𝑘

(2)(𝛽|𝝆′|)𝐽𝑘(𝛽|𝝆|)𝑒
𝑗𝑘(𝜙′−𝜙)

𝐾

𝑘=−𝐾

 

Projection of the H-spectral signature onto the J-spectral signature 

𝜌′ >  𝜌 
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Table 5-5: Summary of Spectral Projection Model Equations. 

EFIE 

[

…
𝐸𝑖𝑛𝑐 
⋯
] = [

… … …

… 𝐽𝑘 (𝛽|𝝆|)𝑒
𝑗𝑘𝜙 …

… … …
]

𝑇

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] 

Incident Electric Field 

[

…
𝐸𝑖𝑛𝑑 
⋯

] = [

… … …

… 𝐻𝑘 (𝛽|𝝆|)𝑒
𝑗𝑘𝜙 …

… … …
]

𝑇

[

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑑
. .

] 

Induced Electric Field 

MFIE 

[

…
𝐻𝑖𝑛𝑐 
⋯

] = [

… … …

… 𝐽𝑘 (𝛽|𝝆|)𝑒
𝑗𝑘𝜙 …

… … …
]

𝑇

  [

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
] 

Incident Magnetic Field 

[

…
𝐻𝑖𝑛𝑑 
⋯

] = ([

… … …
… cos(𝛾) …
… … …

] [

… … …

… 𝐻𝑘 ′(𝛽|𝝆|)𝑒
𝑗𝑘𝜙 …

… … …
])

𝑇

[

…
𝑖̂𝑖𝑠𝑠,𝑖𝑛𝑑
. .

] 

Induced Magnetic Field 

 

Table 5-6: Spectral Signature Definitions. 

EFIE 

𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒 Spectral Signature of Incident Electric Line Source Current 

𝑖̂𝑖𝑛𝑐,𝐼𝑒 Incident Electric Current 

EFIE & MFIE 

𝑖�̂�𝑆,𝑖𝑛𝑑 Spectral Signature of Induced Electric Current 

𝑖̂𝑖𝑛𝑑 Induced Electric Current 

MFIE 

𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚 Spectral Signature of Incident Magnetic Line Source Current 

𝑖̂𝑖𝑛𝑐,𝐼𝑚 Incident Magnetic Current 
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Table 5-7: Spectral Signature Definitions. 

 

EFIE 

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] = −
𝛽2𝐼𝑒
4𝜔𝜀

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆′|)𝑒𝑗𝐾ϕ′

⋮

𝐻𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘ϕ′

⋮

𝐻𝐾
(2)(𝛽|𝝆′|)𝑒−𝑗𝐾ϕ′

 ]
 
 
 
 
 

 

Spectral Signature of Incident Electric Line Source in Near-Field 

[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] = 𝐸0

[
 
 
 
 
 𝑒
−𝑗𝐾(ϕ′−

𝜋
2
)

⋮

𝑒𝑗𝑘(ϕ′−
𝜋
2
)

⋮

𝑒𝑗𝐾(ϕ′−
𝜋
2
)
 ]
 
 
 
 
 

 

Spectral Signature of Incident Electric Line Source in Far-Field 

MFIE 

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚

. .
] = −

𝛽2𝐼𝑚
4𝜔𝜇

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆′|)𝑒𝑗𝐾ϕ′

⋮

𝐻𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘ϕ′

⋮

𝐻𝐾
(2)(𝛽|𝝆′|)𝑒−𝑗𝐾ϕ′

 ]
 
 
 
 
 

 

Spectral Signature of Incident Magnetic Line Source in Near-Field 

[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚
𝑓𝑓

⋮ 

] = 𝐻0

[
 
 
 
 
 𝑒
−𝑗𝐾(ϕ′−

𝜋
2
)

⋮

𝑒𝑗𝑘(ϕ′−
𝜋
2
)

⋮

𝑒𝑗𝐾(ϕ′−
𝜋
2
)
 ]
 
 
 
 
 

 

Spectral Signature of Incident Magnetic Line Source in Far-Field 
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5.4  Far-field Scattering in Spectral Projection Model 

In this section the large argument approximation of the Hankel function will be used to 

derive the far-field H-spectral signature matrix. To calculate the far-field electric field pattern, 

the J-spectral signature of the induced currents on the surface of a conducting cylinder are 

projected onto the far-field H-spectral signature subspace matrix. Taking the far-field H-spectral 

signature of the J-spectral signature of the induced currents will be shown to be the same as 

taking the Discrete Fourier Transform (DFT) of the J-spectral signature of the induced currents 

with a scaling factor. 

 

5.4.1  Analytical Method for Calculating Far-field Patterns 

A set of N isotropic antenna elements positioned at polar coordinates points (𝜌𝑛, 𝜃𝑛, 𝜙𝑛),  

𝑛 ∈ {1,2, …𝑁} is illustrated in Figure 5-17. 

 

 

Figure 5-17:  Isotropic point source radiating elements arranged in an elliptical array. 

 

Consider a point source at (𝜌𝑛, 𝜃𝑛, 𝜙𝑛) and an incident plane wave arriving from angles (𝜃0, 𝜙0), 

illustrated in Figure 5-18. 
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 a) b) 

Figure 5-18:  Illustration of vectors. a) Vector 𝒓𝟎 positioned at the origin and b) vector 𝒓𝒏 

positioned at (𝜌𝑛, 𝜃𝑛, 𝜙𝑛) in spherical coordinates. 

 

If each element in the array is excited by a current of different amplitude and phase,  

𝐼𝑛𝑒
𝑗𝜐𝑛, then the electric far-field radiation pattern, 𝐸𝑓𝑓 , will be the sum of the radiation patterns 

due to all the elements. 

𝐸𝑓𝑓(𝜃, 𝜙) = ∑ 𝐼𝑛𝑒
𝑗𝜐𝑛

𝑁

𝑛=1

𝑒𝑗𝜷∙𝒓𝒏𝑐𝑜𝑠(𝜑𝑛)                                                                                           (5 − 103) 

The angle 𝜑𝑛 is defined by the law of cosines, 

𝑟𝑛
2 = 𝑟0

2 + 𝜌𝑛
2 − 2𝜌𝑛𝑟0𝑐𝑜𝑠(𝜑𝑛)                                                                                                    (5 − 104) 

To simplify calculation of 𝑟𝑛, one may use a square root approximation for 𝜌𝑛 ≪ 𝑟𝑛. 

𝑟𝑛 ≅ 𝑟0 − 𝜌𝑛𝑐𝑜𝑠(𝜑𝑛)                                                                                                                      (5 − 105) 

Now substituting for 𝑐𝑜𝑠(𝜑𝑛) from Figure 5-18, one obtains equation (5 − 106). 

𝑟𝑛 ≅ 𝑟0 − 𝜌𝑛sin (𝜃)𝑐𝑜𝑠(𝜙0 − 𝜙𝑛)                                                                                              (5 − 106) 

Then the electric far-field can be written as (5 − 107). 

𝐸𝑓𝑓(𝜃, 𝜙) = ∑ 𝐼𝑛𝑒
𝑗𝜐𝑛

𝑁

𝑛=1

𝑒𝑗𝛽𝑟0 𝑒𝑗𝛽𝜌𝑛sin (𝜃)𝑐𝑜𝑠(𝜙0−𝜙𝑛)                                                                (5 − 107) 
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A circular array of line sources is shown in Figure 5-19. 

 

 

Figure 5-19:  Line source antennas arranged in a circular array. 

 

The total electric far-field for a circular array of line sources is given in equation (5 − 108). 

𝐸𝑓𝑓(𝜃, 𝜙) = ∑ 𝐼𝑛𝑒
𝑗𝜐𝑛

𝑁

𝑛=1

𝐻0
2(|𝝆𝟎 − 𝝆𝒏|) 𝑒

−𝑗𝛽(𝜙0−𝜙𝑛)                                                               (5 − 108) 

This differs from 𝐸𝑓𝑓 for point sources by the Green’s function, and is a form of the discrete 

Fourier transform. 

 

5.4.2  Far-field Spectral Signature and the Discrete Fourier Transform 

 

To calculate the Hankel function for the far-field case 𝜌 → ∞, one uses the asymptotic 

approximation of the Hankel function for large arguments. 

𝐻𝑘
(2)(𝛽|𝝆|) ≈= √

2

𝜋𝜌
𝑒−𝑗(𝛽𝜌−

𝜋
4
)𝑒
𝑗𝑘𝜋
2                                                                          𝜌 → ∞     (5 − 109) 

Let 𝐻𝑘
(2)(𝛽|𝝆|)|𝜌→∞ symbolize the asymptotic expansion of 𝐻𝑘

(2)(𝜌) for 𝜌 being the distance 

from the line source in the far-field to the cylinder. 

𝐻𝑘
(2)(𝛽|𝝆|)|𝜌→∞~ 𝑓(𝜌)𝑒

𝑗𝑘𝜋
2 = 𝑓(𝜌)𝑒

𝑗𝑘𝜋
2                                                                                    (5 − 110) 
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The symbol for the kth order asymptotic expansion of the Hankel function of the second kind is 

given in equation (5 − 111). 

𝐻𝑘
(2)(𝛽|𝝆|)|𝜌→∞  = 𝑒

𝑗𝑘𝜋
2                                                                                               𝜌 → ∞     (5 − 111) 

with the amplitude term 𝑓(𝜌) omitted. 

For an external electric line source receiver at infinity 𝜌0′ → ∞ and angle of incidence 

𝜙0, the large argument approximation for a Hankel function is given in equation (5 − 112). 

  𝐻𝑘
(2)(𝛽|𝝆′|)|𝜌′→∞ ⇒ 𝑒−𝑗𝑘(𝜙0′−

𝜋

2
)                                                                                               (5 − 112) 

To write the far-field H-spectral signature matrix, [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆′|)|𝜌′→∞ …

… … …
], for incident 

angles 𝜙 ∈ {𝜙0, 𝜙1, …𝜙𝑁𝑆−1}, one begins by substituting the large argument approximation into 

the matrix for [

⋮

𝐻𝑘
(2)(𝛽|𝝆𝒏′|)𝑒

−𝑗𝑘𝜙𝑛′

⋮ 

].  

[

… … …

… 𝐻𝑘
(2)(𝛽|𝝆′|)|𝜌′→∞ …

… … …
] =

[
 
 
 
 
 𝑒
−𝑗𝐾(𝜙0′−

𝜋
2
) ⋯ ⋯ ⋯ 𝑒−𝑗𝐾(𝜙𝑁𝑆−1′−

𝜋
2
)

: : : : :
: : : : :
: : : : :

𝑒𝑗𝐾(𝜙0′−
𝜋
2
) ⋯ ⋯ ⋯ 𝑒𝑗𝐾(𝜙𝑁𝑆−1′−

𝜋
2
) ]
 
 
 
 
 

                (5 − 113) 

This far-field H-spectral signature matrix may be used in two applications. One can 

project the J-spectral signature of the induced currents onto the far-field H-spectral signature to 

calculate the radiated electric far-field due to induced currents, 𝐸𝑖𝑛𝑑
𝑓𝑓

. Let  [

⋮

𝐸𝑖𝑛𝑑
𝑓𝑓

⋮ 

] be defined for 

multiple infinitely long induced line sources at equally spaced angles on the surface ∆𝜙 =

𝜙𝑛+1 − 𝜙𝑛, and for N angles, and 𝑛 = {0,1,2, …𝑁 − 1}, 

𝜙𝑛 =
2𝜋

𝑁
𝑘                                                                                                                                        (5 − 114) 

An illustration of N = 16 points separated by equal angular spacing ∆𝜙 in the far-field is shown 

in Figure 5-20. 
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Figure 5-20:  Observation points in the far-field uniformly spaced at equal angles for 𝑁 = 16 

receiving points. 

 

One can calculate the H-spectral signature of an electric far-field for multiple sources using 

equation (5 − 115). 

[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] =

[
 
 
 
 
 𝑒
−𝑗𝐾(𝜙0′−

𝜋
2
) ⋯ ⋯ ⋯ 𝑒−𝑗𝐾(𝜙𝑁𝑆−1′−

𝜋
2
)

: : : : :
: : : : :
: : : : :

𝑒𝑗𝐾(𝜙0′−
𝜋
2
) ⋯ ⋯ ⋯ 𝑒𝑗𝐾(𝜙𝑁𝑆−1′−

𝜋
2
) ]
 
 
 
 
 

[
 
 
 
 
⋮
⋮
𝐼𝑛
⋮
⋮ ]
 
 
 
 

                                          (5 − 115) 

Each column in the matrix [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆′|)|𝜌′→∞ …

… … …
] is the far-field H-spectral signature of a 

line source at infinity at a different angle 𝜙𝑛′. For a single source 𝐼0 at angle 𝜙0′, the current 

magnitude and phase vector 

[
 
 
 
 
⋮
⋮
𝐼𝑛
⋮
⋮ ]
 
 
 
 

 for incident line current 𝑛 = 0 takes the form of equation 

(5 − 116). 

[
 
 
 
 
⋮
⋮
𝐼𝑛
⋮
⋮ ]
 
 
 
 

=

[
 
 
 
 
𝐼0
0
⋮
⋮
0 ]
 
 
 
 

                                                                                                                                         (5 − 116) 
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In this case, one may write the far-field H-spectral signature of [

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] as (5 − 117), which is 

the spectral signature of an incident plane wave incident from angle 𝜙0. It is equal to a single 

column of the [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆′|)|𝜌′→∞ …

… … …
] matrix weighted by the line source magnitude and 

phase coefficient 𝐼0. 

[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] = 𝐼0

[
 
 
 
 
 𝑒
−𝑗𝐾(𝜙0′−

𝜋
2
)

⋮

𝑒𝑗𝑘(𝜙0′−
𝜋
2
)

⋮

𝑒𝑗𝐾(𝜙0′−
𝜋
2
)
 ]
 
 
 
 
 

                                                                                                       (5 − 117) 

The discrete Fourier transform for the sequence 𝑥[𝑛] is given in equation (5 − 118). 

𝑋[𝑘] = ∑𝑥[𝑛]𝑊𝑁
−𝑘𝑛

𝑁

𝑛=0

                                                                                                                   (5 − 118) 

and 𝑊𝑁 are the roots of unity for 𝑛 ∈ {0,1, … ,𝑁 − 1} defined as 𝑊𝑁 = 𝑒𝑗(
2𝜋

𝑁
). 

For any spatial frequency 𝜙𝑛′ = 2𝜋𝑛/𝑁, notice that the angular spacing of the roots of unity for 

N points in Figure 5-21 are positioned the same as those shown in Figure 5-20, the far-field H-

spectral signature.  

 

 

Figure 5-21:  DFT roots of unity 𝑊𝑁
−𝑘𝑛 for 𝑁 = 16 points. 
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For the case in which the sinusoidal modes are k = -K/2, -K/2+1, …K/2, the shifted discrete 

Fourier transform operator,  [

… … …
… �̅� …
… … …

], is shown in equation (5 − 119). 

[

… … …
… �̅� …
… … …

] =

[
 
 
 
 
𝑒−𝑗𝐾𝜙0′ ⋯ ⋯ ⋯ 𝑒−𝑗𝐾𝜙N−1′

: : : : :
: : 𝑒−𝑗𝑘𝜙n′ : :
: : : : :

𝑒𝑗𝐾𝜙0′ ⋯ ⋯ ⋯ 𝑒𝑗𝐾𝜙N−1′ ]
 
 
 
 

                                                 (5 − 119) 

This new shifted Fourier operator [

… … …
… �̅� …
… … …

] is the matrix product of the Fourier operator 

[

… … …
… 𝐹 …
… … …

] and a matrix [

… … …
… 𝑆 …
… … …

] that shifts the rows downward by 𝐾/2. 

[

… … …
… �̅� …
… … …

] = [

… … …
… 𝑆 …
… … …

] [

… … …
… 𝐹 …
… … …

]                                                                                (5 − 120) 

The columns of [

… … …
… �̅� …
… … …

] take the same form as the [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆′|)|𝜌′→∞ …

… … …
] matrix with 

a phase shift of the angle 𝜙𝑛
′ = 𝜙𝑛

′ +
𝜋

2
. The far-field H-spectral signature matrix is equal to 

matrix product[
⋱ 0 0
0 𝐷𝑆 0
0 0 ⋱

] [

… … …
… �̅� …
… … …

] where the diagonal matrix [
⋱ 0 0
0 𝐷𝑆 0
0 0 ⋱

] applies the 𝑒𝑗𝑘
𝜋

2 

phase shift to each column. 

[
⋱ 0 0
0 𝐷𝑆 0
0 0 ⋱

] = [

⋱ 0 0

0 𝑒𝑗𝑘
𝜋
2 0

0 0 ⋱

]                                                                                                     (5 − 121) 

Thus, the matrix equality between the far-field H-spectral signature matrix and the DFT Fourier 

operator exists as given in equation (5 − 122) and (5 − 123). 

[

… … …

… 𝐻𝑘
(2)(𝛽|𝝆|)|𝜌→∞ …

… … …
] = [

⋱ 0 0
0 𝐷𝑆 0
0 0 ⋱

] [

… … …
… 𝑆 …
… … …

] [

… … …
… 𝐹 …
… … …

]                               (5 − 122) 

[

… … …

… 𝐻𝑘
(2)(𝛽|𝝆|)|𝜌→∞ …

… … …
] = [

⋱ 0 0
0 𝐷𝑆 0
0 0 ⋱

] [

… … …
… �̅� …
… … …

]                                                       (5 − 123) 
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5.5  Waves Incident on a Circular Cylinder 

Illustrated in Figure 5-22a are an incident and scattered TMz wave. The incident wave 

angle is 𝜙𝑖 and the scattered wave angle is 𝜙𝑠. Both are measured with respect to the positive X-

axis. The unit vector 𝜷𝒊 is the phase constant (or wave constant) normal to the plane of the 

incident TMz wave. The unit vector 𝜷𝒔 is the phase constant (or wave constant) normal to the 

plane of the scattered TMz wave. The incident and scattered electric fields parallel to the axis of 

the circular cylinder are 𝑬𝒛
𝒊  and  𝑬𝒛

𝒔, respectively. Illustrated in Figure 5-22b are an incident and 

scattered TEz wave. The incident wave angle is designated 𝜙𝑖 and the scattered wave angle is 

designated 𝜙𝑠, as was the case for the TMz wave. Similarly, the unit vectors 𝜷𝒊 and 𝜷𝒔 are the 

phase constant (or wave constant) normal to the planes of the incident and scattered TEz waves. 

The incident and scattered magnetic fields parallel to the axis of the circular cylinder are 𝑯𝒛
𝒊  and  

𝑯𝒛
𝒔, respectively. 

 

a)   b) 

Figure 5-22:  Illustration of incident and scattered. a) TMz waves upon circular cylinder. b) TEz 

waves upon circular cylinder. Direction of incident waves is 𝜙𝑖. 

 

5.5.1  Spectral Projection Model using the EFIE for TMz Waves incident upon a Circular 

Cylinder 

For the discussion on circular cylinders, begin with the following matrix equation.  
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[

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

] = [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
] [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                                     (5 − 96) 

It is possible to solve this equation for a circular cylinder and reach a closed form 

solution for 𝝆𝒐𝒃 = 𝒂, or 𝜌𝑜𝑏 = |𝒂|𝑒
𝑗𝜙𝑜𝑏 . Here |𝒂| is the radius of the cylinder and 𝜙𝑜𝑏 is the 

phase of each observation point. 

Begin with the induced currents and examine again the H-spectral signature column 

space matrix for observation points 𝜌𝑜𝑏 = {𝜌0, 𝜌1, … 𝜌M−1} as written as equation (5 − 124). 

[

| | |

| 𝐻𝑘
(2)(𝛽|𝝆𝒎|) |

| | |

] =  

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎|)𝑒
−𝑗𝐾𝜙0 ⋯ ⋯ ⋯ 𝐻−𝐾

(2)(𝛽|𝝆𝑴−𝟏|)𝑒
−𝑗𝐾𝜙M−1

: : : : :

: : 𝐻𝑘
(2)(𝛽|𝝆𝒎|)𝑒

𝑗𝑘𝜙𝑚 : :
: : : : :

𝐻𝐾
(2)(𝛽|𝝆𝟎|)𝑒

𝑗𝐾𝜙0 ⋯ ⋯ ⋯ 𝐻𝐾
(2)(𝛽|𝝆𝑴−𝟏|)𝑒

𝑗𝐾𝜙M−1 ]
 
 
 
 
 

 

(5 − 124) 

Each column of [

| | |

| 𝐻𝑘
(2)(𝛽|𝝆𝒎|) |

| | |

] is the H-spectral signature of an observation point. 

For a circular cylinder 𝜌m = 𝑎 for 𝑚 = {0, … ,𝑀 − 1}, and equation (5 − 124) may be 

diagonalized into equation (5 − 125). 

[

| | |

| 𝐻𝑘
(2)(𝛽|𝒂|) |

| | |

] =  

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝒂|) ⋱ 0 ⋱ 0

0 ⋱ 0 ⋱ 0

0 ⋱ 𝐻𝑘
(2)(𝛽|𝒂|) ⋱ 0

0 ⋱ 0 ⋱ 0

0 ⋱ 0 ⋱ 𝐻𝐾
(2)(𝛽|𝒂|)]

 
 
 
 
 

 

[
 
 
 
 
𝑒−𝑗𝐾𝜙0 ⋯ ⋯ ⋯ 𝑒−𝑗𝐾𝜙M−1

: : : : :
: : : : :
: : : : :

𝑒𝑗𝐾𝜙0 ⋯ ⋯ ⋯ 𝑒𝑗𝐾𝜙M−1 ]
 
 
 
 

  

 (5 − 125) 

The exponential matrix on the right of equation (5 − 125) is a column shifted version of the 

Fourier operator and will be designated as [

… … …
… �̅� …
… … …

] for observation points. 



 

119 

[

… … …
… �̅� …
… … …

] =

[
 
 
 
 
𝑒−𝑗𝐾𝜙0 ⋯ ⋯ ⋯ 𝑒−𝑗𝐾𝜙M−1

: : : : :
: : : : :
: : : : :

𝑒𝑗𝐾𝜙0 ⋯ ⋯ ⋯ 𝑒𝑗𝐾𝜙M−1 ]
 
 
 
 

                                                               (5 − 126) 

The diagonal matrix in equation (5 − 125) may denoted as [
⋱ ⋱ ⋱
⋱ 𝐷𝐻 …
⋱ ⋱ ⋱

] and is given in 

equation (5 − 127). 

 [
⋱ 0 0
0 𝐷𝐻 0
0 0 ⋱

] =

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝒂|) ⋱ 0 ⋱ 0

0 ⋱ 0 ⋱ 0

0 ⋱ 𝐻𝑘
(2)(𝛽|𝒂|) ⋱ 0

0 ⋱ 0 ⋱ 0

0 ⋱ 0 ⋱ 𝐻𝐾
(2)(𝛽|𝒂|)]

 
 
 
 
 

                                    (5 − 127) 

From (5 − 126) and (5 − 127), matrix equation (5 − 125) can take the form of a new equation 

(5 − 128). 

[

| | |

| 𝐻𝑘
(2)(𝛽|𝒂|) |

| | |

] =   [
⋱ 0 0
0 𝐷𝐻 0
0 0 ⋱

] [

… … …
… �̅� …
… … …

]                                                                 (5 − 128) 

Because the rows of [

− − − − − −

−− 𝐻𝑘
(2)
(𝛽|𝝆𝒐𝒃|) − −

− − − − −−
] are the spectral signatures of the observation 

points, to write the induced field using this form one must take the conjugate transpose of both 

sides of (5 − 129),  This operation will be designated as [  ]𝐻 to distinguish it from a transpose. 

[

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
] = [

… … …

… 𝐻𝑘
(2)(𝛽|𝒂|) …

… … …
]

𝐻

= [

… … …
… �̅� …
… … …

]

𝐻

 [
⋱ ⋱ ⋱
⋱ 𝐷𝐻 …
⋱ ⋱ ⋱

]      (5 − 129) 

  One may now rewrite the induced electric field vector [

…
𝐸𝑖𝑛𝑑
. .
] by substituting into 

equation (5 − 95), 

[

…
𝐸𝑖𝑛𝑑
. .
] = [

− − − − − −

−− 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) − −

− − − − −−
] [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                                                                           (5 − 95) 

and for a circular cylinder  

[

…
𝐸𝑖𝑛𝑑
. .
] = [

… … …
… �̅� …
… … …

]

𝐻

 [
⋱ 0 0
0 𝐷𝐻 0
0 0 ⋱

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                                                                         (5 − 126) 
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The matrices on the left-hand side of equation (5 − 96) represent the incident electric 

field. The rows of matrix [

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] in equation (5 − 96) represents the J-spectral 

signature subspace of the observation points, 

[

…
𝐸𝑖𝑛𝑐
. .
] = [

− − − − − −
−− 𝐽𝑘(𝛽|𝝆𝒐𝒃|) − −
− − − − −−

] [

|
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒

|
]                                                                           (5 − 94) 

The column vector [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

]is the H-spectral signature of the incident external source. For 

circular cylinders, analogous to equation (5 − 125), one may write equation (5 − 127). 

[

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] = [

… … …
… 𝐽𝑘(𝛽|𝒂|) …
… … …

]

𝐻

= [

… … …
… �̅� …
… … …

]

𝐻

 [
⋱ 0 0
0 𝐷𝐽 0

0 0 ⋱

]                (5 − 127) 

where 

[

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] = [

… … …
… �̅� …
… … …

]

𝐻

 [
⋱ 0 0
0 𝐷𝐽 0

0 0 ⋱

]                                                             (5 − 128) 

Matrix [
⋱ 0 0
0 𝐷𝐽 0

0 0 ⋱

] is defined as a diagonal matrix (5 − 129). 

[
⋱ 0 0
0 𝐷𝐽 0

0 0 ⋱

] =

[
 
 
 
 
𝐽−𝐾(𝛽|𝒂|) ⋱ 0 ⋱ 0

0 ⋱ 0 ⋱ 0
0 ⋱ 𝐽𝑘(𝛽|𝒂|) ⋱ 0
0 ⋱ 0 ⋱ 0
0 ⋱ 0 ⋱ 𝐽𝐾(𝛽|𝒂|)]

 
 
 
 

                                                  (5 − 129) 

Now one can solve equation (5 − 96) for [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]. 

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] = [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
]

−1

[

… … …

… 𝐽𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

]                          (5 − 130) 

Next substituting for [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
] and [

… … …

… 𝐽𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
], one obtains equation 

(5 − 131). 

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] = ([

… … …
… �̅� …
… … …

]

𝐻

[

… … …
… 𝐷𝐻 …
… … …

])

−1

([

… … …
… �̅� …
… … …

]

𝐻

[

… … …
… 𝐷𝐽 …
… … …

]) [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

]                   
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(5 − 131) 

Since the shifted Fourier matrix [

… … …
… �̅� …
… … …

] is unitary, 

([

… … …
… �̅� …
… … …

]

𝐻

) = (

… … …
… �̅� …
… … …

)

−1

                                                                                          (5 − 132) 

then one can rewrite (5 − 131) as (5 − 133). 

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] = [
⋱ 0 0
0 𝐷𝐻 0
0 0 ⋱

]

−1

[
⋱ 0 0
0 𝐷𝐽 0

0 0 ⋱

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

]                                                                  (5 − 133) 

For plane wave incidence, the spectral signature of the source can be written using the 

far-field approximation to the Hankel function, with 𝜙𝑖′ equal to the angle of the incident wave. 

[

…

𝑖̂�̂�𝑆𝑆,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

. .
] = [𝑒−𝑗𝐾(𝜙𝑖′−𝜋/2) … 𝑒𝑗𝑘(𝜙𝑖′−𝜋/2) … 𝑒𝑗𝐾(𝜙𝑖′−𝜋/2)]𝑇                                   (5 − 134) 

One can observe from the complex exponentials, the[

…

𝑖̂�̂�𝑆𝑆,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

. .
] vector for plane waves is a 

Fourier series. 

The expression for the kth element of the spectral signature of the induced current 𝑖�̂�𝑆,𝑖𝑛𝑑,𝑘 

is written as (5 − 135). 

𝑖�̂�𝑆,𝑖𝑛𝑑,𝑘 = […
𝑒−

𝑗𝑘𝜋
2 𝐽𝑘(𝛽|𝒂|) 𝑒

−𝑗𝑘𝜙𝑖′

𝐻𝑘
(2)(𝛽|𝒂|)

…]

𝑇

                                                                          (5 − 135) 

Note that 𝑒−
𝑗𝑘𝜋

2 = 𝑗−𝑘. 

For the induced currents, the J-spectral signature of the induced source currents [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] 

is related to the actual surface currents, [

…
𝑖̂𝑖𝑛𝑑
. .
], as equation (5 − 136), 

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] = [

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] [

…
𝑖̂𝑖𝑛𝑑
. .
]                                                                                      (5 − 136) 

and using the linear transformation in equation (5 − 127), one may write 

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] = [

… … …
… 𝐽𝑘(𝛽|𝒂|)) …
… … …

]

𝐻

[

…
𝑖̂𝑖𝑛𝑑
. .
]                                                                                      (5 − 137) 
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[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] = [
⋱ 0 0
0 𝐷𝐽 0

0 0 ⋱

] [

… … …
… �̅� …
… … …

] [

…
𝑖̂𝑖𝑛𝑑
. .
]                                                                               (5 − 138) 

The expression for the actual surface currents,[

…
𝑖̂𝑖𝑛𝑑
. .
], becomes 

[

…
𝑖̂𝑖𝑛𝑑
. .
] = [

… … …
… �̅� …
… … …

]

𝐻

[
⋱ 0 0
0 𝐷𝐽 0

0 0 ⋱

]

−1

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                                                                        (5 − 139) 

The SPM expression for the surface current on a circular cylinder excited by an electric 

field plane wave may be written from equation (5 − 139) as equation (5 − 140). 

𝑖̂(𝜌, 𝜙) = ∑
𝑗−𝑘𝑒𝑗𝑘(𝜙−𝜙𝑖′)

𝐻𝑘
(2)(𝛽|𝒂|)

𝐾

𝑘=−𝐾

                                                                                                       (5 − 140) 

This normalized result agrees with the equation given by Balanis using modal analysis in 

reference book [36]. 

𝐽𝑧(𝑎, 𝜙𝑛) =
2𝐸0
𝜋𝑎𝜔𝜇

∑
𝑗−𝑘𝑒𝑗𝑘(𝜙𝑛−𝜙𝑖′)

𝐻𝑘
(2)(𝛽|𝒂|)

∞

𝑘=−∞

                                                                                     (5 − 141) 

For a near-field line current source at (𝜌0′, 𝜙0′), the spectral signature of this external 

source is given in equation (5 − 142). 

[

…
𝑖�̂�𝑆,𝑖𝑛𝑐
. .

] = [𝐻−𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

𝑗𝐾𝜙0′ . . 𝐻𝑘
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝑘𝜙0′ … 𝐻𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝐾𝜙0′]
𝑇
               

 (5 − 142) 

The H-spectral signature of the surface current on the circular cylinder is given by equation (5 −

143), 

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] = [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
]

−1

[

…
𝐸𝑖𝑛𝑑
. .
]                                                                            (5 − 143) 

and thus [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] for a near field source excitation is given in equation (5 − 144). 

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]  = […
𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|)𝐽𝑘(𝛽|𝒂|) 𝑒

−𝑗𝑘𝜙0′

𝐻𝑘
(2)(𝛽|𝒂|)

…]

𝑇

                                                          (5 − 144) 

Once again solving for the actual surface currents,[

…
𝑖̂𝑖𝑛𝑑
. .
], 
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[

…
𝑖̂𝑖𝑛𝑑
. .
] = [

… … …
… �̅� …
… … …

]

𝐻

[
⋱ 0 0
0 𝐷𝐽 0

0 0 ⋱

]

−1

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                                                                       (5 − 145) 

The normalized surface current on the circular cylinder excited by a near-field line 

current source is written as (5 − 146).  

𝑖̂(𝜌, 𝜙) = ∑
𝐻𝑘
(2)(𝛽|𝝆𝟎′|) 𝑒

𝑗𝑘(𝜙−𝜙0′)

𝐻𝑘
(2)(𝛽|𝒂|)

𝐾

𝑘=−𝐾

                                                                                    (5 − 146) 

This solution agrees with the equation given by Balanis in reference book [36]. 

𝐽𝑧(𝑎, 𝜙𝑛) = −
𝐼𝑒
2𝜋𝑎

∑
𝐻𝑘
(2)(𝛽𝜌′) 𝑒𝑗𝑘(𝜙𝑛−𝜙′)

𝐻𝑘
(2)(𝛽𝑎)

∞

𝑘=−∞

                                                                        (5 − 147) 

5.5.2  Spectral Projection Model using the MFIE for TEz Waves 

To apply the boundary conditions for the Spectral Projection Model to the MFIE, one 

may begin with the same linear matrix equation as (5 − 102). 

[

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

] = [

… … …

… 𝐻𝑘
(2)′(𝛽|𝝆𝒐𝒃|) …

… … …
] [
⋱ 0 0
0 cos(𝛾) 0
0 0 ⋱

]

𝑇

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] 

(5 − 102) 

For the case of the circular cylinder, 𝛾 =
𝜋

2
 , so the equation may be rewritten as 

[

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐,𝐼𝑒
. .

] = [

… … …

… 𝐻𝑘
(2)′(𝛽|𝝆𝒐𝒃|) …

… … …
] [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                                (5 − 148) 

To calculate [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

], one again one substitutes 𝝆𝒐𝒃 = 𝒂, or 𝜌𝑜𝑏 = |𝒂|𝑒𝑗𝜙𝑜𝑏, where 𝒂 is 

the radius of the cylinder and 𝜙𝑜𝑏 is the phase of each observation point. 

The 𝑁 × 1 element vector, 𝑖�̂�𝑆,𝑖𝑛𝑑, is the J-spectral signature of the induced electric current 

sources on the surface of the conductor, as was the case for the EFIE. 

Solving the MFIE the same way as the EFIE, one arrives at a similar expression for the 

diagonal matrix, except the diagonal terms are instead derivatives of the Hankel function. 

[
⋱ 0 0
0 𝐷𝐻′ 0
0 0 ⋱

] =

[
 
 
 
 
 𝐻−𝐾

(2)
′(𝛽|𝒂|) 0 0 0 0

0 ⋱ 0 0 0

0 0 𝐻𝑘
(2)
′(𝛽|𝒂|) 0 0

0 0 0 ⋱ 0

0 0 0 0 𝐻𝐾−1
(2)

′(𝛽|𝒂|)]
 
 
 
 
 

                                (5 − 149) 
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To solve for the normalized surface current on a circular cylinder at observation points 

(𝜌, 𝜙)  excited by a magnetic field plane wave coming from incident angle 𝜙′ = 𝜙0′ using 

MFIE, one uses the same steps as for the EFIE. The surface current may be written as equation 

(5 − 150). 

𝑖̂(𝜌, 𝜙) = ∑
𝑗−𝑘𝑒𝑗𝑘(𝜙−𝜙0′)

𝐻𝑘
(2)
′(𝛽|𝒂|)

𝐾

𝑘=−𝐾

                                                                                                       (5 − 150) 

This agrees with the equation given by Balanis in reference book [36]. 

𝐽𝜙(𝑎, 𝜙𝑛) = 𝑗
2𝐻0
𝜋𝛽𝑎

∑
𝑗−𝑘𝑒𝑗𝑘(𝜙𝑛−𝜙𝑖′)

𝐻𝑘
(2)
′(𝛽𝑎)

∞

𝑘=−∞

                                                                                     (5 − 151) 

For a near-field magnetic line source, the actual normalized induced surface current on 

the circular cylinder at observation points (𝜌, 𝜙) is given in equation (5 − 152).  

𝑖̂(𝜌, 𝜙) = ∑
𝐻𝑘
(2)(𝛽|𝝆𝟎′|) 𝑒

𝑗𝑘(𝜙−𝜙0′)

𝐻𝑘
(2)
′(𝛽|𝒂|)

𝐾

𝑛=−𝐾

                                                                                    (5 − 152) 

This agrees with the equation given by Balanis in reference book [36]. 

𝐽𝜙(𝑎, 𝜙𝑛) = −
𝑗𝐼𝑚
2𝜂𝜋𝑎

∑
𝐻𝑘
(2)(𝛽𝜌′) 𝑒𝑗𝑘(𝜙𝑛−𝜙′)

𝐻𝑘
(2)
′(𝛽𝑎)

∞

𝑘=−∞

                                                                     (5 − 153) 

 

5.5.3  Simulated Far-Field Patterns from SPM and Modal Analysis for Circular Cylinders 

The Spectral Projection Model is applied here for calculating the electric far-field pattern 

for circular cylinders excited by plane wave with normal incidence at, i.e. 𝜙𝑖 = 90
o. Results of 

the Spectral Projection Model agree well with analytical modal solutions excited by both TMz 

and TEz plane waves for circular cylinders of different radii. Shown in Figure 5-22a, 5-22b, and 

5-22c are the far-field patterns of different radii circular cylinders. Angle of incidence is 90o.  

Forward scattering is observed at 𝜙𝑠𝑐𝑎𝑡 = 270
o. 
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a) b) 

 

 c) d)  

 

Figure 5-23: a) Polar plots of a) TMz and b) TEz far-field patterns for circular cylinders. 

Cylinders have radius 1𝜆. Polar plots of c) TMz and d) TEz far-field patterns for circular 

cylinders. Cylinders have radius 2𝜆. 
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 a) b)  

 

Figure 5-24: Polar plots of a) TMz and b) TEz far-field patterns for circular cylinders. Cylinders 

have radius 3𝜆. 

 

5.5.4  Validation of the Spectral Projection Model for Near-Field TMz Wave 

  A near field electric current line current source 𝐼𝑒 radiates an electric field with TMz 

polarization upon a PEC infinitely long circular cylinder as in Figure 5-18a. The current density 

on the surface of a cylinder due to the incident TMz polarized wave from angle 𝜙0′ is given in 

equation (5 − 154). 

𝑱𝑠(𝑎, 𝜙′) = −�̂�
𝐼𝑒
2𝜋𝑎

∑
𝐻𝑘
(2)(𝛽𝜌0′)

𝐻𝑘
(2)(𝛽𝑎)

∞

𝑘=−∞

 𝑒𝑗𝑘(𝜙′−𝜙0′)                                                                   (5 − 154) 

The modal spectral signature of an infinitely long circular cylinder solved by analytical 

techniques, MOM and SPM for TMz scattering are shown to have excellent agreement. See 

Figure 5-25. 
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a)   b)   c) 

Figure 5-25: Spectral signature of an infinitely long circular cylinder with radius = 1𝜆 excited by 

a near-field TMz wave from a line source calculated using a) analytical method b) Method of 

Moments and c) Spectral Projection Model. 

 

In Figure 5-26 is shown the far-field pattern of the infinitely long circular cylinder of radius 1𝜆. 

calculated using the SPM and MOM. Angle of incidence is 90o. 

 

 

Figure 5-26: Calculated linear plot of far-field pattern for an infinitely long circular cylinder with 

radius = 1𝜆 excited by a near-field TMz wave from a line source calculated using the Method of 

Moments and Spectral Projection Model. 
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5.5.5  Validation of the Spectral Projection Model for Near-Field TEz Wave  

A near field magnetic current line current source 𝐼𝑚 radiates a magnetic field with TEz 

polarization upon a PEC infinitely long circular cylinder as in Figure 5-18b. The current density 

on the surface of a cylinder due to the incident TEz polarized wave from incidence angle 𝜙0′ is 

given in equation (5 − 155).  For these plots, angle of incidence is 90o. 

𝑱𝒔(𝑎, 𝜙′) = −�̂�
𝑗𝐼𝑚
2𝜂𝜋𝑎

∑
𝐻𝑘
(2)(𝛽𝜌0′)

𝐻𝑘
(2)
′(𝛽𝑎)

∞

𝑘=−∞

 𝑒𝑗𝑘(𝜙′−𝜙0′)                                                                (5 − 154) 

 

 

a)  b)   c) 

 

Figure 5-27: Spectral signature of an infinitely long circular cylinder with radius = 1𝜆 excited by 

a near-field TEz wave from a line source calculated using a) analytical method b) Method of 

Moments and c) Spectral Projection Model. 
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Figure 5-28: Calculated linear plot of far-field pattern for an infinitely long circular cylinder with 

radius = 1𝜆  excited by a near-field TEz wave from a line source calculated using the Method of 

Moments and Spectral Projection Model. 

 

Comparison of the modal solution of an infinitely long circular cylinder with MOM and 

SPM for TEz scattering is shown to have excellent agreement. See Figure 5-27. In Figure 5-28 is 

shown the far-field pattern of the infinitely long circular cylinder calculated using the SPM and 

MOM. 

 

5.6  Limitation of SPM due to Bessel and Hankel Function Modes 

  The Spectral Projection Method as presented is limited by properties of the Bessel and 

Hankel functions much like the Method of Moments. The electric field for an infinitely long line 

source in the near and far-field are characterized using the zeroth order Hankel function of the 

second kind. 

Plotted below in Figure 5-29 are the real and imaginary parts of the Hankel function 

𝐻0
(2)(𝛽|𝝆|). 
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a)   b) 

Figure 5-29: The figure shows the real and imaginary components of the function 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) with  𝜌′ = 0. a) Real part. b) Imaginary part. 

 

The electric field from an electric line current source is illustrated in Figure 5-29. In this 

figure, the imaginary part of the electric field from the line source is singular at 𝜌′ = 0. Hankel 

functions are cylindrically symmetric, and vary only with the 𝜌 components. 

The magnitude of a Bessel function increases as the absolute value of the mode number 

increases for near field arguments, i.e. small 𝜌 values. In Figures 5-30a and 5-30b below, the 

decrease in magnitude is about 5-10 between Bessel function order -30 to 30. In the far-field, the 

magnitude of the Bessel functions decreases to zero, as seen in Figure 5-30c. This ensures 

convergence of the addition theorem, and thus the projection of the J-spectral signature onto the 

H-spectral signature. 

The main obstacle limiting implementation of SPM for non-circular objects of small 

wavelength is the increase in magnitude of the Hankel function as the absolute value of the mode 

number increases. As seen in Figure 5-31a below, unlike the Bessel function, the magnitude of a 

Hankel function increases as the absolute value of the mode number increases for small 

wavelength 𝜌. In the far-field for increasing values of 𝜌, the magnitude of the Hankel function 
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decreases but the magnitude of the amplitude of each mode trends to the same absolute value, 

verifying the asymptotic approximation given in equation (5 − 70). See Figures 5-31b, 5-31c 

and 5-32. 

 

  a)  b) c) 

Figure 5-30: Magnitude plots of Bessel functions versus modes for a) 𝜌 = .5𝜆 b) 𝜌 = 50𝜆  c) 

𝜌 = 50000𝜆. 

 

 a)  b) c) 

Figure 5-31: Magnitude plots of Hankel functions versus modes for a) 𝜌 = .5𝜆 b) 𝜌 = 50𝜆  c) 

𝜌 = 50000𝜆. 
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 a)  b) 

Figure 5-32: Asymptotic expansion approximation to the far-field patterns for a) Hankel 

functions and b) Bessel functions. 

 

5.6.1  Convergence of the Addition Theorem 

For small radii, the higher order modes of the Hankel function increase in amplitude and 

decrease the numerical accuracy of the addition theorem. This is evident from conditions set by 

the addition theorem on requirements for the 𝜌 and 𝜌′ vectors. Recall the addition theorem in 

equation (5 − 3). Equation (5 − 156) writes the addition theorem as an infinite summation. 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = ∑ 𝐽𝑘(𝛽|𝝆′|)𝐻𝑘

(2)(𝛽|𝝆|)𝑒𝑗𝑘(𝜙−𝜙′)
∞

𝑘=−∞

                                      𝜌 ≥  𝜌′    (5 − 156) 

Figure 5-31 illustrates this requirement 𝜌 ≥  𝜌′ when satisfied by a circular cylinder. 

For a circle as in Figure 5-33, simply defining two circles with 𝜌 ≥  𝜌′ satisfies the 

addition theorem.  For the ellipse plotted in Figure 5-34, the 𝜌′ vectors in red are not always 

smaller than the 𝜌 vectors in blue. The addition theorem given in (5 − 156) is not satisfied if the 

𝜌′ vectors are chosen on the surface of the elliptical cylinder. For this ellipse, 𝜌1 is the major 

axis, and 𝜌5 is the minor axis. 
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Figure 5-33: Vectors 𝜌 and 𝜌′ around a circular cylinder. 

 

 

Figure 5-34: Vectors 𝜌 and 𝜌′ around an elliptical cylinder. 

 

In Figure 5-35 the 𝜌′ vectors in red are all smaller than the 𝜌 vectors in blue. So, the 

addition theorem given in (5 − 156) is always satisfied because the 𝜌′ vectors fall inside the 

circular cylinder. In order to satisfy the addition theorem, the condition 𝜌′ ≤  𝜌5 for all 𝜌′ must 

be met. 
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Figure 5-35: Vectors 𝜌 and 𝜌′ around an elliptical cylinder and inside circular cylinder. 

 

5.6.2  Convolution Model for Spectral Signatures 

In order to use the addition theorem for cases in which the cylinder shape is not circular, 

it is necessary to ensure that 𝜌′ < 𝜌 using a different approach. The addition theorem given in 

equation (5 − 2) may be written as a convolution. Equation (5 − 157) gives the addition 

theorem in this form, with the symbol ⊗ signifying convolution. 

𝐻(𝑚, 𝜌 + 𝜌′) = 𝐻(𝑛, 𝜌) ⊗ 𝐽(𝑛, 𝜌′)                                                                           𝜌 ≥  𝜌′    (5 − 157) 

Using this notation for convolution, methods of translating the origin for elliptically shaped 

surfaces will be discussed. 

As stated earlier, the condition of the addition theorem states that in order for it to work 

for source point 𝜌 and observation point 𝜌′, the 𝜌 vector with the larger radial distance from the 

origin will be the argument of the Hankel function and the smaller 𝜌 must be for the Bessel 

function. This inequality 𝜌 ≥ 𝜌′  must be satisfied for the summation to converge.  

For a closed conducting surface, the source (surface currents) and observation points 

(boundary conditions) are all located on the surface. Ideally, one would like the Hankel function 

to depend on the farther point, while the Bessel function will depend on the closer one. This is to 

ensure that the condition 𝜌 ≥ 𝜌′ stated in equation (5 − 157) is complied with. But for a 

geometric shape other than a circle, depending on the angle, the distance of observation points 



 

135 

and source points from the origin changes. Since the radial distance depends on the origin, by 

translating the origin one can ensure that the condition 𝜌 ≥ 𝜌′ is always satisfied. 

Figure 5-36a shows two source points, 𝒔𝒐𝟏 and 𝒔𝒐𝟐, and a single observation point 𝑜𝑏1. 

Begin by using O1 as the origin. Since 𝜌𝑜𝑏1 > 𝜌𝑠𝑜1, in order to calculate the contribution of the 

source point 𝑠𝑜1 at 𝑜𝑏1, 𝜌𝑜𝑏1 must be the argument of the Hankel function and 𝜌𝑠𝑜1  must be the 

argument of the Bessel function. However, when calculating the contribution of 𝜌𝑠𝑜2 at 𝜌𝑜𝑏1since 

𝜌𝑠𝑜2 > 𝜌𝑜𝑏1, the vector 𝜌𝑜𝑏1 cannot be used as the argument of the Hankel function with origin 

O1. 

Now consider Figures 5-36b and 5-36c. If the origin is translated to O2 via vector 𝜌𝑡𝑟𝑎𝑛𝑠,  

𝜌′𝑜𝑏1 > 𝜌′𝑠𝑜2, and 𝜌′𝑜𝑏1 can be used as the argument for the Hankel function, while 𝜌′𝑠𝑜2 is used 

to calculate the Bessel function. 

At the beginning of this chapter, two general forms of Graf’s addition theorem were 

given in equations (5 − 2) and (5 − 3). Graf’s addition theorem for Hankel functions of order m 

for the difference between two vectors is given in (5 − 3), 

𝐻𝑚
(2)(𝛽|𝝆 − 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚+𝑛

(2) (𝛽|𝝆|)𝐽𝑛(𝛽|𝝆′|)𝑒
𝑗[(𝑚+𝑛)𝜙−𝑛𝜙′]

∞

𝑛=−∞

              𝜌 ≥ 𝜌′        (5 − 3) 

and for the sum of two vectors the general form is (5 − 2). 

𝐻𝑚
(2)(𝛽|𝝆 + 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚−𝑛

(2) (𝛽|𝝆|)𝐽𝑛(𝛽|𝝆′|)𝑒
𝑗[(𝑚−𝑛)𝜙−𝑛𝜙′]

∞

𝑛=−∞

              𝜌 ≥ 𝜌′         (5 − 2) 

Vectors associated with the |𝝆 + 𝝆′| form of the addition theorem are illustrated in Figure 5-36. 
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a) 

 

 b)   c) 

Figure 5-36: a) Original origin, O1, source and observation points. b) New origin, O2, source and 

observation vectors. c) Translation of source and one observation point with new origin O2. 
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Graf’s addition theorem for the addition of two vectors |𝝆 + 𝝆′| may be thought of as a 

discrete convolution between the H-spectral signature of an observation point at (𝜌, 𝜙) and the J-

spectral signature of a source point at (𝜌′, 𝜙′). Equation (5 − 2) may be expressed in new 

notation as equation (5 − 158).  

𝐻(𝑚, 𝜌 + 𝜌′) = 𝐻(𝑛, 𝜌) ⊗ 𝐽(𝑛, 𝜌′)                                                                            𝜌 ≥ 𝜌′    (5 − 158) 

To describe the convolution of two J-spectral signatures, the notation for the addition theorem is 

given in equation (5 − 159). 

𝐽(𝑚, 𝜌 + 𝜌′) = 𝐽(𝑛, 𝜌) ⊗ 𝐽(𝑛, 𝜌′)                                                                               𝜌 ≥ 𝜌′    (5 − 159) 

The convolution operation permits one to define a relationship between two spectral signatures 

with respect to two separate origins. 

The function 𝑯(𝑚, 𝜌 + 𝜌′) represents the H-spectral signature with respect to the origin, 

O’, and 𝐻(𝑛, 𝜌) is H-spectral signature with respect to origin, O. 𝐽(𝑛, 𝜌') represents the J-

spectral signature of the translation vector representing the translation of the origin from O’ to O. 

See Figure 5-37 for an illustration. 

 

 

Figure 5-37:  Illustration of Graf’s addition theorem for |𝜌 + 𝜌′|  showing the translation of the 

origin. 
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The addition theorem may be written as the convolution of several Bessel functions as 

long as the condition 𝜌 ≥ 𝜌′ is met. For example if, 𝜌′ = 𝜌1′ + 𝜌2′, one may write 

𝐽(𝑛, 𝜌1′ + 𝜌2′) = 𝐽(𝑞, 𝜌1′) ⊗ 𝐽(𝑞, 𝜌2′)                                                                      𝜌 ≥ 𝜌′     (5 − 160) 

And then one can write the Hankel function as the result of three convolutions. 

𝐻(𝑚, 𝜌 + 𝜌′) = 𝐻(𝑛, 𝜌) ⊗ (𝐽(𝑞, 𝜌1′) ⊗ 𝐽(𝑞, 𝜌2′) )                                               𝜌 ≥ 𝜌′    (5 − 161) 

A proof is given in Appendix A: SPM and Graf’s Equation. 

 

5.6.3  SPM and the Hadamard Product 

To take advantage of the property of Graf’s addition theorem to shift the origin, the 

Hadamard product of matrices in the DFT domain may be used to calculate the convolution of 

two vectors. 

Assume a vector [

|

ℎ̂𝑐
|

] equals the convolution of two vectors, [

|

ℎ̂𝑎
|

] and [

|
𝑗�̂�
|
]. 

[

|

ℎ̂𝑐
|

] = [

|

ℎ̂𝑎
|

] ⊗ [

|
𝑗�̂�
|
]                                                                                                                       (5 − 162 ) 

The convolution can be performed in the Fourier domain by taking the DFT of both sides of 

equation (5 − 162 ), and writing it as the Hadamard product given in equation (5 − 163).  

[

… … …
… 𝐹 …
… … …

] [

|

ℎ̂𝑐
|

] = [

… … …
… 𝐹 …
… … …

] [

|

ℎ̂𝑎
|

] ⊙ [

… … …
… 𝐹 …
… … …

] [

|
𝑗�̂�
|
]                                                 (5 − 163 ) 

To solve the matrix equation given below: 

[

…
𝑒𝑖
⋯
] = [

… … …
… 𝐻𝑐 …
… … …

] [

…
𝑖̂𝑠𝑠
. .
]                                                                                                               (5 − 164) 

where matrix [

… … …
… 𝐻𝑐 …
… … …

] equals the column by column convolution of two matrices, 

[

| | |
| 𝐻𝑐 |
| | |

] =   [

| | |
| 𝐻𝑎 |
| | |

] ⊗𝐶 [

| | |
| 𝐽𝑏 |
| | |

]                                                                               (5 − 165) 

one can write 
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[

…
𝑒𝑖
⋯
] = ([

| | |
| 𝐻𝑎 |
| | |

] ⊗𝐶 [

| | |
| 𝐽𝑏 |
| | |

]) [

…
𝑖̂𝑠𝑠
. .
]                                                                                (5 − 166) 

Now a diagonal matrix [
⋱ 0 0
0 𝐷𝑖𝑖 0
0 0 ⋱

] and its companion vector consisting of its diagonal 

elements [

…
𝑑𝑖
⋯
], in which every element 𝐷𝑖𝑖 = 𝑑𝑖. 

[

…
𝑑𝑖
⋯
] = 𝑑𝑖𝑎𝑔 [

⋱ 0 0
0 𝐷𝑖𝑖 0
0 0 ⋱

]                                                                                                             (5 − 167) 

Then substituting [

…
𝑖̂𝑠𝑠
. .
] = [

…
𝑑𝑖
⋯
] into equation (5 − 166) one obtains 

[

…
𝑒
⋯
] = ([

| | |
| 𝐻𝑎 |
| | |

] ⊗ [

| | |
| 𝐽𝑏 |
| | |

]) [

…
𝑑𝑖
⋯
]                                                                                   (5 − 168) 

Next define the discrete Fourier transforms of the following matrices and vectors: 

[

| | |
| 𝐹𝐻𝑎 |
| | |

] = [

… … …
… 𝐹 …
… … …

] [

| | |
| 𝐻𝑎 |
| | |

]                                                                                   (5 − 169) 

[

| | |
| 𝐹𝐽𝑏 |
| | |

] = [

… … …
… 𝐹 …
… … …

] [

| | |
| 𝐽𝑏 |
| | |

]                                                                                      (5 − 170) 

[

| | |
| 𝐹𝐷𝑖 |
| | |

] = [

… … …
… 𝐹 …
… … …

] [
⋱ 0 0
0 𝐷𝑖𝑖 0
0 0 ⋱

]                                                                                 (5 − 171) 

[

…
𝐹𝑑𝑖
⋯
] = [

… … …
… 𝐹 …
… … …

] [

…
𝑑𝑖
⋯
]                                                                                                             (5 − 172) 

[

| | |
| 𝐹𝑒𝑖 |
| | |

] = [

… … …
… 𝐹 …
… … …

] [

…
𝑒𝑖
⋯
]                                                                                                  (5 − 173) 

and then multiply both sides of (5 − 166) by the Fourier operator, 

[

… … …
… 𝐹 …
… … …

] [

…
𝑒𝑖
⋯
] = [

… … …
… 𝐹 …
… … …

]([

| | |
| 𝐻𝑎 |
| | |

] ⊗ [

| | |
| 𝐽𝑏 |
| | |

]) [

…
𝑑𝑖
⋯
]                                    (5 − 174) 

Equation (5 − 174) may be written as a Hadamard product, 
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[

…
𝐹𝑒𝑖
⋯
] = ([

| | |
| 𝐹𝐻𝑎 |
| | |

] ⊙ [

| | |
| 𝐹𝐽𝑏 |
| | |

]) [

…
𝑑𝑖
⋯
]                                                                          (5 − 175) 

Using another property of Hadamard products one can rewrite equation (5 − 175) as 

(5 − 176).. 

[

…
𝐹𝑒𝑖
⋯
] = 𝑑𝑖𝑎𝑔([

| | |
| 𝐹𝐻𝑎 |
| | |

] [
⋱ 0 0
0 𝐷𝑖𝑖 0
0 0 ⋱

] [

| | |
| 𝐹𝐽𝑏 |
| | |

]

𝑇

)                                                   (5 − 176) 

Where 𝑑𝑖𝑎𝑔 refers to the diagonal elements of the matrix in parentheses, and the diagonal 

elements of the matrix [
⋱ 0 0
0 𝐷𝑖𝑖 0
0 0 ⋱

] are the elements of column vector [

|
𝑑𝑖
|
]. 

Recall that by applying singular value decomposition (SVD) to matrix  [

| | |
| 𝐹𝐻𝑎 |
| | |

],  

it can be decomposed into three matrices shown below:  

[

| | |
| 𝐹𝐻𝑎 |
| | |

] = [

| | |
| 𝑈𝑎 |
| | |

] [
⋱ 0 0
0 𝐷𝐹𝐻𝑎 0

0 0 ⋱

] [

| | |
| 𝑉𝑎 |
| | |

]

𝑇

                                                       (5 − 177) 

where 

[

| | |
| 𝑈𝑎 |
| | |

] and [

| | |
| 𝑉𝑎 |
| | |

] are unitary matrices, while [
⋱ 0 0
0 𝐷𝐹𝐻𝑎 0

0 0 ⋱

] is a diagonal matrix 

whose diagonal entries are the singular values of the SVD. 

One may use singular value decomposition on matrix [

| | |
| 𝐽𝑏 |
| | |

] as well. 

[

| | |
| 𝐹𝐽𝑏 |
| | |

] = [

| | |
| 𝑈𝑏 |
| | |

] [
⋱ 0 0
0 𝐷𝐹𝐽𝑏 0

0 0 ⋱

] [

| | |
| 𝑉𝑏 |
| | |

]

𝑇

                                                         (5 − 178) 

Substituting into equation (5 − 176) one obtains equation (5 − 179). 

[

…
𝐹𝑒𝑖
⋯
] = 
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𝑑𝑖𝑎𝑔([

| | |
| 𝑈𝑎 |
| | |

] [
⋱ 0 0
0 𝐷𝐻𝑎 0

0 0 ⋱

] [

| | |
| 𝑉𝑎 |
| | |

]

𝑇

[
⋱ 0 0
0 𝐷𝑖𝑖 0
0 0 ⋱

] [

| | |
| 𝑉𝑏 |
| | |

] [
⋱ 0 0
0 𝐷𝐽𝑏 0

0 0 ⋱

] [

| | |
| 𝑈𝑏 |
| | |

]

𝑇

) 

(5 − 179) 

This expression may now be written in terms of diagonal element vectors corresponding to the 

diagonal matrices defined above. 

[

…
�̂�𝐻𝑎
. .
] =

[
 
 
 
 
⋱ 0 0 0 0
0 ⋱ 0 0 0
0 0 𝐷𝐻𝑎 0 0

0 0 0 ⋱ 0
0 0 0 0 ⋱]

 
 
 
 

[
 
 
 
 
1
…
1
. .
1]
 
 
 
 

                                                                                             (5 − 180) 

and 

[

…
�̂�𝐽𝑏
. .
] =

[
 
 
 
 
⋱ 0 0 0 0
0 ⋱ 0 0 0
0 0 𝐷𝐽𝑏 0 0

0 0 0 ⋱ 0
0 0 0 0 ⋱]

 
 
 
 

[
 
 
 
 
1
…
1
. .
1]
 
 
 
 

                                                                                               (5 − 181) 

Now equation (5 − 179) may be written using the property given in equations (5 − 175) 

and (5 − 176) in a new form as the vector [

…
�̂�𝐻𝑎
. .
] projected onto a Hadamard product. 

[

…
𝐹𝑒𝑖
⋯
] = ([

| | |
| 𝑈𝑎 |
| | |

] ⊙ [

| | |
| 𝑈𝑏 |
| | |

] [
⋱ 0 0
0 𝐷𝐽𝑏 0

0 0 ⋱

] [

| | |
| 𝑉𝑏 |
| | |

]

𝑇

[
0 0 0
0 𝐷𝑖𝑖 0
0 0 0

] [

| | |
| 𝑉𝑎 |
| | |

]) [

…
�̂�𝐻𝑎
. .
]    

(5 − 182) 

Then rearranging (5 − 175) into (5 − 183), 

[

…
𝐹𝑒𝑖
⋯
] = ([

| | |
| 𝐹𝐽𝑏 |
| | |

] ⊙ [

| | |
| 𝐹𝐻𝑎 |
| | |

]) [

…
𝑑𝑖
⋯
]                                                                          (5 − 183) 

one can write (5 − 183) as a different but equal matrix expression in which the vector [

…
�̂�𝐽𝑏
. .
] is 

projected onto a different Hadamard product. 

[

…
𝐹𝑒𝑖
⋯
] = ([

| | |
| 𝑈𝑏 |
| | |

] ⊙ [

| | |
| 𝑈𝑎 |
| | |

] [
⋱ 0 0
0 𝐷𝐻𝑎 0

0 0 ⋱

] [

| | |
| 𝑉𝑎 |
| | |

]

𝑇

[
0 0 0
0 𝐷�̂� 0
0 0 0

] [

| | |
| 𝑉𝑏 |
| | |

]) [

…
�̂�𝐽𝑏
. .
]     

(5 − 184) 
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Thus, if the vector [

…
𝑒𝑖
⋯
] represents either the incident or induced electric or magnetic field, 

the projection of the H-spectral signature of the incident current [

…
�̂�𝐻𝑎
. .
] onto the J-spectral 

signature of the observation points equals the projection of the J-spectral signature of the 

induced current [

…
�̂�𝐽𝑏
. .
] onto the H-spectral signature of the observation points. This is the 

foundational principle of the Spectral Projection Model. 

 

 

5.6.4  SPM with Translation for Ellipses of High Axial Ratio 

The equation for the Spectral Projection Model that was given earlier is shown below: 

[

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐
. .

] = [

… … …

… 𝐻𝑘
(2)((𝛽|𝝆𝒐𝒃|) …

… … …
] [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                                    (5 − 185) 

 with the spectral signature vector𝑠 [

…
𝑖�̂�𝑆,𝑖𝑛𝑐
. .

] and [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] being 𝑀 × 1 element vectors, 

and the matrices in (5 − 186) are equal. 

[

− − −− − −

−− 𝐻𝑘
(2)((𝛽|𝝆𝒐𝒃|) − −

− − −− −−
] = [

| | |

| 𝐻𝑘 (𝛽|𝝆|)𝑒
𝑗𝑘𝜙 |

| | |

]

𝑇

                                                   (5 − 186) 

The observation matrix [

− − − − − −

−− 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) − −

− − − − −−
] consists of a set of row vectors which are 

the H-spectral signatures of the observation points. This may be written alternatively as 

[

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
] = [

𝐻−𝐾
(2)(𝛽|𝝆𝟎|)𝑒

−𝑗𝐾𝜙0 … 𝐻𝐾
(2)(𝛽|𝝆𝟎|)𝑒

𝑗𝐾𝜙0

… … …

𝐻−𝐾
(2)(𝛽|𝝆𝑴−𝟏|)𝑒

−𝑗𝐾𝜙M−1 … 𝐻𝐾
(2)(𝛽|𝝆𝑴−𝟏|)𝑒

𝑗𝐾𝜙M−1

]     

(5 − 187) 

with each row being the H-spectral signature of an observation point 𝜌𝑎,𝑛. 

To generate an ellipse two constant radius vectors rotating in opposite directions may be 

summed together. 

𝜌𝑎,𝑚𝑒
𝑗𝜙a,m = 𝑎𝑒𝑗𝑚△𝜙             𝑚 ∈ {0,1,2, … ,𝑀 − 1}    observation points along circle of radius a 
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𝜌𝑏,𝑚𝑒
𝑗𝜙b,m = 𝑏𝑒−𝑗𝑚△𝜙           𝑚 ∈ {0,1,2, … ,𝑀 − 1}    observation points along circle of radius b 

𝜌𝑒,𝑚𝑒
𝑗𝜙e,m = 𝜌𝑎,𝑚 + 𝜌𝑏,𝑚       𝑚 ∈ {0,1,2, … ,𝑀 − 1}    observation points along ellipse e 

For further details on how cylinders with non-circular cross sections can be generated using the 

sum of multiple vectors, see Appendix F and Figures 5-38, 5-39, and 5-40 below. 

 

Figure 5-38: Counterclockwise rotating vector used to generate a circle with radius 𝜌 = 𝑎. 

 

 

Figure 5-39: Clockwise rotating vector used to generate a circle with radius 𝜌 = 𝑏. 
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Figure 5-40: Sum of two vectors to generate an ellipse. 

 

The resulting vector from both constant radius circles traces in Figure 5-36a and Figure 5-36b is 

an ellipse, so the observation points 𝜌𝑜𝑏,𝑚 on the ellipse are given below. 

𝜌𝑜𝑏,𝑚 = 𝜌𝑒,𝑚                                                      𝑚 ∈ {0,1,2,… ,𝑀 − 1}           points along ellipse e 

The Hankel spectral signature of the sum of the two rotating vectors at any discrete angle 

𝑚Δ𝜙, and radius 𝜌𝑜𝑏,𝑛,  may be calculated using the addition theorem shown in equation  

(5 − 188) for 𝜌𝑏,𝑚 ≥ 𝜌𝑎,𝑚. 

𝐻𝑝
(2)(𝛽|𝝆𝒐𝒃,𝒎|)𝑒

𝑗𝑚𝜙𝑒,𝑚 = ∑ 𝐻𝑝−𝑘
(2) (𝛽|𝝆𝒃,𝒎|)𝐽𝑘(𝛽|𝝆𝒂,𝒎|)𝑒

𝑗[(𝑝−𝑘)𝜙𝑏,𝑚−𝑘𝜙𝑎,𝑚]

∞

𝑘=−∞

 

 (5 − 188) 
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The addition theorem in equation (5 − 188) for observation point (𝜌𝑜𝑏,𝑚, 𝜙𝑜𝑏,𝑚) may be 

written as a convolution between the H-spectral signature of (𝜌𝑏,𝑚, 𝜙𝑏,𝑚) and J-spectral 

signature of (𝜌𝑎,𝑚, 𝜙𝑎,𝑚). 

𝐻(𝑝, 𝜌𝑜𝑏,𝑚) = 𝐻(𝑘, 𝜌𝑏,𝑚) ⊗ 𝐽(𝑘, 𝜌𝑎,𝑚)                                                                                    (5 − 189) 

In the equation (5 − 189), the H-spectral signature vector defined in truncated form for point 

(𝜌𝑏,𝑚, 𝜙𝑏,𝑚) is defined as 

𝐻(𝑘, 𝜌𝑏,𝑚) = [𝐻−𝐾
(2)(𝛽|𝝆𝒃|)𝑒

−𝑗𝐾𝜙𝑏,𝑚 … 𝐻𝑘
(2)(𝛽|𝝆𝒃|)𝑒

𝑗𝑘𝜙𝑏,𝑚 … 𝐻𝐾
(2)(𝛽|𝝆𝒃|)𝑒

𝑗𝐾𝜙𝑏,𝑚] 

 (5 − 190) 

and the J-spectral signature vector defined in truncated form for point (𝜌𝑎,𝑚, 𝜙𝑎,𝑚) as 

𝐽(𝑘, 𝜌𝑎,𝑚) = [𝐽−𝐾(𝛽|𝝆𝒂|)𝑒
−𝑗𝐾𝜙𝑎,𝑚 ⋯ 𝐽𝑘(𝛽|𝝆𝒂|)𝑒

𝑗𝑘𝜙𝑎,𝑚 ⋯ 𝐽𝐾(𝛽|𝝆𝒂|)𝑒
𝑗𝐾𝜙𝑎,𝑚]                    

(5 − 191) 

For a cross-sectional contour generated by two rotating vectors, each row of the 

H-spectral signature observation point matrix, [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
], equals the convolution 

of the Hankel spectral signature of point (𝜌𝑏,𝑚, 𝜙𝑏,𝑚) and Bessel spectral signature of point 

(𝜌𝑎,𝑚, 𝜙𝑎,𝑚). This matrix consisting of all observation points may be decomposed into two 

matrices using the convolution product in equation (5 − 189), and written as equation (5 −

192). 

[

− − − − − −

−− 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) − −

− − − − − −
] = [

− − − − −−

−− 𝐻𝑘
(2)(𝛽|𝝆𝒃|) − −

− − − − −−
]⊗ [

− − − − −−
−− 𝐽𝑘(𝛽|𝝆𝒂|) − −
− − − − −−

] 

(5 − 192) 

The matrices in (5 − 192) are written with -- notation to emphasize that each row is the spectral 

signature of an individual observation point. 

In order to efficiently perform this convolution, one may use the relationship in equation 

(5 − 162). For a column vector [

|

ℎ̂𝑜𝑏
|

] that equals the convolution of column vectors [

|

ℎ̂𝑎,1
|

] and 

[

|
𝑗�̂�,1
|
], i.e.  
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[

|

ℎ̂𝑜𝑏
|

] = [

|

ℎ̂𝑎,1
|

] ⊗ [

|
𝑗�̂�,1
|
]                                                                                                                (5 − 193) 

the discrete Fourier transform of the column vector [

|

ℎ̂𝑜𝑏
|

] equals the Hadamard product of the 

discrete Fourier transform of the column vectors [

|

ℎ̂𝑎,1
|

] and [

|
𝑗�̂�,1
|
]. 

[

… … …
… 𝐹 …
… … …

] [

|

ℎ̂𝑜𝑏
|

] = [

… … …
… 𝐹 …
… … …

] [

|

ℎ̂𝑎,1
|

] ⊙ [

… … …
… 𝐹 …
… … …

] [

|
𝑗�̂�,1
|
]                                          (5 − 194) 

with ⊙ denoting the Hadamard product operator. 

In order to use this property to calculate the H-spectral signature and J-spectral signature 

given equation (5 − 194) consider the following matrix[

− − − − − −
−− 𝑀 −−
−− −− −−

]. First one takes the 

transpose of the matrix, and it can be subdivided into columns as shown in equation (5 − 195), 

[

− − − − − −
−− 𝑀 −−
−− −− −−

]

𝑇

=

{
 
 

 
 

[
 
 
 
 
|
|

𝑀𝑘,1

|
| ]
 
 
 
 
|
|
|
|
| [
 
 
 
 
|
|

𝑀𝑘,𝑚

|
| ]
 
 
 
 
|
|
|
|
| [
 
 
 
 
|
|

𝑀𝑘,𝑀

|
| ]
 
 
 
 

}
 
 

 
 

                                               (5 − 195) 

each column being the spectral signature of a point, 

[
 
 
 
 
|
|

𝑀𝑘,𝑚

|
| ]
 
 
 
 

=

[
 
 
 
 
𝑀−𝐾,𝑚

|
𝑀𝑘,𝑚

|
𝑀𝐾,𝑚 ]

 
 
 
 

                                                                                                                           (5 − 196) 

The Fourier transform of matrix[

− − − − − −
−− 𝑀 −−
−− −− −−

]

𝑇

is the Fourier transform of each column 

given that 

[
 
 
 
 
|
|

𝑀𝑘,𝑚

|
| ]
 
 
 
 

 is column m of the matrix corresponding to observation point m-1. 
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[

… … …
… 𝐹 …
… … …

] [

− − − − − −
−− 𝑀 −−
−− −− −−

]

𝑇

= 

{[

… … …
… �̅� …
… … …

] [

|
𝑀𝑘,1

|
]⋯ [

… … …
… 𝐹 …
… … …

] [

|
𝑀𝑘,𝑚

|
] ⋯ [

… … …
… 𝐹 …
… … …

] [

|
𝑀𝑘,𝑀

|
]}                        (5 − 197) 

Now one can apply this property to the transpose of the Hankel observation matrix 

[

… … …

… 𝐻𝑘
(2)((𝛽|𝝆𝒐𝒃|) …

… … …
]

𝑇

using the shifted Fourier operator. 

[

… … …
… �̅� …
… … …

] [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒐𝒃|) …

… … …
]

𝑇

= 

[

… … …
… �̅� …
… … …

] [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒃|) …

… … …
]

𝑇

⊙ [

… … …
… �̅� …
… … …

] [

… … …
… 𝐽𝑘(𝛽|𝝆𝒂|) …
… … …

]

𝑇

                 (5 − 198) 

The matrices on the right of (5 − 198) are defined below. Each column of 

[

− − − − − −

−− 𝐻𝑘
(2)(𝛽|𝝆𝒃|) − −

− − − − − −
]

𝑇

 is the spectral signature of a point (𝜌𝑏,𝑚, 𝜙𝑏,𝑚) on the circle with 

radius b. 

[

− − − − − −

−− 𝐻𝑘
(2)((𝛽|𝝆𝒃|) − −

− − − − − −
]

𝑇

=        

{
 
 

 
 

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝒃,𝟎|)𝑒
−𝑗𝐾𝜙𝑏,0

|
|
|

𝐻𝐾
(2)(𝛽|𝝆𝒃,𝟎|)𝑒

𝑗𝐾𝜙𝑏,0 ]
 
 
 
 
 |
|
|
|
| [
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝒃,𝒎|)𝑒
−𝑗𝐾𝜙𝑏,𝑚

|
|
|

𝐻𝐾
(2)(𝛽|𝝆𝒃,𝒎|)𝑒

𝑗𝐾𝜙𝑏,𝑚 ]
 
 
 
 
 |
|
|
|
| [
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝒃,𝑴−𝟏|)𝑒
−𝑗𝐾𝜙𝑏,𝑀−1

|
|
|

𝐻𝐾
(2)(𝛽|𝝆𝒃,𝑴−𝟏|)𝑒

𝑗𝐾𝜙𝑏,𝑀−1 ]
 
 
 
 
 

}
 
 

 
 

 

(5 − 199) 

Each column of[

− − − − − −
−− 𝐽𝐾(𝛽|𝝆𝒐𝒃|) − −
− − − − −−

]

𝑇

 is the spectral signature of a point (𝜌𝑎,𝑚, 𝜙𝑎,𝑚) on 

the circle with radius a. 
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[

− − − − − −
−− 𝐽𝐾(𝛽|𝝆𝒐𝒃|) − −
− − − − −−

]

𝑇

=              

{
 
 

 
 

[
 
 
 
 
 
𝐽−𝐾(𝛽|𝝆𝒂,𝟎|)𝑒

−𝑗𝐾𝜙𝑏,0

|
|
|

𝐽𝐾(𝛽|𝝆𝒂,𝟎|)𝑒
𝑗𝐾𝜙𝑏,0 ]

 
 
 
 
 |
|
|
|
| [
 
 
 
 
 
𝐽−𝐾(𝛽|𝝆𝒂,𝒎|)𝑒

−𝑗𝐾𝜙𝑏,𝑚

|
|
|

𝐽𝐾(𝛽|𝝆𝒂,𝒎|)𝑒
𝑗𝐾𝜙𝑏,𝑚 ]

 
 
 
 
 |
|
|
|
| [
 
 
 
 
 
𝐽−𝐾(𝛽|𝝆𝒂,𝑴−𝟏|)𝑒

−𝑗𝐾𝜙𝑏,𝑀−1

|
|
|

𝐽𝐾(𝛽|𝝆𝒂,𝑴−𝟏|)𝑒
𝑗𝐾𝜙𝑏,𝑀−1 ]

 
 
 
 
 

}
 
 

 
 

 

(5 − 200) 

Next one needs to use this convolution principle to examine cylinders generated by 

circles of different radii. Thus, for the induced electric field, [

…
𝐸𝑖𝑛𝑑
. .
], 

[

− − − − − −

−− 𝐻𝑘
(2)((𝛽|𝝆𝒃|) − −

− − − − − −
] [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] = [

…
𝐸𝑖𝑛𝑑
. .
]                                                                       (5 − 201) 

The term [

− − − − −−

−− 𝐻𝑘
(2)(𝛽|𝝆𝒃|) − −

− − − − −−
] may be reformed by the matrix equation in (5 − 202). 

[

− − − − − −

−− 𝐻𝑘
(2)(𝛽|𝝆𝒃|) − −

− − − − − −
] = ([

… … …
… �̅� …
… … …

] [

− − − − − −

−− 𝐻𝑘
(2)(𝛽|𝝆𝒃|) − −

− − − − −−
]

𝑇

)

𝑇

[

… … …
… �̅� …
… … …

]         

(5 − 202) 

Substituting equation (5 − 202) into equation (5 − 201), one obtains 

([

… … …
… �̅� …
… … …

] [

− − − − − −

−− 𝐻𝑘
(2)(𝛽|𝝆𝒃|) − −

− − − − −−
]

𝑇

)

𝑇

[

… … …
… �̅� …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] = [

…
𝐸𝑖𝑛𝑑
. .
]               (5 − 203) 

Now expanding using the Hadamard product, one can write the induced fields. 

[

…
𝐸𝑖𝑛𝑑
. .
] = ([

… … …
… �̅� …
… … …

] [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒃|) …

… … …
]

𝑇

⊙ [

… … …
… �̅� …
… … …

] [

… … …
… 𝐽𝑘(𝛽|𝝆𝒂|) …
… … …

]

𝑇

)

𝑇

⋅ 

[

… … …
… �̅� …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                                                                                                                       (5 − 204) 

One can use the boundary condition to equate [

…
𝐸𝑖𝑛𝑑
. .
] and [

…
𝐸𝑖𝑛𝑐
. .
], 

[

…
𝐸𝑖𝑛𝑐 
⋯
] =  − [

…
𝐸𝑖𝑛𝑑 
⋯

]                                                                                                                            (5 − 43) 
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i.e. the scattered field to the incident field. Incident fields may also be defined in a similar 

manner, i.e., as the J-spectral signature of two rotating vectors. One may begin with equation 

(5 − 205), 

[

…
𝐸𝑖𝑛𝑐
. .
] = [

… … …
… 𝐽𝑘(𝛽|𝝆𝒐𝒃|) …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐
. .

]                                                                                     (5 − 205) 

then using similar reasoning as in equation (5 − 205), one obtains equation (5 − 206). 

[

…
𝐸𝑖𝑛𝑐
. .
] = ([

… … …
… �̅� …
… … …

] [

… … …
… 𝐽𝑘(𝛽|𝝆𝒃|) …
… … …

]

𝑇

⊙ [

… … …
… �̅� …
… … …

] [

… … …
… 𝐽𝑘(𝛽|𝝆𝒂|) …
… … …

]

𝑇

)

𝑇

⋅ 

[

… … …
… �̅� …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐
. .

]                                                                                                                       (5 − 206) 

and the term [

… … …
… �̅� …
… … …

] [

…
𝑖�̂�𝑆,𝑖𝑛𝑐
. .

] is the discrete Fourier transform of the spectral signature of 

the incident current. 

 

5.6.5  Generating an Ellipse by Summing Circles of Different Radii 

The previous section discusses a method for translating the origin to satisfy the 

requirements of the addition theorem and allow the possibility of solving problems with large 

axial ratios. In this section, a brief explanation of a technique for generating an ellipse of any 

major and minor axis dimensions from circular shapes is explained. To begin it is important to 

review the basic terms relating to an ellipse. See Figure 5-41. 
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Figure 5-41: Ellipse in black, and focal points are F1 and F2. Two concentric circles of radii 𝜌𝑎 

and  𝜌𝑏 are drawn overlapping. 

 

The set of 𝑛 points forming the locus of an ellipse are those points in a plane whose 

distance sum 𝑑1,𝑛 + 𝑑1,𝑛 from two foci always equals a constant. An ellipse can be generated by 

summing vectors along two circles of different radii, one rotating clockwise and the other 

rotating counterclockwise. See equation (5 − 207). 

𝜌𝑎,𝑛 + 𝜌𝑏,𝑛 = 𝜌𝑒,𝑛                                                                                                                          (5 − 207) 

𝜌𝑎,𝑛                              𝑛 ∈ {0,1,2, … ,𝑁 − 1}           points along circle of radius a 

𝜌𝑏,𝑛                              𝑛 ∈ {0,1,2, … ,𝑁 − 1}           points along circle of radius b 

𝜌𝑒,𝑛                              𝑛 ∈ {0,1,2, … , 𝑁 − 1}           points along ellipse e 

In Figure 5-42, points along two circles of radii 𝜌𝑎 and 𝜌𝑏, with 𝜌𝑎 > 𝜌𝑏, are illustrated.  

These points are summed to generate an ellipse with major axis length 𝜌𝑎 + 𝜌𝑏 and minor axis 

length 𝜌𝑎 − 𝜌𝑏, illustrated in Figure 5-43.  
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a) 

 

b) 

Figure 5-42: Two circles of different radii a) 1𝜆 and b) 2𝜆. 
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Figure 5-43: Superposition of points along two circles of radius 1𝜆 and 2𝜆 to generate an ellipse. 

 

In Figure 5-43 sampled points along circles of radii 𝜌𝑎 and 𝜌𝑏 are summed together to 

form the ellipse shown in black. Vectors 1, 5, 8, and 11 for the circle of radius 𝜌𝑎,𝑛 are shown in 

Figure 5-44a, and for 𝜌𝑏,𝑛 is illustrated in Figure 5-44b. Summation of all points, 𝜌𝑎,𝑛 + 𝜌𝑏,𝑛, for 

𝑛 ∈ {1,2, … ,𝑁} trace out the lotus of the ellipse shown in Figure 5-44c. 
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a) 

 

 b) c) 

Figure 5-44: a) Vectors from circle of radius 𝜌𝑎,𝑛 for 𝑛 ∈ {1,5,8,11}. b) Vectors from circle of 

radius  𝜌𝑏,𝑛, 𝑛 ∈ {1,5,8,11}. c) Resulting vectors generate the locus on an ellipse. 

 

Unfortunately, although summing rotating vectors is helpful in generating different 

figures, it is only sufficient to solving SPM scattering problems for geometries with small axial 

ratios. For larger axial ratios, it is necessary to translate the axis of the source points to ensure 

that the addition theorem condition 𝜌 > 𝜌′ is met. The next section will discuss a technique for 

translating the axis to new coordinates. 
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5.6.6  Application of Translating of the Origin to SPM 

By decomposing an ellipse into a sum of three vectors, the addition theorem may be 

treated as the convolution of three vectors. The observation points 𝜌𝑛 may be defined as in 

equation  (5 − 208) for 𝑛 ∈ {1,2, … ,𝑁}. 

𝜌𝑜𝑏 = 𝜌𝑎,𝑛 + 𝜌𝑏,𝑛                                                                                                                             (5 − 208)  

The addition theorem can then be written as the convolution of three vectors (5 − 209).  

𝐻(𝑚, 𝜌 + 𝜌′) = 𝐻(𝑛, 𝜌𝑐,𝑛) ⊗ [ 𝐽(𝑛, 𝜌𝑡1,𝑛')⊗   𝐽(𝑛, 𝜌𝑡2,𝑛')]                                                  (5 − 209) 

For example, consider an ellipse with major axis 𝑎 and minor axis 𝑏, and traced out by 

vector function 𝒇. The vector 𝒇 is the sum of three vectors, 𝒇 = 𝒄 + 𝒕𝟏 + 𝒕𝟐. The vector 𝒄 is a 

constant amplitude vector rotating in the counterclockwise direction. The vectors 𝒕𝟏 and 𝒕𝟏 are 

constant amplitude vectors rotating in the clockwise and counterclockwise directions, 

respectively. See Figure 5-45. 

 

a)   b) 

 

  c) d) 

Figure 5-45: Generating circles for an ellipse from a) vector c (ccw) b) vector t1 (cw) c) vector t2 

(ccw) and d) vector f (ccw). 
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The vectors meet the condition of the addition theorem, |𝒄| = |𝒕𝟏 + 𝒕𝟐|. The ellipse and 

example vectors are illustrated in Figure 5-46. 

𝒄 = 𝑎𝑒𝑗𝜙                                                 |𝒄| = 𝑎                                                                             (5 − 210) 

𝒕𝟏 =
(𝑎 − 𝑏)

2
𝑒−𝑗𝜙                                                                                                                           (5 − 211) 

𝒕𝟐 =
(𝑏 − 𝑎)

2
𝑒𝑗𝜙                                                                                                                              (5 − 212) 

 

 a)  b) 

Figure 5-46: a) Rotation and b) translation of the source origin. Vector f traces out the ellipse, 

vector c traces out the circle with radius equal to the length of the major axis, and vectors 𝒕𝟏 and 

𝒕𝟐 represent the translation vectors. The vertical dotted line is the actual translation from the 

source on the ellipse (Bessel functions) to the outer circle (Hankel function). 

 

From Figure 5-46, the following vector addition translates the origin in the Y-direction. 

𝒕𝟏 + 𝒕𝟐 = (𝑏 − 𝑎)𝑠𝑖𝑛𝜙�̂�                                                                                                                (5 − 213) 

After doing some elementary trigonometry, the equation of an ellipse is verified for function 𝑓. 

𝑓𝑥 = 𝑎𝑐𝑜𝑠𝜙                                                                                                                                       (5 − 214) 

𝑓𝑦 = 𝑏𝑠𝑖𝑛𝜙                                                                                                                                        (5 − 215) 

Using this formulation, the addition theorem requirement will always be satisfied as long as 𝒄 is 

calculated with the Hankel function, and vectors 𝒕𝟏 and 𝒕𝟐 are assigned to the Bessel functions. 



 

156 

 

5.7  Validation of the Spectral Projection Model 

In this section the relationship between axial ratio of infinitely long conducting cylinders 

and the accuracy of the Spectral Projection Model will be discussed [30]. Results will be 

compared to analyses using the Method of Moments.  

 

5.7.1  Validation of the Spectral Projection Model for plane wave TMz scattering without 

Translation 

For an infinitely long elliptical cylinder subjected to an incident TMz wave, the current 

distribution is not calculated using the Spectral Projection Model because the far-field pattern 

can be calculated directly from the J-spectral signature. The surface current calculated using 

MOM for a PEC elliptical cylinder with axial ratio 2:1 is shown in Figure 5-47b. Shown in 

Figure 5-48a and 5-48b is the spectral signature of the surface current distribution due to the TMz 

wave scattering for an elliptical cylinder with axial ratio 2:1 using MOM and SPM. This is band-

limited to the center 25% of the 128 modes, which is approximately 𝑘𝑎 ≅ 12. The value of a is 

the major axis of the ellipse, and b is the minor axis. The far-field electric field pattern calculated 

using the MOM and SPM agree well too as seen in Figures 5-48c and 5-48d. Incidence angle is 

90o. 

 

 a)  b) 

Figure 5-47: a) Infinitely long elliptical cylinder 𝑎 = 2𝜆 and 𝑏 = 1𝜆. b) Current distribution 

calculated using the Method of Moments for TMz polarization 
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  a) 

 

 b)  c) 

Figure 5-48: a) Spectral signature of surface current from Method of Moments and SPM for TMz 

polarization on elliptical cylinder 𝑎 = 2𝜆 and 𝑏 = 1𝜆. b) Electric far-field pattern in polar 

coordinates. c) Electric far-field pattern linear plot. 

 

The direct application of SPM works well for small axial ratios, i.e. 4:1 or less. Results 

for a TMz wave incident on an ellipse with a higher axial ratio 4:1 is shown in Figure 5-49. For 

higher axial ratios, the SPM without translation does not work as well. For these larger axial 

ratios, the direct application of SPM suffers from a ‘low pass’ effect in which the higher order 

modes are cut-off. This cut-off is determined by the size of the minor axis, where the 
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requirement  𝜌𝑜𝑏 ≥ 𝜌𝑠𝑜 fails. Some translation using the convolution property of the addition 

theorem is necessary to overcome this limitation. Angle of incidence is 90o 

 

 

a) 

 

 b)  c) 

Figure 5-49: a) Spectral signature of surface current from Method of Moments and SPM for TMz 

polarization on elliptical cylinder 𝑎 = 4𝜆 and 𝑏 = 1𝜆. b) Electric far-field pattern in polar 

coordinates. c) Electric far-field pattern linear plot. 
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5.7.2  Validation of the Spectral Projection Model for plane wave TEz scattering without 

Translation 

For an infinitely long elliptical cylinder subjected to an incident TEz wave, calculation of 

the current distribution is slightly different than TMz using the Spectral Projection Model. In 

equation (5 − 216), one can substitute the product of the  matrix and derivative of the Green’s 

function for the [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒎|) …

… … …
] term, and then solve for the spectral signature of the 

surface current as before. 

[

…
𝐻𝑖𝑛𝑑 
⋯

] = ([

… … …
… cos(𝛾) …
… … …

] [

… … …

… 𝐻𝑘 ′(𝛽|𝝆𝒎|)𝑒
𝑗𝑘𝜙 …

… … …
])

𝑇

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

]                               (5 − 216) 

Using the method of least squares, one may solve for the J-spectral signature of the current. The 

right side of the equation becomes the J-spectral signature of the surface current for a TEz wave 

incident on a PEC cylinder.  Now define the matrix product above as (5 − 217). 

[

… … …

… 𝐻𝑘 ′ cos(𝛾) …
… … …

] = ([

… … …
… cos(𝛾) …
… … …

] [

… … …

… 𝐻𝑘 ′(𝛽|𝝆𝒎|)𝑒
𝑗𝑘𝜙 …

… … …
])

𝑇

 

(5 − 217) 

Next one can solve for the J-spectral signature of the induced currents. 

[

…
𝑖�̂�𝑆,𝑖𝑛𝑑
. .

] = 

4

𝜔𝜇
([

… … …

… 𝐻𝑘 ′ cos(𝛾) …
… … …

] [

… … …

… 𝐻𝑘 ′ cos(𝛾) …
… … …

]

𝑇

)

−1

[

… … …

… 𝐻𝑘 ′ cos(𝛾) …
… … …

] [

…
𝐸𝑖𝑛𝑐
. .
]  (5 − 218) 

As mentioned earlier, to calculate the J-spectral signature of the surface current for TEz 

wave scattering, one substitutes the derivative term 𝐻0
(2)′(𝛽|𝝆𝒎 − 𝒑′|) for 𝐻0

(2)(𝛽|𝝆𝒎 − 𝒑′|). 

This is because one is calculating the incident magnetic field from the electric field in Faraday’s 

law which involves a curl operation. Calculation of the current distribution due to the TEz wave 

scattering for an elliptical cylinder with axial ratio 1.25:1 using MOM is shown below in Figure 

5-50b. A comparison of the spectral signatures using the MOM and SPM is shown in Figures 5-

50c and 5-50d. A comparison of the MOM and SPM far-field patterns is shown in Figures 5-51a 

and 5-51b in both polar and linear coordinates. 
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The plot of the TEz wave far-field pattern for a 2:1 axial ratio showed poor agreement 

between the MOM and SPM results. Adjustments to the SPM method with translation vectors is 

again required to rectify this problem, same as the TMz case. Angle of incidence is 90o. 

 

a) 

 

 b)  c) 

 

Figure 5-50: a) Infinitely long elliptical cylinder 𝑎 = 1.25𝜆 and 𝑏 = 1𝜆. b) Current distribution 

calculated using the Method of Moments for TEz polarization. c) Spectral signature of surface 

current from Method of Moments and SPM for TEz polarization. 
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 a)  b) 

Figure 5-51: a) SPM electric far-field pattern in polar coordinates for elliptical cylinder 𝑎 =

1.25𝜆 and 𝑏 = 1𝜆. b) SPM electric far-field pattern linear plot. 

 

5.7.3  Validation of the Spectral Projection Model for Plane Wave TMz Scattering with 

Translation 

For an infinitely long elliptical cylinder subjected to an incident TMz wave using 

translation of the source axis, larger axial ratio problems may be solved [53]. Figure 5-52 and 

Figure 5-53 show the results of an ellipse with axial ratio 
𝑎

𝑏
= 10 as good agreement with the 

MOM. Angle of incidence is 90o. 

 

 a)  b) 

Figure 5-52: a) Elliptical cylinder 𝑎 = 2𝜆 and 𝑏 = .2𝜆. b) Spectral signature of the surface 

current using Spectral Projection Model vs. MOM for TMz polarization. 
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 a)  b) 

Figure 5-53: a) Electric far-field pattern for SPM vs. MOM,in polar coordinates for elliptical 

cylinder 𝑎 = 2𝜆 and 𝑏 = .2𝜆 for TMz polarization. b) Electric far-field pattern for SPM vs. 

MOM linear plot. 

 

5.7.4  Validation of the Spectral Projection Model for plane wave TEz scattering with

 Translation 

For an infinitely long elliptical cylinder subjected to an incident TEz wave using 

translation of the source axis, the axial ratio 
𝑎

𝑏
= 10 has good agreement with the MOM [53]. In 

Figure 5-54 and Figure 5-55 are plots of the cylinder, modal spectral signature, far-field pattern, 

and a polar plot of the far-field pattern. 

 

 a)  b) 

Figure 5-54: a) Elliptical cylinder 𝑎 = 2𝜆 and 𝑏 = .2𝜆. b) Spectral signature of the surface 

current using Spectral Projection Model vs. MOM for TEz polarization. 
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 a)  b) 

Figure 5-55: a) Electric far-field pattern for Spectral Projection Method vs. MOM,in polar 

coordinates for elliptical cylinder 𝑎 = 2𝜆 and 𝑏 = .2𝜆 for TEz polarization. b) Electric far-field 

pattern for Spectral Projection Method vs. MOM linear plot. 
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Chapter 6: Direct Spectral Projection Model 

6.1  Introduction to the Direct Spectral Projection Model 

An improvement to the SPM model is presented in this section. This improvement is 

known as the Direct Spectral Projection Method (DSPM). The DSPM derives a set of 

eigenfunctions which are a set of solutions to scattering from cylinders of arbitrary cross-

sections. The eigenfunctions are designed to satisfy the boundary conditions for the scattering 

problem. Having found the eigenfunctions for the problem at hand, any external stimulus may be 

described as a weighted sum of these eigenfunctions. The weights of these eigenfunctions are 

obtained by assuming the spectral signatures of the external source are approximately equal to 

the collective spectral signatures of the eigenfunctions. Boundary conditions are satisfied by both 

sides of the equation by being projected onto the J-spectral signatures of the observation points. 

This eliminates the need to solve the boundary conditions directly. Since the eigenfunctions are 

found so that they satisfy the boundary conditions, writing the external stimulus in terms of these 

eigenfunctions implicitly satisfies the boundary conditions for the problem at hand [54]. 

     With the direct SPM method, once this matrix is set up, one can calculate the vector current 

distribution for many different cross-sectional geometries and external excitations, whether the 

external stimuli be a single line source, multiple line sources or a plane wave. 

 

6.2  Line Sources Near a Circular Cylinder 

As shown in Chapter 5, an electric current on the surface of a PEC circular cylinder of 

radius 𝜌 = 𝑎 is induced by an incident electric field from an external line source. If the external 

line source is located at polar coordinates (𝜌0′, 𝜙0′), this induced current is described by equation  

(6 − 1). 

𝑖𝑖𝑛𝑑(𝜌′, 𝜙′) = ∑
𝐻𝑘
(2)(𝛽|𝝆𝟎′|) 𝑒

𝑗𝑘(𝜙′−𝜙0′)

𝐻𝑘
(2)(𝛽|𝝆′|)

∞

𝑘=−∞

                                                                                (6 − 1) 

Assume points (𝜌′, 𝜙′) on the surface of the cylinder are at discrete locations (𝜌𝑛′, 𝜙𝑛′) 

for  𝑛 ∈ {0,1, 𝑁 − 1}. In the case of a circular cylinder 𝜌𝑛
′ = 𝑎 for all 𝑛. 
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As illustrated in Figure 6-1, if the external line source at angle 𝜙0′ is moved close to the 

surface of the circular cylinder with 𝜌0′ = 𝑎 + 𝜀, an induced line current source flows opposite at 

the same location as the electric line source 𝜌0′ = 𝑎 − 𝜀, as 𝜀 → 0. 

 

 

a) 

 

b) 

Figure 6-1: a) Infinitely long external line source at (𝜌0, 𝜙0) moved near the surface of an 

infinitely long circular cylinder to a distance 𝑎 + 𝜀, and the induced line current at 𝑎 − 𝜀, 

as 𝜀 → 0. b) Infinitely long electric line source moved near the surface of an infinitely long 

circular cylinder, and its induced electric line current which is equal and opposite. 
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  The new distance of the line source near the surface of the circular cylinder is given in 

equation (6 − 2), 

𝜌0,𝑖𝑛𝑐′ = 𝑎 + 𝜀                            𝜀 → 0                                                                                                (6 − 2) 

By substituting (6 − 2) into equation (6 − 1), 

𝐻𝑘
(2)(𝛽|𝝆𝟎′|) = 𝐻𝑘

(2)(𝛽|𝒂|)                                                                                                                (6 − 3) 

Now substituting (6 − 3) into (6 − 1), the induced current on the surface at any point (𝜌𝑛
′ , 𝜙𝑛′) 

can be described as a delta function. 

𝛿(𝜌′ − 𝑎, 𝜙𝑛′ − 𝜙0) = ∑ 𝑒𝑗𝑘(𝜙𝑛′−𝜙0)
∞

𝑘=−∞

                                                                                       (6 − 4) 

and 𝛿(𝜌′ − 𝑎,𝜙𝑛
′ − 𝜙0) = 1 when 𝜌′ = 𝑎 and 𝜙𝑛

′ = 𝜙0. 

As further evidence that the surface current distribution trends toward a delta function, a 

plot of the surface current for line currents at different distances 𝜌 from a circular cylinder is 

shown in the Figure 6-2 below. From the plot of equation (6 − 1), as an electric line source 

approaches the surface of a circular cylinder of radius 𝑎 = 5𝜆, the induced current magnitude 

approaches that of a single spike (delta function). So, it radiates only from the surface at one 

point. The incident electric current at the surface distance 𝑎 + 𝜀 from the line source will 

hereafter be referred to as the “virtual current.” Its induced surface current 𝐽𝑛
𝑖𝑛𝑑 at location 

(𝜌𝑛′, 𝜙𝑛′) on the other side of the surface approaches a magnitude that is equal and opposite in 

phase to the virtual current, and zero everywhere else. 
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Figure 6-2: Current distribution of a line source near an infinitely long circular cylinder of radius 

5𝜆 at distances 𝜌 = 10𝜆, 𝜌 = 5.91𝜆, 𝜌 = 5.2𝜆. 

 

For an external line source at coordinates (𝜌𝑛, ′𝜙𝑛′), the weight of each eigenfunction 

𝛿(𝜌′ − 𝜌𝑛′, 𝜙
′ −𝜙𝑛′) corresponding to a virtual current can be represented in vector form as an 

𝑁 × 1 column vector of all zeros and a single value of 𝛼𝑛 placed in the nth row. 

[

|
𝑖̂𝑣𝑖𝑟,𝑛
|
] =

[
 
 
 
 
0
|
𝛼𝑛
|
0 ]
 
 
 
 

                                                                                                                                       (6 − 5) 

The virtual current may be written as the sum of these 𝑁 × 1 column vectors, 

[

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] =

[
 
 
 
 
|
|

𝑖̂𝑣𝑖𝑟,0
|
| ]
 
 
 
 

+ ⋯+ 

[
 
 
 
 
|
|

𝑖̂𝑣𝑖𝑟,𝑛
|
| ]
 
 
 
 

+ ⋯ .

[
 
 
 
 

|
|

𝑖̂𝑣𝑖𝑟,𝑁−1
|
| ]

 
 
 
 

                                                                      (6 − 6) 

The sum of these virtual current vectors, [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

], can be written as equation (6 − 7). 
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[

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] =

[
 
 
 
 
𝛼0
|
𝛼𝑛
|

𝛼𝑁−1]
 
 
 
 

                                                                                                                             (6 − 7) 

Similarly, the induced current vector [

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] corresponding to the induced surface currents 

can be written as equation (6 − 8). 

[

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] =

[
 
 
 
 
𝛽0
|
𝛽𝑛
|

𝛽𝑁−1]
 
 
 
 

                                                                                                                             (6 − 8) 

One may write the DSPM equation as an eigenvector relation in terms of [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] and 

[

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
], in which every 𝛼𝑛 = −𝛽𝑛.  

 

6.3  Derivation of DSPM from Modal Analysis for a Circular Cylinder 

For TMz waves incident upon a PEC circular cylinder, the modal matrix solution given in 

equation (6 − 1)  can be written in terms of an induced current vector [

…
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚
. .

] for N-1 

equations as shown in equation (6 − 9). 

[

⋱ 0 0

0 𝐻𝑘
(2)(𝛽|𝒂|) 0

0 0 ⋱

] [

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

] [

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] = [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑛

|

]                                                       (6 − 9) 

If the excitation is a single external current line source  𝐼𝑛 at coordinates (𝜌𝑛′, 𝜙𝑛′), using 

equation (5 − 68)  one may write 
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[

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑛

|

] =

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎′|)𝑒
𝑗𝐾𝜙0′ ⋯ ⋯ ⋯ 𝐻−𝐾

(2)(𝛽|𝝆𝑵𝑺−𝟏′|)𝑒
𝑗𝐾𝜙𝑁𝑆−1′

: : : : :
: : : : :
: : : : :

𝐻𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝐾𝜙0′ ⋯ ⋯ ⋯ 𝐻𝐾
(2)(𝛽|𝝆𝑵𝑺−𝟏′′|)𝑒

−𝑗𝐾𝜙𝑁𝑆−1′]
 
 
 
 
 

[
 
 
 
 
0
⋮
𝐼𝑛
⋮
0 ]
 
 
 
 

                 

(6 − 10) 

As the external line source approaches the surface of the conductor, 𝝆𝟎′ = 𝒂, and the matrix 

product (6 − 10) reduces to equation (6 − 11). 

 

[

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] = 𝐼𝑛 [

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

]

𝐻

[

|

𝑒𝑗𝑘𝜙𝑛′

|
]                                                                                       (6 − 11) 

where 

[

|

𝑒𝑗𝑘𝜙𝑛

|
] =

[
 
 
 
 
𝑒−𝑗𝐾𝜙𝑛′

:
𝑒𝑗𝑘𝜙𝑛′

:
𝑒𝑗𝐾𝜙𝑛′ ]

 
 
 
 

                                                                                                                         (6 − 12) 

If matrices [

|

𝑒𝑗𝐾𝜙𝑛′

|
] and [

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

] are infinite dimensional in column length 𝐾 → ∞, the 

induced current vector becomes a set of infinite sums of exponentials corresponding to Fourier 

series expansions. 

[

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] =   𝐼𝑛  

[
 
 
 
 
 
 
 
 
 
 ∑ 𝑒𝑗𝑘(𝜙0′−𝜙𝑛′)

∞

𝑘=−∞

⋮

∑ 𝑒𝑗𝑘(𝜙𝑛′−𝜙𝑛′)
∞

𝑘=−∞

⋮

∑ 𝑒𝑗𝑘(𝜙𝑁𝑆−1′−𝜙𝑛′)
∞

𝑘=−∞ ]
 
 
 
 
 
 
 
 
 
 

                                                                                     (6 − 13) 

Equation (6 − 13) reduces to equation (6 − 14) according to the Fourier series expansion for a 

delta function given in equation (6 − 4). 
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[

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] =    𝐼𝑛

[
 
 
 
 
0
0
1
⋮
0]
 
 
 
 

                                                                                                                          (6 − 14) 

In equation (6 − 14), the delta function has the following property, 𝛿(𝜙𝑛
′ − 𝜙𝑛′) = 1 for  

𝛿(0), and zero otherwise.  Thus, we can write equation (6 − 14) as (6 − 15). 

[
 
 
 
 
0
⋮

𝑖𝑖𝑛𝑑,𝑛
⋮
0 ]
 
 
 
 

=    𝐼𝑛

[
 
 
 
 
0
⋮
1
⋮
0]
 
 
 
 

                                                                                                                              (6 − 15) 

Equation (6 − 15) reveals that every induced current can be generated by an equal and 

opposite incident current at the surface at the same location.  This incident current may be 

considered a virtual current.  Taking equation (6 − 11), one may rewrite it using (6 − 16), in 

terms of virtual currents, 

[

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

] [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] = −𝐼𝑛 [

|

𝑒𝑗𝑘𝜙𝑛 ′
|

]                                                                                       (6 − 16) 

When 𝑖𝑣𝑖𝑟,𝑛 is the magnitude of the virtual current at coordinates (𝜌𝑛, 𝜙𝑛), from equation 

(6 − 15) one may rewrite equation (6 − 16). 

[

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

] [
0

𝑖̂𝑣𝑖𝑟,𝑛
0

] = 𝑖𝑣𝑖𝑟,𝑛 [

|

𝑒𝑗𝑘𝜙𝑛′

|
]                                                                                        (6 − 17) 

From equation (6 − 17), the virtual currents can be represented as eigenfunctions which 

satisfy the electric field boundary conditions at every pair of points opposite on the surface, i.e. 

virtual currents at (𝜌𝑛′, 𝜙𝑛′) by induced currents at (𝜌𝑚′, 𝜙𝑚′). For a circular cylinder, the 

eigenfunctions are the columns of the [

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

] matrix.  These electric line currents generate 

equal and opposite electric fields that satisfy the boundary conditions which require that the 

electric field on the surface equal zero according to equation (6 − 18). 

𝐸𝑠𝑐𝑎𝑡(𝜌, 𝜙) = −𝐸𝑖𝑛𝑐(𝜌′, 𝜙′)                                                                                                            (6 − 18) 

If one rearranges equation (6 − 9), one obtains equation (6 − 19), for excitation of a 

circular cylinder by a TMz incident wave from a near-field line source. 
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[

⋱ 0 0

0 𝐻𝑘
(2)(𝛽|𝒂|) 0

0 0 ⋱

] [

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

] [

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] = [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑛

|

]                                                     (6 − 19) 

As shown in Chapter 5 equation (5 − 124), the matrix product in equation (6 − 19) originated 

from the H-spectral signature matrix when 𝝆𝒎 = 𝒂. 

[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒎′|)𝑒

𝑗𝑘𝜙𝑚′ :
: : :

] = [

⋱ 0 0

0 𝐻𝑘
(2)(𝛽|𝒂|) 0

0 0 ⋱

] [

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

]                                     (6 − 20) 

Substituting into equation (6 − 19), one obtains for a circular cylinder equation (6 − 21). 

[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒎′|)𝑒

𝑗𝑘𝜙𝑚′ :
: : :

] [

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] = [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑛

|

]                                                                (6 − 21) 

If one replaces [

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] by [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] on the surface of the cylinder, one can write the new 

equation for virtual sources at (𝜌𝑚′, 𝜙𝑚′) as (6 − 22). 

[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒎′|)𝑒

𝑗𝑘𝜙𝑚′ :
: : :

] [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] = [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑛

|

]                                                                 (6 − 22) 

 One may expand the possibilities of this equation for TMz incidence on a circular 

cylinder, by writing it for an excitation by an electric line source 𝐼𝑒 in the far-field at angle 𝜙𝑛′.  

The spectral signature of an incident electric field from an electric line source in the far-field was 

given earlier in equation (5 − 72). 

[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] = 𝐸0

[
 
 
 
 
 𝑒
−𝑗𝐾(𝜙𝑛′−

𝜋
2
)

⋮

𝑒𝑗𝑘(𝜙𝑛′−
𝜋
2
)

⋮

𝑒
𝑗𝐾(𝜙𝑛′−

𝜋
2
)
 ]
 
 
 
 
 

                                                                                                         (6 − 23) 

As long as the vector [

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] is in the column space of the H-spectral signature matrix, one 

may replace the spectral signature [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑛

|

] by [

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] and arrive at equation (6 − 24). 
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[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒎′|)𝑒

𝑗𝑘𝜙𝑚′ :
: : :

] [

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] = [

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

]                                                                (6 − 24) 

By replacing [

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] by [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] , one arrives at the DSPM equation for a circular cylinder in 

equation (6 − 25). 

[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒎′|)𝑒

𝑗𝑘𝜙𝑚′ :
: : :

] [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] = − [

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

]                                                            (6 − 25) 

Another way of stating equation (6 − 25) is in the written statement below. 

 H-Spectral Signature               =      H-Spectral Signature of            

 of Virtual Sources                  the Incident Sources 

 or Eigenfunctions 

 

6.4  Application of DSPM to TMz and TEz Waves incident upon a Circular Cylinder 

For electric line source located in the near-field at (𝜌0′, 𝜙0′), the H-spectral signature of 

the incident field due to the line current is given in equation (6 − 26), from equation (5 − 69). 

[

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼0

|
] =   𝐼0[𝐻−𝐾

(2)(𝛽|𝝆𝟎′|)𝑒
𝑗𝐾𝜙0′…  𝐻𝑘

(2)(𝛽|𝝆𝟎′|)𝑒
𝑗𝑘𝜙0′…  𝐻𝐾

(2)(𝛽|𝝆𝟎′|)𝑒
−𝑗𝐾𝜙0′]

𝑇

  (6 − 26) 

where 𝜌0′ and 𝜙0′ are the radial distance and azimuthal angle of the line source, and 𝐼0 = −
𝛽2𝐼𝑒

4𝜔𝜀
. 

For an electric plane wave 𝐸0 incident from a line source at the angle, 𝜙0′, the spectral 

signature of the incident field was written earlier using the large argument approximation in 

equation (5 − 71). 

[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] = 𝐸0[𝑒−𝑗𝐾(𝜙0′−𝜋/2) ⋯ 𝑒𝑗𝑘(𝜙0′−𝜋/2) ⋯ 𝑒𝑗𝐾(𝜙0′−𝜋/2)]
𝑇                              (5 − 69) 

For a circular cylinder with constant radius,  𝜌 = 𝑎, the DSPM equation was given in 

equation (6 − 21).  For an incident line current 𝐼0, 

[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒎|)𝑒

𝑗𝑘𝜙𝑚 :
: : :

] [

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] = [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼0

|

]                                                                   (6 − 27) 
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Solving equation (6 − 27) for the induced current vector [

…
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚
. .

], equation (6 − 28) results. 

[

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] = [

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

]

𝐻

[

⋱ 0 0

0 1/𝐻𝑘
(2)(𝛽|𝒂|) 0

0 0 ⋱

] [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼0

|
]                                             (6 − 28) 

The induced current vector depends on the type of external source excitation. The H-

spectral signature matrix [

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒎|)𝑒

𝑗𝑘𝜙𝑚 :
: : :

] is the product of the inverse shifted DFT 

Fourier operator [

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

]

𝐻

 and the diagonal matrix [

⋱ 0 0

0 1/𝐻𝑘
(2)(𝛽|𝒂|) 0

0 0 ⋱

]. The columns 

of the diagonal matrix are [ 0    …      
1

𝐻𝑘

(2)
(𝛽|𝒂|) …   0]𝑇, and make up the spectral response of 

the circular cylinder. In order to calculate the induced current distribution in the spatial domain, 

one must take the inverse Fourier transform of the H-spectral signature of the incident currents 

modified by the spectral response of the circular cylinder. 

For electric lines source 𝐼0 located in the near-field at (𝜌0, 𝜙0), the spectral signature of 

the incident current was given in equation (5 − 142). For this near field line source from the 𝜙0′ 

direction, the induced electric surface current in matrix equation (6 − 28) may be written in 

summation form for any point (𝜌′, 𝜙′) as equation (6 − 29). 

𝑖𝑖𝑛𝑑(𝑎, 𝜙′) = ∑
𝐻𝑘
(2)(𝛽|𝝆𝟎′|) 𝑒

𝑗𝑘(𝜙′−𝜙0′)

𝐻𝑘
(2)(𝛽|𝒂|)

𝐾

𝑘=−𝐾

                                                                              (6 − 29) 

This result is also in agreement with reference text [36]. 

𝐽𝑧(𝑎, 𝜙𝑛) = −
𝐼𝑒
2𝜋𝑎

∑
𝐻𝑘
(2)(𝛽|𝝆𝒏|) 𝑒

𝑗𝑘(𝜙𝑛−𝜙0′)

𝐻𝑘
(2)(𝛽|𝒂|)

∞

𝑘=−∞

                                                                  (5 − 147) 

For the case of TMz plane waves incident from the 𝜙0′ direction, the induced electric 

surface current in matrix equation (6 − 28) may be written in summation form for any point 

(𝜌, 𝜙) as equation (6 − 30). 

𝑖𝑖𝑛𝑑(𝑎, 𝜙′) = ∑
𝑗−𝑘𝑒𝑗𝑘(𝜙′−𝜙0)

𝐻𝑘
(2)(𝛽|𝒂|)

𝐾

𝑘=−𝐾

                                                                                                   (6 − 30) 

This result agrees with reference text [36]. 
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𝐽𝑧(𝑎, 𝜙𝑛′) =
2𝐸0
𝜋𝑎𝜔𝜇

∑
𝑗−𝑘𝑒𝑗𝑘(𝜙𝑛′−𝜙𝑖)

𝐻𝑘
(2)(𝛽|𝒂|)

∞

𝑘=−∞

                                                                                    (5 − 141) 

where 𝜙𝑖 = 𝜙0. 

See Figure 6-3 for plots of the induced current, spectral signature, and far-field pattern for 

incident wave with TMz polarization upon a circular cylinder. 

    

a) b) 

 

   c)  d) 

Figure 6-3: a) Infinitely long circular cylinder of 𝜌 = 2𝜆. b) Plot of surface current around an 

infinitely long circular cylinder using DSPM, SPM and MOM for TMZ Wave. c) Spectral 

signature plot of modes using DSPM, SPM, and MOM. d) Far-field pattern using DSPM, SPM 

and MOM. 

 

For TEz plane waves incident upon a PEC circular cylinder, derivation of the induced 

current on the surface follows a similar derivation. The solution of the MFIE the yields another 
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diagonal matrix form of matrix  [

: : :

: 𝐻𝑘
(2)′(𝛽|𝝆𝒎|)𝑒

𝑗𝑘𝜙𝑚 :
: : :

], and the spectral response of the 

circular cylinder consists of derivatives of the Hankel function (6 − 31). 

[

: : :

: 𝐻𝑘
(2)′(𝛽|𝝆𝒎|)𝑒

𝑗𝑘𝜙𝑚 :
: : :

] = [

… 0 0

0 𝐻𝑘
(2)
′(𝛽|𝒂|) 0

0 0 …

] [

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

]                                    (6 − 31) 

The general DSPM equation for TEz plane waves is given below in equation (6 − 32). 

[

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] = [

⋯ ⋯ ⋯
⋯ �̅� ⋯
⋯ ⋯ …

]

𝐻

[

… 0 0

0 1/𝐻𝑘
(2)
′(𝛽|𝒂|) 0

0 0 …

] [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚0

|
]                                        (6 − 32) 

For a near-field magnetic line source at (𝜌0′, 𝜙0′), the spectral signature of the incident 

magnetic line source is written in (5 − 88). Substituting for 𝐼𝑚0 = −
𝛽2𝐼𝑚

4𝜔𝜀
, 

[

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚0

|
] = 𝐼𝑚0[𝐻−𝐾

(2)(𝛽|𝝆𝟎′|)𝑒
𝑗𝐾𝜙0′…  𝐻𝑘

(2)(𝛽|𝝆𝟎′|)𝑒
𝑗𝑘𝜙0′…  𝐻𝐾

(2)(𝛽|𝝆𝟎′|)𝑒
−𝑗𝐾𝜙0′]

𝑇

    

(5 − 88) 

The induced electric surface current on the circular cylinder at observation points (𝜌, 𝜙) for 

excitation by a magnetic line source 𝐼𝑚0 is given in equation (6 − 33).  

𝑖𝑖𝑛𝑑(𝑎, 𝜙′) = ∑
𝐻𝑘
(2)(𝛽|𝝆𝟎′|) 𝑒

𝑗𝑘(𝜙′−𝜙0′)

𝐻𝑘
(2)′(𝛽|𝒂|)

𝐾

𝑘=−𝐾

                                                                               (6 − 33) 

This agrees with the equation given by Balanis in reference book [36]. 

𝐽𝜙(𝑎, 𝜙𝑛′) = −
𝑗𝐼𝑚
2𝜂𝜋𝑎

∑
𝐻𝑘
(2)(𝛽|𝝆′|) 𝑒𝑗𝑘(𝜙𝑛′−𝜙0′)

𝐻𝑘
(2)
′(𝛽|𝒂|)

∞

𝑘=−∞

                                                              (5 − 153) 

For TEz plane waves incident from the 𝜙0′ direction, the H-spectral signature of the 

magnetic field was given in equation (5 − 91), where ff refers to far-field. 

[

|

𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑚
𝑓𝑓

|

] = 𝐻0[𝑒−𝑗𝐾(𝜙0′−
𝜋
2
) … 𝑒𝑗𝑘(𝜙0′−

𝜋
2
) … 𝑒𝑗𝐾(𝜙0′−

𝜋
2
)]
𝑇
                                      (5 − 91) 

For a circular cylinder excited by a TEz plane wave, the induced electric surface current in matrix 

equation (6 − 32) may be written in summation form for any point (𝜌′, 𝜙′) as (6 − 34). 



 

176 

𝑖𝑖𝑛𝑑(𝑎, 𝜙′) = ∑
𝑗−𝑘𝑒𝑗𝑘(𝜙′−𝜙0′)

𝐻𝑘
(2)′(𝛽|𝒂|)

𝐾

𝑘=−𝐾

                                                                                                 (6 − 34) 

This agrees with the equation given by Balanis in reference book [36] and equation (5 − 151). 

𝐽𝜙(𝑎, 𝜙𝑛′) = 𝑗
2𝐻0
𝜋𝛽𝑎

∑
𝑗−𝑘𝑒𝑗𝑘(𝜙𝑛′−𝜙𝑖′)

𝐻𝑘
(2)
′(𝛽|𝒂|)

∞

𝑘=−∞

                                                                                  (5 − 151) 

A comparison of DSPM and MOM plots for incident TEz waves is shown in Figure 6-4. All 

three plots show good agreement for cylinder radius 𝑎 = 2𝜆. 

 

  a) b) 

 

 c) d) 

Figure 6-4: a) Infinitely long circular cylinder of 𝜌 = 2𝜆. b) Plot of surface current around an 

infinitely long circular cylinder using DSPM, SPM and MOM for TEZ Wave. c) Spectral 

signature plot of modes using DSPM, SPM, and MOM. d) Far-field pattern using DSPM, SPM 

and MOM. 
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The application of DSPM works well for small axial ratios radius 
𝑎

𝑏
< 4  . For larger axial 

ratios, the direct application of SPM fails because of the ‘low pass’ effect where the higher order 

modes are cut-off. This cut-off is dependent upon the size of the minor axis, where the 

requirement 𝜌′ < 𝜌  for the source fails. To eliminate the ‘low pass’ effect, translation of the origin 

is necessary. Similar to the Spectral Projection Model, it will be shown that translation of the 

origin yields better results for ellipses with larger axial ratios and larger major axes. 

 

6.5  Derivation of Direct SPM from SPM assuming Line Sources 

From equation, DSPM can be generalized from a circular cylinder to any geometry.  Each 

eigenfunction can be represented as an eigenvector in a matrix equation. So, each eigenvector is 

a solution to the TMz scattering problem, and any incident waveform may be decomposed into a 

set of weighted eigenfunctions distributed across the entirety of the object’s surface. 

The electric field boundary condition for a PEC object was given previously as 

𝐸𝑖𝑛𝑐(𝜌, 𝜙) = −𝐸𝑠𝑐𝑎𝑡(𝜌′, 𝜙′)                                                                                                            (6 − 35) 

The EFIE for 2D infinitely long cylinders aligned with the Z-axis excited by a TMz wave 

was given in equation (2 − 15). 

𝐸𝑧
𝑖𝑛𝑐(𝜌) =

𝜔𝜇

4
∮ 𝐽𝑧(𝛽|𝝆′|)𝐻0

(2)(𝛽|𝝆 − 𝝆′|)𝑑𝑐′

𝐶

                                                                          (2 − 15) 

The left-hand side is generated by the external stimulus (incident fields) and right side of the 

equation is the scattered field from the unknown induced current  𝐽(𝜌′, 𝜙′) which is embedded in 

the integral on the right. 

The EFIE can be discretized and applied to a set of known observation points  (𝜌𝑚, 𝜙𝑚) 

on the boundary, and be written in matrix form (6 − 36). 

[

|
𝐸𝑖(𝜌𝑚)
|

] =
𝜔𝜇

4
[

… … …

… 𝐻0
(2)(𝛽|𝝆𝒎 − 𝝆𝒏

′ |) …
… … …

] [

|

𝐽 (𝜌𝑛
′ , 𝜙𝑛′)
|

]                                                    (6 − 36) 
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where (𝜌𝑚, 𝜙𝑚) are a set of observation points on the boundary and (𝜌𝑛, ′𝜙𝑛′) are the locations 

of the induced current sources. One can solve this matrix equation for the vector corresponding 

to the unknown induced currents [

|

𝐽 (𝜌𝑛
′ , 𝜙𝑛′)
|

].  

To solve this equation, one begins with an external stimulus that is a line source aligned 

with the conductor axis (in the Z-direction) as illustrated in Figure 6-5. 

 

 

Figure 6-5: Infinitely long electric line source at coordinates (𝜌0,𝜙0) near an infinitely long 

circular cylinder. 

 

From Chapter 5 the incident electric field from a line source at originating at location 

(𝜌0′, 𝜙0′) and measured at (𝜌𝑚, 𝜙𝑚) may be described using a zeroth order Hankel function of 

the second kind, 

[

|
𝐸𝑖𝑛𝑐(𝜌𝑚)

|
] =

𝛽2𝐼𝑒
4𝜔𝜀

[

|

𝐻0
(2)

 (𝛽|𝝆𝟎′ − 𝝆𝒎|)

|

]                                                                                   (5 − 69) 

where the magnitude of the current can be rewritten as 𝐼0. 

𝐼0 = −
𝛽2𝐼𝑒
4𝜔𝜀

                                                                                                                                         (6 − 37) 
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Using the addition theorem, the incident electric field from an external line source can be 

decomposed into two matrices which represent the H-spectral signature of the incident line 

source [

|

𝐻𝑘
(2)(𝛽|𝝆𝟎′|)

|

] projected onto the J-spectral signature of the observation points (𝜌𝑚, 𝜙𝑚). 

[

|
𝐸𝑖𝑛𝑐(𝜌𝑚)

|
] = 𝐼0 [

… … …
… 𝐽𝑘(𝛽|𝝆𝒎|) …
… … …

]

𝑇

[

|

𝐻𝑘
(2)(𝛽|𝝆𝟎′|)

|

]                                                           (6 − 38) 

The H-spectral signature of a single external line source [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼0

|

] at location (𝜌0′, 𝜙0′) is given 

in equation (6 − 39). This is found by taking equation (5 − 69) and then setting 𝐼0 =
𝛽2𝐼𝑒

4𝜔𝜀
. 

[

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼0

|

] = 𝐼0

[
 
 
 
 
 𝐻−𝐾

(2)
 (𝛽|𝝆𝟎′|𝑒

𝑗𝑘ϕ0′

|

𝐻𝑘
(2)

 (𝛽|𝝆𝟎′|𝑒
𝑗𝑘ϕ0′

|

𝐻𝐾
(2)

 (𝛽|𝝆𝟎′|𝑒
𝑗𝑘ϕ0′]

 
 
 
 
 

                                                                                              (6 − 39) 

Multiple line sources radiating from a set of infinitely long cylinders each contribute 

individually to the H-spectral signature of the electric field on the surface of the conducting 

cylinder. Illustrated in the Figure 6-6 is a circular cylinder excited by multiple line sources near 

its surface at angles  ϕ0, ϕ1, and ϕ2. 

 

 

Figure 6-6: Three external line sources outside a circular cylinder. 
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If these electric line sources are moved close to the surface of the conductor, each 

becomes a virtual current on the surface. Every virtual current generates its own equal and 

opposite induced current. The Figure 6-7 shows three virtual current sources on the surface of a 

circular cylinder. 

 

 

Figure 6-7: Three external line sources moved to a distance 𝜀 outside a circular cylinder. 

 

The H-spectral signature of a single virtual current source at surface location (𝜌𝑛′, 𝜙𝑛′) 

can be represented as a column vector, [

|
ℎ𝑛
|
]. 

[

|
ℎ𝑛
|
] =

[
 
 
 
 
 𝐻−𝐾

(2) (𝛽|𝝆𝒏′|)𝑒
𝑗𝑘ϕ𝑛′

|

𝐻𝑘
(2) (𝛽|𝝆𝒏′|)𝑒

𝑗𝑘ϕ𝑛′

|

𝐻𝐾
(2) (𝛽|𝝆𝒏′|)𝑒

𝑗𝑘ϕ𝑛′
 ]
 
 
 
 
 

                                                                                                        (6 − 40) 

When multiple line current sources are moved to the surface of the cylinder, the weighted 

sum of the H-spectral signatures of the virtual current sources from N line sources is given in 

equation (6 − 41). 

[

|
𝑖̂𝑠𝑠,𝑣𝑖𝑟,𝑠𝑢𝑚

|
] =

[
 
 
 
 
|
|
ℎ0
|
| ]
 
 
 
 

𝛼0 + 

[
 
 
 
 
|
|
ℎ1
|
| ]
 
 
 
 

𝛼1       +    … +            

[
 
 
 
 
|
|

ℎ𝑁−1
|
| ]
 
 
 
 

𝛼𝑁−1                                           (6 − 41) 

The weighting factors of the virtual current sources are 𝛼𝑛 ∈ {𝛼0, 𝛼1, … , 𝛼𝑁−1}. 
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[

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] =

[
 
 
 
 
𝛼0
|
𝛼𝑛
|

𝛼𝑁−1]
 
 
 
 

                                                                                                                           (6 − 42) 

These coefficients 𝛼𝑛 are the magnitude and phase of the virtual current sources. 

This is analogous to SPM in Chapter 5 using equation (5 − 69) to aggregate the spectral 

signatures of multiple line sources [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒

|
] into a single matrix. The sum of the H-spectral 

signatures of multiple virtual line current sources at coordinates 𝜙′ = 𝜙𝑛′ for 𝑛 ∈ {0,1, 𝑁 − 1} 

equals the H-spectral signature of the total virtual electric current. See equation (6 − 43). 

 

[

|
𝑖̂𝑠𝑠,𝑣𝑖𝑟,𝑠𝑢𝑚

|
]  =  

[
 
 
 
 
 𝐻−𝐾

(2) (𝛽|𝝆𝟎′|)𝑒
𝑗𝑘ϕ0′

|

𝐻𝑘
(2) (𝛽|𝝆𝟎′|)𝑒

𝑗𝑘ϕ0′

|

𝐻𝐾
(2) (𝛽|𝝆𝟎′|)𝑒

𝑗𝑘ϕ0′
 ]
 
 
 
 
 

𝐼0  +   

[
 
 
 
 
 𝐻−𝐾

(2) (𝛽|𝝆𝟏′|)𝑒
𝑗𝑘ϕ1′

|

𝐻𝑘
(2) (𝛽|𝝆𝟏′|)𝑒

𝑗𝑘ϕ1′

|

𝐻𝐾
(2) (𝛽|𝜌1′|)𝑒

𝑗𝑘ϕ1′
 ]
 
 
 
 
 

𝐼1  + ⋯ 

 +  

[
 
 
 
 
 𝐻−𝐾

(2)
 (𝛽|𝝆𝑵−𝟏′|)𝑒

𝑗𝑘ϕ𝑁−1′

|

𝐻𝑘
(2) (𝛽|𝝆𝑵−𝟏′|)𝑒

𝑗𝑘ϕ𝑁−1′

|

𝐻𝐾
(2) (𝛽|𝝆𝑵−𝟏′|)𝑒

𝑗𝑘ϕ𝑁−1′
 ]
 
 
 
 
 

𝐼𝑁−1                                                                                              (6 − 43) 

If the external stimulus is an electric field plane wave 𝐸0 from a distant electric line 

source 𝐼0, then the H-spectral signature of the incident electric field is given in equation (6 −

44). 

[

|

𝑖𝑠𝑠,𝑣𝑖𝑟,𝐼0
𝑓𝑓

| 

] = 𝐸0

[
 
 
 
 
 
 𝑒
−𝑗𝐾(ϕ0′−

𝜋
2
)

|

𝑒𝑗𝑘(ϕ0′−
𝜋
2
)

|

𝑒𝑗𝐾(ϕ0′−
𝜋
2
)
 ]
 
 
 
 
 
 

                                                                                                         (6 − 44) 

For DSPM, this equation is similar to equation (5 − 72) except that the equivalent far-field 

spectral signature originates from the virtual sources on the conductor and not a line source at 
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infinity.  This is because DSPM differs from SPM in that the virtual currents are at the surface of 

the conductor. 

The weighted sum of the H-spectral signatures of the virtual current sources set up a 

surface current equivalent to that of the H-spectral signature of an incident electric field. The 

electric field produces induced current sources that are equal and opposite to the virtual current 

sources.  See Figure 6-8. 

  

Figure 6-8: Illustration of virtual current sources on an infinitely long circular cylinder in blue, 

and induced surface line currents in red. Surface and induced currents are in opposite directions. 

The cylinder is in green. 

 

 In DSPM the far-field H-spectral signature of an incident line source(s) can be set equal 

to the H-spectral signature of a set of virtual currents on the surface of the conductor.  An 

illustration of a line source in the far-field generating an external plane wave incident upon an 

infinitely long PEC cylinder is shown in Figure 6-9.  The DSPM equation is also shown in the 

figure. 
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Figure 6-9: External current source, virtual current sources, and H-spectral signature of the 

incident plane wave set equal to the weighted sum of the H-spectral signatures of the virtual 

currents. 

 

The magnitude and phase of each induced current source equals the weighting factor 

𝛽𝑛 ∈ {𝛽0, 𝛽1, … , 𝛽𝑁−1}. The vector representation of the magnitude and phase of the sum of the 

induced currents [

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] may be written as equation (6 − 45). 

[

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] =

[
 
 
 
 
𝛽0
|
𝛽𝑛
|

𝛽𝑁−1]
 
 
 
 

                                                                                                                           (6 − 45) 

where 𝛼𝑛 = −𝛽𝑛. 

The left side of the discretized EFIE represents the incident field. For a single line current 

source 𝐼0 at (𝜌0′, 𝜙0′), [

…
𝐸𝑖𝑛𝑐(𝜌𝑚)

. .
] at observation point (𝜌𝑚, 𝜙𝑚) equals the H-spectral signature 

of the external source projected onto the J-spectral signature of the observation points. 
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[

|
𝐸𝑖𝑛𝑐(𝜌𝑚)

|
] = 𝐼0 [

⋯ ⋯ ⋯
⋯ 𝐽𝑘  (𝛽|𝝆𝒎|) ⋯
⋯ ⋯ ⋯

]

𝑇

[

|

𝐻𝑘
(2)

 (𝛽|𝝆𝟎′|𝑒
𝑗𝑘ϕ0′

|

]                                               (6 − 46) 

For a line current near the surface of the conductor, one can write the left side of the 

EFIE equation for the H-spectral signature of a single virtual line current source [

|
ℎ𝑛
|
], 

[

|
𝐸𝑖𝑛𝑐(𝜌𝑚)

|
] = [

⋯ ⋯ ⋯
⋯ 𝐽𝑘  (𝛽|𝝆𝒎|) ⋯
⋯ ⋯ ⋯

]

𝑇

[

|
ℎ𝑛
|
]                                                                                (6 − 47) 

where [

|
ℎ𝑛
|
] is the H-spectral signature of a single virtual current source defined in equation 

(6 − 40).  This equation is equivalent to the incident electric field [
|

𝐸𝑖𝑛𝑐
|
]written as the H-

spectral signature of the incident current source projected onto the J-spectral signature of the 

observation point (𝜌𝑚, 𝜙𝑚). 

[
|

𝐸𝑖𝑛𝑐
|
] = [

… … …
… 𝐽𝑘  (𝛽|𝝆𝒎|) …
… … …

]

𝑇

[

|
𝑖𝑠𝑠,𝑖𝑛𝑐
|
]                                                                 𝑆𝑃𝑀         (6 − 48) 

DSPM decomposes the HSS of the incident sources into the weighted sum of the HSS of 

the virtual currents. By finding the virtual currents we can easily calculate the induced currents 

which are equal and opposite.  Once the induced currents are calculated, one may calculate the 

far-field pattern.  The far-field patten is the Fourier transform of the J-spectral signature of the 

induced currents. These weights are equal to the virtual current source vector and negative the 

induced current vector. 

The steps for calculating the induced current and therefore the far-field pattern using 

DSPM can be summarized in the block diagram below in Figure 6-10. 
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Figure 6-10: Block diagram of steps for calculating currents through DSPM process. 

 

One may write the eigenvector matrix equation for the electric field boundary conditions 

as equation (6 − 49) to ensure that the B.C.s are satisfied.  Because the virtual currents represent 

eigenvectors of eigenfunction solutions to the boundary value scattering problem, we can also 

write [
|

𝐸𝑖𝑛𝑐
|
] as a weighted sum of a set of eigenfunctions.  This is the DSPM equation shown in 

addition theorem form. 

[

… … …
… 𝐽𝑘  (𝛽|𝝆𝒎|) …
… … …

]

𝑇

[

|
𝑖𝑠𝑠,𝑖𝑛𝑐,𝑠𝑢𝑚

|
] =  [

⋯ ⋯ ⋯
⋯ 𝐽𝑘  (𝛽|𝝆𝒎|) ⋯
⋯ ⋯ ⋯

]

𝑇

[

|
𝑖𝑠𝑠,𝑣𝑖𝑟,𝑠𝑢𝑚

|
]                       (6 − 49) 

From equation (6 − 49), for a single line source, the H-spectral signature of the incident 

line current can be set equal to the weighted sum of the H-spectral signatures of the virtual 

currents. The weighting factors are the coefficients of the incident line current and virtual 

currents. 
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[

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒏,𝒗𝒊𝒓|) …

… … …
] [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] = [

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒏,𝒊𝒏𝒄|) …

… … …
] [

|
𝑖̂𝑖𝑛𝑐,𝑠𝑢𝑚

|
]                      (6 − 50) 

Incident current sources can be either one or multiple external sources as explained in 

Figure 6-11. 

 

 

Single external line source (near field)
 Multiple external line sources (near field)

             Single external line source (far − field) or plane wave
→ [

|
𝑖̂𝑖𝑛𝑐,𝐼𝑒
|
]                  

 

 

Figure 6-11:  External incident line sources using DSPM. 

 

The general DSPM equation for any incident sources is given in equation (6 − 51), 

Figure 6-12, and reference [54]. 

 

 

[

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒏,𝒗𝒊𝒓|) …

… … …
] [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] = [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝑠𝑢𝑚

|
]                                                (6 − 51) 

       Weighted sum of the                               H-Spectral Signature          

       H-Spectral Signatures                             of Incident 

       of the Virtual Sources                             Current Sources      

 

Figure 6-12: General DSPM equation for incident sources. 

 

Any external source can be represented by the weighted sum of virtual sources. So, an 

equivalent electric field waveform in matrix equation (6 − 51) can be generated by a set of 

virtual sources with appropriate magnitudes, phases, and locations on the surface of the 

conductor. For example, the excitation generated by the virtual sources can be the equivalent of 

an incident electric field plane wave 𝐸0 from the far-field impingent on the surface of the 
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cylinder at observation points (𝜌𝑚, 𝜙𝑚). The virtual and induced current sources will occupy the 

same surface coordinates pairs on the surface of the conductor. The excitation waveform may 

also be any arbitrary incident electric field pattern generated by N external line sources. The 

virtual line sources on the surface of the cylinder can also generate the same arbitrary electric 

field pattern. For example, the weighted sum of the H-spectral signature of the virtual currents 

equals the equivalent spectral signature of an electric plane wave produced by incident sources as 

shown in equation (6 − 52) in Figure 6-13. 

 

[

… … …

… 𝐻𝑘
(2)(𝛽|𝝆𝒏,𝒗𝒊𝒓|) …

… … …
] [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] = [

|

𝑖𝑠𝑠,𝑖𝑛𝑐,𝑠𝑢𝑚
𝑓𝑓

| 

]                                               (6 − 52) 

       Weighted sum of the                               H-Spectral Signature          

       H-Spectral Signatures                             of Incident Far-Field 

       of the Virtual Sources                             Current Source      

 

Figure 6-13: General DSPM equation for far-field sources. 

 

The actual eigenfunctions of equation (6 − 52) depend upon the geometry of the object being 

analyzed. 

A real incident plane can only be represented by a vector of infinite dimensional space.  

But to solve any scattering problem computationally, the object and the plane wave both must be 

discretized and limited to a finite number of modes. Depending on the largest radius of the 

object, the value of the Hankel function increases exponentially after a certain number of modes 

𝐾. To solve a circular cylinder for its induced currents, both sides of the DSPM equation are 

multiplied by the inverse of the diagonal matrix 𝐻𝑘
(2)(𝛽|𝝆|).  Because the inverse diagonal 

matrix is made up of 1/𝐻𝑘
(2)(𝛽|𝝆|) elements, the magnitude of the 1/𝐻𝑘

(2)(𝛽|𝝆|)|𝑘→∞ = 0 for 

higher order modes 𝑘. 

Even though a plane wave occupies infinite space, when it is multiplied by1/𝐻𝑘
(2)(𝛽|𝝆|), 

its higher order modes are filtered out.  So, one can truncate the vector representation of the 

plane wave to a finite ±𝐾 due to this lowpass filtering process and not affect the solution.  The 
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inverse of the H-spectral signature subspace matrix exhibits a lower cut-off effect for a value of 

𝐾. 

In DSPM the cut-off 𝐾 of the lower order modes is determined by the largest dimension 

of the object.  Inv of 𝐻𝑘
(2)(𝛽|𝝆|)causes the magnitude of the H-spectral signature to cut off at 

mode number 𝐾 when 𝐻𝑘
(2)(𝛽|𝝆|)starts to grow large.  This is where the lowpass filter effect 

begins to occur. 

For the initial analyses of the ellipse using DSPM, the lowpass filter effect became 

pronounced because the smallest dimension of the ellipse determined the cutoff mode rendering 

many of the higher order modes insignificant. By translating the origin, the largest dimension 

was set with the Hankel function.  This was necessary because Bessel functions do exhibit this 

lowpass filter effect. 

𝐻𝑘
(2)(𝛽|𝝆|)is set to the largest dimension sot it determines the cut-off of the modes and 

1/𝐻𝑘
(2)(𝛽|𝝆|)|𝑘→∞ = 0.  So, we get the lowpass filter effect on the largest dimension using the 

two-vector model. 

We can take any waveform that is infinite space and this property of the Hankel function 

provides a built-in filtering of the higher order modes.  The spectral signatures are all band 

limited and do not need to occupy infinite dimensional space.  The incident waveforms can be 

any configuration of waves, or far-field or near field waves, and for modes higher than the 

cutoff, the H-spectral signature matrix will filter out all the energy over the cut-off mode. 

All the higher modal energy in the incident field does not affect the solution of the 

problem.  Modes that are high frequency terms get filtered out.  So, if the incident sources are a 

set of plane waves over a range of angles 𝜙′ = {𝜙0′, 𝜙1′, … , 𝜙𝑃′}, it does not exhibit an infinite 

spectrum, but is band limited and the higher order energy goes to zero.  The scattering process 

using DSPM is independent of the higher order modes. 

Solving for the boundary conditions are the initial step to the DSPM solution.  Scattered 

fields induced by the induced currents and incident fields due to incident currents. DSPM 

replaces the incident sources by virtual sources.  In SPM the incident electric field is found when 

one projects the H-spectral signature of the source points onto the J-spectral signature of the 

observation points at the surface.  DSPM uses equation 6-52 to find the equivalent electric field 

due to virtual sources. Then one can project the H-spectral signature of the virtual current 
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sources onto the J-spectral signature of the observation points and set it equal to H-spectral 

signature of the incident sources projected onto the J-spectral signature of the observation points.  

Once the equation is solved for the virtual currents, the amplitude of the virtual currents equals 

the amplitude of the induced currents. 

 

6.6  Spectral Features of 2D Circular Cylinders excited by TMz Waves using DSPM 

The spectral signature of circular cylinders varies according to the radius of the cylinder 

cross section. For circular cylinders, the number of modes in the spectral signature increases with 

the radius of the cylinder. The cylinder exhibits a low-pass filter pattern, and the modal 

magnitudes decrease for higher order spectral modes. This is due to the addition theorem product 

𝐻𝑘
(2)(𝛽|𝝆|)𝐽𝑘(𝛽|𝝆′|) → 0 as modes 𝑘 → ∞. See Figures 6-14 and 6-15. 

 

 

Figure 6-14: Comparison of spectral signature and far-field pattern of infinitely long circular 

cylinder of 𝜌 = .5𝜆 using MOM, SPM and DSPM for TMz wave. 
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a) 

 

b) 

Figure 6-15: a) Comparison of spectral signature and far-field pattern of infinitely long circular 

cylinder of 𝜌 = 1𝜆 using MOM, SPM and DSPM for TMz wave. b) Comparison of spectral 

signature and far-field pattern of infinitely long circular cylinder of 𝜌 = 4𝜆 using MOM, SPM 

and DSPM for TMz wave. 
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Figure 6-14 and Figure 6-15 make clear that besides broadening the spectral signature, 

increasing the radius of the cylinder also narrows the angular bandwidth of the far-field pattern. 

Comparing the far-field pattern between radii 𝜌 = .5𝜆  and  𝜌 = 4𝜆, the angular bandwidth 

decreased from about 50 degrees to 10 degrees. In order to achieve proper resolution of the peak, 

the number of modes had to be increased from 32 to 64 in the calculations. The sharpening of the 

peaks and greater directivity was made possible by the increase in the number of harmonics in 

the spectral signature. 

This lowpass filtering effect resembles the lowpass filtering caused by introduction of 

basis functions when using the Method of Moments. For MOM pulse functions, the spatial 

frequency domain representation was a sinc function. The MOM Fourier domain bandwidth of 

these basis functions was broader for narrower spatial lengths, similar to the above results for 

DSPM. 

When less basis functions were used to cover the spatial domain of the scattering 

problem, wider basis functions were needed. The bandwidth of the wider pulses was smaller than 

the narrow pulses. This decrease in spatial frequency bandwidth came at the cost of less 

resolution for the current distribution pattern. The resolution of the far-field pattern resolution 

was also adversely affected by these changes. 

 

6.7  Translation of the Origin for DSPM Solutions 

The collective spectral signature of the actual sources equals the collective spectral 

signature of the sources on the surface. One may use the convolution principle to examine 

general 2D objects generated by circular cylinders of different radii to examine this property of 

DSPM. Just as in SPM, translation of the origin enables the Direct Spectral Projection Model to 

be used to analyze large axial ratio objects with good convergence of the addition theorem. TMz 

waves incident on an arbitrarily shaped cylinder will only be explained, but the results are similar 

for TEz waves as well. For an induced electric current, [

…
𝑖̂𝑖𝑛𝑑
. .
], the columns of the eigenvector 

matrix correspond to the H-spectral signature of the virtual currents at 𝜙𝑁𝑆different points (6 −

53). 
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[

| | |

| 𝐻𝑘
(2)(𝛽|𝝆𝒏′|) |

| | |

] =

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎′|)𝑒
𝑗𝐾𝜙0′ ⋯ ⋯ ⋯ 𝐻−𝐾

(2)(𝛽|𝝆𝑵𝑺−𝟏′|)𝑒
𝑗𝐾𝜙𝑁𝑆−1′

: : : : :
: : : : :
: : : : :

𝐻𝐾
(2)(𝛽|𝝆𝟎′|)𝑒

−𝑗𝐾𝜙0′ ⋯ ⋯ ⋯ 𝐻𝐾
(2)(𝛽|𝝆𝑵𝑺−𝟏′|)𝑒

−𝑗𝐾𝜙𝑁𝑆−1′]
 
 
 
 
 

 

(6 − 53) 

The H-spectral signature subspace [

| | |

| 𝐻𝑘
(2)(𝛽|𝝆𝒏′|) |

| | |

] may be rewritten as the matrix equation 

in (6 − 54). 

[

| | |

| 𝐻𝑘
(2)(𝛽|𝝆𝒏′|) |

| | |

] = ([

… … …
… �̅� …
… … …

] [

| | |

| 𝐻𝑘
(2)(𝛽|𝝆𝒏′|) |

| | |

]

𝐻

)

𝐻

[

… … …
… �̅� …
… … …

]               (6 − 54) 

Substituting equation (6 − 54) into equation (6 − 51), one gets (6 − 55).  

([

… … …
… �̅� …
… … …

] [

| | |

| 𝐻𝑘
(2)((𝛽|𝝆𝒏′|) |

| | |

]

𝐻

)

𝐻

[

… … …
… �̅� …
… … …

] [

…
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
. .

] = [

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝑠𝑢𝑚

. .
]              (6 − 55) 

When the geometry of the object can be generated by convolving two constant magnitude 

vectors 𝝆𝒂 and 𝝆𝒃 rotating in opposite directions, as explained in Chapter 5 and Appendix M, 

equation (6 − 56) may be expanded using the following property of a Hadamard product ⊙. 

([

… … …
… �̅� …
… … …

] [

| | |

| 𝐻𝑘
(2)((𝛽|𝝆𝒃|) |

| | |

]

𝐻

⊙ [

… … …
… �̅� …
… … …

] [

… … …
… 𝐽𝑘(𝛽|𝝆𝒂|) …
… … …

]

𝐻

)

𝐻

⋅ 

[

… … …
… �̅� …
… … …

] [

…
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
. .

] = [

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝑠𝑢𝑚

. .
]                                                                                           (6 − 56) 

This technique enables one to analyze elliptically shaped two-dimensional cylinders with large 

axial ratios with good accuracy using DSPM. The following results validate this technique.  

Figure 6-16 and Figure 6-17 show current flows for TMz waves in the same direction as 

the electric field. 
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Figure 6-16: Illustration of the Z-direction of current versus electric field for a TMz incident 

wave vertical view. 

 

 

Figure 6-17: Illustration of the Z-direction of current versus electric field for a TMz incident 

wave cross sectional view. 
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Results for TMz incident waves for cylinders of axial ratios of 
𝑎

𝑏
= 5  and 

𝑎

𝑏
= 10 are 

calculated and plotted in Figure 6-18 and Figure 6-19. The calculations were performed using the 

Method of Moments, Spectral Projection Model and Direct Spectral Projection Model, and are in 

good agreement. 

 

a)   b) 

 

c) d) 

Figure 6-18: a) Infinitely long elliptical cylinder of axial ratios  
𝑎

𝑏
= 5. b) Plot of surface current 

around an infinitely long circular cylinder using DSPM, SPM and MOM for TMZ wave. 

c) Spectral plot of modes using DSPM, SPM, and MOM d) Far-field pattern using DSPM, SPM 

and MOM. 
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  a)  b) 

 

  c) d) 

Figure 6-19: a) Infinitely long elliptical cylinder of axial ratios  
𝑎

𝑏
= 10. b) Plot of surface current 

around an infinitely long circular cylinder using DSPM, SPM and MOM for TMZ wave. c) 

Spectral plot of modes using DSPM, SPM, and MOM. d) Far-field pattern using DSPM, SPM 

and MOM. 

 

The main lobe and side lobes of the far-field pattern of an antenna scatterer are 

determined by the size of the scatterer with respect to the excitation wavelength, the geometry of 

the scatterer, and the shape of the excitation waveform. For the same TMz plane wave excitation 

on different elliptical cylinders using DSPM, larger structures produce wider spectral signature 

bandwidths as evidenced by the difference in plots from Figure 6-18c, 6-19c, and 6-20. When the 

size of the major axis is increased, the spectral signature broadens and thus the number of modes 

also increases. 
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a)   b) 

Figure 6-20: Comparison of spectral plots of infinitely long elliptical cylinder of axial ratios a) 

𝑎

𝑏
= 5  and b)  

𝑎

𝑏
= 10 using DSPM for TMZ wave excitation. 

 

For axial ratios 
𝑎

𝑏
= 5 and 

𝑎

𝑏
= 10, the radiation lobe(s) are aligned with the minor axis of 

the ellipse where the average current distribution is greatest. These lobes are at 90o and 270o for a 

plane wave angle of incidence of 90o. See the far-field plots in Figures 6- 18 and 6-19. Higher 

order modes in the spectral signature were the major contributors to the current spikes shown in 

the current distribution. Current spikes along the major axis are “end effects” due to the 

curvature of the scattering object, where a greater number of near-field interactions occur. The 

end effect in the current distribution of the ellipse with axial ratio 
𝑎

𝑏
= 10 in Figure 6-21b is 

much greater than that in the ellipse with the lower axial ratio 
𝑎

𝑏
= 5 in Figure 6-21a. Current 

spikes do not appear in the current distribution pattern of a circular cylinder because of its 

uniform geometry and curvature (Figure 6-4b). 

The higher axial ratio and larger major axis, i.e. 
𝑎

𝑏
= 10 compared to 

𝑎

𝑏
= 5, causes the 

far-field pattern of an ellipse to exhibit narrower major lobes in Figure 6-16 versus Figure 6-15. 

The change in magnitude and phase appears at the ends where the major axis intersects the 

ellipse, due to the greater spiking effect. 
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a) 

 

b) 

Figure 6-21: a) Linear plot of surface current on an infinitely long elliptical cylinder using 

DSPM  
𝑎

𝑏
= 5. b) Linear plot of surface current on an infinitely long elliptical cylinder using 

DSPM  
𝑎

𝑏
= 10.  

 

Results for TEz incident waves incident on cylinders of axial ratios of  
𝑎

𝑏
= 5  and 

𝑎

𝑏
= 10 

are calculated and plotted in Figure 6-24 and Figure 6-25. These results for incident magnetic 

field waves are similar to the waveform patterns of TMz waves. Note the current flow for the TEz 

excitation is azimuthal around the contour of the cylinder, as shown in Figure 6-22 and Figure 6-

23. 
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Figure 6-22: Illustration of the azimuthal direction of current around the contour of the cylinder 

versus magnetic field for a TEz incident wave vertical view. 

 

 

Figure 6-23: Illustration of the azimuthal direction of current around the contour of the cylinder 

versus magnetic field for a TEz incident wave cross sectional view. 
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a)   b) 

 

 

c) d) 

Figure 6-24: a) Infinitely long elliptical cylinder of axial ratio 
𝑎

𝑏
= 5. b) Plot of surface current 

around an infinitely long elliptical cylinder using DSPM, SPM and MOM for TEZ wave. c) 

Spectral plot of modes using DSPM, SPM, and MOM d) Far-field pattern using DSPM, SPM 

and MOM. 
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a)  b) 

 

c) d) 

Figure 6-25: a) Infinitely long elliptical cylinder of axial ratio 
𝑎

𝑏
= 10. b) Plot of surface current 

around an infinitely long elliptical cylinder using DSPM, SPM and MOM for TEZ wave. c) 

Spectral plot of modes using DSPM, SPM, and MOM d) Far-field pattern using DSPM, SPM 

and MOM. 

 

     The spectral signature bandwidth for TEz excitation resembles that of the ellipses for TMz 

excitation. The side of the ellipse subject to the transverse electric field radiation experiences the 

greatest current flow, and but for this TEz case it emits a front and back electric field radiation 

lobe. Calculation of the current distribution and phase in Figures 6-21 and 6-26 show the 

difference in current patterns for TMz and TEz excitation. The spikes in the current for TEz 

incidence mimic those of the elliptical cylinders excited by TMz waves. However, the magnitude 
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and phase of the current are significantly different. Recall that the current flow for TEz waves is 

azimuthal around the contour, not along the axis of the cylinder. Also, the phase of the current 

for the TEz incidence on the radiated side is positive, but for the TMz incidence it is mostly 

negative. 

 

Figure 6-26: Linear plot of surface current and phase on an infinitely long elliptical cylinder 

using DSPM for TEz incidence and axial ratio  
𝑎

𝑏
= 10. 

 

6.8  Excitation of Elliptical Cylinders using DSPM Model by Plane Wave Excitation 

In this section excitation of elliptical cylinders of different major and minor axes and 

axial ratios are calculated excited by TMz plane waves to examine the modal spectrum of these 

geometries using DSPM. 

Eight plots are calculated in Figure 6-27 and Figure 6-28. Increasing the size of the major 

axis from 𝑎 = 1𝜆  to 𝑎 = 2𝜆  and 𝑎 = 4𝜆 while keeping the minor axis at 𝑏 = .2𝜆  increases the 

bandwidth of the spectral signature. Comparing the plots of ellipses with 𝑎 = 2𝜆 and  𝑏 = .2𝜆 

with 𝑎 = 2𝜆  and 𝑏 = .4𝜆, increasing the size of the minor axis does not increase the bandwidth 

of the spectral signature.  
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  a)         b) 

 

 c)         d) 

Figure 6-27: Plots of modal spectrum for elliptical cylinders 
𝑎

𝑏
= 10 and 

𝑎

𝑏
= 20 under TMz plane 

wave excitation.  a, c) Illustrations of ellipses and b, d) corresponding J-spectral signatures. 
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 a)         b) 

        

 c)         d) 

Figure 6-28: Plots of modal spectrum for elliptical cylinders 
𝑎

𝑏
= 5 under TMz plane wave 

excitation. a, c) Illustrations of ellipses and b, d) corresponding J-spectral signatures. 

 

6.9  Excitation of Elliptical Cylinders using DSPM Model for Different Incidence Angles 

Excitation of an elliptical cylinder with axial ratio of 
𝑎

𝑏
= 5 by a TMz wave at an angle of 

𝜙0 = 45𝑜 significantly changes its current distribution from normal incidence, eliminating the 

spike in the far-end of the cylinder, and increasing the spike at the end closest to the impingent 

wavefront. This redistribution of current causes the two major sidelobes to radiate almost equally 

in a direction 45𝑜 to the major axis away from the wavefront. This effect is shown in Figure 6-

29. The opposite effect results if the ellipse is radiated by a TMz wave at 𝜙0 = 135𝑜, as shown 
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in Figure 6-30. Incidence from an angle of 𝜙0 = 0
𝑜 in Figure 6-31 yields a more directional 

pattern away from the incident wave. 

 

 

a) 

 

 b)  c) 

Figure 6-29: Infinitely long elliptical cylinder TMz wave angle of incidence 45o. a) Current 

distribution. b) J-spectral signature modal distribution. c) Far-field pattern linear plot. 
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a) 

 

 b)  c) 

 

Figure 6-30: Infinitely long elliptical cylinder TMz wave angle of incidence 135o. a) Current 

distribution. b) J-spectral signature modal distribution. c) Far-field pattern linear plot. 

 

    Besides circular and elliptical cylinders, applying the two-vector model to DSPM also allows 

one to calculate the scattering pattern of arbitrarily shaped PEC cylinders subjected to any 

incident electric or magnetic field. Some of these results are discussed next. 



 

206 

 

a) 

 

 b)  c) 

Figure 6-31: Infinitely long elliptical cylinder TMz wave angle of incidence 0o. a) Current 

distribution. b) J-spectral signature modal distribution. c) Far-field pattern linear plot. 

 

6.10  Validation of the DSPM Model for Arbitrary Shaped Cylinders 

An infinitely long 2D cylinder with random corrugations, its current distribution, and its 

spectral and far-field patterns are illustrated in Figure 6-32 and Figure 6-33. As shown in the 

results for TMz wave excitation, the current distribution, J-spectral signature, and far-field 

pattern are in good agreement. For a greater number of corrugations, the spectral signature 

necessarily grows broader in order to model the abrupt changes in the current distribution with 

angle. 
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a)   b) 

Figure 6-32: a) Infinitely long cylinder of arbitrary shape type A. b) Plot of surface current 

around an infinitely long arbitrarily shaped cylinder using DSPM and MOM for TMZ wave 

excitation. 

 

 

a) b) 

Figure 6-33: a) For an infinitely long cylinder of arbitrary shape of A under TMz excitation, J-

spectral plot of modes using DSPM and MOM. b) Far-field pattern using DSPM and MOM. 

 

 Numerous other shapes have been analyzed with DSPM and have shown good agreement 

with the Method of Moments.  The other shapes and their results are shown in Figures 6-34 to 

Figure 6-41. 
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a)  b) 

Figure 6-34: a) Infinitely long cylinder of arbitrary shape type B. b) Plot of surface current 

around infinitely long arbitrarily shaped cylinder B using DSPM and MOM for TMZ wave 

excitation. 

 

 

         

a) b) 

Figure 6-35: a) For an infinitely long cylinder of arbitrary shape type B under TMz excitation, J-

spectral plot of modes using DSPM and MOM. b) Far-field pattern using DSPM and MOM. 
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a)  b) 

Figure 6-36: a) Infinitely long cylinder of arbitrary shape type C. b) Plot of surface current 

around infinitely long arbitrarily shaped cylinder C using DSPM and MOM for TMZ wave 

excitation. 

 

         

a)  b) 

Figure 6-37: a) For an infinitely long cylinder of arbitrary shape type C under TMz excitation, J-

spectral plot of modes using DSPM, and MOM. b) Far-field pattern using DSPM and MOM. 
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a)  b) 

Figure 6-38: a) Infinitely long cylinder of arbitrary shape type D. b) Plot of surface current 

around infinitely long arbitrarily shaped cylinder D using DSPM and MOM for TMZ wave 

excitation. 

 

 

            

a)  b) 

Figure 6-39: a) For an infinitely long cylinder of arbitrary shape type D under TMz excitation, J-

spectral plot of modes using DSPM, and MOM. b) Far-field pattern using DSPM and MOM. 

 

 



 

211 

        

a)  b) 

Figure 6-40: a) Infinitely long cylinder of arbitrary shape type E. b) Plot of surface current 

around infinitely long arbitrarily shaped cylinder E using DSPM and MOM for TMZ wave 

excitation. 

 

 

          

a)  b) 

Figure 6-41: a) For an infinitely long cylinder of arbitrary shape type E under TMz excitation, J-

spectral plot of modes using DSPM, and MOM. b) Far-field pattern using DSPM and MOM. 

 

Application of DSPM for arbitrarily shaped cylinders is limited by the depth of the 

corrugations in their cross section. For deep corrugations in the cross section, the current density 

deviates from the MOM solution significantly without translation. Therefore, in these analyses 
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the corrugations were kept small compared to the radius of the cylinder. This was necessary in 

order to achieve convergence of the addition theorem and stable inversion of the matrix. 

 

6.11  Validation of the DSPM Model for Large Circular and Elliptical Cylinders 

In this section large wavelength infinitely long circular structures and elliptical structures 

with an axial ratio of 5:1 have been analyzed. Infinitely long 2D circular cylinder with radius = 

40𝜆 is illustrated in Figure 6-42 to Figure 6-45. As shown in the results for TMz wave excitation, 

the current distribution and far-field pattern for DSPM and modal analysis agree for this circular 

cylinder of radius 𝑎 = 40𝜆.  

 

Figure 6-42: Infinitely long circular cylinder of radius = 40𝜆. 
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b) 

Figure 6-43: Plot of surface current around an infinitely long circular cylinder with radius = 40𝜆 

using modal analysis and DSPM under TMZ wave excitation. 

 

 

Figure 6-44: J-spectral signature plot of an infinitely long circular cylinder with radius = 40𝜆 

using modal analysis and DSPM under TMZ wave excitation. 
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Figure 6-45: Far-field pattern of an infinitely long circular cylinder with radius = 40𝜆 using 

modal analysis and DSPM under TMZ wave excitation. 

 

For TMz wave excitation, the current distribution and far-field pattern for DSPM and 

modal analysis are in good agreement for circular cylinder of radius 𝑎 = 100𝜆 in Figure 6-46 to 

Figure 6-49. 

 

 

Figure 6-46: a) Infinitely long circular cylinder radius = 100𝜆. 
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Figure 6-47: Plot of surface current around an infinitely long circular cylinder with radius = 

100𝜆 using modal analysis and DSPM under TMZ wave excitation. 

 

 

 

Figure 6-48: J-spectral signature plot of an infinitely long circular cylinder with radius = 100𝜆 

using modal analysis and DSPM for TMZ wave excitation. 
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Figure 6-49: Far-field pattern an infinitely long circular cylinder with radius = 100𝜆 using modal 

analysis and DSPM for TMZ wave excitation. 

 

For TMz wave excitation, the current distribution, J-spectral signature, and far-field 

pattern agree for an elliptical cylinder with major axis 𝑎 = 20𝜆  and minor axis 𝑏 = 4𝜆, and 

axial ratio 
𝑎

𝑏
= 5.  Plots are shown in Figure 6-50 to Figure 6-53. 

 

 

 

Figure 6-50: Infinitely long elliptical cylinder with axial ratio 
𝑎

𝑏
= 5 and 𝑎 = 20𝜆. 
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Figure 6-51: Plot of surface current around an infinitely long elliptical cylinder with ratio 
𝑎

𝑏
= 5 

and 𝑎 = 20𝜆 using MOM and DSPM under TMZ wave excitation. 

 

 

 

 

Figure 6-52: Plot of J-spectral signature of an infinitely long elliptical cylinder with ratio 
𝑎

𝑏
= 5 

and 𝑎 = 20𝜆 using MOM and DSPM under TMZ wave excitation. 
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Figure 6-53: Plot of far field pattern for an infinitely long elliptical cylinder with ratio 
𝑎

𝑏
= 5 and 

𝑎 = 20𝜆 using MOM and DSPM under TMZ wave excitation. 

 

For TMz wave excitation, the current distribution, J-spectral signature, and far-field 

pattern for an elliptical cylinder with major axis 𝑎 = 40𝜆  and minor axis 𝑏 = 8𝜆, and axial ratio 

𝑎

𝑏
= 5, are shown in Figure 6-54 to Figure 6-57. 

 

 

Figure 6-54: Infinitely long elliptical cylinder with axial ratio 
𝑎

𝑏
= 5 and 𝑎 = 40𝜆. 
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Figure 6-55: Plot of surface current around an infinitely long elliptical cylinder with ratio 
𝑎

𝑏
= 5 

and 𝑎 = 40𝜆 using MOM and DSPM under TMZ wave excitation. 

 

 

 

Figure 6-56: Plot of J-spectral signature of an infinitely long under cylinder with ratio 
𝑎

𝑏
= 5 and 

𝑎 = 40𝜆 using MOM and DSPM under TMZ wave excitation. 
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Figure 6-57: Plot of far-field pattern for an infinitely long elliptical cylinder with ratio 
𝑎

𝑏
= 5 and 

𝑎 = 40𝜆 using MOM and DSPM under TMZ wave excitation. 

 

In Figure 6-58 to Figure 6-61, the current distribution, J-spectral signature, and far-field 

pattern agree for elliptical cylinder under TMz wave excitation with major axis 𝑎 = 90𝜆  and 

minor axis 𝑏 = 18𝜆, i.e. axial ratio 
𝑎

𝑏
= 5, are given. 

 

 

Figure 6-58: Infinitely long elliptical cylinder with axial ratio 
𝑎

𝑏
= 5 and 𝑎 = 90𝜆. 
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Figure 6-59: Plot of surface current around an infinitely long elliptical cylinder with ratio 
𝑎

𝑏
= 5 

and 𝑎 = 90𝜆 using MOM and DSPM under TMZ wave excitation. 

 

 

 

Figure 6-60: Plot of J-spectral signature of an infinitely long elliptical cylinder with ratio 
𝑎

𝑏
= 5 

and 𝑎 = 90𝜆 using MOM and DSPM under TMZ wave excitation. 
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Figure 6-61: Plot of far-field pattern for an infinitely long elliptical cylinder with ratio 
𝑎

𝑏
= 5 and 

𝑎 = 90𝜆 using MOM and DSPM under TMZ wave excitation. 

 

Application of DSPM for large cylinders is limited by the matrix size and the length of 

the cross section in wavelengths. The current density deviates from the MOM solution at the 

ends exhibiting a small spike, but the far field patterns are in better agreement except for the 

minor backscattering sidelobe. To achieve convergence of the addition theorem and stable 

inversion of the matrix, large modal limits and translation of the origin were necessary. 

 

6.12  Validation of the DSPM Model for Rectangular Cylinders 

Infinitely long square cylindrical structures with side lengths of  2𝜆 and 4𝜆 have been 

analyzed. These infinitely long 2D cylinders exhibited current distributions and far-field patterns 

similar to the Method of Moments as seen in Figure 6-62 through Figure 6-69. The DSPM failed 

to properly calculate the current spikes at the ends of the major axes. The right side DSPM plot 

of current distribution in Figure 6-63b has current end spikes closer to those calculated using 

MOM analysis, but at the expense of greater sidelobes.  The results shown are for TMz wave 

excitation using DSPM and MOM only. 

 



 

223 

 

Figure 6-62: Infinitely long square cylinder with edge length = 4𝜆. 

 

  

a)  b) 

Figure 6-63: Two plots of surface current around an infinitely long square cylinder with edge 

length = 4𝜆 using MOM and DSPM for TMZ wave excitation using different translations. a) 

Smaller translation. b) Larger translation. 
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Figure 6-64: Plot of J-spectral signature of infinitely long square cylinder (63a) with edge length 

= 4𝜆 using MOM and DSPM under TMZ wave excitation. 

 

 

 

Figure 6-65: Plot of far field pattern for infinitely long square cylinder (63a) with edge length =

4𝜆 using MOM and DSPM under TMZ wave excitation. 
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Figure 6-66: Infinitely long square cylinder with edge length = 8𝜆. 

 

  

Figure 6-67: Plot of surface current around an infinitely long square cylinder with edge length =

8𝜆 using MOM and DSPM under TMZ wave excitation. 
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Figure 6-68: Plot of J-spectral signature of infinitely long square cylinder with edge length = 8𝜆 

using MOM and DSPM under TMZ wave excitation. 

 

 

 

Figure 6-69: Plot of far field pattern for infinitely long square cylinder with edge length = 8𝜆 

using MOM and DSPM under TMZ wave excitation. 
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a)  b) 

Figure 6-70: a) Infinitely long semi-rectangular cylinder with rounded corners and edge length 

4𝜆. b) Plot of surface current around an infinitely long semi-rectangular cylinder with rounded 

corners using DSPM and MOM under TMZ wave excitation. 

 

       

a)  b) 

Figure 6-71: a) For an infinitely long semi-rectangular cylinder with rounded corners, J-spectral 

plot of modes using DSPM, and MOM. b) Far-field pattern using DSPM and MOM. 

 

6.13  Validation of the DSPM Model for Cardioid Shaped Cylinders 

Infinitely long cardioid cylindrical structures with edge length of  . 5𝜆 and has been 

analyzed. This infinitely long 2D cylinder exhibited current distributions and far-field patterns 

similar to the Method of Moments as seen in Figure 6-72 to Figure 6-75. 
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Figure 6-72: Infinitely long cardioid geometry cylinder. 

 

 

 

Figure 6-73: Plot of surface current around an infinitely long cardioid cylinder using MOM and 

DSPM for TMZ wave excitation. 
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Figure 6-74: Plot of J-spectral signature of an infinitely long cardioid cylinder using MOM and 

DSPM for TMZ wave excitation. 

 

  

Figure 6-75: Plot of far field pattern for an infinitely long cardioid cylinder using MOM and 

DSPM for TMZ wave excitation. 

 

Application of DSPM for cardioid cylinders is limited by the indentation and the length 

of the cross section in wavelengths. To achieve convergence of the addition theorem and stable 

inversion of the matrix, translation of the origin was necessary again. 

 

6.14  Comparison Matrix Inversion Speed for DSPM Model vs. Method of Moments 

Data comparing the speed of populating and inverting matrices using the Method of 

Moments and DSPM are shown in Table 6-1. Ellipses of axial ratio 
𝑎

𝑏
= 4 were analyzed. The 

results are given for TMz wave excitation, and an equal number of source/observation points. 
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The sampling ratio (SR) helped stabilize the matrices used in DSPM. The results of DSPM 

compared faster against MOM for both population of the matrices and inversion. 

 

Table 6-1: Timing Analysis of DSPM vs. MOM for Populating and Inverting Matrices 

Major Axis 

Length 

MOM 

POP Timing 

DSPM 

POP Timing 

MOM 

INV Timing 

DSPM 

INV Timing 

Inversion 

Time Ratio 

20 3.1643     1.3286     0.4744     0.0189     25.0558    

32 8.7049    3.9152     1.6910     0.0562     30.0653    

40 13.6255    6.4856    3.1556     0.1047     30.1479    

48 21.8877    11.4291    6.1098    0.2008     30.4235   

60 39.249    16.3238    9.660    .2755     35.064 

72 53.3787    27.5159    21.9838   0.6192     35.5037   

88 84.1849   43.3463    32.5841    0.8223     39.6268    

100 110.0659 61.3263 50.0294 1.2643 39.5717 

 

The same data comparing the speed of populating and inverting matrices using the 

Method of Moments and DSPM is shown graphically in Figures 6-76 to Figure 6-78.  The 

DSPM was considerably faster for populating matrices and inverting them as seen in the graphs. 

 

 

Figure 6-76: Comparison plot of speed to populate the same size matrices using MOM vs. DSPM 

for various elliptical cylinder major axes with axial ratio. 
𝑎

𝑏
= 4. 
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a)  b) 

Figure 6-77: Comparison plot of speed to invert the same size matrices using MOM vs. DSPM 

for elliptical cylinder major axes with axial ratio 
𝑎

𝑏
= 4. a) Linear scale. b) Logarithmic scale. 

 

The DSPM showed considerable speed improvement (22+) for inverting matrices as seen 

in the graphs shown in Figure 6-77 and Figure 6-78.  The speed improvement increased with 

increasing size of the cylinder and matrix size as seen from the IR trend given in Figure 6-78. 

 

 

Figure 6-78: Plot of ratio of speed to invert the same size matrices using MOM vs. DSPM for 

various elliptical cylinder major axes with axial ratio  
𝑎

𝑏
= 4.  
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6.15  Summary of Results for DSPM 

The Direct Spectral Projection Model has been shown to be accurate in modelling 

infinitely long circular cylinders in two-dimensions. The convolution property of the addition 

theorem improves DSPM results significantly over those calculated using simple DSPM. Results 

of the DSPM closely mimic those of MOM for elliptical cylinders of high axial ratio and 

arbitrary shapes for TMz incidence. For TEz incidence, the model also performed well with 

elliptical cylinders of high axial ratio. The modal bandwidth of elliptical cylinders increases with 

the length of the major axis, and thus becomes a limiting factor for ellipses whose major axis is 

long in wavelength. For short wavelength structures, DSPM performs well in accurately 

modelling the current distribution and far-field patterns. DSPM has also been shown to populate 

and invert matrices faster than MOM.  DSPM is a promising alternative to other techniques for 

scattering analysis of objects with different materials.  
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Table 6-2: Summary of Spectral Signatures of Virtual and Induced Current Sources. 

[

|
ℎ𝑛
|
] =

[
 
 
 
 
 𝐻−𝐾

(2) (𝛽|𝝆𝒏|)𝑒
𝑗𝑘ϕ𝑛

|

𝐻𝑘
(2) (𝛽|𝝆𝒏|)𝑒

𝑗𝑘ϕ𝑛

|

𝐻𝐾
(2) (𝛽|𝝆𝒏|)𝑒

𝑗𝑘ϕ𝑛
 ]
 
 
 
 
 

 

The H-spectral signature of a single virtual current source at surface location (𝜌𝑛, 𝜙𝑛) 

[

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] =

[
 
 
 
 
𝛼0
|
𝛼𝑛
|

𝛼𝑁−1]
 
 
 
 

 

The weighting factors of the virtual current sources 

[

|
𝑖̂𝑠𝑠,𝑣𝑖𝑟,𝑠𝑢𝑚

|
] =    ([

| | |
| ℎ𝑛 |
| | |

] [
⋱ 0 0
0 𝛼𝑛 
0 0 ⋱

]) [
⋮
1
⋮
] 

Sum of the H-spectral signatures of the virtual current sources 

[

|
𝑒𝑛
|
] =

[
 
 
 
 
 
𝐽−𝐾 (𝛽|𝝆𝒏′|)𝑒

−𝑗𝐾𝜙𝑛′

|

𝐽𝑘 (𝛽|𝝆𝒏′|)𝑒
𝑗𝑘𝜙𝑛′

|

𝐽𝐾  (𝛽|𝝆𝟏′|)𝑒
𝑗𝐾𝜙𝑛′

 ]
 
 
 
 
 

 

The J-spectral signature of a single induced current source point at location (𝜌𝑛
′ , 𝜙𝑛′) 

[

|
𝑖̂𝑖𝑛𝑑,𝑠𝑢𝑚

|
] =

[
 
 
 
 
𝛽0
|
𝛽𝑛
|

𝛽𝑁−1]
 
 
 
 

= [

|

𝐽 (𝜌𝑛
′ , 𝜙𝑛′)
|

] 

The vector representation of the magnitude and phase of the sum of the induced currents 

[

|
𝑖̂𝑠𝑠,𝑖𝑛𝑑,𝑠𝑢𝑚

|
] =    ([

| | |
| 𝑒𝑛 |
| | |

] [
⋱ 0 0
0 𝛽𝑛 
0 0 ⋱

]) [
⋮
1
⋮
] 

The sum of the J-spectral signature of the induced current sources 
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Table 6-3: Summary of DSPM Equations. 

[

⋯ ⋯ ⋯

⋯ 𝐻𝑘
(2)(𝛽|𝝆𝒏|) ⋯

⋯ ⋯ ⋯
]     [

|
𝑖̂𝑣𝑖𝑟,𝑠𝑢𝑚
|

] = [

|

𝑖𝑠𝑠,𝑖𝑛𝑐,𝑠𝑢𝑚
𝑓𝑓

| 

] 

Equation for the DSPM for scattering problems with far-field excitation 

[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒎|)𝑒

𝑗𝑘𝜙𝑚 :
: : :

] [

|
𝑖̂𝑖𝑛𝑑
|
] = [

|
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒

|
] 

DSPM eigenvector equation for near field electric line source excitation 

([

… … …
… �̅� …
… … …

] [

| | |

| 𝐻𝑘
(2)((𝛽|𝝆𝒃|) |

| | |

]

𝐻

⊙ [

… … …
… �̅� …
… … …

] [

… … …
… 𝐽𝑘(𝛽|𝝆𝒂|) …
… … …

]

𝐻

)

𝐻

∙ 

[

… … …
… �̅� …
… … …

] [

…
𝑖̂𝑖𝑛𝑑
. .
]  = [

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] 

DSPM matrix equation for near field electric line source excitation and two vector convolution 

model. 
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Chapter 7: Conclusions and Future Work 

7.1  Spectral Projection Model and Direct Spectral Projection Model Summary 

This dissertation introduces a new technique for solving two-dimensional 

electromagnetic field scattering problems called the Spectral Projection Model. Some techniques 

like the Finite Element Method and the Finite Difference Time Domain are developed directly 

from the differential form of Maxwell’s equations. The Spectral Projection Model is a boundary 

element method, much like the Method of Moments and Fast Multipole Method, and a spectral 

method like the Spatial Frequency Technique, explained in Chapters 2, 3, and 4. Beginning with 

the differential form of Maxwell’s equations, the boundary element method enforces the 

tangential electric and magnetic field boundary conditions to the surface of an object to find the 

integral form solution of the electric and magnetic fields. The resulting solutions are called the 

Electric Field Integral Equation (EFIE) and the Magnetic Field Integral Equation (MFIE). 

Depending upon whether the excitation is a transverse electric or transverse magnetic plane 

wave, an electric or magnetic line source, or multiple sources will determine the form that the 

EFIE or MFIE takes. The scattering object is then discretized and a set of linear equations in 

matrix form are solved. 

The Method of Moments, Fast Multipole Method, and Spatial Frequency technique solve 

a matrix equation for the currents on the surface of the conducting body, and then the far-field 

radiation pattern may be calculated from the current distribution. The Spectral Projection Model 

uses elements of all three techniques to solve for the Bessel spectral signature of the electric 

current, from which the far-field pattern may be found by application of discrete Fourier 

transform. The Direct Spectral Projection Model solves for the current on the surface of the 

conductor directly using an eigenfunction approach. 

The Spectral Projection Model and Direct Spectral Projection Model is a new spectral 

domain method that has certain features with advantages over the techniques just mentioned. 

These features, validation results and future research directions are listed below: 

 



 

236 

• Electric and Magnetic Fields are written as Projections of Spectral Signatures 

• The Boundary Conditions are written as Projections and not Integral Equations 

• Irregular Grid Spacing and Source and Observation Points are not Collocated 

• Far-field Pattern Calculated Directly from Spectral Signature (SPM Only) 

• Boundary Conditions are Implicitly Enforced (DSPM Only) 

• Validation of SPM and DSPM using MOM 

• Application and Future Directions of SPM and DSPM for Dielectric and 3D Objects 

 

7.2  Electric and Magnetic Field Representation using SPM and DSPM 

The Spectral Projection Model (SPM) has its origin in the Hankel form of the addition 

theorem, and its antecedent known as Graf’s addition theorem [56]. The addition theorem is a 

method for calculating a Bessel or Hankel function as an infinite sum of Bessel and Hankel 

functions. For the Spectral Projection Model, the addition theorem is used to decompose the 

Green’s function in the scattered electric and magnetic fields as a projection of the J-spectral 

signature of source points onto the H-spectral signature of observation points along the surface 

of the object. The wave transformation equation described by Harrington [17] and the asymptotic 

form of the Hankel function are used to define plane wave behavior as the weighted sum of H-

spectral signatures. 

 

7.3  Boundary Condition Enforcement using SPM and DSPM 

Boundary conditions for the Electric Field Integral Equation and the Magnetic Field 

Integral Equation are written as a result of applying boundary conditions at the surface of the 

PEC. For the EFIE, the incident and scattered electric fields are summed together. The equation 

contains an integral with a Green’s function and basis functions. Selection of the basis functions 

depends on the Green’s function, and integration of the Green’s function at the singularity must 

be performed. Similarly, the MFIE sets the difference in the tangential magnetic fields equal to 

the surface current, and contains an integral with a Green’s function and basis functions. 
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Both SPM and DSPM write the boundary conditions for the EFIE and MFIE as the 

projection of one spectral signature onto another spectral signature by decomposing the Green’s 

function into Hankel and Bessel functions using the addition theorem. Unlike MOM, FMM and 

SFT, no basis functions are required, and there is no need to integrate the product of those 

functions with the Green’s function. So, this method offers a simple solution to enforcing the 

boundary conditions without the messy mathematics of integrating complex functions at the 

singularity of a Green’s function. 

 

7.4  Irregular Grid Spacing using SPM and DSPM 

One disadvantage of the Spatial Frequency Technique is that in order to effectively use 

the FFT in problem formulations, it is necessary to define the objects under illumination with 

regularly spaced grids. Most Method of Moments problems generally use regular grid spacing, 

but the Method of Moments can accommodate irregular grids with hybrid approaches. The SPM 

and DSPM do not suffer from this constraint when solving scattering problems with low axial 

ratios. For higher axial ratios in which the addition theorem is used as a convolution product, 

angular spacing of rotating vectors must be defined before an FFT algorithm is used. 

 

7.5  Far-field Calculations using SPM 

The solution of scattering problems using the Spectral Projection Model yields the J-

spectral signature of the induced current on the surface of a PEC conductor. Rather than solve for 

the induced current, the far-field pattern for the object can be calculated directly from the J-

spectral signature by using a form of the Discrete Fourier Transform. When solving for the 

current distribution is necessary, the DSPM offers a simple way of calculating the induced 

currents. 
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7.6  Boundary Conditions are Implicitly Enforced using DSPM 

       DSPM analysis is a way to calculate the scattered fields by describing them in terms of 

eigenfunctions. Virtual currents on the surface of a conductor act as eigenfunctions with equal 

and opposite induced currents on the surface of the object sharing the same points. Virtual 

currents are used to describe incident and induced currents by defining them as the weighting 

factors of H-spectral signatures. The weighted sum of the H-spectral signatures of the incident 

and virtual currents are set equal to each other in a matrix equation, and solving for the virtual 

currents enables one to calculate the induced currents. The boundary conditions are implicitly 

enforced by the eigenfunctions, because any induced current produces a scattered field equal and 

opposite that of a virtual current. Projecting the H-spectral signature on each side of the equation 

onto the same JT-spectral signatures defined at a set of observation points on the surface ensures 

that the incident field and the scattered field cancel. 

 

7.7  Validation of SPM and DSPM using MOM 

Both SPM and DSPM have been tested and verified for scattering from 2D, conducting 

objects for TM and TE waves using both EFIE and MFIE. The SPM was developed originally 

and led to the development of the faster analytical tool called the DSPM. Both techniques can 

solve a variety of 2D electromagnetic scattering problems, and DSPM has been shown to solve 

TMz scattering from arbitrary shaped objects with the same accuracy as the MOM.  

 

7.8  Application and Future Directions of SPM and DSPM for Dielectric and 3D Objects 

SPM and DSPM are spectral techniques that have been used to solve a variety of 

scattering problems on 2D conducting bodies without the necessity of integrating the singularity 

of a Green’s function or specifying a regular spatial grid. By taking advantage of the convolution 

property of the addition theorem, a larger class of problems has been solved with excellent 

accuracy. Further study of the convolution theorem and its implementation on objects with 

corrugated surfaces can expand the usefulness of these methods. These techniques show promise 

in solving problems involving scattering from 2D dielectric objects by applying both the electric 
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field and magnetic field boundary conditions. In order to solve 3D conducting body scattering 

problems, spherical Hankel functions can be employed with application of both the electric field 

and magnetic field boundary conditions. SPM and DSPM techniques can be validated for 3D 

problems by comparison with results using MOM RWG elements. 
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Appendix A: SPM and Graf’s Equation 

A.1  Graf’s Addition Theorem – Correlation Product 

The addition theorem used in Fast Multipole Method and Spectral Projection Model is 

given in equation (3 − 13) below from references [56-58]. This equation is specific to 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|), the zeroth order Hankel function of the second kind. Note the sign of the angles 

are the same as the sign of the vectors 𝝆 and 𝝆′. 

𝐻0
(2)(𝛽|𝝆 − 𝝆′|) = ∑ 𝐽𝑘(𝛽|𝝆|)𝐻𝑘

(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙
′)

∞

𝑘=−∞

                                      𝜌 < 𝜌′       (3 − 13) 

This addition theorem is one of Neumann’s formulas, but the addition theorem was generalized 

by Johann Heinrich Graf. The addition theorem equation of Graf given by Watson [59] is shown 

in equation (A-1). Figure A-1 is an illustration of the corresponding coordinates and angles. 

 

 a) b) 

 

Figure A-1: a) Illustration of vectors and corresponding angles for Graf’s addition theorem. b) 

Graf’s addition theorem with parallelogram for vector association. 

𝐻𝑚
(2)(𝑤)𝑒𝑗𝑚𝜓𝑧 = ∑ 𝐻𝑚+𝑛

(2) (𝑍)𝐽𝑛(𝑧)𝑒
𝑗𝑛𝜙𝑤

∞

𝑛=−∞

                                                                                (𝐴 − 1) 
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Equation (𝐴 − 1) may be viewed as a discrete a correlation operation because of the (m+n) order 

term on the Hankel function 𝐻𝑚+𝑛
(2)

. To change the equation into a convolution product, the order 

term needs to be (m-n).  

 

A.2  Reflection Properties of Bessel and Hankel Functions 

The reflection properties of the Bessel and the Hankel function in equations (𝐴 − 2) to 

(𝐴 − 6) may be used to change equation (𝐴 − 1) into equation (𝐴 − 7) [60]. 

(−1)𝑛 = 𝑒−𝑗𝑛𝜋                                                                                                                                     (𝐴 − 2) 

𝐽−𝑛(𝑤) = 𝐽𝑛 (−𝑤)                                                                                                                               (𝐴 − 3) 

𝐽−𝑛(𝑤) = 𝑒−𝑗𝑛𝜋𝐽𝑛 (𝑤)                                                                                                                        (𝐴 − 4) 

𝐻𝑛
(2)(𝑤) = 𝐻𝑛

(2)(−𝑤)                                                                                                                          (𝐴 − 5) 

𝐻−𝑛
(2)(𝑤) = 𝑒−𝑗𝑛𝜋𝐻𝑛

(2)(𝑤)                                                                                                                  (𝐴 − 6) 

 

A.3  Graf’s Addition Theorem – Convolution Product 

As mentioned above, equation (𝐴 − 1) is a correlation operation because of the (m+n) 

order term on the Hankel function 𝐻𝑚+𝑛
(2)

. By using the reflection properties listed above, 

equation (𝐴 − 1) can be transformed into equation (𝐴 − 7), which is the convolution product 

form 𝐻𝑚−𝑛
(2)

 of Graf’s generalized addition formula. 

𝐻𝑚
(2)(𝑤)𝑒𝑗𝑚𝜑𝑧 = ∑ 𝐻𝑚−𝑛

(2) (𝑍)𝐽𝑛(𝑧)𝑒
𝑗𝑛(𝜙𝑤−𝜋)

∞

𝑛=−∞

                                                                        (𝐴 − 7) 

The correlation and convolution products of the Bessel function are given in equations (𝐴 − 8) 

and (𝐴 − 9). These equations are forms of the Neumann addition theorem, which is less general 

than the Graf form of the addition theorem. 

𝐽𝑚(𝑤)𝑒
𝑗𝑚𝜑𝑧 = ∑ 𝐽𝑚+𝑛(𝑍)𝐽𝑛(𝑧)𝑒

𝑗𝑛(𝜙𝑤)

∞

𝑛=−∞

                                                                                  (𝐴 − 8) 

𝐽𝑚(𝑤)𝑒
𝑗𝑚𝜑𝑧 = ∑ 𝐽𝑚−𝑛(𝑍)𝐽𝑛(𝑧)𝑒

𝑗𝑛(𝜙𝑤−𝜋)

∞

𝑛=−∞

                                                                             (𝐴 − 9) 
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A.4  Graf’s Addition Theorem - Coordinate Change 

In order to implement the Spectral Projection Model, a more convenient coordinate 

system needed to be considered that defined angles from the positive horizontal X-axis rotating 

counterclockwise. This section illustrates how the Graf addition theorem can be rewritten using a 

different set of coordinates. Taking the difference between two vectors, 𝐑 = 𝛒 − 𝛒′ , to enact a 

change in coordinates and angles, one can substitute from equations (𝐴 − 4) and (𝐴 − 6) into 

equation (𝐴 − 1). Figure A-2 is an illustration of the vector subtraction. 

𝜑𝑧 = 𝜙
′′ −𝜙                                                                                                                                      (𝐴 − 10) 

𝜙𝑤 = 𝜙 − 𝜙′                                                                                                                                      (𝐴 − 11) 

The corresponding expression for 𝑅 are in equations (𝐴 − 12)  and (𝐴 − 13), besides in Figure 

A-2. 

𝑅 = √𝜌2 + 𝜌′2 + 2𝜌𝜌′𝑐𝑜𝑠(𝛼)                                                                                                       (𝐴 − 12) 

𝑅 = √𝜌2 + 𝜌′2 − 2𝜌𝜌′𝑐𝑜𝑠(𝛾)                                                                                                       (𝐴 − 13) 

 

Figure A-2: Illustration of vectors and corresponding angles for Graf’s addition theorem for the 

difference between two vectors with a change in coordinates. 
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The new equation for Graf’s addition theorem for the subtraction of vectors is in equation 

(𝐴 − 14). 

𝐻𝑚
(2)(𝛽|𝝆 − 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚+𝑛

(2) (𝛽|𝝆|)𝐽𝑛(𝛽|𝝆′|)𝑒
𝑗[(𝑚+𝑛)𝜙−𝑛𝜙′]

∞

𝑛=−∞

                                (𝐴 − 14) 

The new equation for Graf’s addition theorem for the addition of vectors is in equation (𝐴 − 15). 

𝐻𝑚
(2)(𝛽|𝝆 + 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚−𝑛

(2) (𝛽|𝝆|)𝐽𝑛(𝛽|𝝆′|)𝑒
𝑗[(𝑚−𝑛)𝜙−𝑛𝜙′]

∞

𝑛=−∞

                                (𝐴 − 15) 

Illustrations of Graf’s addition theorem for the addition of two vectors is shown in Figure A-3 

and Figure A-4. 

 

 

Figure A-3: Illustration of Graf’s addition theorem for a vector sum with a change in coordinates 

𝜓𝑧 , 𝜙𝑤, 𝛾 to coordinates 𝜙,𝜙′, 𝜙′′view one. 



 

252 

 

Figure A-4: Illustration of Graf’s addition theorem for a vector sum with a change in coordinates 

𝜓𝑧 , 𝜙𝑤, 𝛾 to coordinates 𝜙,𝜙′, 𝜙′′view two. 

 

Equations (𝐴 − 8) and (𝐴 − 9) may be rewritten in terms of the new angle too. They are shown 

in equations (𝐴 − 16) and (𝐴 − 17). 

𝐽𝑚(𝛽|𝝆 − 𝝆
′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐽𝑚+𝑛(𝛽|𝝆|)𝐽𝑛(𝛽|𝝆′|)𝑒

𝑗[(𝑚+𝑛)𝜙−𝑛𝜙′]

∞

𝑛=−∞

                                     (𝐴 − 16) 

𝐽𝑚(𝛽|𝝆 + 𝝆
′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐽𝑚−𝑛(𝛽|𝝆|)𝐽𝑛(𝛽|𝝆′|)𝑒

𝑗[(𝑚−𝑛)𝜙−𝑛𝜙′]

∞

𝑛=−∞

                                     (𝐴 − 17) 

 

A.5  Neumann’s Addition Theorem – Convolution of Two Vectors 

The connection between the spectral signature of a set of points and the Neumann 

addition theorem is evident when one considers the product and sum of vectors. 

|𝝆 − 𝝆′|2 = (𝝆 − 𝝆′) ∙ (𝝆 − 𝝆′)                                                                                                     (𝐴 − 18) 

|𝝆 − 𝝆′|2 = 𝝆 ∙ 𝝆 + 𝝆′ ∙ 𝝆′ − 2𝝆 ∙ 𝝆′                                                                                             (𝐴 − 19) 
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𝑐𝑜𝑠(𝜙) =
𝝆 ∙ 𝝆′

|𝝆||𝝆′|
                                                                                                                               (𝐴 − 20) 

|𝝆 − 𝝆′|2 = |𝝆|2 + |𝝆′|2 − 2|𝝆||𝝆′|𝑐𝑜𝑠(𝜙)                                                                                (𝐴 − 21) 

Similarly, one can prove for the addition of two vectors, 

|𝝆 + 𝝆′|𝟐 = |𝝆|𝟐 + |𝝆′|𝟐 + 𝟐|𝝆||𝝆′|𝑐𝑜𝑠(𝜙)                                                                               (𝐴 − 22) 

If vector 𝝆′ = 𝝆𝒂′ + 𝝆𝒃′, the vector sum can be represented as equation (𝐴 − 23). 

|𝝆 + (𝝆𝒂′ + 𝝆𝒃′)|
2 = (𝝆 + 𝝆𝒂′ + 𝝆𝒃′) ∙ (𝝆 + 𝝆𝒂′ + 𝝆𝒃′)                                                        (𝐴 − 23) 

One can write these vector sums using the addition theorem for Bessel functions. 

𝐽𝑛 (𝛽|𝝆 + 𝝆′|)𝑒
𝑗𝑚𝜙′′ = 

∑ 𝐽𝑛−𝑚(𝛽|𝝆|)𝐽𝑚(𝛽|𝝆′|)𝑒
𝑗[(𝑚−𝑛)𝜙−𝑛𝜙′]

∞

𝑚=−∞

                                                                                (𝐴 − 24) 

𝐽𝑚(𝛽|𝝆𝒂′ + 𝝆𝒃′|)𝑒
𝑗𝑚𝜙 = 

∑ 𝐽𝑚−𝑙(𝛽|𝝆𝒂′|)𝐽𝑙(𝛽|𝝆𝒃′|)𝑒
𝑗[(𝑚−𝑙)𝜙𝑎′−𝑙𝜙𝑏′]

∞

𝑙=−∞

                                                                            (𝐴 − 25) 

𝐽𝑛 (𝛽|𝝆 + 𝝆𝒂′ + 𝝆𝒃′|)𝑒
𝑗𝑚𝜙′′ = 

∑ 𝐽𝑛−𝑚(𝛽|𝝆|) ∑ 𝐽𝑚−𝑙(𝛽|𝝆𝒂′|)𝐽𝑙(𝛽|𝝆𝒃′|)𝑒
𝑗[(𝑚−𝑙)𝜙𝑎′−𝑙𝜙𝑏′]

∞

𝑙=−∞

∞

𝑚=−∞

                                          (𝐴 − 26) 

The expression in (𝐴 − 24) may be written in shorter form as equation (𝐴 − 27). 

𝐽(𝑛, 𝝆 + 𝝆′) = 𝐽(𝑛, 𝝆) ⊗ 𝐽(𝑛, 𝝆′)                                                                                                  (𝐴 − 27) 

with the symbol ⊗ meaning convolution, and the arguments being the order of the Bessel 

function and then the vectors. 

The expression in (𝐴 − 26) may be written in shorter form as equation (𝐴 − 28). 

𝐽(𝑛, 𝝆 + 𝝆𝒂′ + 𝝆𝒃′) = 𝐽(𝑛, 𝝆) ⊗ (𝐽(𝑛, 𝝆𝒂′) ⊗ 𝐽(𝑛, 𝝆𝒃′))                                                       (𝐴 − 28) 

Similarly, one can write the addition theorem for Hankel functions, and correlation ⊛ between 

spectral signatures. For equation (𝐴 − 29), 

𝐻(𝑚, 𝝆 − 𝝆′)  = 𝐻(𝑛, 𝝆) ⊛  𝐽(𝑛, 𝝆′)                                                                        𝜌 ≥ 𝜌′       (𝐴 − 29)                        

the equation can be seen as the discrete correlation between the H-spectral signature of the 

observation point and the J-spectral signature of the source point. 
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The convolution operation allows one to define a relationship between two spectral 

signatures defined with respect to two separate origins. 

𝐻(𝑚, 𝝆 + 𝝆′) = 𝐻(𝑛, 𝝆) ⊗  𝐽(𝑛, 𝝆′)                                                                                             (𝐴 − 30) 

The term 𝐻(𝑚, 𝝆 + 𝝆′) represents the H-spectral signature with respect to the origin, o’, and 

𝐻(𝑛, 𝝆) is H-spectral signature with respect to origin, o. 𝐽(𝑛, 𝝆′) represents the J-spectral 

signature of the translation vector which translates of the origin.  

The important conclusion of this appendix is the property that the convolution of the 

spectral signature of one vector with the spectral signature of another vector will yield the 

spectral signature of the vector sum. The first vector may be either the Hankel spectral signature 

or the Bessel spectral signature and the second vector is always a Bessel spectral signature. This 

amounts to decomposing the vector into a convolution operation, and follows from the addition 

theorem. The resultant spectral signature of the sum vector will be the same as the spectral 

signature of the original vector. This property may be shown to extend to the sum of any number 

of vectors.  
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Appendix B: TM and TE Waves on Infinitely Long Cylinders 

 

B.1  Magnetic Field Integral Equation and Electric Field Integral Equations 

This section contains the derivation of the MFIE for TEz polarized waves and the EFIE 

for TMz polarized waves. The following derivations may be found in many electromagnetics 

texts [27]. Two of the more popular ones are by Harrington [35] and Balanis [36]. 

 

B.2  Perfect Electric Conductor Boundary Conditions 

The boundary conditions for a perfect electric conductor are stated as follows. The 

tangential component of electric field is continuous across the air/conductor interface as is the 

normal component of magnetic flux density. The current normal to the surface boundary equals 

zero. 

 

Figure B-1: PEC Boundary Conditions: Magnetic field normal to the boundary, electric field 

tangential to the boundary, and current on the surface of the interface. 

 

B.3  Helmholtz Wave Equation 

Calculation of the Helmholtz wave equation for the magnetic vector potential 𝑨 in 

cylindrical coordinates begins with equation (𝐵 − 1), the curl of the magnetic vector potential is 

equal to the magnetic flux density 𝑩. 

𝛁 × 𝑨 = 𝑩                                                                                                                                             (𝐵 − 1) 

Now taking the curl of both sides of the equation, 

𝛁 × 𝛁 × 𝑨 = 𝛁 × 𝑩                                                                                                                             (𝐵 − 2) 

and expressing the magnetic flux density in terms of the magnetic field intensity 𝑯,  
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𝛁 × 𝛁 × 𝑨 = 𝛁 × 𝜇𝑯                                                                                                                          (𝐵 − 3) 

The vector 𝑨 may be expanded using the identity shown in equation (𝐵 − 4). 

𝛁 × 𝛁 × 𝑨 =  𝛁(𝛁 ∙ 𝑨) − 𝛁𝟐𝑨                                                                                                          (𝐵 − 4) 

Substituting equation (𝐵 − 3) into equation (𝐵 − 4), one gets (𝐵 − 5). 

𝛁(𝛁 ∙ 𝑨) − 𝛁𝟐𝑨 =  𝛁 × 𝜇𝑯                                                                                                               (𝐵 − 5) 

Recall Ampere’s law in equation (𝐵 − 6). 

𝛁 ×𝑯 = 𝐉 + 𝑗𝜔𝜀𝑬                                                                                                                               (𝐵 − 6) 

Assuming the medium is homogeneous, i.e. 𝜇 is a constant, the right-hand side of equation 

(𝐵 − 5) is replaced with the right-hand side of Ampere’s law. 

𝛁(𝛁 ∙ 𝑨) − 𝛁𝟐𝑨 = μ𝐉 + 𝑗𝜔𝜇𝜀𝑬                                                                                                         (𝐵 − 7) 

Faraday’s law for time harmonic fields is written in equation (𝐵 − 8). 

𝛁 × 𝑬 = −𝑗𝜔𝑩                                                                                                                                     (𝐵 − 8) 

Substituting equation (𝐵 − 1) into (𝐵 − 8) and rearranging one obtains equation (𝐵 − 9). 

𝛁 × (𝑬 + 𝑗𝜔𝐀) = 0                                                                                                                            (𝐵 − 9) 

Using the vector identity in equation (𝐵 − 10), with 𝜙𝑒 defined as the scalar electric potential, 

one may write 

𝛁 × (−𝛁𝜙𝑒) = 0                                                                                                                                (𝐵 − 10) 

Substitution into equation (𝐵 − 9) yields equation (𝐵 − 11). 

𝛁 × (𝑬 + 𝑗𝜔𝐀) = 𝛁 × (−𝛁𝜙𝑒)                                                                                                      (𝐵 − 11) 

Then an equation for electric field may be written as equation (𝐵 − 12). 

𝑬 =  −𝛁𝜙𝑒 − 𝑗𝜔𝐀                                                                                                                            (𝐵 − 12) 

Equation (𝐵 − 12) is substituted into equation (𝐵 − 7), 

𝛁(𝛁 ∙ 𝑨) − 𝛁𝟐𝑨 = μ𝐉 + 𝑗𝜔𝜇𝜀(−𝛁𝜙𝑒 − 𝑗𝜔𝐀)                                                                            (𝐵 − 13) 

The terms of equation (𝐵 − 13) when reordered becomes equation (𝐵 − 14). 

𝛁𝟐𝑨 + 𝜔2𝜇𝜀𝑨 = −μ𝐉 + 𝛁(𝛁 ∙ 𝑨 + 𝑗𝜔𝜇𝜀𝜙𝑒)                                                                              (𝐵 − 14) 

Defined in equation (𝐵 − 15) is the Lorentz gauge, 

𝛁 ∙ 𝑨 + 𝑗𝜔𝜇𝜀𝜙𝑒 = 0                                                                                                                          (𝐵 − 15) 

Now substituting (𝐵 − 15) into equation (𝐵 − 14) yields the free space wave equation for the 

magnetic vector potential (𝐵 − 16) where 𝛽2 = 𝜔0
2𝜇𝜀. 
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𝛁2𝑨 + 𝛽2𝑨 = −μ𝐉                                                                                                                            (𝐵 − 16) 

The term 𝛽 is the free space wavenumber. 

 

B.4  Free Space Helmholtz Wave Equation Source Free 

For a source free region, 𝐉 = 𝟎, the homogeneous wave equation is given in equation 

(𝐵 − 17). 

∇2𝑨 + 𝛽2𝑨 = 0                                                                                                                                  (𝐵 − 17) 

     The Laplacian operator in spherical coordinates is shown in equation (𝐵 − 18). 

∇2 = 
1

𝑅2
𝜕

𝜕𝑅
(𝑅2

𝜕

𝜕𝑅
) +

1

𝑅2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

𝑅2𝑠𝑖𝑛2𝜃

𝜕2

𝜕𝜙2
                                            (𝐵 − 18) 

For a plane wave using cylindrical coordinates with the magnetic vector potential aligned 

with the Z-axis, 𝐴𝑧 = constant, then  
𝜕𝐴𝑧

𝜕𝜃
= 0 and 

𝜕𝐴𝑧

𝜕𝜙
= 0. The solution of the homogenous wave 

equation (source free, free space) for the magnetic vector potential 𝑨 = �̂�𝒛𝐴𝑧, in which 𝑨 is a 

plane wave, is given in equations(𝐵 − 19) through (𝐵 − 22). 

1

𝑅2
𝜕

𝜕𝑅
(𝑅2

𝜕𝐴𝑧
𝜕𝑅

) +  𝛽2𝐴𝑧  =   0                                                                                                     (𝐵 − 19)

 1

𝑅2
(2𝑅

𝜕𝐴𝑧
𝜕𝑅

  +   𝑅2
𝜕2𝐴𝑧
𝜕𝑅2

) +  𝛽2𝐴𝑧  =   0                                                                                (𝐵 − 20)

 𝜕2𝐴𝑧
𝜕𝑅2

 +  
2

𝑅

𝜕𝐴𝑧
𝜕𝑅

   +   𝛽2𝐴𝑧  =   0                                                                                                  (𝐵 − 21)

 𝜕2

𝜕𝑅2
(𝑅𝐴𝑧) +   𝛽2𝑅𝐴𝑧  =   0                                                                                                           (𝐵 − 22) 

The solution to the equation (𝐵 − 22) in free space is given in equation (𝐵 − 23) in which 𝐴𝑧
𝑖  is 

the incident magnetic vector potential constant and 𝐴𝑧
𝑠  is the scattered magnetic vector potential 

constant for the homogeneous wave equation. 

𝐴𝑧   =   𝐴𝑧
𝑖
𝑒−𝑗𝛽𝑅

𝑅
 +   𝐴𝑧

𝑠
𝑒𝑗𝑘𝛽𝑅

𝑅
                                                                                                     (𝐵 − 23) 

The function 𝐴𝑧 is a Green’s function, specifically the zeroth order spherical Hankel 

function of the second kind, and is written in equation (𝐵 − 24), 

ℎ0
(2)(𝑅) =

𝑒𝑗𝛽𝑅

𝑅
                                                                                                                                  (𝐵 − 24) 
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with 

𝑅 = √|𝜌 − 𝜌′|2 + (𝑧 − 𝑧′)2                                                                                                            (𝐵 − 25) 

Equation (𝐵 − 16) is called the Helmholtz vector wave equation for the magnetic vector 

potential with source current 𝐉. On the surface of a conducting body, 𝑱𝒔 = 𝑱. The solution to the 

wave equation is an integral expression given in equation (𝐵 − 26). 

𝑨(𝜌) =
𝜇

4𝜋
∬𝑱𝒔(𝜌

′)ℎ0
(2)(𝛽𝑅)𝑑𝑆 ′

𝑆

                                                                                                 (𝐵 − 26) 

The excitation current for the magnetic vector potential 𝑨 is 𝐽𝑧(𝜌
′), and the Green’s function is 

ℎ0
(2)(𝑅). 

The magnetic vector potential may then be written as 

𝐴𝑧(𝜌) =
𝜇

4𝜋
∬𝐽𝑧(𝜌

′)ℎ0
(2)(𝛽𝑅)𝑑𝑆′

𝑆

                                                                                               (𝐵 − 27) 

 

B.5  General Helmholtz Wave Equation with Sources 

Starting with equation (𝐵 − 15), one substitutes from equation (𝐵 − 12) the expression 

for Φ𝑒 to calculate the electric field equation for a source free homogeneous region, i.e. 𝜇, 𝜀 are 

constant. 

𝑬 = −𝑗𝜔𝑨−
𝑗

𝜔𝜇𝜀
𝛁(𝛁 ∙ 𝑨)                                                                                                             (𝐵 − 28) 

The scalar electric potential Φ𝑒 wave equation is given as 

∇2Φ𝑒 + 𝛽
2Φ𝑒 = ρ𝑒                                                                                                                           (𝐵 − 29) 

For TMz incident waves, 𝑨 has no normal component, and 𝜌𝑒 = 0.  Therefore, from 

equation  (𝐵 − 29),  Φ𝑒 = 0.  The divergence of the magnetic vector potential is given in 

equation (𝐵 − 30). 

𝛁 ∙ 𝑨 = Φ𝑒                                                                                                                                           (𝐵 − 30) 

and so Φ𝑒 = 0, and one can then write (𝐵 − 31). 

𝛁 ∙ 𝑨 = 𝟎                                                                                                                                              (𝐵 − 31) 

Now it follows that 

𝛁(𝛁 ∙ 𝑨) = 𝟎                                                                                                                                       (𝐵 − 32) 

and equation (𝐵 − 28) can be simplified. The resulting equation becomes 
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𝐄 = −𝑗𝜔𝑨                                                                                                                                           (𝐵 − 33) 

For TMz wave, because the current density on the surface of the cylinder is in the Z-

direction only,  𝑱𝒔 = 𝐽𝑧�̂�, and the current is a function of 𝜌 and 𝜙 only, 𝐽𝑧 = 𝑓(𝜌, 𝜙). From the 

continuity equation, 

𝛁 ∙ 𝑱𝒔 =
𝝏𝝆𝒆

𝝏𝒕
  with   ρ𝑒 = 0.                                                                                                               (𝐵 − 34) 

 

B.6  EFIE and TMz Waves on PEC Infinitely Long Cylinders 

If the incident field has only a Z-direction, i.e. 𝑬𝒊 = �̂�𝐸𝑖, then 𝑬𝒔 = �̂�𝐸𝑠, which satisfies 

the boundary condition that the tangential electric field must equal zero. Therefore, for TMz 

incidence, the A must have only a �̂� component. Equating the  �̂� vectors in both sides of equation 

(𝐵 − 34) one obtains equation (𝐵 − 35) for a time harmonic wave.  

E𝑧�̂� = −𝑗𝜔𝐴𝑧�̂�                                                                                                                                   (𝐵 − 35) 

Using equation (𝐵 − 27) and substituting the term 𝑅 from (𝐵 − 25) into equation (𝐵 − 27), one 

may integrate with respect to z to obtain equation (𝐵 − 36) 

𝐴𝑧(𝜌) =
𝜇

4𝜋
∫𝐽𝑧(𝜌

′)
𝐿

∫ [
𝑒−𝑗𝛽√|𝜌−𝜌

′|2+(𝑧−𝑧′)2

√|𝜌 − 𝜌′|2 + (𝑧 − 𝑧′)2
𝑑𝑧′]

∞

−∞

𝑑𝜌′                                                   (𝐵 − 36) 

to find a simplified expression for the magnetic vector potential for TMz incidence. 

𝐴𝑧(𝜌) = −𝑗
𝜇

4
∬𝐽𝑧(𝜌

′)′

𝑆

𝐻0
(2)(𝛽|𝜌 − 𝜌′|)𝑑𝜌′                                                                            (𝐵 − 37) 

Substituting back into equation (𝐵 − 35), one obtains a new equation. For an infinitely 

long cylinder, the appropriate Green’s function is the zeroth order Hankel function of the second 

kind 𝐻0
(2) and the expression for the scattered electric field becomes (𝐵 − 38). 

𝐸𝑠 = −
𝜔𝜇

4
∬𝐽𝑧(𝜌′)

′

𝑆

𝐻0
(2)(𝛽|𝜌 − 𝜌′|)𝑑𝜌′                                                                                  (𝐵 − 38) 

 

B.7  MFIE and TEz Waves on PEC Infinitely Long Cylinders 

A TEz polarized wave with the magnetic field aligned with the Z-axis of the cylinder is 

written in equation (𝐵 − 39), 

𝑯𝒊 = �̂�𝐻𝑧
𝑖(𝜌, 𝜙)                                                                                                                                  (𝐵 − 39) 
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Enforcing boundary conditions on the surface of the infinitely long PEC cylinder, one 

applies the magnetic field boundary conditions to equation (𝐵 − 40), and arrives at equation 

(𝐵 − 41) along contour C. 

𝑱𝒔(𝜌) = �̂� × (𝑯
𝒊 +𝑯𝒔)|𝐶                                                                                                                (𝐵 − 40) 

𝑱𝒔(𝜌) = �̂� × 𝑯
𝒊 + (�̂� × 𝑯𝒔)|𝐶                                                                                                         (𝐵 − 41) 

For TEz polarization, 𝑯𝒊 = �̂�𝐻𝑧
𝑖 , and one can write  

𝑱𝒔(𝜌) = �̂� × �̂�𝐻𝑧
𝑖 + (�̂� × 𝑯𝒔)|𝐶                                                                                                     (𝐵 − 42) 

Replacing the cross product with the tangential unit vector �̂�, 

𝑱𝒔(𝜌) = −�̂�𝐻𝑧
𝑖|𝐶 + (�̂� × 𝑯

𝒔)|𝐶                                                                                                       (𝐵 − 43) 

Now taking the dot product of both sides of the equation by �̂�,  

�̂� ∙  𝑱𝒔(𝜌) =  �̂� ∙  (−�̂�𝐻𝑧
𝑖 |𝐶 + (�̂� × 𝑯

𝒔)|𝐶)                                                                                      (𝐵 − 44) 

and one can write the surface current as 𝐽𝑆,𝑡(𝜌, 𝜙). 

𝐽𝑆,𝑡(𝜌, 𝜙) = −𝐻𝑧
𝑖|𝐶 + (�̂� ∙ �̂� × 𝑯

𝒔)|𝐶                                                                                              (𝐵 − 45) 

The surface current 𝑱𝒔 along the cross-sectional contour 𝐶 of an infinitely long cylinder 

equal to the tangential current 𝐽𝑆,𝑡 and is given in equation (𝐵 − 46), with �̂� representing the 

tangential unit vector at coordinates (𝜌, 𝜙). The current is tangential to the surface along the 

contour 𝐶. 

𝑱𝒔(𝜌, 𝜙) = �̂�𝐽𝑆,𝑡(𝜌, 𝜙)|𝐶                                                                                                                     (𝐵 − 46) 

 

B.7.1  Expressing the Scattered Magnetic Field as an Integral 

This section aims to rewrite the expression for the scattered magnetic field, 𝑯𝒔. One can 

then derive a simpler expression for the surface current along the cross-sectional contour 𝐶. 

Several texts present different methods to approach deriving the MFIE and its associated terms 

[61-65]. One begins with 

𝑯𝒔 =
1

𝜇
𝛁 × 𝑨                                                                                                                                     (𝐵 − 47) 

For an infinitely long cylinder in the Z-direction, one substitutes for the magnetic vector 

potential from equation (𝐵 − 26). Integration must be performed to infinity in the Z-direction as 

shown in equation (𝐵 − 48). 
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𝑯𝒔 =
1

𝜇
𝛁 ×

𝜇

4𝜋
∫ ∫ 𝑱𝒔(𝜌

′)
𝑒−𝑗𝛽𝑅

𝑅
𝑑𝑧′𝑑𝑐′

∞

−∞𝐶

                                                                             (𝐵 − 48) 

Once one integrates equation (𝐵 − 48) in the Z-direction, one obtains equation (𝐵 − 49), 

according to the same reason as in equation (𝐵 − 37) for TMz incidence. 

𝑯𝒔 =
−𝑗

4
𝛁 × ∫ 𝑱𝒔(𝜌

′)𝐻0
(2)

𝐶

(𝛽𝑅)𝑑𝐶                                                                                            (𝐵 − 49) 

The variable 𝑅 is newly defined as  

𝑅 = √|𝜌 − 𝜌′|2                                                                                                                                  (𝐵 − 50) 

because the 𝑧 term has been integrated out. 

 

B.7.2  Leibniz Integral Rule 

In order to simplify equation (𝐵 − 49) further, it is necessary to use Leibniz integral rule 

[65] for differentiation to bring the curl operator inside the integral. For the variable 𝜌 in 

equations (𝐵 − 49) and (𝐵 − 50), one can write Leibniz integral rule as equation (𝐵 − 51). 

𝑑

𝑑𝜌
(∫ 𝑓(𝜌, 𝜌′)𝑑𝜌′

𝐶2(𝜌)

𝐶1(𝜌)

) = 

𝑓(𝜌, 𝐶2(𝜌))
𝑑

𝑑𝜌
𝐶2(𝜌) − 𝑓(𝜌, 𝐶1(𝜌))

𝑑

𝑑𝜌
𝐶1(𝜌) + ∫

𝑑

𝑑𝜌
𝑓(𝜌, 𝜌′)𝑑𝜌′

𝐶2(𝜌)

𝐶1(𝜌)

                             (𝐵 − 51) 

If 𝐶1(𝜌) = 𝐶1 is a constant, and 𝐶2(𝜌) = 𝐶2 is a constant, Leibniz rule reduces to the equation 

(𝐵 − 52). 

𝑑

𝑑𝜌
(∫ 𝑓(𝜌, 𝜌′)𝑑𝜌′

𝐶2

𝐶1

)  = ∫
𝑑

𝑑𝜌
𝑓(𝜌, 𝜌′)𝑑𝜌′

𝐶2

𝐶1

                                                                            (𝐵 − 52) 

Equation (𝐵 − 51) may be written for 𝜌′ as well. 

The curl operator may be moved inside the integral using Leibniz rule because the limits 

of integration 𝐶1 and 𝐶2 are taken at constant points along the contour, i.e. one can say 
𝜕𝐶

𝜕𝜙
=

𝜕𝐶

𝜕𝑧
=

𝜕𝐶

𝜕𝜌
= 0. 

 

B.7.3  Simplifying the Scattered Magnetic Field using Leibniz Integral Rule 

The equation (𝐵 − 49) may be written as follows. 
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𝑯𝒔 =
−𝑗

4
∫ 𝛁 × 𝑱𝒔(𝜌

′)𝐻0
(2)

𝐶

(𝛽𝑅)𝑑𝐶                                                                                            (𝐵 − 53) 

For the term 𝑱𝒔(𝜌
′)𝐻0

(2)(𝛽𝑅) one can apply the vector identity given in equation 

(𝐵 − 54). 

𝛁 × (𝜓𝑾) = 𝛁𝜓 ×𝑾+ 𝜓𝛁 ×𝑾                                                                                                 (𝐵 − 54) 

Substituting in the identity above, the integrand in (𝐵 − 54) may be written as (𝐵 − 55), where 

the derivative is taken with respect to ρ.  

𝛁 × (𝐻0
(2)(𝛽𝑅)𝑱𝒔(ρ

′)) = 𝐻0
(2)(𝛽𝑅)𝛁 × 𝑱𝒔(ρ

′) − 𝑱𝒔(ρ
′) × 𝛁𝐻0

(2)(𝛽𝑅)                                (𝐵 − 55) 

The curl of the surface current term with respect to ρ in equation  (𝐵 − 56) equals zero. 

𝛁 × 𝑱𝒔(ρ
′) = 0                                                                                                                                   (𝐵 − 56) 

which yields equation (𝐵 − 57) 

𝑯𝒔 =
𝑗

4
∫ 𝑱𝒔(ρ

′) × 𝛁𝐻0
(2)

𝐶

(𝛽𝑅)𝑑𝐶                                                                                               (𝐵 − 57) 

Now taking the 𝒏′̂ cross product and substituting (𝐵 − 46) into equation (𝐵 − 53), one arrives 

at equation (𝐵 − 58). 

𝒏′̂ × 𝑯𝒔 = 𝒏′̂ ×
𝑗

4
∫ 𝒕′̂𝐽𝑆,𝑡(𝜌′) × 𝛁𝐻0

(2)

𝐶

(𝛽𝑅)𝑑𝐶                                                                       (𝐵 − 58) 

 

B.7.4  Scattered Magnetic Field Expression 

To simplify the expression of the cross product of the normal vector with the scattered 

magnetic field, 𝒏′̂ × 𝑯𝒔, one begins by taking the dot product of both sides of equation (𝐵 − 58) 

with the unit vector 𝒕′̂ tangential to the contour 𝐶. Also, one substitutes 𝐽𝑆,𝑡 = 𝐽𝐶 for current 

around the contour. 

𝒕′ ∙̂ 𝒏′̂ × 𝑯𝒔 = 𝒕′̂ ∙ 𝒏′̂ ×
𝑗

4
∫ 𝒕′̂𝐽𝐶(𝜌′) × 𝛁𝐻0

(2)

𝐶

(𝛽𝑅)𝑑𝐶                                                            (𝐵 − 59) 

Rearranging terms, equation (𝐵 − 59) results. 

𝒕′ ∙̂ 𝒏′̂ × 𝑯𝒔 = 𝒕′̂ ∙ 𝒏′̂ ×
𝑗

4
∫ 𝐽𝐶(𝜌′) (𝒕′̂ × 𝛁𝐻0

(2)(𝛽𝑅))
𝐶

𝑑𝐶                                                      (𝐵 − 60) 

The tangential vector to the contour 𝒕′̂ for TEz waves is equal to the cross-product expression in 

equation (𝐵 − 61). 
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 𝒕′̂ = −𝒏′̂ × �̂�                                                                                                                                     (𝐵 − 61) 

Now working with the vector dot product in parenthesis in the integrand of equation (𝐵 − 61), 

one obtains equation (𝐵 − 62). 

𝒕′̂ × 𝛁𝐻0
(2)(𝛽𝑅) =   −𝒏′̂ × �̂� × 𝛁𝐻0

(2)(𝛽𝑅)                                                                                 (𝐵 − 62) 

Now one uses the vector identity in equation (𝐵 − 63) 

𝑨 × (𝑩 × 𝑪) = 𝑩(𝑨 ∙ 𝑪) − 𝑪(𝑨 ∙ 𝑩)                                                                                            (𝐵 − 63) 

with equation (𝐵 − 61) and write 

−𝒏′̂ × �̂� × 𝛁𝐻0
(2)(𝛽𝑅) = −�̂� (𝒏′̂ ∙ 𝛁𝐻0

(2)(𝛽𝑅)) + 𝒏′̂ (�̂� ∙ 𝛁𝐻0
(2)(𝛽𝑅))                                (𝐵 − 64) 

 

Figure B-2: Illustration of vectors associated with TEz waves incident on an infinitely long 

conducting cylinder. 

 

The unit normal vector at (𝜌, 𝜙) is 𝒏′̂. The gradient of 𝐻0
(2)(𝛽𝑅) is cylindrically symmetric and 

cannot lie in the Z-direction. Thus, one writes 

�̂� ∙ 𝛁𝐻0
(2)(𝛽𝑅) = 𝟎                                                                                                                             (𝐵 − 65) 

and arrives at equation (𝐵 − 66), 
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𝒕′̂ × 𝛁𝐻0
(2)(𝛽𝑅) = −�̂� (𝒏′̂ ∙ 𝛁𝐻0

(2)(𝛽𝑅))                                                                                  (𝐵 − 66) 

Next taking the dot product of (𝐵 − 64) with the tangential unit vector, 

𝒕′̂ ∙ 𝒏′̂ × (𝒕′̂ × 𝛁𝐻0
(2)(𝛽𝑅)) = −𝒕′̂ ∙ 𝒏′̂ × �̂� (𝒏′̂ ∙ 𝛁𝐻0

(2)(𝛽𝑅))                                               (𝐵 − 67) 

and 

𝒕′̂ ∙ 𝒏′̂ × (𝒕′̂ × 𝛁𝐻0
(2)(𝛽𝑅)) = 𝒏′̂ ∙ 𝛁𝐻0

(2)(𝛽𝑅)                                                                            (𝐵 − 68) 

because 𝒏′̂ × �̂� = −𝒕′̂ and 𝒕′̂ ∙ 𝒕′̂ = 1.  

Now one can substitute (𝐵 − 68) into equation (𝐵 − 58), and equation (𝐵 − 69) results. 

𝐽𝑆,𝑡(𝜌, 𝜙) = −𝐻𝑧
𝑖 |𝐶 + lim

𝜌→𝐶

𝑗

4
∫ 𝐽𝐶(𝜌

′) (𝒏′̂ ∙ 𝛁𝐻0
(2)(𝛽𝑅))

𝐶

𝑑𝐶                                                  (𝐵 − 69) 

The slope of the surface defined by the function 𝑓 in the direction of the normal unit 

vector is called the directional derivative of 𝑓. The dot product of the normal vector �̂� and the 

gradient of the function, 𝛁𝑓, equals the derivative of the function 𝑓 with respect to the normal 

[21,27,66]. 

𝜕𝑓

𝜕𝑛′
= 𝒏′̂ ∙ 𝛁𝑓                                                                                                                                      (𝐵 − 70) 

Using this property of the normal vector, one can rewrite the expression in parenthesis 

from equation  (𝐵 − 70) as 

𝒏′̂ ∙ 𝛁𝐻0
(2)(𝛽𝑅) =

𝜕𝐻0
(2)(𝛽𝑅)

𝜕�̂�
                                                                                                        (𝐵 − 71) 

This gives an expression for the surface current density due to TEz wave incidence on an 

infinitely conducting cylinder. 

𝐽𝑆,𝑡(𝜌, 𝜙) = −𝐻𝑧
𝑖 |𝐶 +

𝑗

4
∫ 𝐽𝑆,𝑡(𝜌′)

𝜕𝐻0
(2)(𝛽𝑅)

𝜕𝑛′̂𝐶

𝑑𝐶                                                                    (𝐵 − 72) 

By taking the derivative of  𝐻0
(2)(𝛽𝑅) with respect to the vector 𝜌′, the dot product 

�̂� ∙ 𝛁𝐻0
(2)

 can be written as equation (𝐵 − 73), where �̂� is the unit vector of 𝑹 from coordinates 

(𝜌′, 𝜙′) to (𝜌, 𝜙). 

𝒏′̂ ∙ 𝛁𝐻0
(2)(𝛽𝑅) = (𝒏′̂ ∙ �̂�)𝛽𝐻1

(2)(𝛽𝑅)                                                                                           (𝐵 − 73) 

and equation (𝐵 − 72) may be written as (𝐵 − 74), 
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𝐽𝐶(𝜌, 𝜙) = −𝐻𝑧
𝑖 |𝐶 +

𝑗

4
∫ 𝐽𝐶(𝜌′)(𝒏′̂ ∙ �̂�)𝛽𝐻1

(2)(𝛽𝑅)
𝐶

𝑑𝐶                                                          (𝐵 − 74) 

The dot product in equation (𝐵 − 74) may also be written as a cosine function. See 

Figure B-1 for an illustration of the vectors and angle 𝛾. 

𝒏′̂ ∙ 𝛁𝐻0
(2)(𝛽𝑅) = 𝑐𝑜𝑠(𝛾)𝛽𝐻1

(2)(𝛽𝑅)                                                                                            (𝐵 − 75)   

This gives another expression for the current density due to TEz wave incidence on an infinitely 

conducting cylinder. 

𝐽𝐶(𝜌, 𝜙) = −𝐻𝑧
𝑖 |𝐶 +

𝑗𝛽

4
∫ 𝐽𝐶(𝜌′)𝑐𝑜𝑠(𝛾)𝐻1

(2)(𝛽𝑅)
𝐶

𝑑𝐶                                                             (𝐵 − 76) 

 

 

 

Figure B-3: Illustration of vectors  𝝆′̂, 𝝓′,̂ and 𝒏′̂ associated with TEz waves incident on an 

infinitely long elliptical conducting cylinder at contour segment C. The contour current 𝐽𝐶(𝜌′) is 

tangential to the surface. 
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Appendix C: SPM and Modal Analysis of Circular Cylinder 

C.1  SPM for Incident Electric Line Sources and Magnetic Line Sources 

In this section a comparison of the Spectral Projection Model to modal analysis for TMz 

and TEz incident waves impingent upon the surface of a PEC infinitely long circular cylinder is 

presented. These fields were calculated using modal analysis in Balanis [36]. Two external 

sources are covered, a near-field excitation from an electric line current, and a far-field excitation 

from a TMz plane wave. The same fields are then calculated using the Spectral Projection Model 

and the results are compared. 

 

 

 a)  b)  

Figure C-1: a) Near-field and b) far-field TMz plane wave incident on a conducting cylinder. 

 

C.2  Modal Analysis and SPM for Electric Line Sources 

In Figure C-1 an electric line source is illustrated. The electric line source is located at 

polar coordinates (𝜌′, 𝜙′) = (𝜌0, 𝜙0). The radiated electric near-field 𝐸𝑧 of an electric line 

current is parallel to the axis of the cylinder and line source (Z-axis). The electromagnetic fields 

are TMz polarized in the far-field. See equation (𝐶 − 1) . 

𝐸𝑧(𝛽|𝝆 − 𝝆
′|) = −

𝛽2𝐼𝑒
4𝜔𝜀

𝐻0
(2)(𝛽|𝝆 − 𝝆′|)                                                                                      (𝐶 − 1) 
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The electric current line source is constant magnitude, 𝐼𝑒, and time harmonic. The 

magnetic field has both radial and azimuthal components which are transverse to the axis of the 

cylinder. 

To satisfy boundary conditions, the total modal solution for the TMz tangential 

component of the electric field 𝐸𝑧
𝑡 near the surface of a circular cylinder is the sum of the 

incident and scattered fields. Equation (𝐶 − 2) expresses the boundary condition for the incident 

and scattered electric fields in the Z-direction for a circular cylinder of radius, 𝜌 = 𝑎. 

𝐸𝑧
𝑡(𝜌) = 𝐸𝑧

𝑖(𝜌) + 𝐸𝑧
𝑠(𝜌) = 0                                                                                                            (𝐶 − 2) 

The modal solution [47] for the tangential electric field for the condition 𝑎 ≤ 𝜌 ≤ 𝜌′ is 

shown below in equation (𝐶 − 3). 

𝐸𝑧
𝑡 = −

𝛽2𝐼𝑒
4𝜔𝜀

∑ 𝐻𝑘
(2)(𝛽|𝝆′|) [𝐽𝑘(𝛽|𝝆|) −

𝐽𝑘(𝛽𝑎)

𝐻𝑘
(2)(𝛽𝑎)

𝐻𝑘
(2)(𝛽|𝝆|)] 𝑒𝑗𝑘(𝜙−𝜙

′)          
∞

𝑘=−∞
      (𝐶 − 3) 

Equation (𝐶 − 3) may also be derived using the Spectral Projection Model. Firstly, begin 

with the incident electric field 𝐸𝑧
𝑖  written as the projection of the H-spectral signature of the source 

points (𝜌′, 𝜙′) onto the J-spectral signature of the observation points (𝜌, 𝜙) multiplied by the 

magnitude of the electric line current, 𝐼𝑒 and a scaling factor 
𝛽2

4𝜔𝜀
.  

𝐸𝑧
𝑖 = −

𝛽2𝐼𝑒
4𝜔𝜀

𝑒𝑜𝑚
𝑇 𝑒𝑠𝑛                                                                                              𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 4) 

The Hankel spectral signature of a source point at (𝜌′, 𝜙′) is designated as 𝑒𝑠𝑛, 

𝑒𝑠𝑛 = [𝐻𝐾
(2)(𝛽|𝝆′|)𝑒−𝑗𝐾𝜙

′
. . 𝐻𝑘

(2)(𝛽|𝝆′|)𝑒𝑗𝑘𝜙
′
 … 𝐻−𝐾

(2)(𝛽|𝝆′|)𝑒𝑗𝐾𝜙
′
]
𝑇
                     (𝐶 − 5) 

and the Bessel spectral signature of an observation point, (𝜌, 𝜙), is 𝑒𝑜𝑚. 

𝑒𝑜𝑚 = [𝐽−𝐾(𝛽|𝝆|)𝑒
−𝑗𝐾𝜙 . . 𝐽𝑘 (𝛽|𝝆|)𝑒

𝑗𝑘𝜙 … 𝐽𝐾(𝛽|𝝆|)𝑒
𝑗𝐾𝜙]

𝑇
                                     (𝐶 − 6) 

After projecting 𝑒𝑠𝑛 onto 𝑒𝑜𝑚 and multiplying by a scaling factor, −
𝛽2

4𝜔𝜀
, the resulting 

incident electric field 𝐸𝑧
𝑖  is equivalent to the modal solution truncated to 2𝐾 + 1 modes. Both are 

written in equations (𝐶 − 7) and (𝐶 − 8). 

𝐸𝑧
𝑖 = −

𝛽2𝐼𝑒
4𝜔𝜀

∑ 𝐻𝑘
(2)(𝛽|𝝆′|)𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘(𝜙−𝜙′)                                  
∞

𝑘=−∞
𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 7) 

Modal Solution Electric Line Source – Incident Field 
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𝐸𝑧
𝑖 = −

𝛽2𝐼𝑒
4𝜔𝜀

∑ 𝐻𝑘
(2)(𝛽|𝝆′|)𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘(𝜙−𝜙′)                                   
𝐾

𝑘=−𝐾
𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 8) 

Spectral Projection Model Electric Line Source - Incident Field 

 

The scattered electric field for these two points may now be written in projection form as 

equation (𝐶 − 9). To determine the scattered electric field from a circular cylinder, the J-spectral 

signature of every induced electric line currents at (𝜌′, 𝜙′) is projected onto the H-spectral 

signature of the observation points located at (𝜌, 𝜙). 

𝐸𝑧
𝑠 = −

𝛽2𝐼𝑒
4𝜔𝜀

𝑒𝑜𝑚
𝑇 𝑒𝑠𝑛                                                                                             𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 9) 

The spectral signature of an induced electric line current at (𝜌′, 𝜙′) is given in equation 

(𝐶 − 10), with factors 𝑐𝑘 used to satisfy the boundary conditions. The vector in equation 

(𝐶 − 10) equivalently represents the J-spectral signature of the induced currents. 

𝑒𝑠𝑛 = [𝑐𝐾𝑒−𝑗𝐾𝜙
′
. . 𝑐𝑘𝑒

𝑗𝑘𝜙′  … 𝑐−𝐾𝑒
𝑗(𝐾−1)𝜙′]

𝑇
                                                             (𝐶 − 10) 

The H-spectral signature of an observation point, (𝜌, 𝜙) is 𝑒𝑜𝑚. 

𝑒𝑜𝑚 = [𝐻−𝐾
(2)(𝛽|𝝆|)𝑒−𝑗𝐾𝜙 . . 𝐻𝑘

(2)(𝛽|𝝆|)𝑒𝑗𝑘𝜙 … 𝐻𝐾
(2)(𝛽|𝝆|)𝑒𝑗𝐾𝜙]

𝑇
                         (𝐶 − 11) 

To determine the terms 𝑐𝑘, the boundary conditions must be applied, and these 𝑐𝑘 terms 

ensure that the boundary conditions at the surface of the conductor are satisfied. The term is 𝑐𝑘 =

𝐽𝑘(𝛽𝑎)𝐻𝑘
(2)
(𝛽𝜌′)

𝐻𝑘
(2)(𝛽𝑎)

 . This equals the modal reflection coefficient of the electric field at the surface of 

the conductor multiplied by the Hankel function. The scattered electric field from the modal 

solution is given in equation (𝐶 − 12). 

𝐸𝑧
𝑠 =

𝛽2𝐼𝑒
4𝜔𝜀

∑ 𝐻𝑘
(2)(𝛽|𝝆|)

𝐽𝑘(𝛽𝑎)

𝐻𝑘
(2)(𝛽𝑎)

𝐻𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙

′)            
∞

𝑘=−∞
𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 12) 

The equivalent J-spectral signature of an induced current source point 𝑒𝑠𝑛 is written in equation 

 (𝐶 − 13). 

𝑒𝑠𝑛 = [
𝐽−𝐾(𝛽𝑎)

𝐻−𝐾
(2)(𝛽𝑎)

𝐻−𝐾
(2)(𝛽|𝝆′|)𝑒𝑗𝐾𝜙

′
…

𝐽−𝑘(𝛽𝑎)

𝐻−𝑘
(2)(𝛽𝑎)

𝐻−𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘𝜙

′
 …  

 
𝐽𝐾(𝛽𝑎)

𝐻𝐾
(2)(𝛽𝑎)

𝐻𝐾
(2)(𝛽|𝝆′|)𝑒−𝑗𝐾𝜙

′
]

𝑇

                                                                                                     (𝐶 − 13) 
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The projection of  𝑒𝑠𝑛 onto 𝑒𝑜𝑚 is now equal to the scattered electric field 𝐸𝑧
𝑠 in equation 

(𝐶 − 15) truncated to 2𝐾 + 1 modes. 

 

𝐸𝑧
𝑠 =

𝛽2𝐼𝑒
4𝜔𝜀

∑ 𝐻𝑘
(2)(𝛽|𝝆|)

𝐽𝑘(𝛽𝑎)

𝐻𝑘
(2)(𝛽𝑎)

𝐻𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙

′)            
∞

𝑘=−∞
𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 14) 

Modal Solution Electric Line Source - Scattered Field 

 

𝐸𝑧
𝑠 =

𝛽2𝐼𝑒
4𝜔𝜀

∑ 𝐻𝑘
(2)(𝛽|𝝆|)

𝐽𝑘(𝛽𝑎)

𝐻𝑘
(2)(𝛽𝑎)

𝐻𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙

′)             
𝐾

𝑘=−𝐾
𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 15) 

Spectral Projection Model Electric Line Source - Scattered Field 

 

For an infinitely long circular cylinder excited by a TMz plane wave using modal analysis 

the far-field solution 𝜌′ > 𝜌 to the tangential electric field is given in equation (𝐶 − 16). 

𝐸𝑧
𝑡 = 𝐸0∑ 𝑗−𝑘 [𝐽𝑘(𝛽|𝝆|) −

𝐽𝑘(𝛽𝑎)

𝐻𝑘
(2)(𝛽𝑎)

𝐻𝑘
(2)(𝛽|𝝆|)] 𝑒𝑗𝑘(𝜙−𝜙𝑖)

∞

𝑘=−∞
                                     (𝐶 − 16) 

The incident plane wave from the modal solution in equation (𝐶 − 16) is shown in equation 

(𝐶 − 17). This can be recognized as the wave equation. 

𝐸𝑧
𝑖 = 𝐸0∑ 𝑗−𝑘𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘(𝜙−𝜙𝑖)
∞

𝑘=−∞
                                                                                       (𝐶 − 17) 

For an incident plane wave coming from (𝜌′ → ∞,𝜙′ = 𝜙𝑖) one simply replaces the 

Hankel function 𝐻𝑘
(2)(𝛽|𝝆′|) with its asymptotic approximation 𝑒−

𝑗𝑘𝜋

2 . The Hankel spectral 

signature of the plane wave source is 𝑒𝑠𝑛, and written as (𝐶 − 18), but instead using the 

asymptotic expansion. 

𝑒𝑠𝑛 = [𝑒−𝑗𝐾(𝜙
′+
𝜋
2
)

… 𝑒
𝑗𝑘(𝜙′+

𝜋
2
)

… 𝑒𝑗𝐾(𝜙
′+
𝜋
2
)]
𝑇

                                                            (𝐶 − 18) 

The Bessel spectral signature of an observation point, (𝜌, 𝜙), is still 𝑒𝑜𝑚. 

𝑒𝑜𝑚 = [𝐽−𝐾(𝛽|𝝆|)𝑒
−𝑗𝐾𝜙 . . 𝐽𝑘 (𝛽|𝝆|) … 𝐽𝐾−1(𝛽|𝝆|)𝑒

𝑗𝐾𝜙]
𝑇
                                       (𝐶 − 19) 

Now projecting 𝑒𝑠𝑛 onto 𝑒𝑜𝑚 and multiplying by 𝐸0, the incident electric field 𝐸𝑧
𝑖  is given 

in equation (𝐶 − 20). 

𝐸𝑧
𝑖 = 𝐸0𝑒𝑜𝑚

𝑇 𝑒𝑠𝑛                                                                                                                                   (𝐶 − 20) 
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𝐸𝑧
𝑖 = 𝐸0∑ 𝑗−𝑘𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘(𝜙−𝜙𝑖)
∞

𝑘=−∞
                                                                                       (𝐶 − 21) 

Modal Solution TMz Plane Wave – Incident Field 

 

𝐸𝑧
𝑖 = 𝐸0∑ 𝑗−𝑘𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘(𝜙−𝜙𝑖)
𝐾

𝑘=−𝐾
                                                                                       (𝐶 − 22) 

Spectral Projection Model TMz Plane Wave - Incident Field 

 

The scattered electric field may be written as the projection of 𝑒𝑠𝑛 onto  𝑒𝑜𝑚, shown in 

equation (𝐶 − 23). 

𝐸𝑧
𝑠 = 𝐸0𝑒𝑜𝑚

𝑇 𝑒𝑠𝑛                                                                                                                                   (𝐶 − 23) 

The equivalent J-spectral signature of the induced current is given in equation (𝐶 − 24), 

𝑒𝑠𝑛 = [𝑗−𝐾
𝐽−𝐾(𝛽|𝒂|)

𝐻−𝐾
(2)(𝛽|𝒂|)

𝑒𝑗𝐾𝜙
′
… 𝑗−𝑘

𝐽−𝑘(𝛽|𝒂|)

𝐻−𝑘
(2)(𝛽|𝒂|)

𝑒𝑗𝑘𝜙
′

… 𝑗𝐾
𝐽𝐾(𝛽|𝒂|)

𝐻𝐾
(2)(𝛽|𝒂|)

𝑒−𝑗𝐾𝜙
′
]

𝑇

(𝐶 − 24) 

and the Hankel spectral signature of the observation points given in equation (𝐶 − 25), 

𝑒𝑜𝑚 = [𝐻−𝐾
(2)(𝛽|𝝆|)𝑒−𝑗𝐾𝜙 . . 𝐻−𝑘

(2)(𝛽|𝝆|)𝑒−𝑗𝑘𝜙 … 𝐻𝐾
(2)(𝛽|𝝆|)𝑒𝑗𝐾𝜙]

𝑇
                       (𝐶 − 25) 

The modal solution to the scattered electric field 𝐸𝑧
𝑠 from equation (𝐶 − 14) for the near 

field is instead written as equation (𝐶 − 26) with the Hankel function term 𝐻𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘𝜙

′
 

replaced with 𝑗−𝑛. The SPM scattered field in equation (𝐶 − 23) truncated to 2𝐾 + 1 modes is 

𝐸𝑧
𝑠 from SPM and shown in equation (𝐶 − 27). 

 

𝐸𝑧
𝑠 = −𝐸0∑ 𝑗−𝑘

𝐽𝑘(𝛽|𝒂|)

𝐻𝑘
(2)(𝛽|𝒂|)

𝐻𝑘
(2)(𝛽|𝝆|)𝑒𝑗𝑘(𝜙−𝜙

′)
∞

𝑘=−∞
                                                        (𝐶 − 26) 

Modal Solution TMz Plane Wave - Scattered Field 

 

𝐸𝑧
𝑠 = −𝐸0∑ 𝑗−𝑘

𝐽𝑘(𝛽|𝒂|)

𝐻𝑘
(2)(𝛽|𝒂|)

𝐻𝑘
(2)(𝛽|𝝆|)𝑒𝑗𝑘(𝜙−𝜙

′)
𝐾

𝑘=−𝐾
                                                        (𝐶 − 27) 

Spectral Projection Model TMz Plane Wave - Scattered Field 
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 a)  b) 

Figure C-2: a) Near-field and b) far-field TEz plane wave incident on a conducting cylinder. 

 

C.3  Modal Analysis and SPM for Magnetic Line Sources 

In this section the tangential magnetic field on the surface of an infinitely long circular 

cylinder is presented. These fields are calculated using modal analysis and can be found in 

Balanis [36]. A near-field excitation from a magnetic line current and a far-field excitation from 

a TEz plane wave will be the two external sources. The Spectral Projection Model is used to 

calculate these fields. 

In Figure C-2 a magnetic line source is shown. The magnetic line source is located at 

polar coordinates (𝜌′, 𝜙′) = (𝜌0, 𝜙0). The radiated magnetic near-field 𝐻𝑧 from a magnetic line 

current is parallel to the axis of the line source and the cylinder. From equation (𝐶 − 28) given 

earlier, the magnetic field is described by a Hankel function 𝐻0
(2)(𝛽|𝝆 − 𝝆′|). 

𝐻𝑧(𝛽|𝝆 − 𝝆
′|) = −

𝛽2𝐼𝑚
4𝜔𝜇

𝐻0
(2)(𝛽|𝝆 − 𝝆′|)                                                                                  (𝐶 − 28) 

The magnetic current line source is constant magnitude, 𝐼𝑚, and time harmonic. The 

radiated electric field has both radial and azimuthal components which are transverse to the axis 

of the cylinder. 
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 To satisfy magnetic field boundary conditions for TEz waves, the tangential component 

of the magnetic field 𝐻𝑧
𝑡 at the surface of a circular cylinder is related to the surface current by 

equation (𝐶 − 29). 

𝑱𝑺 = �̂� × (𝑯
𝒊 +𝑯𝒔)                                                                                                                          (𝐶 − 29) 

Equation (𝐶 − 29) expresses the boundary condition for the incident and scattered magnetic 

fields in the Z-direction for a circular cylinder of radius, 𝜌 = 𝑎. The term 𝐽𝐶(𝜌𝑚) is the self-term 

which is normally absorbed into the scattered field expression. 

𝐻𝑧
𝑖 = −[𝐻𝑧

𝑠 + 𝐽𝐶(𝜌𝑚 = 𝑎)]                                                                                                              (𝐶 − 30) 

The modal solution for the 𝐻𝑧
𝑡𝑎𝑛 tangential components of the magnetic field are shown 

below in equations (𝐶 − 31). 

𝐻𝑧
𝑡 = −

𝛽2𝐼𝑚
4𝜔𝜇

∑ 𝐻𝑘
(2)(𝛽|𝝆′|) [𝐽𝑘(𝛽|𝝆|) −

𝐽𝑘′(𝛽𝑎)

𝐻𝑘
(2)′(𝛽𝑎)

𝐻𝑘
(2)(𝛽|𝝆|)] 𝑒𝑗𝑘(𝜙−𝜙

′)
∞

𝑘=−∞
      𝑎 ≤ 𝜌 ≤ 𝜌′ 

(𝐶 − 31) 

To determine the 𝐻𝑧
𝑡𝑎𝑛 tangential solution using SPM, the incident magnetic field 𝐻𝑧

𝑖  is 

found first. It is the projection of the H-spectral signature of the source points onto the J-spectral 

signature of the observation points multiplied by the magnitude of the magnetic line current 𝐼𝑚 

and a scaling factor −
𝛽2

4𝜔𝜇
.  

The Hankel spectral signature of a source point at (𝜌′, 𝜙′) is 𝑒𝑠𝑛, shown in equation 

(𝐶 − 32). 

𝑒𝑠𝑛 = [𝐻−𝐾
(2)(𝛽|𝝆′|)𝑒𝑗𝐾𝜙

′
. . 𝐻−𝑘

(2)(𝛽|𝝆′|)𝑒𝑗𝑘𝜙
′
 … 𝐻𝐾

(2)(𝛽|𝝆′|)𝑒−𝑗𝐾𝜙
′
]
𝑇
                 (𝐶 − 32) 

The Bessel spectral signature of an observation point, (𝜌, 𝜙) is 𝑒𝑜𝑚. 

𝑒𝑜𝑚 = [𝐽−𝐾(𝛽|𝝆|)𝑒
−𝑗𝐾𝜙 . . 𝐽𝑘 (𝛽|𝝆|) … 𝐽𝐾(𝛽|𝝆|)𝑒

𝑗𝐾𝜙]
𝑇
                                           (𝐶 − 33) 

By projecting 𝑒𝑠𝑛 onto 𝑒𝑜𝑚 and multiplying by a scaling factor, −
𝛽2𝐼𝑚

4𝜔𝜇
, the incident magnetic 

field is now be written as equation (𝐶 − 34). 

𝐻𝑧
𝑖 = −

𝛽2𝐼𝑚
4𝜔𝜇

𝑒𝑜𝑚
𝑇 𝑒𝑠𝑛                                                                                          𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 34) 

The incident tangential component of the magnetic field 𝐻𝑧
𝑖  from the modal solution is 

written in (𝐶 − 35). 
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𝐻𝑧
𝑖 = −

𝛽2𝐼𝑚
4𝜔𝜇

∑ 𝐽𝑘(𝛽|𝝆|)𝐻𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙

′)
∞

𝑘=−∞
                              𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 35) 

The incident tangential component of the magnetic field 𝐻𝑧
𝑖  from the SPM truncated to 

2𝐾 + 1 modes is written in (𝐶 − 37). 

𝐻𝑧
𝑖 = −

𝛽2𝐼𝑚
4𝜔𝜇

∑ 𝐽𝑘(𝛽|𝝆|)𝐻𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙

′)
∞

𝑘=−∞
                              𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 36) 

Modal Solution Magnetic Line Source – Incident Field 

 

𝐻𝑧
𝑖 = −

𝛽2𝐼𝑚
4𝜔𝜇

∑ 𝐽𝑘(𝛽|𝝆|)𝐻𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙

′)
𝐾

𝑘=−𝐾
                               𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 37) 

Spectral Projection Model Solution Magnetic Line Source – Incident Field 

 

The scattered magnetic field 𝐻𝑧
𝑠 is due to induced electric currents on the surface of the 

conductor. From the modal solution, 𝐻𝑧
𝑠 is written in equation (𝐶 − 38). 

𝐻𝑧
𝑠 =

𝛽2𝐼𝑚
4𝜔𝜇

∑
𝐽𝑘′(𝛽𝑎)

𝐻𝑘
(2)′(𝛽𝑎)

𝐻𝑘
(2)(𝛽|𝝆|)𝐻𝑘

(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙
′)

∞

𝑘=−∞
          𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 38) 

For 𝑎 ≤ 𝜌 ≤ 𝜌′, 𝐻𝑧
𝑠 is equal to the J-spectral signature of the source currents projected 

onto the H-spectral signature of the observation points. For the scattered tangential magnetic 

field, the vector 𝑒𝑠𝑛 is projected onto 𝑒𝑜𝑚 and multiplied the magnetic current 𝐼𝑚 and a scaling 

factor 
𝛽2

4𝜔𝜇
. The scattered magnetic field is written in equation (𝐶 − 39). 

𝐻𝑧
𝑠 =

𝛽2𝐼𝑚
4𝜔𝜇

𝑒𝑜𝑚
𝑇 𝑒𝑠𝑛                                                                                             𝑎 ≤ 𝜌 ≤ 𝜌

′          (𝐶 − 39) 

The Hankel spectral signature of the observation points given in equation (𝐶 − 40), 

𝑒𝑜𝑚 = [𝐻−𝐾
(2)(𝛽|𝝆|)𝑒𝑗𝐾𝜙 . . 𝐻−𝑘

(2)(𝛽|𝝆|)𝑒𝑗𝑘𝜙 … 𝐻𝐾−1
(2) (𝛽|𝝆|)𝑒−𝑗𝐾𝜙]

𝑇
                       (𝐶 − 40) 

The Bessel spectral signature of an induced electric current source point at the circular 

cylinder surface is 𝑒𝑠𝑛 shown in equation (𝐶 − 41). 

𝑒𝑠𝑛 = [
𝐽−𝐾′(𝛽𝑎)

𝐻−𝐾
(2)′(𝛽𝑎)

𝐻−𝐾
(2)(𝛽|𝝆′|)𝑒𝑗𝐾𝜙

′
…

𝐽−𝑘′(𝛽𝑎)

𝐻−𝑘
(2)′(𝛽𝑎)

𝐻−𝑘
(2)(𝛽|𝝆′|)𝑒𝑗𝑘𝜙

′
 …  

 
𝐽𝐾(𝛽𝑎)′

𝐻𝐾
(2)(𝛽𝑎)′

𝐻𝐾
(2)(𝛽|𝝆′|)𝑒−𝑗𝐾𝜙

′
]

𝑇

                                                                                                    (𝐶 − 41) 
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The term 
𝐽𝑛′(𝛽𝑎)

𝐻𝑛
(2)
′(𝛽𝑎)

 is the modal reflection coefficient. The projection product 𝑒𝑜𝑚
𝑇 𝑒𝑠𝑛 is given in 

equation (𝐶 − 42). 

 

𝐻𝑧
𝑠 =

𝛽2𝐼𝑚
4𝜔𝜇

∑
𝐽𝑘′(𝛽𝑎)

𝐻𝑘
(2)′(𝛽𝑎)

𝐻𝑘
(2)(𝛽|𝝆|)𝐻𝑘

(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙
′)

∞

𝑘=−∞
          𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 38) 

Modal Solution Magnetic Line Source – Scattered Field 

 

𝐻𝑧
𝑠 =

𝛽2𝐼𝑚
4𝜔𝜇

∑
𝐽𝑘′(𝛽𝑎)

𝐻𝑘
(2)′(𝛽𝑎)

𝐻𝑘
(2)(𝛽|𝝆|)𝐻𝑘

(2)(𝛽|𝝆′|)𝑒𝑗𝑘(𝜙−𝜙
′)

𝐾

𝑘=−𝐾
           𝑎 ≤ 𝜌 ≤ 𝜌′          (𝐶 − 42) 

Spectral Projection Model Solution Magnetic Line Source – Scattered Field 

 

For a magnetic line current source in the far-field radiates a magnetic field with TEz 

polarization upon a PEC infinitely long circular cylinder the radiated magnetic field is parallel to 

the axis of the cylinder and line source. The electric field has both radial and azimuthal 

components which are transverse to the axis of the cylinder. 

          The modal solution for the 𝐻𝑧
𝑡 tangential components of the magnetic field due to far-field 

excitation is shown below. 

𝐻𝑧
𝑡 = 𝐻0∑ 𝑗−𝑘 [𝐽𝑘(𝛽𝜌) −

𝐽𝑘′(𝛽𝑎)

𝐻𝑘
(2)′(𝛽𝑎)

𝐻𝑘
(2)(𝛽𝜌)] 𝑒𝑗𝑘𝜙

∞

𝑘=−∞
                                                  (𝐶 − 43) 

The incident magnetic field is given in equations (𝐶 − 46) and (𝐶 − 48) as the 

projection of the Hankel spectral signature of the magnetic far-field (𝐶 − 44) onto J-spectral 

signature of an observation point on the cylinder surface (𝐶 − 45) truncated to 2𝐾 + 1 modes. 

This agrees with the modal solution (𝐶 − 47). 

The Hankel spectral signature of the incident plane wave source is 𝑒𝑠𝑛, and written as 

(𝐶 − 45). 

𝑒𝑠𝑛 = [𝑒−𝑗𝐾(𝜙
′+
𝜋
2
)

… 𝑒𝑗𝑘(𝜙
′+
𝜋
2
) … 𝑒𝑗𝐾(𝜙

′+
𝜋
2
)]
𝑇

                                                            (𝐶 − 44) 

The Bessel spectral signature of an observation point, (𝜌, 𝜙), is still 𝑒𝑜𝑚. 

𝑒𝑜𝑚 = [𝐽−𝐾(𝛽|𝝆|)𝑒
−𝑗𝐾𝜙 . . 𝐽𝑘 (𝛽|𝝆|) … 𝐽𝐾−1(𝛽|𝝆|)𝑒

𝑗𝐾𝜙]
𝑇
                                       (𝐶 − 45) 

𝐻𝑡
𝑖 = 𝐻0𝑒𝑜𝑚

𝑇 𝑒𝑠𝑛                                                                                                                                  (𝐶 − 46) 
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𝐻𝑖
𝑡 = 𝐻0∑ 𝑗−𝑘𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙
∞

𝑘=−∞
                                                                                               (𝐶 − 47) 

Modal Solution TEz Plane Wave - Incident Field 

 

𝐻𝑖
𝑡 = 𝐻0∑ 𝑗−𝑘𝐽𝑘(𝛽|𝝆|)𝑒

𝑗𝑘𝜙
𝐾

𝑘=−𝐾
                                                                                                (𝐶 − 48) 

Spectral Projection Model Solution TEz Plane Wave - Incident Field 

 

The scattered magnetic field 𝐻𝑧
𝑠 is due to induced currents on the surface of the 

conductor. It is equal to the spectral signature of the source points projected onto the H-spectral 

signature of the observation points multiplied by the magnitude of the magnetic field 𝐻0. Using 

SPM, the spectral signature of the induced currents comes from equation (𝐶 − 49). 

𝑒𝑠𝑛 = [𝑗−𝐾
𝐽𝐾′(𝛽|𝒂|)

𝐻𝐾
(2)′(𝛽|𝒂|)

𝑒𝑗𝐾𝜙
′
… 𝑗−𝑘

𝐽𝑘′(𝛽|𝒂|)

𝐻𝑘
(2)′(𝛽|𝒂|)

𝑒𝑗𝑘𝜙
′

… 𝑗𝐾
𝐽−𝐾′(𝛽|𝒂|)

𝐻−𝐾
(2)′(𝛽|𝒂|)

𝑒−𝑗𝐾𝜙
′
]

𝑇

              

(𝐶 − 49) 

The vector 𝑒𝑠𝑛 is projected onto the Hankel spectral signature of the observation points. 

𝑒𝑜𝑚 = [𝐻−𝐾
(2)(𝛽|𝝆|)𝑒−𝑗𝐾𝜙 . . 𝐻−𝑘

(2)(𝛽|𝝆|)𝑒−𝑗𝑘𝜙 … 𝐻𝐾
(2)(𝛽|𝝆|)𝑒𝑗𝐾𝜙]

𝑇
                       (𝐶 − 50) 

Thus, the scattered magnetic field may be written as the projection of 𝑒𝑠𝑛 onto  𝑒𝑜𝑚, 

shown in equation (𝐶 − 51). 

𝐻𝑧
𝑠 = 𝐻0𝑒𝑜𝑚

𝑇 𝑒𝑠𝑛                                                                                                                                  (𝐶 − 51) 

Equation (𝐶 − 51), shown in summation form in equation (𝐶 − 53) and truncated to 

2𝐾 + 1 modes, agrees with the modal model scattered field given in Balanis [36] equation 

(𝐶 − 52). 

 

𝐻𝑧
𝑠 = −𝐻0∑ 𝑗−𝑘

𝐽𝑘′(𝛽𝑎)

𝐻𝑘
(2)′(𝛽𝑎)

𝐻𝑘
(2)(𝛽𝜌)𝑒𝑗𝑘𝜙

∞

𝑘=−∞
                                                                     (𝐶 − 52) 

Modal Solution TEz Plane Wave - Scattered Field 
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𝐻𝑧
𝑠 = −𝐻0∑ 𝑗−𝑘

𝐽𝑘′(𝛽𝑎)

𝐻𝑘
(2)′(𝛽𝑎)

𝐻𝑘
(2)(𝛽𝜌)𝑒𝑗𝑘𝜙

∞

𝑘=−∞
                                                                     (𝐶 − 53) 

Spectral Projection Model Solution TEz Plane Wave – Scattered Field 
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Appendix D: Bessel Functions 

 

D.1  Bessel’s Equation 

The following derivations may be found in many electromagnetics texts. Many years 

before Bessel’s investigation into cylindrical functions, Joseph Fourier used a form of Bessel’s 

differential equation in his famous work Analytic Theory of Heat [1-5]. This equation is now 

known as Bessel’s equation of order n, 

𝑥2
𝜕2𝑦

𝜕2𝑥
+ 𝑥

𝜕𝑦

𝜕𝑥
+ (𝑥2 − 𝑛2)𝑦 = 0                                                                                                    (𝐷 − 1) 

Friedrich Bessel, for whom the functions are named, derived the Bessel differential 

equation by investigating a problem dealing with elliptical motion and did an extensive study of 

Bessel functions and their solutions [58]. Bessel’s equation and its associated Bessel functions 

Jn(x) are used to describe the electric potential in objects that have cylindrical symmetry. Bessel 

functions are also used in solving time harmonic electromagnetic field problems too. The 

Spectral Projection Model in this dissertation deals exclusively with solving time harmonic 

electric field scattering problems in 2D for objects with cylindrical symmetry. A plot of several 

Bessel functions of the first kind is shown in Figure D-1. 

 

 

Figure D-1: Plot of Bessel function of the first kind for several orders. 
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In 1824 Friedrich Bessel wrote extensively on functions describing planetary motion 

[5,59]. He derived many properties of the function described below: 

𝐽𝑛(𝑥) =
1

2𝜋
∫ 𝑐𝑜𝑠(𝑛𝜃 − 𝑥𝑠𝑖𝑛𝜃)𝑑𝜃
2𝜋

0

                                                                                             (𝐷 − 2) 

He also introduced the equation below, known as Bessel’s differential equation. 

𝑥2
𝜕2𝐽𝑛(𝑥)

𝜕𝑥2
+ 𝑥

𝑑𝐽𝑛(𝑥)

𝑑𝑥
+ (𝑥2 − 𝑛2)𝐽𝑛(𝑥) = 0                                                                             (𝐷 − 3) 

Bessel’s differential equation can be written in many forms. One differential form commonly 

used is shown below: 

𝑑2𝑦

𝑑𝑥2
+
1

𝑥

𝑑𝑦

𝑑𝑥
− (1 +

𝜈2

𝑥2
)𝑦 = 0                                                                                                         (𝐷 − 4) 

Bessel functions of the second kind, also known as Neumann or Weber functions, were 

named because of the mathematical contributions of German mathematicians Carl Gottfried 

Neumann (1832-1925) and Heinrich Martin Weber (1842-1913) [67-70]. The series expansion of 

Neumann’s Bessel function of the second kind,  𝑁𝜈(𝑥), is defined below: 

𝑁𝜈(𝑥) = 𝐽𝜈(𝑥)𝑙𝑜𝑔(𝑥) −
1

2
∑

(𝜈 − 𝑘 − 1)!

𝑘!
(
𝑥

2
)

𝜈−1

𝑘=0

2𝑘−𝜐

+ 

1

2
∑

(−1)𝑘−1 [(1 +
1
2 +⋯+

1
𝑘
) + (1 +

1
2 +⋯+

1
𝑘 + 𝜈

)]

𝑘! (𝑘 + 𝜈)!

∞

𝑘=0

(
𝑥

2
)
2𝑘+𝜈

                                     (𝐷 − 5) 

Neumann functions have a logarithmic term and singularity at the origin (x = 0). Neumann’s 

work, Theory of Bessel functions: An Analogue of the Theory of Spherical Harmonics (1867), 

investigated these functions [71]. Many other references exist as well [72]. 

The Weber Bessel function of the second kind [60], 𝑌𝜈( 𝑥), as shown in equation (𝐷 − 6) 

below, 

𝑌𝜈(𝑥) =
2

𝜋
𝐽𝜈(𝑥) (𝑙𝑛

𝑥

2
+ 𝛾) −

1

𝜋
∑

(𝜈 − 𝑘 − 1)!

𝑘!
(
𝑥

2
)

𝜈−1

𝑘=0

2𝑘−𝜐

+ 

1

𝜋
∑

(−1)𝑘−1 [(1 +
1
2 +⋯+

1
𝑘
) + (1 +

1
2 +⋯+

1
𝑘 + 𝜈

)]

𝑘! (𝑘 + 𝜈)!

∞

𝑘=0

(
𝑥

2
)
2𝑘+𝜈

                                     (𝐷 − 6) 
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Weber’s Bessel function of the second kind also has a logarithmic term. Weber’s function 

is that form which is most frequently tabulated and used. The gamma term 𝛾  denotes Euler’s 

constant ( 𝛾 = 1.781 ). A plot of several Bessel functions of the second kind is shown in Figure 

D-2. 

 

 a) b)   c) 

Figure D-2: Plot of Weber’s Bessel function of the second kind for several orders: a) Y0(x), b) 

Y1(x), and c) Y2(x). 

 

The general solution to the Bessel’s equation is written as 

𝑦 = 𝐴𝐽0(𝑥) + 𝐵𝑌0(𝑥)                                                                                                                          (𝐷 − 7) 

where A and B are arbitrary constants. 

 

D.2  Hankel Functions 

Bessel functions of the second kind combined with Bessel functions of the first kind form 

Hankel functions. Because Hankel functions are a linear combination of 𝐽𝑛(𝑥) and 𝑌𝑛(𝑥),  

Hankel functions are also solutions to Bessel’s equation [36,46,57,73]. See equations (𝐷 − 8) 

and (𝐷 − 9) . 

𝐻𝑛
(1) = 𝐽𝑛(𝑥) + 𝑗𝑌𝑛(𝑥)                                                                                                                        (𝐷 − 8) 

𝐻𝑛
(2) = 𝐽𝑛(𝑥) − 𝑗𝑌𝑛(𝑥)                                                                                                                        (𝐷 − 9) 
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Other important properties of Bessel functions are given in the table below. These are helpful in 

finding new properties of these function. 

Hankel functions are used extensively in electromagnetic theory. They frequently act as 

Green’s functions and have many useful properties. Because they are cylindrically symmetrical, 

they are often used to characterize waves. The singularity in Weber’s function often requires 

special attention when integrating self-terms especially with the Electric Field Integral Equation 

and the Magnetic Field Integral Equation. The Spectral Projection Model uses Hankel functions 

of the second kind in modelling electromagnetic behavior. The singularity in the function is 

avoided by using the addition theorem sum to calculate the Hankel functions. 

 

D.3  Bessel Function Properties 

Bessel functions have many useful properties [60]. Some of the more important common 

ones involve the even and odd nature of the modes. Listed in Table D-1 are some of these 

properties. These properties were used to develop SPM theory especially when solving the MFIE 

using the convolution property of the addition theorem. 

 

Table D-1: Modes and Symmetry of Bessel Functions. 

 

𝐽−𝑛(𝑥) = (−1)𝑛𝐽𝑛(𝑥) 

𝐽−𝑛(𝑥) = 𝐽𝑛(−𝑥) 

𝑌−𝑛(𝑥) = (−1)
𝑛𝑌𝑛(𝑥) 

𝑌𝑛(𝑒
±𝑗𝜋𝑥) = 𝑒∓𝑗𝑛𝜋𝑌𝑛(𝑥) ± 2𝑗𝑐𝑜𝑠(𝑛𝜋)𝐽𝑛(𝑥) 

𝐻𝑛
(1,2)(𝑥) = (−1)𝑛𝐻−𝑛

(1,2)(𝑥) 

𝐻𝑛
(1)(𝑥) = (𝐻𝑛

(2)(𝑥∗))
∗

 

𝐻𝑛
(2)(𝑥) = (𝐻𝑛

(1)(𝑥∗))
∗

 

The * indicates the complex conjugate. 

 

D.4  Bessel Function Derivatives 

Two Bessel function derivatives are given in equations (𝐷 − 10) to (𝐷 − 13). 
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𝐽𝑛
′ (𝑘𝜌′) =

𝐽𝑛−1(𝑘𝜌
′) − 𝐽𝑛+1(𝑘𝜌

′)

2
                                                                                                (𝐷 − 10) 

and 

𝜕𝐽0(𝑘𝜌)

𝜕𝑘𝜌
= −𝐽1(𝑘𝜌) = 𝐽0

′(𝑘𝜌)                                                                                                        (𝐷 − 11) 

𝑌𝑛
′(𝑘𝜌′)

=
𝑌𝑛−1(𝑘𝜌

′) − 𝑌𝑛+1(𝑘𝜌
′)

2
                                                                                                 (𝐷 − 12) 

and 

𝜕𝑌0(𝑘𝜌)

𝜕𝑘𝜌
= −𝑌1(𝑘𝜌) = 𝑌0

′(𝑘𝜌)                                                                                                      (𝐷 − 13) 

 

The derivative term 𝐻𝑛
′ (𝑘𝜌′) is defined by equations (𝐷 − 14) and (𝐷 − 15). 

𝐻𝑛
′ (𝑘𝜌′) =

𝐻𝑛−1(𝑘𝜌
′) − 𝐻𝑛+1(𝑘𝜌

′)

2
                                                                                           (𝐷 − 14) 

𝜕𝐻0(𝑘𝜌
′)

𝜕𝑘𝜌′
= −𝐻1(𝑘𝜌) =  𝐻0

′(𝑘𝜌′)                                                                                               (𝐷 − 15) 

𝐽𝑛−1(𝜌
′) =

𝑛𝐽𝑛(𝜌
′)

𝜌′
+ 𝐽𝑛

′ ( 𝜌′)                                                                                                         (𝐷 − 16) 

𝑌𝑛
′(𝜌′) =

𝑛𝑌𝑛(𝜌
′)

𝜌′
 − 𝑌𝑛−1( 𝜌

′)                                                                                                       (𝐷 − 17) 

𝐻𝑛
′ (𝜌′) =

𝑛𝐻𝑛(𝜌
′)

𝜌′
 − 𝐻𝑛−1( 𝜌

′)                                                                                                   (𝐷 − 18) 

𝐽𝑛+1(𝜌
′) =

𝑛𝐽𝑛(𝜌
′)

𝜌′
− 𝐽𝑛

′  ( 𝜌′)                                                                                                        (𝐷 − 19) 

𝐽𝑛−1(𝑘𝜌
′) + 𝐽𝑛+1(𝑘𝜌

′) =  
2𝑛𝐽𝑛(𝑘𝜌

′)

𝜌′
                                                                                          (𝐷 − 20) 

𝑌𝑛−1(𝑘𝜌
′) + 𝑌𝑛+1(𝑘𝜌

′) =  
2𝑛𝑌𝑛(𝑘𝜌

′)

𝜌′
                                                                                        (𝐷 − 21) 

𝐻𝑛−1(𝑘𝜌
′) + 𝐻𝑛+1(𝑘𝜌

′) =  
2𝑛𝐻𝑛(𝑘𝜌

′)

𝜌′
                                                                                     (𝐷 − 22) 
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D.5  Hankel and Bessel Function Asymptotic Properties 

Hankel functions are important in characterizing the electromagnetic fields analyzed with 

the Spectral Projection Method as outgoing waves. Hankel functions are generally the Green’s 

function in integral expressions describing electromagnetic fields. The asymptotic approximation 

of Hankel functions for large arguments is given in equation (𝐷 − 23). The Spectral Projection 

Model uses this approximation in order to characterize the H-spectral signature of electric and 

magnetic field plane waves. 

𝐻𝑛
(2)(𝜌) = √

2

𝜋𝜌
𝑒−𝑗(𝜌−

𝜋
4
)𝑒−

𝑗𝑛𝜋
2                                                                                   𝜌 → ∞       (𝐷 − 23) 

The asymptotic approximation of Bessel functions of the first and second kind for small 

arguments is given in equations (𝐷 − 24) through (𝐷 − 27). 

𝐽0(𝜌) = 1                                                                                                                          𝜌 → 0       (𝐷 − 24) 

𝐽𝑛(𝜌) =
1

𝑛!
(
𝜌

2
)
𝑛

                                                                                                 𝜌 → 0, 𝑛 > 0       (𝐷 − 25) 

𝑌0(𝜌) =
2

𝜋
𝑙𝑛 (

𝛾𝜌

2
)                                                                                      𝜌 → 0, 𝛾 = 1.781       (𝐷 − 26) 

𝑌𝑛(𝜌) = −
(𝜌 − 1)!

𝜋
(
2

𝜌
)
𝑛

                                                                                 𝜌 → 0, 𝑛 > 0       (𝐷 − 27) 

The Bessel functions are most suitable for waves that require functions with a finite value of zero 

within the solution domain. From equations (𝐷 − 26) and (𝐷 − 27)  it is evident that the Hankel 

functions are not suitable for this case. This is because of the singularity at zero from the 

imaginary part of the function, i.e. Weber’s form of the Bessel function of the second kind 

𝑌𝑛(𝜌). The Hankel functions are more suitable for waves that are outward due to the fact they are 

complex valued and can be approximated asymptotically by 

 𝐻𝑛
(2)(𝜌)~𝑒−

𝑗𝑛𝜋

2                                                                                                                                   (𝐷 − 28) 

at large values of 𝜌 in the far-field. 

Bessel functions are best suited for waves that decay to zero because their asymptotic 

approximations tend to zero at infinity. See equation (𝐷 − 29) 

𝐽𝑛(𝜌) = √
2

𝜋𝜌
𝑐𝑜𝑠 (𝜌 −

𝜋

4
−
𝑛𝜋

2
)                                                                                𝜌 → ∞       (𝐷 − 29) 



 

283 

Hankel functions are best for outward waves because their imaginary part equals the real part at 

infinity (𝐷 − 30), and becomes a complex sinusoidal function (𝐷 − 28). 

𝑌(𝜌) = √
2

𝜋𝜌
𝑠𝑖𝑛 (𝜌 −

𝜋

4
−
𝑛𝜋

2
)                                                                                  𝜌 → ∞       (𝐷 − 30) 

Most time harmonic electromagnetic analysis uses the complex term 𝑒𝑗(𝒌∙𝒓−𝜔𝑡) to represent 

waves in free space. 

 

  



 

284 

Appendix E: Derivation of 𝑱𝒏(𝒛) in the Fast Multipole Method 

 

E.1  Bessel’s Definition of 𝐽𝑛(𝑧) 

This appendix details the mathematics used to derive equation (3 − 12) for the Fast 

Multipole Method [27]. To begin, Bessel’s definition of 𝐽𝑛(𝑧) in integral form according to 

Watson [59] is (𝐸 − 1), 

𝐽𝑛(𝑧) =
1

2𝜋
∫ 𝑐𝑜𝑠(𝑛𝜃 − 𝑧𝑠𝑖𝑛𝜃)𝑑𝜃
2𝜋

0

                                                                                              (𝐸 − 1) 

and 

𝐽𝑛(𝑧) =
1

2𝜋
∫ 𝑒𝑗(𝑛𝜃−𝑧𝑠𝑖𝑛𝜃)𝑑𝜃
2𝜋+𝜉

𝜉

                                                                                                    (𝐸 − 2) 

 

E.2  Simplification of the Integral for 𝐽𝑛(𝑧) 

Because the function 𝐽𝑛(𝑧)  is periodic in 2𝜋, we can use the trigonometric identities to 

expand equation (𝐸 − 2) into equation (𝐸 − 7). 

𝑐𝑜𝑠(𝑛𝜃 − 𝑧𝑠𝑖𝑛𝜃) = 𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃)𝑐𝑜𝑠(𝑛𝜃) + 𝑠𝑖𝑛(𝑧𝑠𝑖𝑛𝜃)𝑠𝑖𝑛(𝑛𝜃)                                             (𝐸 − 3) 

𝑒−𝑗𝑛𝜃𝑒𝑗𝑧𝑠𝑖𝑛𝜃 = [ 𝑐𝑜𝑠(𝑛𝜃) − 𝑗𝑠𝑖𝑛(𝑛𝜃)][𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃) + 𝑗𝑠𝑖𝑛(𝑧𝑠𝑖𝑛𝜃)]                                     (𝐸 − 4) 

𝑒−𝑗𝑧𝑠𝑖𝑛𝜃𝑒𝑗𝑛𝜃 = [𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃) 𝑐𝑜𝑠(𝑛𝜃) − 𝑗𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃)𝑠𝑖𝑛(𝑛𝜃) +   

𝑗𝑠𝑖𝑛(𝑧𝑠𝑖𝑛𝜃)𝑐𝑜𝑠(𝑛𝜃) +  𝑠𝑖𝑛(𝑧𝑠𝑖𝑛𝜃)𝑠𝑖𝑛(𝑛𝜃)]/4                                                                          (𝐸 − 5) 

𝑒−𝑗𝑧𝑠𝑖𝑛𝜃𝑒−𝑗𝑛𝜃 = [𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃) 𝑐𝑜𝑠(𝑛𝜃) − 𝑗𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃)𝑠𝑖𝑛(𝑛𝜃) − 

𝑗𝑠𝑖𝑛(𝑧𝑠𝑖𝑛𝜃)𝑐𝑜𝑠(𝑛𝜃) −  𝑠𝑖𝑛(𝑧𝑠𝑖𝑛𝜃)𝑠𝑖𝑛(𝑛𝜃)]/4                                                                          (𝐸 − 6) 

𝑒−𝑗𝑧𝑠𝑖𝑛𝜃𝑒−𝑗𝑛(𝜃+𝜋) = [𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃) 𝑐𝑜𝑠(𝑛(𝜃 + 𝜋)) − 𝑗𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃)𝑠𝑖𝑛(𝑛(𝜃 + 𝜋)) − 

𝑗𝑠𝑖𝑛(𝑧𝑠𝑖𝑛𝜃)𝑐𝑜𝑠(𝑛(𝜃 + 𝜋)) −  𝑠𝑖𝑛(𝑧𝑠𝑖𝑛𝜃)𝑠𝑖𝑛(𝑛(𝜃 + 𝜋))]/4                                                  (𝐸 − 7) 

Now making further substitutions with equations (𝐸 − 8) through (𝐸 − 11) into equation 

(𝐸 − 7), 

𝑠𝑖𝑛(𝑛(𝜃 + 𝜋)) = sin(𝑛𝜃) cos(𝑛𝜋) + cos(𝑛𝜃) sin(𝑛𝜋)                                                           (𝐸 − 8) 

𝑠𝑖𝑛(𝑛(𝜃 + 𝜋)) = sin(𝑛𝜃) 𝑒𝑗𝑛𝜋                                                                                                         (𝐸 − 9) 

𝑐𝑜𝑠(𝑛(𝜃 + 𝜋)) = cos(𝑛𝜃)cos (𝑛𝜋) − sin(𝑛𝜃) sin(𝑛𝜋)                                                         (𝐸 − 10) 

𝑐𝑜𝑠(𝑛(𝜃 + 𝜋)) = cos(𝑛𝜃) 𝑒𝑗𝑛𝜋                                                                                                     (𝐸 − 11) 
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equation (𝐸 − 11) results. 

𝑒−𝑗𝑧𝑠𝑖𝑛𝜃𝑒−𝑗𝑛(𝜃+𝜋) = [𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃) 𝑐𝑜𝑠(𝑛(𝜃 + 𝜋)) − 𝑗𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃) sin(𝑛𝜃) 𝑒𝑗𝑛𝜋 −      

𝑗𝑠𝑖𝑛(𝑧𝑠𝑖𝑛𝜃)𝑐𝑜𝑠(𝑛(𝜃 + 𝜋)) −  𝑠𝑖𝑛(𝑧𝑠𝑖𝑛𝜃) sin(𝑛𝜃) 𝑒𝑗𝑛𝜋]/4                                                  (𝐸 − 12) 

Figure E-1 shows plots of products of functions given in equation (𝐸 − 12) to determine 

whether they are even or odd functions. 

 

Figure E-1: Plot of products of trigonometric functions. 

 

The plots in Figure E-1 are useful in performing the integrations in equations (𝐸 − 13) 

and (𝐸 − 14). 

∫ 𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃 − 𝑛𝜃)𝑑𝜃
2𝜋

0

= ∫ 𝑒−𝑗𝑧𝑠𝑖𝑛𝜃𝑒𝑗𝑛𝜃𝑑𝜃
2𝜋

0

                                                                       (𝐸 − 13) 

∫ 𝑐𝑜𝑠(𝑧𝑠𝑖𝑛𝜃 − 𝑛𝜃)𝑑𝜃
2𝜋

0

= ∫ 𝑒𝑧𝑠𝑖𝑛𝜃𝑒−𝑗𝑛𝜃𝑑𝜃
2𝜋

0

                                                                        (𝐸 − 14) 

The most common integral form of the Bessel function is given in equation (𝐸 − 15), 

𝐽𝑛(𝑧) =
1

2𝜋
∫ 𝑒−𝑗𝑧𝑠𝑖𝑛𝜃 𝑒𝑗𝑛𝜃𝑑𝜃
2𝜋

0

                                                                                                   (𝐸 − 15) 
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The integral form of the Bessel function in equation (𝐸 − 16) may be found in 

Harrington [35], derived using equations (𝐸 − 17) through (𝐸 − 19) below. 

𝐽𝑛(𝑧) =
𝑗𝑛

2𝜋
∫ 𝑒−𝑗𝑧𝑐𝑜𝑠𝜃 𝑒−𝑗𝑛𝜃𝑑𝜃
2𝜋

0

                                                                                                 (𝐸 − 16) 

𝑗𝑛 = 𝑒𝑗𝑛
𝜋
2                                                                                                                                             (𝐸 − 17) 

𝑠𝑖𝑛 (𝜃 +
𝜋

2
) = 𝑐𝑜𝑠(𝜃)                                                                                                                      (𝐸 − 18) 

𝑐𝑜𝑠 (𝜃 −
𝜋

2
) = 𝑠𝑖𝑛(𝜃)                                                                                                                      (𝐸 − 19) 

Equation (𝐸 − 20) is the precursor to the equation (3 − 12) found in the Fast Multipole 

Method referenced by Jin [27]. 

𝐽𝑛(𝑧) =
1

2𝜋
∫ 𝑒−𝑗𝑧𝑐𝑜𝑠𝜃 𝑒−𝑗𝑛(𝜃−

𝜋
2
)𝑑𝜃

2𝜋

0

                                                                                        (𝐸 − 20) 

 

E.3  Integral for 𝐽𝑛(𝑧) of the Fast Multipole Method 

Substituting values given in equations (𝐸 − 21) and (𝐸 − 22) into (𝐸 − 20), after some 

algebra one arrives at the final expression in equation (𝐸 − 25). Equation (𝐸 − 25) is consistent 

with equation (3 − 12). 

𝑧 = 𝑘0𝑑                                                                                                                                                (𝐸 − 21) 

𝜃 = 𝛼 − 𝜙𝑑                                                                                                                                          (𝐸 − 22) 

𝐽𝑛(𝑧) =
1

2𝜋
∫ 𝑒−𝑗𝑘0𝑑𝑐𝑜𝑠(𝛼−𝜙𝑑) 𝑒−𝑗𝑛(𝛼−𝜙𝑑−

𝜋
2
)𝑑𝜃

2𝜋

0

                                                                    (𝐸 − 23) 

𝐽𝑛(𝑧)𝑒
−𝑗𝑛(𝜋+𝜙𝑑) =

1

2𝜋
∫ 𝑒−𝑗𝑘0𝑑𝑐𝑜𝑠(𝛼−𝜙𝑑)𝑒−𝑗𝑛(𝛼−𝜙𝑑−

𝜋
2
) 𝑒−𝑗𝑛(𝜋+𝜙𝑑)𝑑𝜃

2𝜋

0

                           (𝐸 − 24) 

𝐽𝑛(𝑧)𝑒
−𝑗𝑛(𝜋+𝜙𝑑) =

1

2𝜋
∫ 𝑒−𝑗𝑘0𝑑𝑐𝑜𝑠(𝛼−𝜙𝑑) 𝑒−𝑗𝑛(𝛼+

𝜋
2
)𝑑𝜃

2𝜋

0

                                                      (𝐸 − 25) 
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Appendix F: Two-Dimensional Cross-Sectional Patterns 

 

F.1  Generating Different Geometries by Addition of Opposite Rotating Vectors 

One powerful feature of the Spectral Projection Model and Direct SPM methods is that 

one can analyze many types of electromagnetic structures. This section describes how one can 

generate these structures by rotating the coordinates of two circles around the origin. It is 

possible to define different shapes as the sum of rotating vectors around circles of different radii 

by rotating the vectors at different angular rates. 

 

F.1.1  Elliptical Surface Pattern 

To calculate the sum of the two rotating vectors, assume there exists two sets of vectors, 

𝜌 ∈ {𝜌1𝑒
−𝑗𝜉1 , 𝜌2𝑒

−2𝑗𝜉1 , … , 𝜌𝑁𝑒
−𝑁𝑗𝜉1} and 𝜌′ ∈ {𝜌1′𝑒

𝑗𝜉1′, 𝜌2′𝑒
2𝑗𝜉1′, … , 𝜌𝑁′𝑒

𝑁𝑗𝜉1′}. For this first 

example, vector 𝜌 rotates clockwise and vector 𝜌′ rotates counterclockwise at the same angular 

rate. They each may have a different magnitude. If one sums each pair together such that 𝜌𝑛
′′ =

𝜌𝑛
′𝑒𝑗𝜉𝑛′ + 𝜌𝑛𝑒

−𝑗𝜉𝑛, then the set of vector sums becomes 𝜌′′ ∈ {𝜌1
′′, 𝜌2

′′, … , 𝜌𝑁
′′}. The resultant 

column vector 𝜌′′ which is the sum of the column vector 𝜌′ and column vector 𝜌 is given in 

equation (𝐹 − 1). 

[
 
 
 
 
𝜌1
′′

⋮
𝜌𝑛
′′

⋮
𝜌𝑁
′′]
 
 
 
 

=

[
 
 
 
 
𝜌1′
⋮
𝜌𝑛′
⋮
𝜌𝑁′]

 
 
 
 

+

[
 
 
 
 
𝜌1
⋮
𝜌𝑛
⋮
𝜌𝑁]
 
 
 
 

                                                                                                                       (𝐹 − 1) 

 

See Figures F-1a and F-1b for a plot of the circles generated by points 𝜌𝑛, 𝜌𝑛
′ , and 𝜌𝑛

′′. 
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a) 

   

 

b) 

 

 

Figure F-1: a) Generating surfaces for an ellipse with axial ratio 2:1. b) Resultant ellipse pattern. 
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F.1.2  Cardioid Surface Pattern 

For the second example, vector 𝜌 rotates counterclockwise at twice the angular rate that 

vector 𝜌′ rotates. They each have a different magnitude. See Figure F-2a. If one sums each  

pair together such that 𝜌𝑛
′′ = 𝜌𝑛

′𝑒𝑗𝜉𝑛 + 𝜌𝑛𝑒
2𝑗𝜉𝑛, the cardioid figure shown in Figure F-2b results. 

 

 

a) 

 

b) 

Figure F-2: a) Generating surfaces for a cardioid. b) Resultant cardioid pattern. 
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F.1.3  Undulating Surface Pattern 

For the third example, vector 𝜌 rotates counterclockwise at eight times the angular rate 

that vector 𝜌′ rotates. They each have a different magnitude. See Figure F-3a. If one sums each 

pair together such that 𝜌𝑛
′′ = 𝜌𝑛

′𝑒𝑗𝜉𝑛 + 𝜌𝑛𝑒
8𝑗𝜉𝑛, the undulating surface shown in Figure F-3b 

results. 

 

 

a) 

 
b) 

Figure F-3: a) Generating surfaces for an undulating pattern. b) Resultant undulating pattern for 

the surface. 
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A variety of patterns can be generated using this technique. The Spectral Projection Model 

uses this method to analyze ellipses and randomly shaped objects. By adding more rotating vectors, 

one can add more degrees of freedom to the generating function, and a greater variety of 

geometries, including some that are not symmetrical. 
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Appendix G: Conjugate Gradient Method 

 

G.1  Conjugate Gradient Introduction 

As mentioned earlier, iterative techniques [74-81] have been developed that improved the 

speed and accuracy of solving very large systems of EM operator equations as more powerful 

computers were made. One popular iterative technique used to invert matrices is the conjugate 

gradient method. 

The conjugate gradient method has been widely used as an alternative to Gaussian 

elimination to invert complex matrices. This section describes how the conjugate gradient 

method works with relevant illustrations. Research into the Spatial Frequency Technique was 

done to improve the develop high speed algorithms to solve 2D infinitely long cylinder 

problems. The speed of the algorithms was compared to the Method of Moment and the 

Conjugate Gradient Method. The algorithm of the Conjugate Gradient Method is given in this 

section as a comparison to the fast convergence algorithm in Chapter 4. 

 

G.2  Quadratic Functions 

The general formula for a quadratic function in one variable is written in equation 

(𝐺 − 1). 

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐                                                                                                                          (𝐺 − 1) 

This function 𝑓(𝑥)  is a parabola, and the minimum value of the parabola can be determined by 

setting the derivative equal to 0. See Figure G-1. 

 

Figure G-1: Quadratic function with local minimum equal to two. 
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Figure G-2: Directional vectors pointing to the minimum of the quadratic surface. 

 

An example of a multivariate function is 𝑓(𝑋), with its set of variables, 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑛}. The gradient of the function, ∇𝑓, is shown in equation (𝐺 − 2). 

∇𝑓 = [
𝜕𝑓

𝜕𝑥1
 
𝜕𝑓

𝜕𝑥2
… 

𝜕𝑓

𝜕𝑥𝑛
]
𝑇

= 0                                                                                                            (𝐺 − 2) 

A contour plot with lines of constant value is plotted in Figure G-2 for a multivariate function of 

two variables. The directional vectors illustrate the path taken to reach the surface minimum. 

 

G.3  Positive Definite Matrices 

The conjugate gradient method only works with matrices that are positive definite. To be 

positive definite, a matrix 𝐴 ∈ 𝑅𝑛×𝑛 must satisfy the following condition, 

�̂�𝑇𝐴�̂� > 0                                                                                                                                               (𝐺 − 3) 

for all non-zero vectors �̂� with real elements. An alternative definition is that matrix A is positive 

definite if it is symmetric and all its eigenvalues are positive. 
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G.4  Functionals 

To understand the conjugate gradient method, one begins by defining a quadratic 

functional 𝑓(�̂�) with �̂�  ∈ 𝑉, vector space 𝑉. A functional is a function that maps vector space 𝑉 

into a scalar. An example of a quadratic functional is 𝑓(�̂�) shown in equation (𝐺 − 4). 

Matrix 𝐴 ∈ 𝑅𝑛×𝑛, vector  �̂�  ∈ 𝑅𝑛×1, and vector �̂�  ∈ 𝑅1×1. Vector �̂� may be regarded as 

a scalar. 

𝑓(�̂�) =
1

2
�̂�𝑇𝐴�̂� − �̂�𝑇�̂� + �̂�                                                                                                                 (𝐺 − 4) 

To minimize the functional, the first step is to take gradient of 𝑓(�̂�) 

∇𝑓(�̂�) =
1

2
�̂�𝑇𝐴𝑇 +

1

2
�̂�𝑇𝐴 − �̂�𝑇                                                                                                        (𝐺 − 5) 

and because A is symmetrical, 𝐴𝑇 = 𝐴. Thus, using matrix algebra, 

∇𝑓(�̂�) = (𝐴�̂� − �̂�)
𝑇
                                                                                                                            (𝐺 − 6) 

The vector �̂� = �̂�𝑚𝑖𝑛 is when the gradient is zero, and 𝑓(�̂�𝑚𝑖𝑛)  is the local minimum. So �̂� is 

referred to as the global minimizer. See Figure G-3 for an example of a plot of a functional 𝑓(�̂�) 

and its gradient, ∇𝑓(�̂�). 

 

 

  a)    b) 

Figure G-3: 3D plot of a) functional 𝑓(�̂�) and its b) gradient ∇𝑓(�̂�). 
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G.5  Iteration – Calculation of Step Size 𝛾𝑚 

Most iterative methods use a recursive relationship to calculate the next value of some 

variable. For the conjugate gradient method, a recursive sequence is used to calculate future 

values of vector �̂� given an initial guess of  �̂�(0). 

�̂�(𝑚+1) = �̂�(𝑚) + 𝛾𝑚�̂�
(𝑚)                                                                                                                   (𝐺 − 7) 

The vector �̂�(𝑚) is called the search direction, and scalar 𝛾𝑚 is called the step size. To 

calculate new values of the step size that minimizes 𝑓(�̂�)  for �̂� = �̂�(𝑚) + 𝛾�̂�(𝑚) substitute into 

the functional,  

𝜕𝑓(�̂�(𝑚) + 𝛾𝑚�̂�
(𝑚))

𝜕𝛾
= 0                                                                                                                    (𝐺 − 8) 

which yields 

𝛾𝑚 =
(𝑑(𝑚))

𝑇
𝑟(𝑚)

(𝑑(𝑚))𝑇𝐴𝑑(𝑚)
                                                                                                                           (𝐺 − 9) 

Ideally, the gradient of the functional would equal zero at the local minimum quickly. As 

calculated earlier, it equals the result in equation (𝐺 − 10). 

∇𝑓(�̂�(𝑚)) = 𝐴�̂�(𝑚) − �̂�                                                                                                                    (𝐺 − 10) 

And the remainder is defined as the residual �̂�(𝑚). 

∇𝑓(�̂�(𝑚)) = �̂�(𝑚)                                                                                                                               (𝐺 − 11) 

 

G.6  Iteration – Calculation of Weighting Factor 𝛼𝑚 

The reason the method is called the conjugate gradient is because the direction vector is 

chosen negative to the gradient, which is the residual. This is the direction of maximum decrease 

in the value of the function that points to the new value of �̂�(𝑚+1) closer to the minimum. 

�̂�(𝑚+1) = −�̂�(𝑚+1) + 𝛼𝑚�̂�
(𝑚)                                                                                                         (𝐺 − 12) 

The initial value of the direction vector is set as �̂�(0) = −�̂�(0). 

The last step is to choose a value for 𝛼𝑚. If one defines an inner product of two vectors �̂� 

and �̂� using the positive definite matrix A as in equation (𝐺 − 13),  one can write 

〈�̂�, 𝐴�̂�〉 = 〈�̂�, 𝐴�̂�〉 = �̂�𝑇𝐴�̂� = �̂�𝑇𝐴�̂�                                                                                          (𝐺 − 13) 

The vectors �̂� and �̂� are said to be A-conjugate (or A-orthogonal) when 
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�̂�𝑇𝐴�̂� = 0                                                                                                                                            (𝐺 − 14) 

The conjugate gradient method uses a process that A-orthogonalizes the direction vectors 

�̂�(𝑚+1) and �̂�(𝑚) with respect to the inner product above, thus finding the minimum of the A-

norm surface ‖�̂� − �̂�𝑚‖𝐴 generated by the vectors �̂� and �̂�𝑚 [55]. Now substitute for �̂� and �̂� 

using �̂�(𝑚) and �̂�(𝑚+1). 

�̂�(𝑚)
𝑇
𝐴�̂�(𝑚+1) = �̂�(𝑚+1)

𝑇
𝐴�̂�(𝑚) = 0                                                                                           (𝐺 − 15) 

After making the recursive substitution,  �̂�(𝑚+1) = −�̂�(𝑚+1) + 𝛼𝑚�̂�
(𝑚), the expression for 𝛼𝑚 

from equation (𝐺 − 11) becomes 

𝛼𝑚 =
�̂�(𝑚+1)

𝑇
𝐴�̂�(𝑚)

�̂�(𝑚)
𝑇
𝐴�̂�(𝑚)

                                                                                                                        (𝐺 − 16) 

A plot of the direction vectors, 𝛼𝑚�̂�
(𝑚), for three iterations generated by the functional 𝑓(�̂�) is 

shown in Figure G- 4. 

  

Figure G-4: Minimums and directional vectors to the minimum of a parabolic surface. 

 

All the direction vectors are orthogonal and are conjugate gradient to the surface 

‖�̂� − �̂�‖𝐴 with �̂�  ∈ 𝑅𝑛×1. In Figure G-5 the new minimums on the surfaces ‖�̂� − �̂�(𝑚)‖
𝐴

 for the 

first three iterations are shown. 
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a)   b)   c) 

Figure G-5: Surfaces and new minimums for first three iterations of the conjugate gradient 

algorithm at a) iteration m=0 b) iteration m=1 and c) iteration m=2. 

 

The vector 𝛾𝑚�̂�
(𝑚) moves the vector �̂�(𝑚) to  �̂�(𝑚+1) along the surface of the parabola 

generated by the functional 𝑓(�̂�). This vector �̂�(𝑚+1) is a new minimum along the surface of the 

A-norm. In other words, 𝑓(�̂�(𝑚+1)) is a minimum on the line passing through points �̂�(𝑚+1) and 

�̂�(𝑚) in the direction �̂�(𝑚). The final iteration at m = 3 yields convergence of the algorithm to a 

given tolerance [54,55].  

 

G.7  Conjugate Gradient Algorithm 

�̂�(0) = 𝐴�̂�(0) − �̂�                                                                                                                                (𝐺 − 17) 

�̂�(0) = −�̂�(0)                                                                                                                                       (𝐺 − 18) 

𝛿(0) = �̂�(0)
𝑇
�̂�(0)                                                                                                                                  (𝐺 − 19) 

𝑓𝑜𝑟 𝑚 = 0, 1, 2, …                                                                                                                             (𝐺 − 20) 

𝑢 = 𝐴�̂�(𝑚)                                                                                                                                           (𝐺 − 21) 

𝛾𝑚 =
𝛿(𝑚)

�̂�(𝑚)
𝑇
�̂�
                                                                                                                                      (𝐺 − 22) 

�̂�(𝑚+1) = �̂�(𝑚) + 𝛾𝑚�̂�
(𝑚)                                                                                                                 (𝐺 − 23) 

�̂�(𝑚+1) = �̂�(𝑚) + 𝛾𝑚�̂�                                                                                                                      (𝐺 − 24) 

𝛿(𝑚+1) =  �̂�(𝑚+1)
𝑇
�̂�(𝑚+1)                                                                                                                (𝐺 − 25) 
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𝑖𝑓  √𝛿(𝑚+1)  < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, 𝑠𝑡𝑜𝑝   �̂�(𝑚+1)                                                                                    (𝐺 − 26) 

𝛼𝑚 =
𝛿(𝑚+1)

𝛿(𝑚)
                                                                                                                                      (𝐺 − 27) 

�̂�(𝑚+1) = −�̂�(𝑚+1) + 𝛼𝑚�̂�
(𝑚)                                                                                                         (𝐺 − 28) 

𝑒𝑛𝑑                                                                                                                                                        (𝐺 − 29) 
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Appendix H: Linear Algebra, Inner Product, and Projection 

 

H.1  Projection of Vectors onto Vectors and Subspaces 

To understand the Spectral Projection Model, it is important to review the concept of 

projections. This next discussion defines projections with respect to vectors, subspaces, 

functions, and functional subspaces [82-89]. This section on linear algebra will act as a link 

between the concept of projection and the functional aspects of the Spectral Projection Model. 

The projection of a vector onto another vector is a familiar tool used in physics. Figure 

H-1a is an illustration of a vector v projected onto a vector b. The projection is vector p. The 

projection vector p is collinear with b, and the vector orthogonal to the projection vector is o. 

The vector o represents the “error” between v and b. 

𝐩 =
𝐛𝐓𝐯

𝐛𝐓𝐛
𝐯                                                                                                                                              (H − 1) 

The expression 𝐛𝐓𝐯 is referred to as a dot product of 𝐛 and v, written  〈𝐛, 𝐯〉 = 𝐛𝐓𝐯. 

 

a)   b) 

Figure H-1: a) Vector projection v onto b. b) Vector projection v onto subspace S. 

 

Shown in Figure H-1b is the vector v projected onto the subspace S defined by the plane 

at z = 0. Vectors b1 and b2 are independent vectors and make up a basis or column space for the 

subspace S. The vector p is the projection vector onto the subspace S, and vector o is orthogonal 

to vector p, and therefore orthogonal to the subspace S. This vector o represents the “error” 
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between the projection p onto subspace S and vector v. It may be viewed similar to the vector o 

in Figure H-1a.  

     Shown in Figure H-1b is an example of a projection of vector v onto the subspace S 

comprised of vectors b1, b2 and b3. The subspace S may be written in matrix form as seen in 

equation (H-2). Matrix M is made up of column vectors b1, b2 and b3. Note that vector b3 is a 

zero-column vector and is not independent of vectors b1 and b2. The vector o is called the vector 

representation of the null space of the matrix M. 

    𝐛𝟏      𝐛𝟐    𝐛𝟑      𝐯             𝐩                               𝐨  

[
1.8 0 0
−1.8 1.5 0
0 0 0

] [
1
1
1
] = [

1.8
−.3
0
]                          [

0
0
1
]                                                                       (H − 2) 

 

𝑀 = [
1.8 0 0
−1.8 1.5 0
0 0 0

]                                                                                                                       (H − 3) 

 

H.2  Projection of Vectors and Inner Products of Functions 

Because SPM deals with Bessel and Hankel functions used to solve from Maxwell’s 

equations, this next section ties the concept of projection in linear algebra to the Hankel Addition 

theorem and Bessel functions used in the Spectral Projection Model. 

The inner product of two functions 𝑓(𝑥) and 𝑔(𝑥) in 𝐿2 space is often defined by the 

following notation shown in equation (H − 4), and the integral product of functions shown in 

equation (H − 5). 

𝑠 =  〈𝑓(𝑥), 𝑔(𝑥)〉                                                                                                                                  (H − 4) 

𝑠 =  ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥

𝐿

                                                                                                                            (H − 5) 

In both equations s is a scalar. Take for example two sinusoidal functions. Figure H-2 shows two 

continuous functions, f(x), g(x) and f(x)g(x). Figure H-3 shows the corresponding discrete 

sequences, f(n), g(n) and their product f(n)g(n), which are sampled versions of the two 

continuous sinusoidal functions. The inner product integration is approximated by the summation 

of the product of f(n)g(n). 
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Figure H-2: Continuous functions f(x) and g(x) and the product f(x)g(x). The product is integrated 

over a defined interval. 

 

 

Figure H-3: Sampled continuous functions f(x) and g(x) and their discretized forms f(n) and g(n).  

 

When performing the integration for the inner product 〈𝑓(𝑥), 𝑔(𝑥)〉 numerically, each 

function may be subdivided into N intervals and sampled at the midpoint of an interval of length 

∆𝑥. The interval ∆𝑥 approximates the infinitesimal interval dx. The two functions are then 

regarded as sequences that are multiplied and summed together. 

 〈𝑓(𝑥), 𝑔(𝑥)〉 ≅ ∑ 𝑓(𝑛)𝑔(𝑛)

𝑁−1

𝑛=0

∆𝑥                                                                                                    (H − 6) 

The sequences 𝑓(𝑛) and 𝑔(𝑛) may be considered as vectors because the projection 〈𝐛, 𝐚〉 is 

calculated the same as the inner product 〈𝑓(𝑛), 𝑔(𝑛)〉 with ∆𝑥 =
1

𝑁
. 
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𝑃𝑟𝑜𝑗𝐛,𝐚 = 〈𝐛, 𝐚〉 = ∑𝒃𝒏𝒂𝒏

𝑁

𝑛=1

                                                                                                            (H − 7) 

𝑃𝑟𝑜𝑗𝑓(𝑛),𝑔(𝑛) = 〈𝑓(𝑛), 𝑔(𝑛)〉 = ∑ 𝑓(𝑛)𝑔(𝑛)∆𝑥

𝑁−1

𝑛=0

                                                                       (H − 8) 

 When using the Method of Moments and Spectral Projection Model, this value of varies 

between consecutive points along the contour being integrated depending on the geometry of the 

object. 

In this dissertation the term inner product of two vectors is used interchangeably with 

projection of a function 𝑓(𝑥) onto a set of points at coordinates 𝑋: 𝑥 ∈ {𝑥1, 𝑥2, … , 𝑥𝑁},  and its 

corresponding sequence of points 𝑓(𝑛). Bessel and Hankel functions are widely used, and they 

are sampled at their midpoints over the intervals of interest. We refer to this technique as 

collocation or point matching. In this way we avoid the computational difficulty of integration, 

and optimize the speed of the code. As discussed earlier in Chapter 6, the speed of populating 

and inverting the DSPM matrix is faster than the MOM matrix, especially if MOM needs to 

implement basis functions over which the integrations are performed. 
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Appendix I: FMM and Addition Theorem Convolution 

 

I.1  Fourier Transforms and Important Relations 

This section derives the relationship between the Fast Multipole Method [27] and its link 

to the Spectral Projection Model and the spectral signature of currents discussed in this 

dissertation. 

  The Fourier transform for continuous objects is defined as equation (𝐼 − 1), 

𝐹[𝑓(𝑥)] = ∫ 𝑓(𝑥)𝑒−𝑗𝜔𝑥𝑑𝑥
∞

−∞

                                                                                                             (𝐼 − 1) 

and the frequency response of a discrete spatial system is given in equation (𝐼 − 2).  

𝐻(𝑒𝑗𝜔) = ∑ ℎ(𝑛)

∞

𝑛=−∞

𝑒−𝑗𝑛𝜔                                                                                                               (𝐼 − 2) 

The next three trigonometric identities (𝐼 − 3) to (𝐼 − 5) will be used in this derivation. 

𝑐𝑜𝑠(𝜙) = 𝑠𝑖𝑛 (𝜙 +
𝜋

2
)                                                                                                                        (𝐼 − 3) 

𝑠𝑖𝑛(𝜙) = 𝑐𝑜𝑠 (𝜙 −
𝜋

2
)                                                                                                                        (𝐼 − 4) 

𝑗−𝑛 = (
1

𝑗
)
𝑛

= (−𝑗)𝑛 = 𝑒−𝑗
𝜋
2
𝑛                                                                                                           (𝐼 − 5) 

 

I.2  Fourier Transform of Bessel Functions 

The exponential function in the left of equation  (𝐼 − 6) is equal to an infinite sum of 

phase shifted Bessel functions. 

𝑒−𝑗𝑘𝜌𝑐𝑜𝑠(𝜙) = ∑ 𝑗−𝑛𝐽𝑛(𝛽𝜌)

∞

𝑛=−∞

𝑒𝑗𝑛𝜙                                                                                                 (𝐼 − 6) 

Using relations (𝐼 − 3) to (𝐼 − 5), one can write expression (𝐼 − 6) as (𝐼 − 8). 

𝑒−𝑗𝑘𝜌𝑠𝑖𝑛(𝜙) = ∑ 𝑗−𝑛𝐽𝑛(𝛽𝜌)

∞

𝑛=−∞

𝑒𝑗𝑛(𝜙−
𝜋
2
)                                                                                         (𝐼 − 7) 

𝑒−𝑗𝑘𝜌𝑠𝑖𝑛(𝜙) = ∑ 𝐽𝑛(𝛽𝜌)

∞

𝑛=−∞

𝑒𝑗𝑛𝜙𝑒−𝑗𝜋𝑛                                                                                             (𝐼 − 8) 
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The spectral signature of uniform incident electric plane wave is defined in equation 

(𝐼 − 9), 

𝐸𝑖(𝜌, 𝜙) = 𝐼𝜌,𝜙 = ∑ 𝐽𝑛(𝛽𝜌)

∞

𝑛=−∞

𝑒𝑗𝑛𝜙                                                                                                (𝐼 − 9) 

and using equation (𝐼 − 6), 

𝑒−𝑗𝑘𝜌𝑐𝑜𝑠(𝜙+
𝜋
2
) = ∑ 𝐽𝑛(𝛽𝜌)

∞

𝑛=−∞

𝑒𝑗𝑛𝜙                                                                                                (𝐼 − 10) 

 

I.3  Fourier Transform and FMM Terms 

Looking at equation (𝐸 − 16) from the Fast Multipole Method, one can expand it to 

𝑒−𝑗𝑘𝜌𝑐𝑜𝑠(𝛼𝑟−𝜙) = 𝑒−𝑗𝑘𝜌[𝑐𝑜𝑠(𝛼𝑟)𝑐𝑜𝑠(𝜙)+𝑠𝑖𝑛(𝛼𝑟)𝑠𝑖𝑛(𝜙)]                                                                     (𝐼 − 11) 

Now one may define 𝜌𝑥 and  𝜌𝑦 in equation (𝐼 − 12), 

𝜌𝑐𝑜𝑠(𝜙) = 𝜌𝑥            𝜌𝑠𝑖𝑛(𝜙) = 𝜌𝑦                                                                                                (𝐼 − 12) 

Substituting one obtains (𝐼 − 13). 

𝑒−𝑗𝑘𝜌𝑐𝑜𝑠(𝛼𝑟−𝜙) = 𝑒−𝑗𝑘𝜌𝑥𝑐𝑜𝑠(𝛼𝑟)𝑒−𝑗𝑘𝜌𝑦𝑠𝑖𝑛(𝛼𝑟)                                                                                (𝐼 − 13) 

Next, from equation (𝐼 − 13) the Fourier transforms (𝐼 − 14) through (𝐼 − 16) are 

defined.  

𝐹𝑥𝑦 = 𝑒−𝑗𝑘𝜌𝑐𝑜𝑠(𝛼𝑟−𝜙)                                                                                                                         (𝐼 − 14) 

𝐹𝑥 = 𝑒−𝑗𝑘𝜌𝑥𝑐𝑜𝑠(𝛼𝑟)                                                                                                                               (𝐼 − 15) 

𝐹𝑦 = 𝑒
−𝑗𝑘𝜌𝑦𝑠𝑖𝑛(𝛼𝑟)                                                                                                                               (𝐼 − 16) 

𝐹𝑥𝑦 = 𝐹𝑥𝐹𝑦                                                                                                                                             (𝐼 − 17) 

One can conclude from equation (𝐼 − 17) using properties of the Fourier transform that 

the inverse Fourier transforms in equation (𝐼 − 18) to (𝐼 − 21) exist. The ⊗ symbol is for 

convolution. 

𝐹𝑥𝑦 = 𝐹 [𝑓𝑥[𝑛] ⊗ 𝑓𝑦[𝑛]]                                                                                                                   (𝐼 − 18) 

𝑓𝑥[𝑛] = ∑ 𝐽𝑛(𝛽𝜌𝑥)

∞

𝑛=−∞

𝑒𝑗𝑛𝛼𝑟𝑒−𝑗𝑛
𝜋
2                                                                                                   (𝐼 − 19) 
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𝑓𝑦[𝑛] = ∑ 𝐽𝑛(𝛽𝜌𝑦)

∞

𝑛=−∞

𝑒𝑗𝑛𝛼𝑟𝑒−𝑗𝑛𝜋                                                                                                 (𝐼 − 20) 

𝑓𝑥[𝑛] ⊗ 𝑓𝑦[𝑛] = ∑ 𝐽𝑛(𝛽𝜌𝑥)

∞

𝑛=−∞

𝑒𝑗𝑛𝛼𝑟𝑒−𝑗𝑛
𝜋
2 ⊗ ∑ 𝐽𝑛(𝛽𝜌𝑦)

∞

𝑛=−∞

𝑒𝑗𝑛𝛼𝑟𝑒−𝑗𝑛𝜋                           (𝐼 − 21) 

The convolution of sequences 𝑓𝑥[𝑛] and 𝑓𝑦[𝑛] is performed in equation (𝐼 − 21). 

Carrying out the convolution one gets the following expression (𝐼 − 22). 

𝑓𝑥[𝑛]⨂𝑓𝑦[𝑛] = ∑ 𝑓𝑥(𝑟)

∞

𝑟=−∞

𝑓𝑦(𝑛 − 𝑟)                                                                                            (𝐼 − 22) 

For the computational purposes, the variable 𝑟 → ∞  is truncated to  |𝑟| → 𝑅, and 

equation (𝐼 − 22) is rewritten as (𝐼 − 23) by substituting from equation (𝐼 − 8). 

𝑓𝑥[𝑛]⨂𝑓𝑦[𝑛] = ∑ 𝐽𝑟(𝛽𝜌𝑥)

𝑅

𝑟=−𝑅

𝑒𝑗𝑟𝛼𝑟𝑒−𝑗𝑟
𝜋
2   𝐽𝑛−𝑟(𝛽𝜌𝑦)𝑒

𝑗(𝑛−𝑟)𝛼𝑟𝑒−𝑗(𝑛−𝑟)𝜋                              (𝐼 − 23) 

with the following substitution 𝜋 = −𝜋. 

𝑓𝑥[𝑛]⨂𝑓𝑦[𝑛] = ∑ 𝐽𝑟(𝛽𝜌𝑥)

𝑅

𝑟=−𝑅

𝐽𝑛−𝑟(𝛽𝜌𝑦)𝑒
𝑗(𝑛−𝑟)(𝜋)𝑒−𝑗𝑟(

𝜋
2
)                                                       (𝐼 − 24) 

As is clear from equation (𝐼 − 24), the addition theorem used in FMM is the convolution of two 

functions, i.e. 𝑓𝑥[𝑛]⨂𝑓𝑦[𝑛].  
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Appendix J: Image Theory 

 

J.1  Image Theory - PEC as the Ground Plane 

This section gives a brief discussion of the relationship between image theory [36, 90-92] 

and the Spectral Projection Model. The Spectral Projection Model was initially called the 

Extended Image Theory, but later renamed because of its extensive use of projections. 

To begin, a line charge source or line current source radiates electromagnetic energy to 

observation points in the near-field and the far-field. If the source is near a PEC object, 

electromagnetic will reflect off the object or diffract around the object. If the object is a PEC 

ground plane, the energy will be reflected off the ground plane. See Figure J-1. 

 

 

Figure J-1: Reflection of a vertically polarized electromagnetic wave off a ground plane. 

 

Notice in Figure J-1 that the image current (which is virtual), lies on the opposite side of the 

conducting plane, equally distant from the surface. 
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J.2  Addition Theorem Conditions for the Spectral Projection Model 

The Spectral Projection Model has its roots in image theory because when using the 

addition theorem, the condition 𝜌 > 𝜌′  must be met. 

𝐻𝑚
(2)(𝛽|𝝆 − 𝝆′|)𝑒𝑗𝑚𝜙

′′
= ∑ 𝐻𝑚+𝑛

(2) (𝛽|𝝆|)𝐽𝑛(𝛽|𝝆
′|)𝑒𝑗[(𝑚+𝑛)𝜙−𝑛𝜙

′]

∞

𝑛=−∞

                                   (𝐽 − 1) 

In the case of image theory, 𝜌′ source vectors extend from the origin to the line current sources 

and 𝜌 vectors are from the origin to the observation points on the surface of the conductor. See 

Figure J-2. 

 

Figure J-2: Line sources in a circular conducting cylinder, and observation points on the surface. 

 

The similarity between Figures J-1 and J-2 comes from following. For a source above an 

infinite ground plane, the image current lies beneath the ground plane where the electric field 

equals zero. For a conducting cylinder, an electric line source in the near or far field generates 

the incident electric field that excites the conducting cylinder. To satisfy the addition theorem the 

observation points must be on the conducting cylinder where the tangential electric field equals 

zero. Assume the radius of the circle is 𝑎. The observation points are on the surface at 𝜌 = 𝑎 . To 
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meet the addition theorem requirement for sources 𝜌′, the relation  𝑎 < 𝜌′ must be satisfied. The 

induced current source points and observation points are both on the cylinder surface. 

 

J.3  Electric Line Charges near a Conducting Cylinder 

For the electrostatic case, an infinitely long line charge outside a conducting ring must 

have an infinitely long image charge inside the ring to ensure the voltage potential on the ring 

equals zero. See Figure J-3. 

 

 a)  b) 

Figure J-3: Single line charge outside an infinitely long PEC circular cylinder, and its image line 

charge inside the cylinder. a) Source charge is away from surface b) Source charge near surface. 

 

     For multiple infinitely long line charges outside the conducting ring spaced 60o apart, there 

must be an equal number of infinitely long image line charges placed 60o apart inside the circular 

cylinder. See Figure J-4. Each line charge produces an image charge on the inside of the cylinder 

to satisfy the boundary condition that the electric field on the conductor must equal zero. 
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Figure J-4: Multiple line charges outside an infinitely long PEC circular cylinder and their image 

line charges inside the cylinder. 

 

Similarly, each virtual current on the surface of a conductor must generate an equal and 

opposite induced current for the electric field boundary conditions to be satisfied. See Figure J-5. 

So, the electrostatic case is analogous to the time harmonic case for DSPM. 

 

  

Figure J-5: Illustration of virtual current sources on an infinitely long circular cylinder in blue, 

and induced surface line currents in red. Surface and induced currents are in opposite directions. 

The cylinder is in green. 
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Appendix K: Fourier Series, Fourier Transform, DTFT, and DFT 

 

 K.1  Fourier Series and Transform in Time and Space 

This section discusses the important relations of Fourier series and Fourier transforms 

used in the Spatial Frequency Technique and Spectral Projection Model [90-97]. In table K-1 the 

relationship between signals in the spatial domain versus the Fourier domain are listed. 

Discretization in one domain transforms the signal into a periodic signal in the other domain. If a 

signal is continuous in one domain, it is non-periodic in the alternate domain. 

 

Table K-1: Signal Characteristics of Spatial Domain vs. Fourier Domain. 

 

Spatial domain Fourier domain 

Continuous and non-periodic Fourier transform 

Continuous and non-periodic 

Continuous and periodic Fourier series 

Discrete and non-periodic 

Discrete and non-periodic Discrete time (space) Fourier transform 

Continuous and periodic 

Discrete and periodic Discrete Fourier transform 

Discrete and periodic 

 

 

K.2  Discrete Fourier Transform of a Function 

The discrete Fourier series and discrete Fourier transform are the most effective ways of 

dealing with discrete waveforms. These transformations can be applied to discretized spatial 

waveforms analogous to the way the Fourier transform is applied to continuous waveforms in 

space. In the spatial frequency domain, these discretized waveforms can be thought of as 

frequency sampled discrete waveforms. Both the Spatial Frequency Technique and the Spectral 

Projection Model use the properties of the Discrete Fourier Transform and the Fourier Operator 

in their methodology. 
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The discrete Fourier transform for sequence 𝑥[𝑛] is defined in equations (𝐾 − 1) and 

(𝐾 − 2). 

𝑥[𝑛]
𝐹
↔𝑋(𝑘)                                                                                                                                          (𝐾 − 1) 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑒−𝑗𝑘𝑛(
2𝜋
𝑁
)

𝑁−1

𝑛=0

                                                                                                                (𝐾 − 2) 

Shown in Figure K-1 is an example of a discretized object over one period, its discrete 

time (space) Fourier transform (DTFT), and five spatial periods of the discretized object, and 

five spatial frequency periods of its DFT. 

 

 a) b) 

 

 c) d) 

 

Figure K-1: a) Discretized pulse function. b) Normalized discrete time (space) Fourier transform 

of pulse function. c) Periodic discretized pulse function. d) Normalized discrete Fourier 

transform. 
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The two-dimensional discrete Fourier transform is written in equations (𝐾 − 3) and (𝐾 − 4). 

𝑥[𝑛,𝑚]
𝐹
↔𝑋(𝑘1, 𝑘2)                                                                                                                            (𝐾 − 3) 

𝑋[𝑘1, 𝑘2] = ∑

𝑁−1

𝑛=0

∑ 𝑥[𝑛,𝑚]𝑒−𝑗𝑘1𝑛(
2𝜋
𝑁
)

𝑀−1

𝑚=0

𝑒−𝑗𝑘2𝑛(
2𝜋
𝑀
)                                                                (𝐾 − 4) 

 

In order to use the DFT to analyze a PEC object like a finite length strip, one must 

assume that the structure is periodic in space. It is necessary to discretize the strip into 

sufficiently small segments so that its maximum spatial frequency is large enough to satisfy the 

Nyquist criterion. 

The DFT is a linear transformation that maps a set of shifted delta functions at points 

𝑥𝑚, ∈ {𝑥0, 𝑥1, … 𝑥𝑀−1} located equally spaced on a grid, to a set of complex exponentials 

functions 𝑒
−𝑗2𝜋𝑘𝑚
𝑀𝑥 . It also has the properties of the Fourier Transform, including the 

differentiation and convolution. The DFT mapping for one-dimensional and two-dimensional 

objects is illustrated in Figure K-2. 

 

 

 a) 

  

 b)  

Figure K-2: Mapping from spatial domain to spatial frequency domain for a) one-dimensional 

DFT and b) two-dimensional DFT. 
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K.3  The Discrete Fourier Transform and the Roots of Unity 

If one substitutes the term 𝑊𝑁 from equation (𝐾 − 5) into equation (𝐾 − 2), equation  

(𝐾 − 6) results. 

𝑊𝑁 = 𝑒
𝑗(
2𝜋
𝑁
)                                                                                                                                          (𝐾 − 5) 

𝑋[𝑘] = ∑ 𝑥[𝑛]𝑊𝑁
−𝑘𝑛

𝑁−1

𝑛=0

                                                                                                                       (𝐾 − 6) 

The terms 𝑊𝑁
𝑛   𝑛 ∈ {0,1, …𝑁 − 1} are called the N roots of unity. Illustrated in Figure K-

3 are the roots of unity for a 4-point DFT and an 8-point DFT. 

 

 

a)   b) 

Figure K-3: Roots of unity for a a) 4-point DFT and a b) 8-point DFT. 

 

For a four-point DFT, the roots of unity calculated in equations (𝐾 − 7) through (𝐾 − 10). 

𝑊0
4 = 𝑒𝑗(

2𝜋
4
)(0) = 1                                                                                                                            (𝐾 − 7) 

𝑊1
4 = 𝑒𝑗(

2𝜋
4
)(1) = 𝑖                                                                                                                             (𝐾 − 8) 

𝑊2
4 = 𝑒𝑗(

2𝜋
4
)(2) = −1                                                                                                                         (𝐾 − 9) 

𝑊3
4 = 𝑒−𝑗(

2𝜋
4
)(3) = −𝑖                                                                                                                     (𝐾 − 10) 

These points given in equations (𝐾 − 7) to (𝐾 − 10) are plotted in Figure K-3. 
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K.4  Fourier Operator 

In order to calculate the discrete Fourier transform of a vector containing points 

𝑥𝑚, ∈ {𝑥0, 𝑥1, … 𝑥𝑀−1 }, one may project the vector �̂� given in equation (𝐾 − 11) 

�̂� = [

𝑥(0)

𝑥(1)

𝑥(2)

𝑥(3)

]                                                                                                                                         (𝐾 − 11) 

onto the Fourier operator given in equation  (𝐾 − 12). 

𝐹 =

[
 
 
 
 
 
 
 
1 1 1 1

1 (𝑒−𝑗
2𝜋
4 )

1

(𝑒−𝑗
2𝜋
4 )

2

(𝑒−𝑗
2𝜋
4 )

3

1 (𝑒−𝑗
2𝜋
4 )

2

(𝑒−𝑗
2𝜋
4 )

4

(𝑒−𝑗
2𝜋
4 )

6

1 (𝑒−𝑗
2𝜋
4 )

3

(𝑒−𝑗
2𝜋
4 )

6

(𝑒−𝑗
2𝜋
4 )

9

]
 
 
 
 
 
 
 

                                                                              (𝐾 − 12) 

The resulting discrete Fourier transform �̂� of the vector �̂� is shown in equation (𝐾 − 13). 

[
 
 
 
 
 
 
 
1 1 1 1

1 (𝑒−𝑗
2𝜋
4 )

1

(𝑒−𝑗
2𝜋
4 )

2

(𝑒−𝑗
2𝜋
4 )

3

1 (𝑒−𝑗
2𝜋
4 )

2

(𝑒−𝑗
2𝜋
4 )

4

(𝑒−𝑗
2𝜋
4 )

6

1 (𝑒−𝑗
2𝜋
4 )

3

(𝑒−𝑗
2𝜋
4 )

6

(𝑒−𝑗
2𝜋
4 )

9

]
 
 
 
 
 
 
 

[

𝑥(0)

𝑥(1)

𝑥(2)

𝑥(3)

] =

[
 
 
 
𝑋(𝐾0)

𝑋(𝐾1)

𝑋(𝐾2)

𝑋(𝐾3)]
 
 
 

                                                     (𝐾 − 13) 

One advantage to transforming calculations to the Fourier domain is the ability to use the 

FFT algorithm [98,99] to speed up calculations. This was used in formulating the SFT analysis, 

and used in the SPM and DSPM analysis in calculating Hadamard products. 

 

K.5  Fourier Transform of Some Important Green’s Functions 

The Fourier transform of important Green’s functions used in this dissertation are 

presented next. These Fourier transforms were used extensively in the development of the Spatial 

Frequency Technique for analyzing various one dimensional and two-dimension structures. For 

two dimensional problems, the Hankel function of the second kind and first kind are usually 

used. The Fourier transform of each is given below in equations (𝐾 − 14) through (𝐾 − 17). 
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𝐹 {𝐻0
(2) (𝑘0√𝑥

2 + 𝑦2 )}    

= ∫
∞

−∞

 ∫
∞

−∞

𝐻0
(2) (𝑘0√𝑥

2 + 𝑦2 ) 𝑒𝑗𝑥𝑘𝑥𝑒𝑗𝑦𝑘𝑦𝑑𝑥𝑑𝑦                                                            (𝐾 − 14) 

 𝐹 {𝐻0
(2) (𝑘0√𝑥

2 + 𝑦2 )}   =  
−1

2𝜋(𝑘0
2 − 𝑘𝑥2 − 𝑘𝑦2)

                                                                  (𝐾 − 15) 

 𝐹 {
𝑗

4
𝐻0
(1) (𝑘0√𝑥

2 + 𝑦2 )} 

  =  
𝑗

4
∫

∞

−∞

 ∫
∞

−∞

𝐻0
(1)
(𝑘0√𝑥

2 + 𝑦2 ) 𝑒𝑗𝑥𝑘𝑥𝑒𝑗𝑦𝑘𝑦𝑑𝑥𝑑𝑦                                                     (𝐾 − 16) 

 𝐹 {
𝑗

4
𝐻0
(1) (𝑘0√𝑥

2 + 𝑦2 )}   =  
−1

2𝜋(𝑘0
2 − 𝑘𝑥2 − 𝑘𝑦2)

                                                               (𝐾 − 17) 

 

For three dimensional problems, the Hankel function of the second kind is used often 

also. The Fourier transform of this function is given below in equations (𝐾 − 18) to (𝐾 − 19). 

𝐹 {𝐻0
(2) (𝑘0√𝑥

2 + 𝑦2 + 𝑧2 )} 

  = ∫
∞

−∞

 ∫
∞

−∞

𝐻0
(2) (𝑘0√𝑥

2 + 𝑦2 + 𝑧2 ) 𝑒𝑗𝑥𝑘𝑥𝑒𝑗𝑦𝑘𝑦𝑒𝑗𝑧𝑘𝑧𝑑𝑥𝑑𝑦𝑑𝑧                              (K − 18) 

               

 𝐹 {𝐻0
(2) (𝑘0√𝑥

2 + 𝑦2 + 𝑧2 )}   =  
−1

2𝜋(𝑘0
2 − 𝑘𝑥2 − 𝑘𝑦2 − 𝑘𝑧2)

                                             (𝐾 − 19) 

For one dimensional problems with symmetry around the origin, the Hankel function 

𝐻0
(2)(𝑘0|𝑥|),  is the correct choice of Green’s function. The corresponding Fourier transform is 

given in equations (𝐾 − 20) and (𝐾 − 22). 

𝐹{𝐻0
(2)(𝑘0|𝑥|))} = ∫ 𝐻0

(2)(𝑘0|𝑥|)
∞

−∞

𝑒−𝑗𝑘𝑥𝑑𝑥                                                                             (𝐾 − 20) 

𝐹{𝐻0
(2)(𝑘0|𝑥|))} =

2

√𝑘0
2 − 𝑘2

                                                                                   𝑘0 > 𝑘       (𝐾 − 21) 

𝐹{𝐻0
(2)(𝑘0|𝑥|))} =

2

√𝑘2 − 𝑘0
2
                                                                                   𝑘0 < 𝑘       (𝐾 − 22) 
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For two dimensional problems in which one integrates only the x variable, the Fourier 

transforms in equations (𝐾 − 23) to (𝐾 − 25) may be used. 

𝐹 {𝐻0
(2) (𝑘0√𝑥2 + 𝑦2)} = ∫ 𝐻0

(2) (𝑘0√𝑥2 + 𝑦2)
∞

−∞

𝑒−𝑗𝑘𝑥𝑑𝑥                                                  (𝐾 − 23) 

𝐹 {𝐻0
(2) (𝑘0√𝑥2 + 𝑦2)} =

2𝑒
−𝑗|𝑦|√𝑘0

2−𝑘2

√𝑘0
2 − 𝑘2

                                                               𝑘0 > 𝑘       (𝐾 − 24) 

𝐹 {𝐻0
(2) (𝑘0√𝑥2 + 𝑦2)} =

2𝑗𝑒
−𝑗|𝑦|√𝑘2−𝑘0

2

√𝑘2 − 𝑘0
2

                                                             𝑘0 < 𝑘       (𝐾 − 25) 

For three dimensional problems from point sources, the spherical Hankel function is 

important to use. Below in equations (𝐾 − 26) to (𝐾 − 28) is the Fourier transform taken with 

respect to only the x variable. 

𝐹 {ℎ0
(2) (𝑘0√𝑥2 + 𝑦2)} = ∫ ℎ0

(2) (𝑘0√𝑥2 + 𝑦2)
∞

−∞

𝑒−𝑗𝑘𝑥𝑑𝑥                                                    (𝐾 − 26) 

𝐹 {ℎ0
(2) (𝑘0√𝑥2 + 𝑦2)} =

2

√𝑘0
 𝐻0

(2) (|𝑦|√𝑘0
2 − 𝑘2)                                          𝑘0 > 𝑘       (𝐾 − 27) 

𝐹 {ℎ0
(2) (𝑘0√𝑥2 + 𝑦2)} = 𝑗

4

𝜋√𝑘0
𝐾0 (|𝑦|√𝑘2 − 𝑘0

2)                                         𝑘0 < 𝑘       (𝐾 − 28) 

  For spherical Hankel functions integrated with respect to two variables, equations 

(𝐾 − 29) and (𝐾 − 30)  are used. 

𝐹 {∫
∞

−∞

∫ ℎ0
(2) (𝑘0√𝑥2 + 𝑦2)

∞

−∞

} = ∫
∞

−∞

∫ ℎ0
(2) (𝑘0√𝑥2 + 𝑦2)

∞

−∞

𝑒−𝑗𝑘𝑥𝑥𝑒−𝑗𝑘𝑦𝑦𝑑𝑥𝑑𝑦  (𝐾 − 29) 

𝐹 {∫
∞

−∞

∫ ℎ0
(2) (𝑘0√𝑥2 + 𝑦2)

∞

−∞

} =
4/√𝑘0

√𝑘0
2 − 𝑘𝑥2 − 𝑘𝑦2

                          𝑘0 > √𝑘𝑥2 + 𝑘𝑦2       (𝐾 − 30) 

 

K.6  Discrete Fourier Transform for Non-Grid Objects 

The following discrete Fourier transforms were used for objects which when discretized 

did not have uniform spacing, and non-uniform grids with 𝑑𝑥 =
𝐿1

𝑁
 and 𝑑𝑦 =

𝐿2

𝑁
 could be used. 
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𝐺𝐷𝐹𝑇(𝑘𝑥) =
1

𝑁
∑ 𝑔(𝑥[𝑛])𝑒−

𝑗𝑘𝑥𝑥[𝑛]
𝑑𝑥∙𝑁

𝑁−1

𝑛=0

                                                                                           (𝐾 − 31) 

𝐺𝐷𝐹𝑇(𝑘𝑥, 𝑘𝑦) =
1

𝑁𝑀
∑ ∑ 𝑔(𝑥[𝑛], 𝑦[𝑚]) (𝑒−

𝑗𝑘𝑥𝑥[𝑛]
𝑑𝑥∙𝑁 ) (𝑒

−
𝑗𝑘𝑦𝑦[𝑚]

𝑑𝑦∙𝑀 )

𝑀−1

𝑚=0

𝑁−1

𝑛=0

                                (𝐾 − 32) 

For discretization along an angle 𝜓 from 0 to 2π with 𝑑𝜓 =
2𝜋

𝑁
, 

𝐺𝐷𝐹𝑇(𝑘) =
1

𝑁
∑ 𝑒

−
𝑗𝑘𝜓[𝑛]
𝑑𝜓∙𝑁

𝑁−1

𝑛=0

                                                                                                              (𝐾 − 33) 
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Appendix L: Hadamard Product, Fourier Operators, and Convolution 

 

L.1  Definition of a Hadamard Product 

The Hadamard product ∘ is an element-by-element multiplication of two M x N matrices. 

The symbol ∘ will represent the multiplication operation. An example is given in equation 

(𝐿 − 1). 

[
𝑎 𝑏
𝑐 𝑑

] ∘ [
𝑒 𝑓
𝑔 ℎ

] = [
𝑎𝑒 𝑏𝑓
𝑐𝑔 𝑑ℎ

] = 𝐴                                                                                                   (𝐿 − 1) 

 

L.2  Hadamard Product Properties 

The Hadamard product [100] has many properties which are stated below in equations 

(𝐿 − 2) through (𝐿 − 6). 

𝐶 = 𝐴 ∘ 𝐵 = 𝐵 ∘ 𝐴                                                                                                                                (𝐿 − 2) 

𝐶𝑥 = [𝐴 ∘ 𝐵]𝑥                                                                                                                                       (𝐿 − 3) 

𝐶 ∘ (𝐴 + 𝐵) = 𝐶 ∘ 𝐴 + 𝐶 ∘ 𝐵                                                                                                             (𝐿 − 4) 

𝛼(𝐴 ∘ 𝐵) = (𝛼𝐴) ∘ 𝐵 = 𝐴 ∘ (𝛼𝐵)                                                                                                     (𝐿 − 5) 

𝐷(𝐴 ∘ 𝐵)𝐸 = 𝐷𝐴𝐸 ∘ 𝐵 = (𝐷𝐴) ∘ (𝐵𝐸)                                                                                           (𝐿 − 6) 

 

L.3  Spectral Projection Model and the Hadamard Product 

The J-spectral signature and H-spectral signature may be written as the Hadamard 

products shown below in equations (𝐿 − 7) to (𝐿 − 10). 

 

[
: : :
: 𝐽𝑘(𝛽|𝝆𝒏|)𝑒

𝑗𝑘𝜙𝑛 :
: : :

]

=

[
 
 
 
 
𝐽−𝐾(𝛽|𝝆𝟎|)𝑒

−𝑗𝐾𝜙0 : : : 𝐽−𝐾(𝛽|𝝆𝑵−𝟏|)𝑒
−𝑗𝐾𝜙𝑁−1

: : : : :
: : 𝐽𝑘(𝛽|𝝆𝒏|)𝑒

𝑗𝑘𝜙𝑛 : :
: : : : :

𝐽𝐾(𝛽|𝝆𝟎|)𝑒
𝑗𝐾𝜙0 : : : 𝐽𝐾(𝛽|𝝆𝑵−𝟏|)𝑒

𝑗𝐾𝜙𝑁−1 ]
 
 
 
 

                           (𝐿 − 7) 
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[
: : :
: 𝐽𝑘(𝛽|𝝆𝒏|)𝑒

𝑗𝑘𝜙𝑛 :
: : :

]

=

[
 
 
 
 
𝐽−𝐾(𝛽|𝝆𝟎|) : : : 𝐽−𝐾(𝛽|𝝆𝑵−𝟏|)

: : : : :
: : 𝐽𝑘(𝛽|𝝆𝒏|) : :
: : : : :

𝐽𝐾(𝛽|𝝆𝟎|) : : : 𝐽𝐾(𝛽|𝝆𝑵−𝟏|) ]
 
 
 
 

°

[
 
 
 
 
𝑒−𝑗𝐾𝜙0 : : : 𝑒−𝑗𝐾𝜙𝑁−1

: : : : :
: : 𝑒𝑗𝑘𝜙𝑛 : :
: : : : :

𝑒𝑗𝐾𝜙0 : : : 𝑒𝑗𝐾𝜙𝑁−1 ]
 
 
 
 

 

(𝐿 − 8) 

 

[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒏|)𝑒

𝑗𝑘𝜙𝑛 :
: : :

]

=

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎|)𝑒
−𝑗𝐾𝜙0 : : : 𝐻−𝐾

(2)
(𝛽|𝝆𝑵𝑶−𝟏|)𝑒

−𝑗𝐾𝜙N−1

: : : : :

: : 𝐻𝑘
(2)(𝛽|𝝆𝒏|)𝑒

𝑗𝑘𝜙𝑛 : :
: : : : :

𝐻𝐾
(2)(𝛽|𝝆𝟎|)𝑒

𝑗𝐾𝜙0 : : : 𝐻𝐾
(2)
(𝛽|𝝆𝑵𝑶−𝟏|)𝑒

𝑗𝐾𝜙N−1 ]
 
 
 
 
 

                 (𝐿 − 9) 

 

[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒏|)𝑒

𝑗𝑘𝜙𝑛 :
: : :

]

=

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎|) : : : 𝐻−𝐾
(2)(𝛽|𝝆𝐍−𝟏|)

: : : : :

: : 𝐻𝑘
(2)(𝛽|𝝆𝒏|) : :

: : : : :

𝐻𝐾
(2)(𝛽|𝝆0|) : : : 𝐻𝐾

(2)(𝛽|𝝆𝐍−𝟏|)]
 
 
 
 
 

°

[
 
 
 
 
𝑒−𝑗𝐾𝜙0 : : : 𝑒−𝑗𝐾𝜙N−1

: : : : :
: : 𝑒𝑗𝑘𝜙𝑛 : :
: : : : :

𝑒𝑗𝐾𝜙0 : : : 𝑒𝑗𝐾𝜙N−1 ]
 
 
 
 

 

(𝐿 − 10) 

 

[
 
 
 
 
𝑒−𝑗𝐾𝜙0 : : : 𝑒−𝑗𝐾𝜙𝑁−1

: : : : :
: : 𝑒𝑗𝑘𝜙𝑛 : :
: : : : :

𝑒𝑗𝐾𝜙0 : : : 𝑒𝑗𝐾𝜙𝑁−1 ]
 
 
 
 

= 𝑒𝑥𝑝

[
 
 
 
 
−𝑗𝐾𝜙0 : : : −𝑗𝐾𝜙𝑁−1
: : : : :
: : 𝑗𝑘𝜙𝑛 : :
: : : : :

𝑗𝐾𝜙0 : : : 𝑗𝐾𝜙𝑁−1 ]
 
 
 
 

               (𝐿 − 11) 

The shifted Fourier operator [

… … …
… �̅� …
… … …

] is defined by equation (𝐿 − 12) for the angles 

𝜙𝑛   𝑛 ∈ {0,1, …𝑁 − 1} where 𝜙𝑛 = 2𝜋𝑛/𝑁. 
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[

… … …
… �̅� …
… … …

] =

[
 
 
 
 
𝑒−𝑗𝐾𝜙0 : : : 𝑒−𝑗𝐾𝜙𝑁−1

: : : : :
: : 𝑒𝑗𝑘𝜙𝑛 : :
: : : : :

𝑒𝑗𝐾𝜙0 : : : 𝑒𝑗𝐾𝜙𝑁−1 ]
 
 
 
 

                                                                  (𝐿 − 12) 

 

L.4  SPM and Unitary Matrices 

As mentioned earlier in this appendix, a unitary matrix 𝑈 has the unique property 𝑈𝐻 =

𝑈−1. This leads to the fundamental property of unitary matrices: the inverse of 𝑈 equals the 

conjugate transpose of 𝑈, or 

 𝑈𝑈𝐻 = 𝐼                                                                                                                                              (𝐿 − 13) 

The Fourier operator matrix [

… … …
… 𝐹 …
… … …

] is unitary. For the N roots of unity defined in 

equation  (𝐿 − 14), 

𝑊𝑁 = 𝑒
𝑗(2𝜋/𝑁)                                                                                                                                    (𝐿 − 14) 

the Fourier operator matrix for 𝑁 = 4 becomes equation (𝐿 − 15). 

[

… … …
… 𝐹 …
… … …

] =

[
 
 
 
1 1 1 1
1 𝑊𝑁

−1 𝑊𝑁
−2 𝑊𝑁

−3

1 𝑊𝑁
−2 𝑊𝑁

−4 𝑊𝑁
−6

1 𝑊𝑁
−3 𝑊𝑁

−6 𝑊𝑁
−9]
 
 
 

                                                                               (𝐿 − 15) 

and the inverse Fourier operator matrix for 𝑁 = 4 becomes equation (𝐿 − 16) 

[

… … …
… 𝐹 …
… … …

]

𝐻

=

[
 
 
 
1 1 1 1
1 𝑊𝑁

1 𝑊𝑁
2 𝑊𝑁

3

1 𝑊𝑁
2 𝑊𝑁

4 𝑊𝑁
6

1 𝑊𝑁
3 𝑊𝑁

6 𝑊𝑁
9]
 
 
 

                                                                                   (𝐿 − 16) 

This matrix satisfies the following equation for unitary matrices, 

[

… … …
… 𝐹 …
… … …

] [

… … …
… 𝐹 …
… … …

]

𝐻

= [

… … …
… 𝐼 …
… … …

]                                                                                 (𝐿 − 17) 

The unitary property of the Fourier Operator, [

… … …
… 𝐹 …
… … …

], is shown graphically in 

Figure L-1. 
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 a)  b)  c) 

Figure L-1: Fourier operator matrices.  a) Fourier operator. b) Phase of the inverse conjugate 

transpose of Fourier operator. c) Magnitude product of the two matrices. 

 

The shifted Fourier operator matrix [

… … …
… �̅� …
… … …

] described in equation (𝐿 − 18) is 

unitary, and satisfies the following equation, 

[

… … …
… �̅� …
… … …

] [

… … …
… �̅� …
… … …

]

𝐻

= [

… … …
… 𝐼 …
… … …

]                                                                                 (𝐿 − 18) 

The matrix [

… … …
… �̅� …
… … …

]

𝐻

 is a shifted version of the inverse Fourier operator. The matrix 

[

… … …
… 𝑆 …
… … …

] shifts the rows of [

… … …
… 𝐹 …
… … …

]

𝐻

 downward by 𝐾/2. 

[

… … …
… �̅� …
… … …

]

𝐻

= [

… … …
… 𝑆 …
… … …

] [

… … …
… 𝐹 …
… … …

]

𝐻

                                                                               (𝐿 − 19) 

An example of the shifted Fourier matrix is shown below. A shift matrix is defined in 

equation (𝐿 − 20), 

[

… … …
… 𝑆 …
… … …

] =

[
 
 
 
 
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0]

 
 
 
 

                                                      𝑟𝑜𝑤 𝑠ℎ𝑖𝑓𝑡 𝑑𝑜𝑤𝑛 2       (𝐿 − 20) 

and Fourier operator in equation (𝐿 − 21). 
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[

… … …
… 𝐹 …
… … …

]

𝐻

=

[
 
 
 
 
 
1 1 1 1 1
1 𝑊𝑁

1 𝑊𝑁
2 𝑊𝑁

3 𝑊𝑁
4

1 𝑊𝑁
2 𝑊𝑁

4 𝑊𝑁
6 𝑊𝑁

8

1 𝑊𝑁
3 𝑊𝑁

6 𝑊𝑁
9 𝑊𝑁

12

1 𝑊𝑁
4 𝑊𝑁

8 𝑊𝑁
12 𝑊𝑁

16]
 
 
 
 
 

                                                                  (𝐿 − 21) 

 

The shifted inverse Fourier operator is shown in equation (𝐿 − 21). 

[

… … …
… �̅� …
… … …

]

𝐻

=

[
 
 
 
 
 
1 𝑊𝑁

3 𝑊𝑁
6 𝑊𝑁

9 𝑊𝑁
12

1 𝑊𝑁
4 𝑊𝑁

8 𝑊𝑁
12 𝑊𝑁

16

1 𝑊𝑁
0 𝑊𝑁

0 𝑊𝑁
0 𝑊𝑁

0

1 𝑊𝑁
1 𝑊𝑁

2 𝑊𝑁
3 𝑊𝑁

4

1 𝑊𝑁
2 𝑊𝑁

4 𝑊𝑁
6 𝑊𝑁

8 ]
 
 
 
 
 

                                                                  (𝐿 − 22) 

Now multiply the first two rows of [

… … …
… �̅� …
… … …

]

𝐻

 in equation (𝐿 − 21) by multiples of 𝑛 ∙ 2𝜋/𝑁  

with 𝑁 = 5, and rewrite equation (𝐿 − 23). 

[

… … …
… �̅� …
… … …

]

𝐻

=

[
 
 
 
 
 
1 𝑊𝑁

−2 𝑊𝑁
−4 𝑊𝑁

−6 𝑊𝑁
−8

1 𝑊𝑁
−1 𝑊𝑁

−2 𝑊𝑁
−3 𝑊𝑁

−4

1 𝑊𝑁
0 𝑊𝑁

0 𝑊𝑁
0 𝑊𝑁

0

1 𝑊𝑁
1 𝑊𝑁

2 𝑊𝑁
3 𝑊𝑁

4

1 𝑊𝑁
2 𝑊𝑁

4 𝑊𝑁
6 𝑊𝑁

8 ]
 
 
 
 
 

                                                             (𝐿 − 23) 

After comparing the functions 𝑒𝑥𝑝 [

… … …
… �̅� …
… … …

]

𝐻

 and equation (𝐿 − 11), the expressions are the 

same for both. 

𝑒𝑥𝑝 [

… … …
… �̅� …
… … …

]

𝐻

= 𝑒𝑥𝑝

(

 
 
𝑗

[
 
 
 
 
0 −2 −4 −6 −8
0 −1 −2 −3 −4
0 0 0 0 0
0 1 2 3 4
0 2 4 6 8 ]

 
 
 
 

 
2𝜋

5

)

 
 
                                                (𝐿 − 24) 

It is clear that the shifted inverse Fourier operator in equation (𝐿 − 11) is the same as 

that in (𝐿 − 23) when 𝜙𝑛+1 − 𝜙𝑛 = 2𝜋/𝑁 and 𝜙0 = 0. Depending upon whether the modes are 

ordered from {−𝐾…𝑘…𝐾} or {𝐾…𝑘…− 𝐾} will determine whether the exponential matrix for 

the spectral signatures is the shifted Fourier operator or the shifted inverse Fourier operator. 
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The large argument approximation for a Hankel function with angle 𝜙0′ is given in equation 

(5 − 70). 

  𝐻𝑘
(2)(𝛽|𝝆𝟎′|)|𝜌0′→∞ ⇒ 𝑒𝑗𝑘(𝜙0′−

𝜋

2
)                                                                                                (5 − 70) 

The H-spectral signature matrix for large arguments is given in equation (𝐿 − 25). 

[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒏|)|𝜌𝑛→∞ :

: : :
] =

[
 
 
 
 
 𝑒
−𝑗𝐾(𝜙0−

𝜋
2
) : : : 𝑒−𝑗𝐾(𝜙𝑁𝑆−1−

𝜋
2
)

: : : : :
: : : : :
: : : : :

𝑒𝑗𝐾(𝜙0−
𝜋
2
) : : : 𝑒𝑗𝐾(𝜙𝑁𝑆−1−

𝜋
2
) ]
 
 
 
 
 

                                (𝐿 − 25) 

If each column of the shifted inverse Fourier operator is multiplied by the phase shift 𝑒−𝑗𝑘
𝜋

2, one 

obtains the far-field H-spectral signature matrix. 

The far-field H-spectral signature matrix is equal to matrix 

product[
⋱ 0 0
0 𝐷𝑆 0
0 0 ⋱

] [

… … …
… 𝐹𝐻̅̅ ̅̅ …
… … …

] where the diagonal matrix [
⋱ 0 0
0 𝐷𝑆 0
0 0 ⋱

] applies the 𝑒−𝑗𝑘
𝜋

2 

phase shift to each column. 

[
 
 
 
 
⋱ 0 0 0 0
0 ⋱ 0 0 0
0 0 𝐷𝑆 0 0
0 0 0 ⋱ 0
0 0 0 0 ⋱]

 
 
 
 

=

[
 
 
 
 
 𝑒
𝑗𝐾
𝜋
2 0 0 0 0

0 ⋱ 0 0 0

0 0 𝑒−𝑗𝑘
𝜋
2 0 0

0 0 0 ⋱ 0

0 0 0 0 𝑒−𝑗𝐾
𝜋
2]
 
 
 
 
 

                                                       (5 − 121) 

Thus, the matrix equality between the far-field H-spectral signature matrix and the DFT Fourier 

operator exists as given in equation (5 − 122) and (5 − 123). 

[

… … …

… 𝐻𝑘
(2)(𝛽(𝜌 → ∞) …

… … …
] = [

⋱ 0 0
0 𝐷𝑆 0
0 0 ⋱

] [

… … …
… 𝐹𝐻̅̅ ̅̅ …
… … …

]                                                     (5 − 122) 

 

L.5  Hadamard Product and Convolution 

Two important properties used in SPM and DSPM is that the addition theorem is a form 

of convolution. Define a matrix [

⋯ ⋯ ⋯
⋯ 𝐻𝑜𝑏 ⋯
⋯ ⋯ ⋯

] which is the convolution ∗ of the matrices 

[

⋯ ⋯ ⋯
⋯ 𝐻 ⋯
⋯ ⋯ ⋯

] and [

⋯ ⋯ ⋯
⋯ 𝐽 ⋯
⋯ ⋯ ⋯

]. 
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[

⋯ ⋯ ⋯
⋯ 𝐻𝑜𝑏 ⋯
⋯ ⋯ ⋯

] = [

⋯ ⋯ ⋯
⋯ 𝐻 ⋯
⋯ ⋯ ⋯

]⊗ [

⋯ ⋯ ⋯
⋯ 𝐽 ⋯
⋯ ⋯ ⋯

]                                                                       (𝐿 − 26)  

If one converts these to the Fourier domain, one can write the convolution as a Hadamard 

product, 

[

… … …
… 𝐹 …
… … …

] [

⋯ ⋯ ⋯
⋯ 𝐻𝑜𝑏 ⋯
⋯ ⋯ ⋯

] = [

… … …
… 𝐹 …
… … …

] [

⋯ ⋯ ⋯
⋯ 𝐻 ⋯
⋯ ⋯ ⋯

]⊙ [

… … …
… 𝐹 …
… … …

] [

⋯ ⋯ ⋯
⋯ 𝐽 ⋯
⋯ ⋯ ⋯

]                  

(𝐿 − 27) 

and calculate the product by equation (L − 28). 

[

⋯ ⋯ ⋯
⋯ 𝐻𝑜𝑏 ⋯
⋯ ⋯ ⋯

] = [

… … …
… 𝐹 …
… … …

]

𝐻

([

… … …
… 𝐹 …
… … …

] [

⋯ ⋯ ⋯
⋯ 𝐻 ⋯
⋯ ⋯ ⋯

]⊙ [

… … …
… 𝐹 …
… … …

] [

⋯ ⋯ ⋯
⋯ 𝐽 ⋯
⋯ ⋯ ⋯

] )          

(𝐿 − 28) 
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Appendix M: Enforcement of Boundary Conditions for DSPM Equations  

 

M.1  Incident and Scattered Fields for the DSPM Model 

For an infinitely long cylinder, when an external line source is moved close to the surface 

of a conducting cylinder, each induced current source can be represented as a delta function. 

These excitation sources at the surface act as virtual sources, and so can be thought of as 

eigensources. 

External line sources and incident electric fields outside the cylinder may be decomposed 

into a collection of virtual currents or eigensources. The basis of the Direct Spectral Projection 

Model is that the H-spectral signature of any external line source or incident electric field can be 

expressed as the weighted sum of the H-spectral signatures of a set of virtual sources. The 

induced currents are the output function. Because each induced current source is a scaled version 

of an equal and opposite eigensource, by finding the weights of the virtual currents one can 

calculate the induced currents on the surface of the cylinder. 

Unlike the Spectral Projection Model, it is not necessary to write the full addition 

theorem to characterize the incident and scattered electric fields at the surface of the conducting 

body. Boundary conditions are implicit in the formulation of the Direct Spectral Projection 

Method because virtual and induced currents produce equal and opposite electric fields at every 

observation point on the surface. This is illustrated in Figure M-1. 

 

M.2  Enforcing Boundary Conditions with DSPM 

To meet the electric field boundary conditions on the surface of the PEC cylinder, the 

following equation must be satisfied between the incident and scattered fields at points 𝑛 ∈

{1, 2, … ,𝑁}. 

[
 
 
 
 
𝐸𝑖𝑛𝑐,1

𝐸𝑖𝑛𝑐,𝑛

𝐸𝑖𝑛𝑐,𝑁]
 
 
 
 

= −

[
 
 
 
 
𝐸𝑠𝑐𝑎𝑡,1

𝐸𝑠𝑐𝑎𝑡,𝑛

𝐸𝑠𝑐𝑎𝑡,𝑁]
 
 
 
 

                                                                                                                        (𝑀 − 1) 
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. 

 

a) 

 

b) 

Figure M-1: Contributions to electric field from a virtual source on an infinitely long cylinder. b) 

Contributions to electric field from a virtual source on an infinitely long cylinder. 

 



 

327 

In the case of DSPM, the incident fields are represented by virtual sources that generate 

an electric field equivalent to that of the external sources. Scattered fields are produced by 

induced currents. So, boundary conditions in equation (𝑀 − 1) can be written as (𝑀 − 2). 

[
 
 
 
 
𝐸𝑣𝑖𝑟,1

𝐸𝑣𝑖𝑟,𝑛

𝐸𝑣𝑖𝑟,𝑁]
 
 
 
 

= −

[
 
 
 
 
𝐸𝑖𝑛𝑑,1

𝐸𝑖𝑛𝑑,𝑛

𝐸𝑖𝑛𝑑,𝑁]
 
 
 
 

                                                                                                                          (𝑀 − 2) 

The electric fields produced by the virtual sources 

[
 
 
 
 
⋮
⋮

𝐸𝑣𝑖𝑟,𝑛
⋮
⋮ ]
 
 
 
 

 are equivalent to the electric 

fields produced by the incident sources 

[
 
 
 
 
𝐸𝑖𝑛𝑐,1

𝐸𝑖𝑛𝑐,𝑛

𝐸𝑖𝑛𝑐,𝑁]
 
 
 
 

. To calculate the equivalent electric field from 

the virtual sources, one must project the collective H-spectral signature of the virtual sources 

(𝑀 − 3) onto the J T-spectral signature of the observation points (𝑀 − 4) at the surface. The 

incident field at the boundary is equal to the weighted sum of the H-spectral signature of the 

incident sources projected onto the J T-spectral signature of the same observation points at the 

surface. Because the same J T-spectral signature matrix is used in this equality, it does not appear 

in the final DSPM equation. But its importance must be emphasized because it is responsible for 

the convergence of the solution in the DSPM equation. 

[

: : :

: 𝐻𝑘
(2)(𝛽|𝝆𝒏|)𝑒

𝑗𝑘𝜙𝑛 :
: : :

]

=

[
 
 
 
 
 𝐻−𝐾

(2)(𝛽|𝝆𝟎|)𝑒
−𝑗𝐾𝜙0 : : : 𝐻−𝐾

(2)
(𝛽|𝝆𝑵𝑶−𝟏|)𝑒

−𝑗𝐾𝜙N−1

: : : : :

: : 𝐻𝑘
(2)(𝛽|𝝆𝒏|)𝑒

𝑗𝑘𝜙𝑛 : :
: : : : :

𝐻𝐾
(2)(𝛽|𝝆𝟎|)𝑒

𝑗𝐾𝜙0 : : : 𝐻𝐾
(2)
(𝛽|𝝆𝑵𝑶−𝟏|)𝑒

𝑗𝐾𝜙N−1 ]
 
 
 
 
 

                (𝑀 − 3) 
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[
: : :
: 𝐽𝑘(𝛽|𝝆𝒏|)𝑒

𝑗𝑘𝜙𝑛 :
: : :

]

𝑇

=

[
 
 
 
 
𝐽−𝐾(𝛽|𝝆𝟎|)𝑒

−𝑗𝐾𝜙0 : : : 𝐽−𝐾(𝛽|𝝆𝑵−𝟏|)𝑒
−𝑗𝐾𝜙𝑁−1

: : : : :
: : 𝐽𝑘(𝛽|𝝆𝒏|)𝑒

𝑗𝑘𝜙𝑛 : :
: : : : :

𝐽𝐾(𝛽|𝝆𝟎|)𝑒
𝑗𝐾𝜙0 : : : 𝐽𝐾(𝛽|𝝆𝑵−𝟏|)𝑒

𝑗𝐾𝜙𝑁−1 ]
 
 
 
 
𝑇

                        (𝑀 − 4) 

 

The spectral signature of an incident plane wave from direction 𝜙0 can be represented by 

an infinitely long vector in 𝐶1×∞ space, and the H-spectral signature subspace of the M+1 

observation points on the surface is also made up of infinite dimensional columns 𝑘 → ∞. The 

magnitude of the H-spectral signature grows larger |ℎ̂𝑠𝑠,𝑀,−𝐾| → ∞ for 𝐾 → ∞. This is shown in 

matrix equation (𝑀 − 5) below. 

 

[
 
 
 
 
 
 
 
 
 
|ℎ̂𝑠𝑠,0,−𝐾| → ∞ … |ℎ̂𝑠𝑠,𝑚,−𝐾| → ∞ … |ℎ̂𝑠𝑠,𝑀,−𝐾| → ∞

− − − − −
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

ℎ̂𝑠𝑠,0,𝑘 ⋮ ℎ̂𝑠𝑠,𝑚,𝑘 ⋮ ℎ̂𝑠𝑠,𝑀,𝑘
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
− − − − −

|ℎ̂𝑠𝑠,0,𝐾| → ∞ ⋯ |ℎ̂𝑠𝑠,𝑚,𝐾| → ∞ … |ℎ̂𝑠𝑠,𝑀,𝐾| → ∞ ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
𝑎0
⋮
𝑎𝑚
⋮

𝑎𝑀−1]
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
|𝑒𝑗𝑘𝜙0| = 1    𝑘 → −∞

−−−−−−
𝑒𝑗𝑘𝜙−𝐾

⋮
𝑒𝑗𝑘𝜙0

⋮
𝑒𝑗𝑘𝜙𝐾

− −−−−−
|𝑒𝑗𝑘𝜙0| = 1      𝑘 → ∞]

 
 
 
 
 
 
 
 
 

 

(𝑀 − 5) 

Similarly, the J T-spectral signature subspace of the M+1 observation points on the 

surface is made up of infinite dimensional rows. The magnitude of the J-spectral signature in this 

case grows smaller |𝑗�̂�𝑠,0,𝐾| → 0 for 𝐾 → ∞. This is shown in matrix equation (𝑀 − 6) below. 

[
 
 
 
 
 
 
 
 
 
|𝑗�̂�𝑠,0,−𝐾| → 0 … |𝑗�̂�𝑠,0,𝑘| → 0 … |𝑗�̂�𝑠,0,𝐾| → 0

− − − − −
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝑗�̂�𝑠,𝑚,−𝐾 ⋮ 𝑗�̂�𝑠,𝑚,𝑘 ⋮ 𝑗�̂�𝑠,𝑚,𝐾
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
− − − − −

|𝑗�̂�𝑠,𝑀,−𝐾| → 0 ⋯ |𝑗�̂�𝑠,𝑀,𝑘| → 0 … |𝑗�̂�𝑠,𝑀,𝐾| → 0]
 
 
 
 
 
 
 
 
 
𝑻

                                                          (𝑀 − 6) 
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The magnitude plot of the Hankel functions vs. modes is shown in both matrix form and 

graphically in Figure M-2. The magnitude of the H-spectral signature increases as the mode 

number increases. 

[
 
 
 
 
 
 
 
 
 
|ℎ̂𝑠𝑠,0,−𝐾| → ∞ … |ℎ̂𝑠𝑠,𝑚,−𝐾| → ∞ … |ℎ̂𝑠𝑠,𝑀,−𝐾| → ∞

− − − − −
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

ℎ̂𝑠𝑠,0,𝑘 ⋮ ℎ̂𝑠𝑠,𝑚,𝑘 ⋮ ℎ̂𝑠𝑠,𝑀,𝑘
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
− − − − −

|ℎ̂𝑠𝑠,0,𝐾| → ∞ ⋯ |ℎ̂𝑠𝑠,𝑚,𝐾| → ∞ … |ℎ̂𝑠𝑠,𝑀,𝐾| → ∞ ]
 
 
 
 
 
 
 
 
 

 

a) 

 

 b)  c) d) 

Figure M-2: Magnitude plot of H-spectral signature modes for different axial lengths 𝜌 = .5, 𝜌 =

2.5, 𝜌 = 5. a) Matrix representation. b, c, d) Modes vs. magnitude. 

 

The plot of modes -K to K vs. magnitude of Bessel functions is shown below in Figure 

M-3. The matrix is shown as the J T-spectral signatures of the observation points. 



 

330 

[
 
 
 
 
 
 
 
 
 
|𝑗�̂�𝑠,0,−𝐾| → 0 … |𝑗�̂�𝑠,0,𝑘| → 0 … |𝑗�̂�𝑠,0,𝐾| → 0

− − − − −
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝑗�̂�𝑠,𝑚,−𝐾 ⋮ 𝑗�̂�𝑠,𝑚,𝑘 ⋮ 𝑗�̂�𝑠,𝑚,𝐾
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
− − − − −

|𝑗�̂�𝑠,𝑀,−𝐾| → 0 ⋯ |𝑗�̂�𝑠,𝑀,𝑘| → 0 … |𝑗�̂�𝑠,𝑀,𝐾| → 0]
 
 
 
 
 
 
 
 
 
𝑻

 

a) 

 

 b)  c) d) 

Figure M-3: Magnitude plot of J T-spectral signature modes for different axial lengths 𝜌 =

.5, 𝜌 = 2.5, 𝜌 = 5. a) Matrix representation. b, c, d) Modes vs. magnitude. 

 

In the magnitude plot of the J T-spectral signatures, the value of the bessel function 

approaches zero for the higher order modes. This means that this matrix acts as a low-pass filter, 

and multiplying the H-spectral signature vector by this matrix drives this product to zero and 

thus provides for the convergence of the addition theorem. The electric field boundary conditions 

are enforced by projecting the H-spectral signatures onto the JT-spectral signatures at the surface 

over a defined number of modes. This is similar to the way higher order sinusoidal harmonics are 

filtered out by the basis functions when implementing the Method of Moments and the Spatial 

Frequency Technique. See Figure M-4 below. 
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Figure M-4: Fourier transforms of different basis functions: rectangular pulse waveform, 

triangular waveform, sinusoidal wave, and truncated cosine waveform. 

 

When both sides of the DSPM equation are multiplied by the J T-spectral  signatures  the  

boundary conditions are enforced. On the left side of the equation, the matrix product becomes 

(𝑀 − 7). 
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[
 
 
 
 
 
 
 
 
 
|𝑗�̂�𝑠,0,−𝐾| → 0 … |𝑗�̂�𝑠,0,𝑘| → 0 … |𝑗�̂�𝑠,0,𝐾| → 0

− − − − −
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

𝑗�̂�𝑠,𝑚,−𝐾 ⋮ 𝑗�̂�𝑠,𝑚,𝑘 ⋮ 𝑗�̂�𝑠,𝑚,𝐾
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
− − − − −

|𝑗�̂�𝑠,𝑀,−𝐾| → 0 ⋯ |𝑗�̂�𝑠,𝑀,𝑘| → 0 … |𝑗�̂�𝑠,𝑀,𝐾| → 0]
 
 
 
 
 
 
 
 
 
𝑻

[
 
 
 
 
 
 
 
 
 
|ℎ̂𝑠𝑠,0,−𝐾| → ∞ … |ℎ̂𝑠𝑠,𝑚,−𝐾| → ∞ … |ℎ̂𝑠𝑠,𝑀,−𝐾| → ∞

− − − − −
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

ℎ̂𝑠𝑠,0,𝑘 ⋮ ℎ̂𝑠𝑠,𝑚,𝑘 ⋮ ℎ̂𝑠𝑠,𝑀,𝑘
⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
− − − − −

|ℎ̂𝑠𝑠,0,𝐾| → ∞ ⋯ |ℎ̂𝑠𝑠,𝑚,𝐾| → ∞ … |ℎ̂𝑠𝑠,𝑀,𝐾| → ∞ ]
 
 
 
 
 
 
 
 
 

  

(𝑀 − 7) 

Figure M-5 illustrates how the outer modes of the J T-spectral filter the higher order 

modes of the H-spectral signature to zero, and ensure convergence of the matrix product. 

 

          

Figure M-5: Filtering of the outer modes of the product of the J T-spectral subspace and H-

spectral signature subspaces. 

 

The spectral signature of the incident field from a current source at (𝜌0, 𝜙0) was given 

earlier and written again in equation (𝑀 − 8).  

[

…
𝑖̂𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
. .

] = −
𝛽2𝐼𝑒
4𝜔𝜀

[
 
 
 
 
 𝐻−𝐾

(2)
(𝛽|𝝆𝟎|)𝑒

−𝑗𝐾𝜙0

⋮

𝐻𝑘
(2)(𝛽|𝝆𝟎|)𝑒

𝑗𝑘𝜙0

⋮

𝐻𝐾−1
(2) (𝛽|𝝆𝟎|)𝑒

𝑗𝐾𝜙0
 ]
 
 
 
 
 

                                                                                    (𝑀 − 8) 

In order to represent a plane wave incident from an angle 𝜙0′, the matrix expression in equation 

(𝑀 − 9) is shown. 
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[

⋮

𝑖𝑠𝑠,𝑖𝑛𝑐,𝐼𝑒
𝑓𝑓

⋮ 

] = 𝐸0

[
 
 
 
 
 𝑒
−𝑗𝐾(𝜙0′−

𝜋
2
)

⋮

𝑒𝑗𝑘(𝜙0′−
𝜋
2
)

⋮

𝑒𝑗𝐾(𝜙0′−
𝜋
2
)
 ]
 
 
 
 
 

                                                                                                         (𝑀 − 9) 

The actual magnitude of the incident field is defined by the infinite vector on the right-

hand side of the matrix equation, and is a constant value of one. 

 

|

|

|

  

[
 
 
 
 
 
 
 
 

⋮
− − −− − −
𝑒−𝑗𝐾𝜙0

⋮
𝑒𝑗𝑘𝜙0

⋮
𝑒𝑗𝐾𝜙0

−−−−−−
⋮ ]

 
 
 
 
 
 
 
 

  

|

|

|

=

[
 
 
 
 
 
 
 
 

⋮
− − − − − −

⋮
⋮
1
⋮
⋮

− − − − − −
⋮ ]

 
 
 
 
 
 
 
 

                                                                                       (𝑀 − 10) 

 

The spectral signatures of each observation point m is defined by an infinitely long 

spectral signature column vector ℎ̂𝑠𝑠,𝑚,𝑘. The spectral signature 𝑠𝑘 for  𝑠𝑘 ∈ {−𝐾,…𝑘,…𝐾} 

represents the region in which the boundary conditions are applied. As the length of the column 

vectors gets larger (for greater K modes), the magnitude of the H-spectral signatures goes to 

infinity |𝑠𝑘| → ∞, as shown in Figure M-5. By multiplying both sides by J T-spectral  signature 

subspace, the electric field boundary conditions are met through the low-pass filter effect. For 

large axial ratios, the number of modes in the spectral signature of an object increases. This 

limits application of the DSPM by the larger axial dimension, unless translation is performed to 

mitigate its effects.  

  This procedure forces the vectors representing the H-spectral signatures of the induced 

currents on the left-hand side of the equation to be equal to the vectors representing the H-

spectral signatures of the incident currents on the right-hand side of the equation. Moreover, it 

can be used to force any two vectors representing the H-spectral signature of the induced and 

incident currents to satisfy the boundary conditions at the surface of the conductor. 


