
	

https://zovewesesapok.ragaz.co.za/gdy?utm_term=bootstrapping+in+compiler+design+pdf

Bootstrapping	in	compiler	design	pdf

What	is	bootstrapping	in	compiler.		What	is	bootstrapping	in	compiler	design.		Bootstrapping	in	compiler	design	in	hindi.		Bootstrapping	in	compiler	design	with	example.		

You're	Reading	a	Free	Preview	Pages	6	to	11	are	not	shown	in	this	preview.	It	is	an	approach	for	making	a	self-compiling	compiler	that	is	a	compiler	written	in	the	source	programming	language	that	it	determine	to	compile.	A	bootstrap	compiler	can	compile	the	compiler	and	thus	you	can	use	this	compiled	compiler	to	compile	everything	else	and	the
future	versions	of	itself.Uses	of	BootstrappingThere	are	various	uses	of	bootstrapping	which	are	as	follows	−It	can	allow	new	programming	languages	and	compilers	to	be	developed	starting	from	actual	ones.It	allows	new	features	to	be	combined	with	a	programming	language	and	its	compiler.It	also	allows	new	optimizations	to	be	added	to
compilers.It	allows	languages	and	compilers	to	be	transferred	between	processors	with	different	instruction	setsAdvantages	of	BootstrappingThere	are	various	advantages	of	bootstrapping	which	are	as	follows	−Compiler	development	can	be	performed	in	the	higher-level	language	being	compiled.It	is	a	non-trivial	test	of	the	language	being
compiled.It	is	an	inclusive	consistency	check	as	it	must	be	capable	of	recreating	its	object	code.For	bootstrapping,	a	compiler	is	defined	by	three	languages	−S→Source	language	it	compiles.T→Target	language	it	generates.I→Implementation	language	that	it	is	written	inThese	languages	can	be	represented	using	a	T-diagram	asCross	CompilerA
compiler	is	characterized	by	three	languages	as	its	source	language,	its	object	language,	and	the	language	in	which	it	is	written.	These	languages	may	be	quite	different.	A	compiler	can	run	on	one	machine	and	produce	target	code	for	another	machine.	

Such	a	compiler	is	known	as	a	cross-compiler.If	it	can	write	a	cross-compiler	for	a	new	language	'L'	in	execution	languages	'S'	to	generate	a	program	for	machine	'N'.i.e.	LsNIf	a	current	compiler	for	S	runs	on	machine	M	and	generates	a	program	for	M,	it	is	defined	by	SMM.If	LSN	runs	through	SMM,	we	get	a	compiler	LMN,	i.e.,	a	compiler	from	L	to
N	that	runs	on	M.Example	−	Create	a	cross	compiler	using	bootstrapping	when	SsM	runs	on	SAA.Solution	−	First	of	all,	it	represents	two	compilers	with	T-diagram.When	SsM	runs	on	SAA,	SAM	will	be	generated.	Bootstrapping	in	Compiler	Design/Construction	[Term	Paper/Journal]	Submitted	in	Fulfillment	of	the	Requirement	for	the	Completion	of
COMPILER	DESIGN	–	CSE415	by	Shabnam	Sidhu	(B.Tech.CSE)	[email]	:	shabnam719[at]gmail[dot]com	RK2202B29-11203047	School	of	Computer	Science	and	Engineering	Under	the	Guidance	of	Asst.	Prof.	Harshpreet	Singh	Department	of	Computer	Science	Lovely	Professional	University	Punjab-India	Submission	Date	:	7th	April,	2015	Page	No.:
Bootstrapping	in	Compiler	Design/Construction	by	Shabnam	Sidhu	School	of	Computer	Science	and	Engineering	Lovely	Professional	University,	IN	This	paper	represents	my	own	work	and	is	formatted	based	upon	“Standard	IEEE	Format	for	Research	Journals”	in	accordance	with	University	regulations.	/s/.	Shabnam	Sidhu	Contents	1.
Introduction...1	2.	Structure	of	Compiler..3	3.	
Compiler	Construction	and	Bootstrapping:..4	4.	Bootstrapping...5	5.	Compiling	Compilers	and	Type	of	Bootstrapping..7	6.	References..10	Page	No.:	0	Chapter	-	1
Introduction:	Bootstrapping	is	the	process	of	writing	a	compiler	(or	assembler)	in	the	target	programming	language	which	it	is	intended	to	compile.	Applying	this	technique	leads	to	a	self-hosting	compiler.	Introduction	To	Compiler:	A	compiler	is	set	of	programs	that	transforms	or	converts,	source	code	written	in	a	programming	language	to	system
language.	System	language	is	basically	the	object	code	which	is	basically	in	binary	form.	Main	objective	of	this	is	to	create	an	executable	program.	A	compiler	is	likely	to	perform	many	or	all	of	the	following	operations:	lexical	analysis,	preprocessing,	parsing,	semantic	analysis	(Syntax-directed	translation),	code	generation,	and	code	optimization.	
Compilation:	Compilers	enabled	the	development	of	programs	that	are	machine-independent.	The	first	higher-level	language,	in	the	1950s,	machine-dependent	assembly	language	was	widely	used.	While	assembly	language	produces	more	reusable	and	relocatable	programs	than	machine	code	on	the	same	architecture,	it	has	to	be	modified	or
rewritten	if	the	program	is	to	be	executed	on	different	computer	hardware	architecture.	Structure:	A	compiler	consists	of	three	main	parts:	the	front-end,	the	middle-end,	and	the	back-end.	Front	End:	Programs	are	checked	here	in	term	of	Syntax	and	Semantics	of	respective	programming	language.	Type	checking	is	also	performed	by	collecting	type
information.	The	front-end	then	generates	an	intermediate	representation	of	the	source	code	for	processing	by	the	middle-end.	Middle	End:	Here	optimization	takes	place.	Few	transformations	for	optimization	are	removal	of	useless	or	unreachable	code,	discovery	and	relocation	of	computation	code	etc.	

Page	No.:	1	Back	End:	It	gives	the	output	as	assembly	code	from	optimized	code	from	middle-end.	Memory	allocation	and	register	allocation	are	also	performed	here	for	process	register	(required	for	some	program	variables).	Page	No.:	2	Chapter	–	2	Structure	of	Compiler:	In	a	compiler,	•	linear	analysis	•	is	called	LEXICAL	ANALYSIS	or	SCANNING
and	•	is	performed	by	the	LEXICAL	ANALYZER	or	LEXER,	•	hierarchical	analysis	•	is	called	SYNTAX	ANALYSIS	or	PARSING	and	•	is	performed	by	the	SYNTAX	ANALYZER	or	PARSER.	•	During	the	analysis,	the	compiler	manages	a	SYMBOL	TABLE	by	•	recording	the	identifiers	of	the	source	program	•	collecting	information	(called	ATTRIBUTES)
about	them:	storage	allocation,	type,	scope,	and	(for	functions)	signature.	•	When	the	identifier	x	is	found	by	the	lexical	analyzer	•	generates	the	token	id	•	enters	the	lexeme	x	in	the	symbol-table	(if	it	is	not	already	there)	•	associates	to	the	generated	token	a	pointer	to	the	symbol-table	entry	x.	
This	pointer	is	called	the	LEXICAL	VALUE	of	the	token.	•	During	the	analysis	or	synthesis,	the	compiler	may	DETECT	ERRORS	and	report	on	them.	•	However,	after	detecting	an	error,	the	compilation	should	proceed	allowing	further	errors	to	be	detected.	•	The	syntax	and	semantic	phases	usually	handle	a	large	fraction	of	the	errors	detectable	by	the
compiler.	Page	No.:	3	Chapter	–	3	Compiler	Construction	and	Bootstrapping:	All	but	the	smallest	of	compilers	have	more	than	two	phases.	However,	these	phases	are	usually	regarded	as	being	part	of	the	front	end	or	the	back	end.	The	point	at	which	these	two	ends	meet	is	open	to	debate.	The	development	of	compilers	for	new	programming
languages	first	developed	in	an	existing	language	but	then	rewritten	in	the	new	language	and	compiled	by	itself,	is	another	example	of	the	bootstrapping	notion.	Definition:	The	notion	of	implementing	a	language,	by	means	of	using	(part	of)	that	language’s	own	implementation.	Notation:	T-diagram	T-Diagram:	The	Bootstrapping	notation	is	also	called
“Bratman	diagrams”	and,	because	of	their	shape,	“T-diagrams”	or	“Tombstone	Diagram”	which	is	used	to	represent	complex	diagrams.	Understanding	T-Diagrams	:	The	first	T	describes	a	compiler	from	L	to	N	written	in	S.	
The	second	T	describes	a	compiler	from	S	to	M	written	in	M	(or	running	on	M).	This	will	be	your	compiler	compiler.	Applying	the	second	T	to	the	first	T	compiles	the	first	T	so	that	it	runs	on	machine	M.	The	result	is	thus	a	compiler	from	L	to	N	running	on	machine	M.	

Page	No.:	4	Chapter	–	4	History:	Assemblers	were	the	first	language	tools	to	bootstrap	themselves.	The	first	high	level	language	to	provide	such	a	bootstrap	was	NELIAC	in	1958.	The	first	widely	used	languages	to	do	so	were	Burroughs	B5000	Algol	in	1961	and	Lisp	in	1962.	Hart	and	Levin	wrote	a	Lisp	compiler	in	Lisp	at	MIT	in	1962,	testing	it	inside
an	existing	Lisp	interpreter.	Once	they	had	improved	the	compiler	to	the	point	where	it	could	compile	its	own	source	code,	it	was	self-hosting.	This	technique	is	only	possible	when	an	interpreter	already	exists	for	the	very	same	language	that	is	to	be	compiled.	It	borrows	directly	from	the	notion	of	running	a	program	on	itself	as	input,	which	is	also
used	in	various	proofs	in	theoretical	computer	science,	such	as	the	proof	that	the	halting	problem	is	undecidable.	Bootstrapping	Concept:	The	process,	by	which	a	simple	language	is	used	to	translate	a	more	complicated	program,	which	in	turn	may	handle	an	even	more	complicated	program	and	so	on,	is	known	as	bootstrapping.	In	other	words,	you
want	to	write	a	compiler	for	a	language	A,	targeting	language	B	(the	machine	language)	and	written	in	language	B.	

The	most	obvious	approach	is	to	write	the	compiler	in	language	B.	

But	if	B	is	machine	language,	it	is	a	horrible	job	to	write	any	non-trivial	compiler	in	this	language.	Instead,	it	is	customary	to	use	a	process	called	“bootstrapping”,	referring	to	the	seemingly	impossible	task	of	pulling	oneself	up	by	the	bootstraps.	Use	of	Bootstrapping:	As	mentioned,	bootstrapping	means	that	a	compiler	can	compile	itself.	What	are	the
pros	and	cons	of	bootstrap-ping?	
Page	No.:	5		The	implemented	language	becomes	well	tested,	since	the	developers	are	using	it	on	a	large	application	(the	compiler).	
	The	developers	are	motivated	to	make	a	high	quality	implementation,	since	they	are	using	it	themselves.		The	developers	are	motivated	to	create	a	good	development	environment,	since	they	are	using	it	themselves.		There	is	also	a	negative	factor:	since	the	tool	must	be	able	to	build	itself,	there	is	more	work	to	do	significant	changes	to	it	–	the
implementation	must	be	good	enough	to	be	useable.	Page	No.:	6	Chapter	-	5	Compiling	Compilers:	The	basic	idea	in	bootstrapping	is	to	use	compilers	to	compile	themselves	or	other	compilers.	We	do,	however,	need	a	solid	foundation	in	form	of	a	machine	to	run	the	compilers	on.	Developing	a	self-compiling	compiler	has	four	distinct	points	to
recommend	it:	1:	It	constitutes	a	non-trivial	test	of	the	viability	of	the	language	being	compiled.	
2:	Once	it	has	been	done,	further	development	can	be	done	without	recourse	to	other	translator	systems.	3:	Any	improvements	that	can	be	made	to	its	back	end	manifest	themselves	both	as	improvements	to	the	object	code	it	produces	for	general	programs	and	as	improvements	to	the	compiler	itself.	4:	it	provides	a	fairly	exhaustive	self-consistency
check,	for	if	the	compiler	is	used	to	compile	its	own	source	code,	it	should,	of	course,	be	able	to	reproduce	its	own	object	code	Full	Bootstrap:	The	bootstrapping	process	relies	on	an	existing	compiler	for	the	desired	language,	albeit	running	on	a	different	machine.	It	is,	hence,	often	called	“half	bootstrapping”.	When	no	existing	compiler	is	available,
e.g.:	When	a	new	language	has	been	designed,	we	need	to	use	a	more	complicated	process	called	“full	bootstrapping”.	-	A	common	method	is	to	write	a	QAD	(“quick	and	dirty”)	compiler	using	an	existing	language.	This	compiler	needs	not	generate	code	for	the	desired	target	machine	(as	long	as	the	generated	code	can	be	made	to	run	on	some	existing
platform),	nor	does	it	have	to	generate	good	code.	The	important	thing	is	thatit	allows	programs	in	the	new	language	to	be	executed.	Additionally,	the	“real”	compiler	is	written	in	the	new	language	and	will	be	bootstrapped	using	the	QAD	compiler	Page	No.:	7	Half	Bootstrap:	We	discussed	full	bootstrapping	which	is	required	when	we	have	no	access
to	a	compiler	for	our	language	at	all.	If	we	have	access	to	a	compiler	for	our	language	on	a	different	machine	HM	but	want	to	develop	one	for	TM,	we'll	use	Half	Bootstrap	Incremental	Bootstrap:	It	is	also	possible	to	build	the	new	language	and	its	compiler	incrementally.	The	first	step	is	to	write	a	compiler	for	a	small	subset	of	the	language,	using	that
same	subset	to	write	it.	This	first	compiler	must	be	bootstrapped	in	one	of	the	ways	described	earlier,	but	thereafter	the	following	process	is	done	repeatedly:	1)	Extend	the	language	subset	slightly.	2)	Extend	the	compiler	so	it	compiles	the	extended	subset,	but	without	using	the	new	features.	3)	Use	the	previous	compiler	to	compile	the	new.	In	each
step,	the	features	introduced	in	the	previous	step	can	be	used	in	the	compiler.	Even	when	the	full	language	is	compiled,	the	process	can	be	continued	to	improve	the	quality	of	the	compiler.	Problem	and	Solution:	The	work	of	transportation	is	essentially	done	entirely	on	the	donor	machine,	without	the	need	for	any	translator	in	the	target	machine,	but
a	crucial	part	of	the	original	compiler	(the	back	end,	or	code	generator)	has	to	be	rewritten	in	the	process.	Clearly	the	method	is	hazardous,	any	flaws	or	oversights	in	writing	rules.	Pas	could	have	spelled	disaster.	Such	problems	can	be	reduced	by	minimizing	changes	made	to	the	original	compiler.	Another	technique	is	to	write	an	emulator	for	the
target	machine	that	runs	on	the	donor	machine,	so	that	the	final	compiler	can	be	tested	on	the	donor	machine	before	being	transferred	to	the	target	machine.	Advantages:	Bootstrapping	a	compiler	has	the	following	advantages:	•	it	is	a	non-trivial	test	of	the	language	being	compiled.	Page	No.:	8	•	compiler	developers	only	need	to	know	the	language

being	compiled.	•	compiler	development	can	be	done	in	the	higher	level	language	being	compiled.	•	improvements	to	the	compiler's	back-end	improve	not	only	general	purpose	programs	but	also	the	compiler	itself.	•	it	is	a	comprehensive	consistency	check	as	it	should	be	able	to	reproduce	its	own	object	code.	
Page	No.:	9	REFERENCES	[1].	28compilers%29	[2].	[3].	[4].	[5].	
[6].	Page	No.:	10

