
Knowledge Graphs as Agentic Systems: Integrating Memory, Action, and Code
1. Introduction
1.1. Context Setting
The field of artificial intelligence (AI) is witnessing a significant evolution towards agentic systems – AI entities characterized by their capacity
for autonomous operation, proactive decision-making, and goal-directed behavior. These systems represent a departure from earlier AI
paradigms, such as traditional rule-based systems or purely generative models, which often lack the ability to act independently or adapt
dynamically to complex environments. Agentic AI aims to mimic human-like agency, enabling systems to interpret complex goals, understand
context, plan multi-step actions, and learn from interactions with minimal human oversight. However, realizing the full potential of agentic AI
hinges critically on the development of robust mechanisms for knowledge representation, memory, and reasoning to underpin their
sophisticated cognitive processes. Without effective ways to store, retrieve, and utilize knowledge about the world and past experiences,
agents struggle to maintain context, make informed decisions, or execute complex tasks reliably.

1.2. Introducing Knowledge Graphs (KGs)
Knowledge Graphs (KGs) emerge as a compelling technology to address these needs. Fundamentally, KGs are structured representations of
real-world entities (like objects, events, or concepts) and the intricate relationships that connect them, typically visualized as graph structures
composed of nodes and edges. Their conceptual origins trace back to semantic networks and knowledge bases developed in earlier AI
research. The modern resurgence and popularization of KGs, however, were significantly propelled by large-scale commercial
implementations, most notably Google's Knowledge Graph launched in 2012, which demonstrated their power in organizing vast amounts of
information for applications like search enhancement. KGs provide a way to model knowledge with explicit semantics, often leveraging formal
ontologies to define the meaning of entities and relationships, thereby enabling both human and machine understanding.

1.3. Thesis Statement
This report posits that Knowledge Graphs are evolving beyond their traditional role as static knowledge repositories to become dynamic,
integral components of advanced agentic AI systems. They serve not only as sophisticated memory structures, capable of capturing both
generalized semantic knowledge and specific episodic experiences, but also as actionable frameworks for grounding agent behavior, planning
complex tasks, and integrating executable code. This deep integration of KGs within agentic architectures enables more complex, context-
aware, adaptable, explainable, and ultimately more capable autonomous systems.

1.4. Report Structure Overview
This report will systematically explore the synergistic relationship between KGs and agentic AI. Section 2 establishes the foundational concepts
of KGs relevant to agency, focusing on their structure, semantics, and key characteristics. Section 3 delves into the principles of agentic AI
systems, outlining their core characteristics, operational cycles, and architectures. Section 4 examines the crucial role of KGs as memory
systems for agents, covering both semantic and episodic memory representations and dynamic updates, illustrated through specific
frameworks. Section 5 investigates how KGs enable and guide agent actions, including modeling procedures, driving planning, and interfacing
with tools. Section 6 explores the convergence of graph structures and code representations, discussing embeddings, codebase KGs, and
agentic orchestration frameworks. Section 7 addresses the significant challenges and promising future directions in this rapidly evolving field.
Finally, Section 8 provides concluding remarks, synthesizing the key findings and reinforcing the transformative potential of integrating KGs
within agentic AI.

The confluence of technologies like Large Language Models (LLMs), KGs, and agentic frameworks signifies more than mere technological
combination; it marks a fundamental shift towards AI systems possessing dual capabilities. LLMs contribute proficiency in processing and
generating natural language, drawing upon vast unstructured data, yet they often suffer from a lack of grounding, potential for hallucination,
and opacity in their reasoning. Conversely, KGs offer structured knowledge, explicit semantics, and the potential for verifiable, formal
reasoning, but face challenges in construction and in handling the ambiguity and scale of real-world information. Agentic frameworks provide
the necessary architecture—often based on a perception-reasoning-action loop—to orchestrate these components effectively. The interaction
is synergistic: LLMs can aid in interpreting unstructured data to populate and enrich KGs , while KGs provide the structured context and
factual grounding to constrain and inform the reasoning processes within the agent, often mediated by LLMs. This symbiosis is essential for
developing autonomous systems that are not only intelligent but also reliable and trustworthy.

2. The Knowledge Graph Foundation for Agency
2.1. Defining the Modern KG for Agentic Systems

While basic definitions describe KGs simply as nodes (entities), edges (relationships), and labels , a richer understanding is necessary when
considering their role in agentic AI. For agency, a KG is more accurately conceptualized as a dynamic knowledge base characterized by formal
semantics and a graph-structured data model. They represent networks of real-world entities—objects, events, concepts—and their
interrelations, often stored and queried using graph database technologies.

A key aspect is the integration with ontologies, which provide a formal, explicit specification of a shared conceptualization. Ontologies act as
the schema layer for the KG, defining the types of entities (classes), their attributes (properties), and the types of relationships that can exist
between them. This formal semantic underpinning distinguishes KGs from simpler graph databases or raw RDF datasets, which might lack

1

1
1

7

9
11

11
10

19

4
12

3
22

23

9

16
11

10

10

this rich layer of meaning. The Resource Description Framework (RDF) triple format (subject, predicate, object) serves as a common
standard for representing facts within KGs, facilitating interoperability and grounding in Semantic Web principles.

2.2. Key Components and Characteristics for Agents
Several components and characteristics of KGs are particularly vital for supporting agentic systems:

Entities (Nodes) & Relationships (Edges): The core structure allows modeling of diverse elements relevant to an agent's environment
and tasks, including physical objects, abstract concepts, people, locations, events, and the complex ways they connect.
Ontologies & Semantics: Formal semantics, often defined by ontologies, enable machines (agents) to process and interpret the
information within the KG reliably and unambiguously. This shared understanding is crucial for tasks like data integration, reasoning, and
communication between agents.
Identifiers (URIs): The use of unique and global identifiers, such as Uniform Resource Identifiers (URIs) common in RDF and Semantic
Web contexts, ensures that entities and relations are unambiguously identified. This prevents confusion and is fundamental for linking
data across different parts of the graph or even across different KGs.

Flexibility & Extensibility: Unlike traditional relational databases with rigid schemas, KGs offer significant flexibility. New types of
entities, relationships, and data instances can be added incrementally without requiring extensive schema refactoring. This adaptability is
essential for agents that need to learn and update their knowledge base continuously in dynamic environments.
Integration Capability: KGs excel at integrating heterogeneous data from diverse sources, including structured databases, unstructured
text, APIs, and semi-structured data. This allows agents to build a comprehensive world model from fragmented information.
Queryability & Reasoning: KGs support powerful query languages (e.g., SPARQL for RDF KGs, Cypher for property graphs) that allow
agents to retrieve specific information and explore complex relationships. Furthermore, the formal semantics enable inference
mechanisms that can derive implicit knowledge (new facts) from the explicitly stated information.

The precise definition and implementation details of KGs can vary. Some KGs are entity-centric, focusing primarily on representing entities
and their properties, while others are content-centric, linking chunks of content like text sections or table columns. KGs also range from
large, general-purpose resources like DBpedia and Wikidata, which aggregate knowledge from sources like Wikipedia , to highly specialized
domain-specific or enterprise KGs tailored to particular applications or organizational knowledge.

The characteristics of "unambiguous identification" and "formal semantics" , often realized through ontologies and standardized identifiers
like URIs, are not merely technical specifications. They form the bedrock upon which explainable and verifiable agentic behavior can be built.
Agentic systems, by definition, make autonomous decisions and take actions. For these systems to be trusted and deployed, especially in
critical applications, their decision-making processes must be traceable and understandable. KGs provide a mechanism for this transparency.
When an agent retrieves information from a KG or performs reasoning based on its structured, semantically defined content , the path to its
conclusion can often be reconstructed by examining the specific entities, relationships, and inference rules involved. This explicit knowledge
representation contrasts sharply with the often opaque internal workings of purely connectionist models like LLMs. Thus, the formal structure
inherent in well-designed KGs directly facilitates a level of auditability and explainability that is vital for building trustworthy autonomous
agents.

Furthermore, the inherent flexibility and capacity for schema evolution found in KGs are fundamental enablers for agents designed for lifelong
learning. Such agents must continually acquire new information, integrate novel concepts, and adapt their internal world models over
extended periods. Traditional database systems, constrained by rigid, predefined schemas, pose significant obstacles to this continuous
adaptation, often necessitating complex and disruptive data migrations. KGs, particularly those based on flexible models like RDF, readily
accommodate the incremental addition of new data, new types of entities, and new kinds of relationships without necessarily invalidating the
existing structure or requiring a complete overhaul. This intrinsic adaptability of the knowledge graph structure mirrors the desired adaptive
learning capability of the agent itself, positioning KGs as a natural and powerful substrate for representing the dynamically evolving knowledge
base of a lifelong learning system.

3. Agentic AI Systems: Architecture and Operation
3.1. Defining Agentic AI
Agentic AI refers to a class of artificial intelligence systems designed to operate with a significant degree of autonomy, enabling them to
perceive their environment, make decisions, and take actions to achieve specific goals with minimal direct human supervision. The term
"agentic" highlights the core concept of "agency"—the capacity of these systems to act independently and purposefully within their
environment. These systems often leverage advanced AI techniques, including machine learning, natural language processing, and
increasingly, large language models (LLMs), to interpret complex situations, formulate plans, and execute tasks.

3.2. Core Characteristics
Agentic AI systems are distinguished by several key characteristics:

16
11

9

12
10

10

12
15

10

25
10

15
11

29

37 12

1
30

12
37

18

12
43

43
36

16

1

4
1

Autonomy: They can initiate and complete tasks independently, without constant human guidance or intervention.

Goal-Oriented: Their actions are driven by predefined objectives or goals they aim to achieve.
Proactivity/Intentionality: They possess the ability to take initiative, set sub-goals, and plan sequences of actions rather than merely
reacting to stimuli.
Reactivity/Adaptability: They can perceive changes in their environment and adjust their behavior or plans accordingly. Many agentic
systems incorporate learning mechanisms to improve performance over time based on feedback and experience.
Reasoning: They exhibit capabilities for complex problem-solving, making judgments based on context, weighing trade-offs, and deducing
appropriate courses of action.
Interaction: They can interact with their environment, which may include digital systems (databases, APIs), physical environments (via
sensors and actuators), or other agents.

3.3. Operational Cycle
The operation of agentic AI systems is often conceptualized as a continuous cycle involving several key phases, sometimes referred to as a
"think-act-observe" loop or similar variations :
1. Perception: The agent gathers information about its current state and environment through various inputs, such as sensors, APIs,

database queries, or direct user interaction.
2. Reasoning/Planning: The agent processes the perceived information, often using LLMs as a core reasoning engine or orchestrator, to

understand the situation, interpret goals (potentially given in natural language), evaluate options, and formulate a plan or strategy. This
phase involves making judgments and deciding on the next course of action.

3. Action: The agent executes the chosen action or plan. This often involves interacting with external tools, calling APIs, manipulating data,
generating responses, or controlling physical actuators.

4. Learning/Reflection: The agent observes the outcome of its actions and potentially receives feedback. This information is used to
evaluate performance, update its internal state or memory, and refine its future reasoning, planning, and actions. Techniques like
reinforcement learning are often employed in this phase.

3.4. Architectures and Types
Agentic AI systems can range from single, sophisticated agents to complex Multi-Agent Systems (MAS) where multiple agents collaborate or
compete. Coordinating the actions of multiple agents often requires AI orchestration mechanisms. Architectures can be hierarchical, with a
central "conductor" agent delegating tasks, or more decentralized, with agents coordinating peer-to-peer. Agents themselves can be classified
based on their capabilities and design principles, such as reactive agents that respond directly to stimuli versus proactive agents that plan
towards goals , or along axes like complexity (e.g., simple reflex, model-based, goal-based, utility-based agents) or interaction style (e.g.,
reactive, deliberative, learning, collaborative agents).

The operational cycle (Perceive-Reason-Plan-Act-Learn) common to agentic systems is not merely a linear sequence but an integrated
feedback loop. Within this loop, the agent's internal representation of knowledge and experience—its memory—plays a pivotal role at every
stage. The quality, structure, and timeliness of this memory profoundly influence the agent's overall performance. Perception is enhanced
when incoming sensory data or information can be contextualized against existing knowledge; a KG can provide this semantic context to help
disambiguate observations or relate them to known entities and concepts. The Reasoning and Planning phases are fundamentally dependent
on the agent's world model and its recollection of past events. KGs, by providing structured, interconnected knowledge, enable more
sophisticated reasoning compared to relying solely on unstructured conversation history or retrieved text snippets. The selection of Actions is
directly guided by the plans derived from this KG-informed reasoning. Finally, the Learning and Reflection phase involves updating the agent's
internal state based on the outcomes of its actions. Dynamic KGs offer a concrete mechanism for this memory update, allowing the agent to
integrate new facts, modify existing beliefs, or track the evolution of its environment over time. Consequently, the KG is not a passive data
store but an active, dynamic substrate that shapes and is shaped by the entire agentic process. A more comprehensive, accurate, and
dynamically maintained KG directly translates to improved perception, reasoning, planning, action selection, and learning adaptation.

As agentic AI evolves, there is a clear trend towards Multi-Agent Systems (MAS), where tasks are decomposed and handled by multiple,
specialized agents. Examples include systems with distinct agents for coding, web searching, planning, or specific domain expertise. While
specialization enhances efficiency and capability within narrow domains, it simultaneously creates a critical need for effective coordination and
shared understanding among these diverse agents. Simple message passing or sharing of unstructured text between agents can be inefficient
and prone to misinterpretation or loss of context. A robust, shared knowledge representation layer becomes essential to ensure coherent
collaboration. Knowledge Graphs are ideally suited for this role, providing a structured, semantic "lingua franca". Agents can read from and
write to a common KG, allowing specialized knowledge acquired by one agent (e.g., a new fact discovered by a web search agent) to be
integrated into the shared model and become accessible to other agents (e.g., a planning agent) in a consistent, unambiguous format. This
shared KG effectively functions as the collective memory and world model for the MAS, enabling complex, coordinated behaviors that emerge
from the interaction of specialized components, grounded in a common understanding of the environment and task context.

1

1

2

1

2

1

6

4

1

4

1
1

3 3
4

2 45
26

6

4

28 2

28 4
1

28

3 4

7

7

47

4. Knowledge Graphs as Agent Memory
A defining feature of advanced agentic AI is the ability to learn, remember, and utilize past experiences and knowledge to inform future actions.
Traditional approaches to AI memory, particularly within the context of LLMs, face limitations. The finite context window of LLMs restricts the
amount of historical information that can be directly processed, leading to a loss of long-term coherence. While Retrieval-Augmented
Generation (RAG) addresses this by retrieving relevant text chunks from external corpora, standard RAG often lacks the structure needed to
represent complex relationships or temporal dynamics effectively, and struggles with frequently updated information sources. KGs offer a
compelling alternative, providing a structured, dynamic, and queryable foundation for agent memory.

4.1. KGs for Semantic Memory
KGs excel at representing semantic memory – the general knowledge about the world, including facts, concepts, entities, and the
relationships between them. By encoding this knowledge in a structured graph format (nodes connected by labeled edges), agents can:

Access Factual Knowledge: Retrieve specific facts about entities or concepts relevant to their current task (e.g., "What is the capital of
France?").
Understand Relationships: Navigate the graph to understand how different entities are connected (e.g., "How is Person A related to
Company B?").

Provide Context: Use the graph's structure and semantics to disambiguate information or understand the context of observations. For
example, distinguishing between "Apple" the company and "apple" the fruit based on connected entities and relationships.
Enable Reasoning: Perform inference over the graph to derive implicit knowledge not explicitly stated (e.g., inferring a common ancestor
based on family relationships).

4.2. KGs for Episodic Memory
Beyond general knowledge, agents need episodic memory to recall specific events, interactions, or experiences tied to particular times and
contexts. KGs can be adapted to store this type of memory by incorporating temporal and contextual information:

Temporal Tagging: Facts or relationships (edges) in the KG can be annotated with timestamps or validity intervals indicating when they
were true. This allows the agent to reconstruct past states or reason about sequences of events.
Contextual Qualifiers: Techniques like RDF* or RDF quadruples extend the basic triple model to add context, such as the time, location,
or source of a particular fact. For instance, a triple (Agent, atLocation, Library) could become (Agent, atLocation, Library, {timestamp: 42}) to
represent an episodic memory.
Representing Interactions: Sequences of user-agent interactions or agent actions within an environment can be stored as linked events
or episodes within the KG structure.

4.3. Dynamic Memory Updates
A crucial aspect of agent memory is its ability to evolve. Unlike static knowledge bases, the KG serving as an agent's memory must be
dynamically updated as the agent perceives, acts, and learns. This involves:

Adding New Knowledge: Incorporating new entities, relationships, or facts derived from observations, user input, or task execution.
Modifying Existing Knowledge: Updating entity properties or relationship attributes based on new information.

Temporal Management: Marking facts as no longer valid or updating their validity intervals as the environment changes.

This continuous interaction creates a feedback loop, sometimes termed a "data flywheel," where the agent's experiences constantly enrich the
KG, making it a more accurate and comprehensive representation of the agent's world over time.

4.4. Memory Retrieval Mechanisms
Agents need efficient ways to retrieve relevant information from their potentially vast KG memory. Common mechanisms include:

Graph Queries: Using formal query languages like SPARQL or Cypher to retrieve specific nodes, edges, or subgraphs matching certain
patterns. This allows for precise, structured retrieval.
Graph Traversal: Navigating the graph structure by following edges from known entities to discover related information.
Embedding-Based Search: Representing nodes and edges as vectors (embeddings) and using similarity search (e.g., vector databases)
to find entities or facts semantically related to a query.
GraphRAG: Applying RAG principles specifically to KGs, where retrieved graph structures (subgraphs, paths, entities) provide context to
an LLM for generating responses or making decisions.

4.5. Illustrative Frameworks
Several research frameworks exemplify the use of KGs for agent memory:

AriGraph: This framework focuses on agents operating in interactive text environments. The agent dynamically constructs and updates a
"memory graph" that integrates both semantic facts about the environment and episodic memories of its actions and observations. This
structured graph facilitates efficient associative retrieval of relevant knowledge, enhancing the agent's planning and decision-making

54

22

50

28

50

54

53
53

54

21

54

28

25

54

20

capabilities compared to unstructured memory approaches.

Zep/Graphiti: Designed as a production-ready memory layer, Zep utilizes the Graphiti engine to build a dynamic, temporally-aware KG. It
features distinct subgraphs for raw episodic data, derived semantic entities/facts, and higher-level community structures. Its bi-temporal
modeling explicitly tracks both event time and ingestion time, allowing for sophisticated historical queries and accurate representation of
evolving knowledge. Zep emphasizes low latency and scalability for real-world agentic applications.
ODA (Observation-Driven Agent): ODA proposes a cyclical paradigm where the agent actively observes the global KG structure as part
of its reasoning loop. It uses a recursive observation mechanism to manage the potential complexity of large KGs. Observed KG patterns
are then integrated into the action and reflection modules, allowing the agent to synergistically leverage both LLM inference and KG
structural reasoning throughout its task-solving process.
Agentic Reasoning Framework (Mind Map): This framework introduces a specialized "Mind Map" agent whose role is to construct a KG
dynamically from the main reasoning agent's context or thought process. This KG structures the logical relationships emerging during
reasoning, allowing the primary agent (or other tools) to query this "map" to retrieve relevant context, check consistency, or gain insights
into the reasoning trajectory itself.

The explicit modeling of both semantic and episodic memory within a unified KG structure offers significant advantages, particularly for agents
operating in complex, dynamic, or partially observable environments. Human cognition seamlessly blends general knowledge with specific
past experiences to navigate uncertainty and make decisions. Traditional AI systems often struggle to replicate this integration. By
implementing distinct yet interconnected representations for semantic facts and time-bound episodes within the KG , an agent gains the ability
to: (1) interpret current observations using its general understanding of the world (semantic component); (2) recall relevant past events or
interactions that provide context or precedent for the current situation (episodic component); and (3) refine its general knowledge based on
new experiences (linking episodes to semantic updates). This structured approach, enabled by the KG, directly addresses the challenges
posed by Partially Observable Markov Decision Processes (POMDPs) by allowing the agent to maintain and reason over a much richer belief
state, informed by both its accumulated general knowledge and its specific history.

Furthermore, the development and use of temporal KGs represent a critical advancement. Their importance extends beyond simply storing
episodic memories; they empower agents to reason explicitly about change and causality over time. Standard KGs typically capture a static
snapshot of knowledge. However, agentic systems must operate and make decisions within environments that are inherently dynamic.
Temporal KGs, by incorporating mechanisms like timestamping or validity intervals for facts and relationships , enable agents to query the
state of their knowledge base at specific points in the past (e.g., "What relationships held true for entity X yesterday?"). This capability
facilitates reasoning about the evolution of entities and relationships, which is fundamental for understanding ongoing processes, predicting
potential future states, and inferring causal dependencies (e.g., "Did event A precede event B? Could A have caused B?"). This moves the
agent's capabilities beyond simple fact retrieval towards genuine temporal reasoning, a cornerstone of effective planning and action in
environments characterized by continuous change.

Table 1: Comparison of KG-Based Agent Memory Frameworks

Feature AriGraph Zep/Graphiti ODA Agentic Reasoning (Mind Map)

Core
Concept

Memory graph as
world model for LLM
agents in interactive
envs.

Production-focused, dynamic,
temporal memory layer service.

Observation-driven cyclical
integration of KG structure and
LLM reasoning.

KG ("Mind Map") dynamically built
from reasoning context to structure
logic.

KG
Structure

Dynamically
constructed graph
integrating semantic &
episodic info.

Dynamic, temporally-aware KG
with Episodic, Semantic Entity,
and Community subgraphs. Bi-
temporal model.

Assumes existing KG; focuses on
observing/integrating global KG
structure. Recursive observation
for scale.

Dynamically constructed KG
representing reasoning steps,
entities, and relationships.

Memory
Types Semantic & Episodic.

Semantic & Episodic (explicitly
modeled via subgraphs and
temporal tracking). Summaries
(Community subgraph).

Primarily leverages existing KG
structure (semantic/factual)
through observation.

Primarily structures the reasoning
process itself (meta-memory). Can
store facts/entities mentioned
during reasoning.

Update
Mechanism

Agent updates graph
based on
exploration/interaction.

Incremental, real-time updates via
Graphiti engine; handles temporal
validity.

KG assumed external/pre-existing
in examples; focus is on
observing, not agent-driven
updates to the main KG.

Mind Map agent updates KG based
on ongoing reasoning chain from
primary agent.

Retrieval
Method

Associative retrieval
based on relevance to
state/goals.

Hybrid: Graph queries, vector
search (embeddings), keyword
search, graph traversal. Low
latency focus.

"Observation" module retrieves
relevant subgraphs based on
task/entities. Action module can
query KG.

Querying the Mind Map KG using
RAG/standard KG queries.

Key
Strengths

Tailored for interactive
environments;
integrates memory

Production-ready, scalable, low
latency, explicit temporal
reasoning, handles unstructured &

Deep integration of KG structure
into reasoning loop; handles KG

Structures the reasoning process
itself; improves deductive
reasoning; facilitates querying the

50

54

54

24

35

33

33

50
53

50

53

54

1
54

types. structured data. scale via recursion. logic flow.

Limitations
Evaluated mainly in
TextWorld; scalability
less explored.

Newer framework; requires
specific infrastructure (e.g., Neo4j
for Graphiti). Benchmark coverage
still developing.

Assumes access to KG;
effectiveness depends on quality
of observation mechanism and
underlying KG.

Focuses on structuring reasoning,
less on comprehensive world
knowledge or long-term episodic
memory storage.

5. Knowledge Graphs Enabling Agent Action
Beyond serving as memory repositories, KGs play an active role in enabling and guiding agent actions. They provide the structured knowledge
required for planning, decision-making, and interacting effectively with tools and the environment.

5.1. Modeling Actions and Procedures

KGs offer a powerful formalism for representing procedural knowledge – the "how-to" aspect of tasks. This involves modeling elements like:
Tasks and Goals: Representing overall objectives as nodes in the graph.
Plans and Workflows: Modeling sequences of steps or actions required to achieve a goal, often using relationships like precededBy or
hasStep . Frameworks like P-Plan or K-Hub provide ontological structures for this.

Actions: Representing specific actions as nodes or relationships, potentially linked to preconditions, effects, required resources, or agent
capabilities.
Objects and Equipment: Modeling the entities acted upon (direct objects) and the tools or resources needed (equipment) for specific
steps or actions. Ontologies like FRAPO can be used for equipment representation.

LLMs can be employed to extract this procedural knowledge from unstructured text sources like manuals or recipes, identifying steps, actions,
objects, equipment, and temporal information, and structuring it according to a predefined ontology to populate the KG. This transforms
passive textual descriptions into actionable, machine-interpretable representations within the graph. Graphs are naturally suited for describing
processes, mirroring how humans often use diagrams with nodes and arrows to explain complex workflows.

5.2. KG-Driven Planning and Reasoning

Once actions and procedures are modeled, the KG becomes a crucial resource for agent planning and reasoning. Agents can leverage the KG
to:

Identify Possible Actions: Query the graph to determine available actions based on the current state, agent capabilities, or task context.
Check Preconditions and Effects: Verify if the necessary conditions for an action are met (based on the current state represented in the
KG) and predict the likely outcomes.
Formulate Plans: Use graph traversal algorithms (e.g., pathfinding), constraint satisfaction techniques, or more sophisticated AI planning
methods operating over the KG structure to find sequences of actions that lead from the current state to a desired goal state.
Contextualize LLM Planning: Provide structured knowledge from the KG as context to LLMs tasked with generating plans, helping to
ground the LLM's output in factual constraints and available actions.

5.3. Interfacing with Tools and Code Execution

Agentic systems often rely on external tools, APIs, or executable code to perform actions in the real world or digital environments. KGs can
serve as an interface layer or registry for these tools:

Tool Representation: Tools, APIs, or functions can be represented as nodes within the KG.
Parameter and Context Retrieval: The KG can store metadata about tools, such as required parameters, expected inputs/outputs, and
contextual information needed for their execution. Agents can query the KG to find the appropriate tool for a sub-task and retrieve the
necessary information to invoke it correctly.
Action Grounding: The planning process, guided by the KG, can identify not just the conceptual action but the specific tool or code
function needed to realize that action.

5.4. Text-to-Query Translation
To facilitate interaction, particularly for LLM-based agents or human users, mechanisms are needed to translate natural language queries or
commands into formal graph queries executable on the KG. Techniques like Text2Cypher aim to interpret the user's intent and generate the
corresponding Cypher query for graph databases like Neo4j. While powerful, the accuracy of these translation methods is still an active area
of research, as nuances in language and the need for schema-specific details pose challenges. Agentic approaches involving multi-step query
formulation or retries are being explored to improve robustness.

Encoding procedures and actions directly within the Knowledge Graph structure elevates the agent's capabilities beyond simple task
execution. Instead of merely planning a sequence of calls to external, opaque tools, the agent gains the ability to reason about the procedures

30

30 30

30

30 30

30

78

7

8

28

4

28

34

32
32

38
38

30

themselves. When the steps of a workflow, their sequence, the actions involved, their preconditions, and required resources are explicitly
represented as interconnected nodes and edges in the KG , the agent can query this structure introspectively. It can ask questions like: "What
are the alternative sequences of steps to achieve goal G?", "What resources are required for step S?", "Which step in procedure P is the most
time-consuming?", or "How does procedure X differ from procedure Y?". This enables a form of meta-reasoning about workflows. The agent
can compare different approaches, identify potential inefficiencies or bottlenecks, evaluate the feasibility of a procedure given current
resources, or even adapt or modify procedures based on contextual factors. This capability signifies a deeper level of agency, moving from
merely following instructions (even self-generated ones) towards understanding, optimizing, and adapting the processes themselves.

Furthermore, the capacity to establish direct links between KG entities or relationships and executable code segments or external API calls
constructs a vital bridge between declarative knowledge (facts about the world stored in the KG) and procedural knowledge (the mechanisms
for acting in that world). Traditionally, these two forms of knowledge reside in separate realms: the KG holds the 'what', while code or APIs
embody the 'how'. Agents would query the KG to inform their decisions, then invoke separate procedural components. By integrating
representations of actions directly, for example, by having a KG node representing an API endpoint store properties defining its parameters
and linking to the actual function call , this separation dissolves. When the agent's reasoning process identifies the need for a specific action
represented in the KG, it can potentially retrieve not just the factual context but also the executable instructions or interface details directly from
the graph-linked information. This tight coupling makes the KG an active participant in task execution, transforming it from a passive
knowledge repository into an actionable component central to the agent's operational capabilities.

6. Integrating Graph Structures and Code Representations
The synergy between KGs and agentic systems extends to the realm of software development and execution itself. Integrating the structured
knowledge representation of graphs with the executable logic of code is crucial for building agents that can understand, reason about,
generate, and interact with software systems.

6.1. Bridging the Gap: Embeddings
Knowledge Graph Embeddings (KGEs) provide a fundamental bridge between the symbolic nature of KGs and the numerical processing
required by many machine learning models, including those used within agents. KGEs learn low-dimensional vector representations for
entities and relations in the KG, aiming to capture their semantic meaning and preserve the graph's structural properties in the vector space.

Functionality: Embeddings allow for efficient computation of semantic similarity between entities or relations, facilitate tasks like link
prediction (inferring missing relationships), entity classification, and clustering, and provide numerical features for downstream ML tasks
within the agent.
Models: Various KGE models exist, broadly categorized into translational distance models (like TransE, TransH, TransR, which model
relationships as translations in the vector space) and semantic matching models (like RESCAL, DistMult, ComplEx, which use
matrix/tensor factorization or neural networks).
Tools: Libraries like PyKeen, AmpliGraph, OpenKE, and DGL-KE provide implementations of various KGE models and facilitate training
and evaluation.
Limitations and Advancements: While powerful, traditional KGEs often produce static embeddings, potentially limiting their ability to
capture dynamic changes in the KG. Research is exploring dynamic KGEs and novel approaches like embedding KGs in function
spaces, which may offer greater expressiveness and allow operations like composition or differentiation on the representations.

6.2. Codebase Knowledge Graphs
A specific application of KGs relevant to agentic systems involved in software development or interaction is the creation of Codebase
Knowledge Graphs. These KGs model the structure and semantics of software code itself:

Representation: Functions, classes, modules, variables, API endpoints, and other code artifacts are represented as nodes. Relationships
like function calls, class inheritance, module dependencies, data flow, or API usage are represented as edges.
Construction: These KGs can be built by parsing code, analyzing dependencies, and potentially using LLMs to extract higher-level
information, such as generating natural language explanations or summaries of functions, classes, or API endpoints, which are then stored
as node properties or linked entities in the graph.
Application for Agents: Agentic systems designed for code generation, analysis, or debugging can query the codebase KG to gain a
holistic understanding of the existing software. This context helps agents avoid duplicating existing functionality, adhere to established
design patterns and architectural constraints, understand data models (e.g., Pydantic models mentioned in), and generate code that is
consistent with the overall project structure and business logic.

6.3. Agentic Frameworks for Orchestration
Frameworks specifically designed for building agentic applications play a crucial role in managing the complex interactions between different
components, including LLMs, KGs, and executable code/tools.

Components: Frameworks like LangChain , LangGraph , CrewAI , AutoGPT , and others provide abstractions and tools for defining
agent workflows, managing state, integrating tools, and orchestrating the flow of information between the LLM (often acting as the
reasoning engine or planner) and other components.

30

4

31

37
86

86

86

87

90 91
89

76

76

83

83
83

83

7

20 20 19 20

KG Interaction: These frameworks often include modules or integrations for connecting to graph databases (like Neo4j) and querying
KGs as part of the agent's perception or reasoning steps. GraphRAG techniques can be implemented within these frameworks.
Tool/Code Invocation: A key feature is enabling agents to use tools. This can involve defining specific tools (which might wrap code
execution, API calls, or database queries) and allowing the LLM to decide which tool to use and with what parameters. Function calling,
where the LLM generates a structured output (e.g., JSON) specifying a function name and arguments to invoke, is a common mechanism
facilitated by these frameworks and supported by some LLMs.

6.4. Linking Executable Code to KG Elements
Beyond representing code structure within a KG, there is interest in directly linking KG nodes or edges to the actual executable code they
represent. This creates a tighter coupling between knowledge and action:

Representational Strategies:
Storing code snippets or function identifiers as properties of nodes representing functions or APIs.
Using specific relationship types (edges) to explicitly link a conceptual entity (e.g., "User Authentication Service") to its implementation
(e.g., a specific microservice endpoint or function).
Employing meta-layer KGs that store links (edges) between nodes in different KGs or between KG nodes and elements in external
systems like code repositories.

Benefits: This direct linking allows an agent, upon identifying a relevant KG entity during reasoning, to immediately access the associated
executable component or interface details, streamlining the transition from planning to action.

The potential exists to create a unified representational space where both the structured, symbolic knowledge from KGs and the semantic
nuances of code can coexist and interact. Knowledge Graph Embeddings (KGEs) transform KG components into vectors, while analogous
techniques exist for code (e.g., using models like CodeBERT or GraphCodeBERT) to generate code embeddings. If these distinct embedding
spaces can be effectively aligned, perhaps through joint training objectives or mapping functions, it could unlock novel reasoning capabilities
for agents. An agent operating in such a unified vector space could seamlessly transition between symbolic concepts and their code
implementations. For instance, it could identify a KG node representing a specific algorithm (e.g., Dijkstra's algorithm) and then, based on
vector proximity in the shared space, locate the corresponding function implementation in a codebase, or vice versa. This bridging of symbolic
(KG) and sub-symbolic (embedding) representations for both abstract knowledge and concrete code could enable agents to perform more
powerful, flexible tasks that require understanding the deep connections between concepts and their realization in software.

The emergence of Codebase Knowledge Graphs , specifically designed to support agentic code generation, signals a potential transformation
in software development itself. Current AI-driven code generation often operates on isolated code snippets or files, lacking awareness of the
broader system context, which can lead to inconsistencies or redundancy. By providing a holistic, structured view of the entire codebase—
including dependencies, architectural patterns, and functional relationships—these KGs equip agents with the necessary context to generate
code that is not only functionally correct but also well-integrated and consistent with the existing system. This suggests a future where AI
agents function less like simple code completion tools and more like collaborative "team members." The Codebase KG serves as the shared,
structured understanding—a common ground or "map"—of the evolving software system, facilitating a more sophisticated human-agent
collaboration model for building complex, maintainable software. Both human developers and AI agents could leverage this shared map to
reason about the system, plan modifications, and ensure consistency.

Table 2: Agentic Frameworks Integrating KGs and Tools/Code

Feature LangChain LangGraph CrewAI
Agentic
Reasoning
Framework

ODA Zep/Graphiti

Core
Orchestration
Logic

Chains/Agents
based on LLM
reasoning;
sequential or
tool-driven
execution.

Builds stateful,
multi-agent
applications as
graphs; nodes
are
functions/LLMs,
edges control
flow.

Role-based multi-
agent collaboration;
defines agents with
goals, backstories,
tools; orchestrates
task execution among
agents.

LLM reasoning
enhanced by
dynamically
calling external
tool-agents
(Web Search,
Code, Mind
Map KG) based
on reasoning
needs.

Cyclical Observation-
Action-Reflection loop;
agent actively
observes KG structure
to guide reasoning and
action.

Focuses on the
memory layer;
provides KG
infrastructure for other
agent frameworks to
build upon.

KG
Integration
Method

Integrations for
various graph
databases
(Neo4j, etc.);
used via RAG,
direct query
tools.

Nodes can
query KGs; state
can hold graph
data; facilitates
complex
GraphRAG
workflows.

Agents can be
equipped with tools
that query KGs (e.g.,
via LangChain
integrations).

Dedicated
"Mind Map"
agent
builds/queries a
KG
representing
the reasoning
context. Can
potentially
query external
KGs via tools.

Core mechanism
involves "Observation"
module
querying/analyzing the
KG structure.

Provides a dynamic,
temporal KG as the
primary memory store;
accessed via retrieval
API combining graph
queries, vector search,
etc.

31
20

82

31

92

86

76

83

83

Tool/Code
Invocation

Defines
"Tools"
wrapping
functions/APIs;
LLM
selects/calls
tools (often via
function
calling).

Nodes represent
tools or LLM
calls; edges
determine
transitions
based on
state/outputs.
Supports
function calling.

Agents assigned
specific tools (can
include code
execution, API calls);
orchestration layer
manages tool use
based on roles/tasks.

Reasoning LLM
triggers
specialized
tokens to call
external agents
(web search,
coding, Mind
Map) which
execute tasks.

"Action" module
executes tasks based
on
reasoning+observation;
can include KG
exploration, path
discovery, or
answering. Tool use
less explicitly detailed
vs. other frameworks.

Primarily a memory
system; assumes an
overlying agent
framework handles
tool/code execution,
using Zep for
context/memory
retrieval to inform
those actions.

Key Use
Cases

General agent
development,
RAG,
chatbots, task
automation.

Complex,
cyclical agentic
workflows, multi-
agent systems,
long-running
processes,
GraphRAG.

Collaborative task
execution, complex
problem
decomposition,
simulating
organizational
structures.

Deep research,
complex
scientific
reasoning,
knowledge-
intensive QA,
structured
problem-
solving.

KG-centric QA,
complex reasoning
over graph structures,
tasks requiring deep
KG integration.

Providing long-term,
dynamic, context-
aware memory for any
type of LLM agent
(chatbots, assistants,
autonomous systems).

Strengths
(KG-Code
Synergy)

Flexible tool
definition, wide
range of KG
integrations.

Explicit state
management,
robust handling
of
cycles/branches,
good for
complex KG
interactions.

Clear role definition
and task delegation
facilitates integrating
specialized KG/code
tools.

Tightly
integrates
reasoning
context (as KG)
with tool use
(code, search);
structures the
reasoning
process itself.

Deepest integration of
KG structure into the
core reasoning loop via
observation.

Strong foundation for
KG memory; temporal
awareness crucial for
dynamic context; low-
latency retrieval
supports real-time
interaction informed by
KG + code execution
results.

Weaknesses
(KG-Code
Synergy)

Can become
complex to
manage
state/flow for
intricate KG-
dependent
workflows.

Steeper learning
curve than
simpler
chain/agent
models.

Orchestration logic
might be less flexible
for highly
dynamic/unpredictable
KG-driven tool
sequences compared
to LangGraph.

Mind Map KG
focuses on
reasoning
context, may
need separate
mechanism for
broader
world/codebase
knowledge.

Less focus on
defining/orchestrating
external tools
compared to
LangChain/LangGraph.
Assumes KG exists.

Is primarily the
memory component;
requires integration
with an
execution/orchestration
framework like
LangChain/LangGraph
to fully bridge KG
memory and code
action.

7. Challenges and Future Directions
Despite the significant potential of integrating KGs into agentic AI systems, several challenges remain, alongside promising avenues for future
research and development.

Scalability: As KGs grow to encompass vast amounts of enterprise or web-scale data, ensuring efficient storage, querying, reasoning,
and embedding generation becomes a major hurdle. Handling dynamic updates and maintaining performance in real-time agentic loops
with potentially billions of nodes and edges requires optimized graph databases, distributed architectures, and scalable algorithms.
Reasoning Depth and Complexity: Current KG reasoning within agents often relies on pathfinding or simple rule-based inference.
Achieving deeper logical, causal, analogical, or probabilistic reasoning capabilities, especially in combination with LLM inference, remains
a significant challenge. Developing hybrid neuro-symbolic approaches that effectively combine the strengths of KGs (explicit structure,
formal logic) and neural models (pattern recognition, generalization) is a key research direction.
Dynamic Updates and Consistency: Agents operating in dynamic environments continuously update their KG memory. Ensuring the
consistency, accuracy, and timeliness of this evolving knowledge base is critical. Mechanisms are needed for conflict resolution, belief
revision, and managing the provenance and temporal validity of information added by the agent itself or external sources. The long-term
evolution and preservation of these dynamic KGs also pose challenges.
Integration Complexity: Building robust agentic systems requires seamless integration of diverse components: LLMs, KGs, vector
databases, APIs, sensors, actuators, and potentially legacy enterprise systems. Defining standardized interfaces and developing effective
orchestration strategies for these heterogeneous components is complex.
Explainability and Trust: While KGs offer more inherent transparency than purely neural models, ensuring that the combined reasoning
process of an LLM interacting with a KG remains explainable and trustworthy is crucial, especially for high-stakes decisions. Methods are
needed to trace and justify agent actions derived from this hybrid reasoning.
Ethical Considerations and Governance: Biases present in the data used to construct KGs or train LLMs can propagate into agent
behavior. The autonomy of agents raises concerns about accountability, control, and potential misuse. Developing robust ethical

12
25

10
19

15
96

96

19

28

48
19

guidelines, governance frameworks, and evaluation methods for agentic AI is essential. Fairness, privacy, and robustness are critical
considerations.

The challenge of maintaining the integrity and validity of the KG is significantly heightened in agentic systems where the KG serves as dynamic
memory, updated autonomously by the agent itself. In traditional KG pipelines, validation often occurs during curated construction or batch
updates. However, when an agent modifies its own KG memory based on real-time perceptions or potentially flawed LLM inferences , there is
a substantial risk of introducing errors, inconsistencies, or even propagating hallucinations into the core knowledge base. This corrupted
memory can then poison subsequent reasoning cycles, leading to incorrect decisions and actions. Therefore, future advancements must focus
not only on enabling dynamic KG updates but also on developing robust, real-time validation mechanisms operating within the agentic loop.
Potential approaches could include automated self-consistency checks against ontological constraints, assigning confidence scores to agent-
derived facts, leveraging external knowledge sources for verification, or even employing dedicated "validator" agents within a multi-agent
system architecture to monitor and correct the shared knowledge graph. Ensuring the veracity of the agent's own evolving world model is
paramount for reliable autonomy.

Furthermore, the deep integration of KGs (structured knowledge), LLMs (natural language processing and generative reasoning), and code
execution (procedural action) within agentic systems necessitates a shift towards a co-design methodology. Building these sophisticated
systems is not merely a matter of connecting pre-existing components; the design choices in one layer profoundly impact the others. The
specific schema and ontology used for the KG influence the types of reasoning that are feasible and efficient. The choice of LLM impacts its
ability to interpret KG information, generate valid queries, or plan effectively based on graph context. The set of available tools and APIs
defines the agent's action space and constrains its capabilities. Optimizing the overall agent requires a holistic perspective that considers
these interdependencies. For example, designing a KG schema that naturally aligns with the parameters of available APIs , or selecting an
LLM architecture specifically trained or fine-tuned for interacting with graph structures , are co-design challenges. Successfully navigating this
complexity requires interdisciplinary teams and expertise spanning knowledge representation, machine learning, and software engineering,
fostering a collaborative approach to system architecture and development.

Future directions in this field include:
Hybrid AI Systems: Continued development of architectures that synergistically combine symbolic reasoning (KGs) and sub-symbolic
learning (LLMs, embeddings).
Automated KG Construction and Evolution: Improving methods for automatically building, refining, and updating KGs from diverse data
sources, potentially using agents themselves for curation.
Real-time Knowledge Updating: Enhancing the ability of KGs and agent memory systems to reflect changes in the environment with
minimal latency.
Industry-Specific KGs and Agents: Development of tailored KGs and agentic solutions optimized for specific domains like healthcare,
finance, or manufacturing.
Advanced GraphRAG and Memory: Innovations in retrieving and utilizing graph-based knowledge for RAG, and more sophisticated
agent memory architectures incorporating temporal reasoning, uncertainty management, and hierarchical abstraction.

8. Conclusion
Knowledge Graphs are rapidly transitioning from static data representations to become dynamic, actionable foundations for the next generation
of agentic AI systems. Their unique ability to represent structured knowledge with explicit semantics makes them invaluable for addressing the
inherent limitations of purely LLM-based approaches, particularly concerning grounding, consistency, and explainability.

This report has detailed how KGs serve a dual role within agentic architectures. Firstly, they function as sophisticated memory systems,
capable of storing and organizing both general semantic knowledge and specific, time-bound episodic experiences. Frameworks like AriGraph,
Zep/Graphiti, and ODA demonstrate diverse strategies for leveraging KGs to provide agents with persistent, context-aware, and dynamically
updatable memory, moving beyond the constraints of LLM context windows and simple RAG. Secondly, KGs actively enable and guide agent
action. By modeling procedures, workflows, and capabilities within the graph structure, KGs provide the basis for planning, reasoning, and
decision-making. They serve as a crucial bridge connecting perception and reasoning to concrete actions, often involving interaction with
external tools and APIs.

Furthermore, the convergence of graph structures and code representations, exemplified by codebase KGs and agentic orchestration
frameworks, highlights a path towards agents that can deeply understand and interact with software systems. Techniques like knowledge
graph embeddings and function calling facilitate a tighter integration between declarative knowledge stored in the graph and the procedural
logic embedded in code. This integration is fundamental for building agents capable of complex tasks ranging from automated software
development to sophisticated process automation.

While significant challenges related to scalability, reasoning depth, dynamic consistency, integration complexity, and trustworthiness remain,
the synergistic potential of combining KGs with agentic AI principles is undeniable. The ongoing research into temporal KGs, hybrid neuro-
symbolic reasoning, automated KG maintenance, and robust agentic frameworks promises to yield AI systems that are not only more
autonomous and capable but also more grounded, adaptable, and explainable. The continued exploration of this intersection represents a
critical frontier in the pursuit of truly intelligent artificial agents.

95

21
21

9 77
4

28
31

32

97

29

21

21

29

29

