

Heating and Cooling with a Heat Pump

Air-source heat pumps draw heat from the outside air during the heating season and reject heat outside during the summer cooling season.

There are two types of air-source heat pumps. The most common is the air-to-air heat pump. It extracts heat from the air and then transfers heat to either the inside or outside of your home depending on the season.

In recent years, ductless mini-split heat pumps have been introduced to the Canadian market and have become very popular – particularly in Atlantic Canada. They are ideal for retrofit in homes with electric resistance baseboard heating or as supplemental heating in certain Off-Grid applications. They are wall-mounted, free-air delivery units that can be installed in individual rooms of a house. Up to eight separate indoor wall-mounted units can be served by one outdoor section.

Air-source heat pumps can be add-on, all-electric or bivalent. Add-on heat pumps are designed to be used with another source of supplementary heat, such as an oil, gas or electric furnace. All-electric air-source heat pumps come equipped with their own supplementary heating system in the form of electric-resistance heaters. Bivalent heat pumps are a special type, developed in Canada, that use a gas or propane fired burner to increase the temperature of the air entering the outdoor coil. This allows these units to operate at lower outdoor temperatures.

Air-source heat pumps have also been used in some home ventilation systems to recover heat from outgoing stale air and transfer it to incoming fresh air or to domestic hot water.

How Does an Air-Source Heat Pump Work?

An air-source heat pump has three cycles: the heating cycle, the cooling cycle and the defrost cycle.

The Heating Cycle

During the heating cycle, heat is taken from outdoor air and "pumped" indoors.

- First, the liquid refrigerant passes through the expansion device, changing to a lowpressure liquid/vapour mixture. It then goes to the outdoor coil, which acts as the evaporator coil. The liquid refrigerant absorbs heat from the outdoor air and boils, becoming a low-temperature vapour.
- This vapour passes through the reversing valve to the accumulator, which collects any remaining liquid before the vapour enters the compressor. The vapour is then compressed, reducing its volume and causing it to heat up.
- Finally, the reversing valve sends the gas, which is now hot, to the indoor coil, which is the condenser. The heat from the hot gas is transferred to the indoor air, causing the refrigerant to condense into a liquid. This liquid returns to the expansion device and the cycle is repeated. The indoor coil is located in the ductwork, close to the furnace.

The ability of the heat pump to transfer heat from the outside air to the house depends on the outdoor temperature. As this temperature drops, the ability of the heat pump to absorb heat also drops.

At the outdoor ambient balance point temperature, the heat pump's heating capacity is equal to the heat loss of the house. Of course this is a function of the house design and degree of insulation, etc

Below this outdoor ambient temperature, the heat pump can supply only part of the heat required to keep the living space comfortable, and supplementary heat is required. On the west coast, this is typically a wood stove or a wall mounted propane heater or electric heat if available

When the heat pump is operating in the heating mode without any supplementary heat, the air leaving it will be cooler than air heated by a normal furnace. Furnaces generally deliver air to the living space at between 55°C and 60°C. Heat pumps provide air in larger quantities at about 25° C to 45° C and tend to operate for longer periods.

The Cooling Cycle

The cycle described above is reversed to cool the house during the summer. The unit takes heat out of the indoor air and rejects it outside.

- As in the heating cycle, the liquid refrigerant passes through the expansion device, changing to a low-pressure liquid/vapour mixture. It then goes to the indoor coil, which acts as the evaporator. The liquid refrigerant absorbs heat from the indoor air and boils, becoming a low-temperature vapour.
- This vapour passes through the reversing valve to the accumulator, which collects any remaining liquid, and then to the compressor. The vapour is then compressed, reducing its volume and causing it to heat up.
- Finally, the gas, which is now hot, passes through the reversing valve to the outdoor coil, which acts as the condenser. The heat from the hot gas is transferred to the outdoor air, causing the refrigerant to condense into a liquid. This liquid returns to the expansion device, and the cycle is repeated.

During the cooling cycle, the heat pump also dehumidifies the indoor air. Moisture in the air passing over the indoor coil condenses on the coil's surface and is collected in a pan at the bottom of the coil. A condensate drain empties this thru a tube directly outside.

The Defrost Cycle

If the outdoor temperature falls to near or below freezing when the heat pump is operating in the heating mode, moisture in the air passing over the outside coil will condense and freeze on it. The amount of frost buildup depends on the outdoor temperature and the amount of moisture in the air.

This frost buildup decreases the efficiency of the coil by reducing its ability to transfer heat to the refrigerant. At some point, the frost must be removed. To do this, the heat pump will switch into the defrost mode.

- First, the reversing valve switches the device to the cooling mode. This sends hot gas to the outdoor coil to melt the frost. At the same time the outdoor fan, which normally blows cold air over the coil, is shut off in order to reduce the amount of heat needed to melt the frost.
- While this is happening, the heat pump is cooling the air in the ductwork. The heating system would normally warm this air as it is distributed throughout the house.

One of two methods is used to determine when the unit goes into defrost mode. Demand-frost controls monitor airflow, refrigerant pressure, air or coil temperature and pressure differential across the outdoor coil to detect frost accumulation on the outdoor coil.

Time-temperature defrost is started and ended by a preset interval timer or a temperature sensor located on the outside coil. The cycle can be initiated every 30, 60 or 90 minutes, depending on the climate and the design of the system.

Unnecessary defrost cycles reduce the seasonal performance of the heat pump. As a result, the demand-frost method is generally more efficient since it starts the defrost cycle only when it is required.

Parts of the System

In addition to the indoor and outdoor coils, the reversing valve, the expansion device, the compressor, and the piping, the system has fans that blow air over the coils and a supplementary heat source. The compressor can be located indoors or outdoors.

Energy Efficiency Considerations

The annual cooling efficiency (SEER) and heating efficiency (HSPF) of an air-source heat pump are affected by the manufacturer's choice of features. The SEER of air-source heat pumps currently range from a minimum of 14 to a maximum of about 25. The HSPF for the same units ranged from a minimum of 7 to a maximum of 11.2

Over the past 10 years in Canada, the maximum SEER ratings have increased by over 100%. More efficient compressors, larger heat exchanger surfaces, improved refrigerant flow and other controls are largely responsible for these gains. New developments in compressors, motors and controls will push the limits of efficiency even higher.

Air-source heat pumps at the lower end of the efficiency range are characterized as having single-speed reciprocating compressors. Higher efficiency units generally incorporate scroll or advanced reciprocating compressors, with no other apparent design differences. Heat pumps with the highest SEERs and HSPFs invariably use variable- or two-speed scroll compressors.

Other Selection Considerations

Select a unit with as high an HSPF as practical. For units with comparable HSPF ratings, check their steady-state ratings at -8.3° C, the low temperature rating. The unit with the higher value will be the most efficient one in most regions of Canada.

Select a unit with demand-defrost control. This minimizes defrost cycles (system reversals are hard on the machine), which reduces supplementary and heat pump energy use.

The sound rating is a tone-corrected, A-weighted sound power level, expressed in bels. Select a heat pump with an outdoor sound rating in the vicinity of 7.6 bels or lower if possible. The sound rating is an indicator of the sound power level of the heat pump outdoor unit. The lower the value, the lower the sound power emitted by the outdoor unit. These ratings are available from the manufacturer and are published by the Air-Conditioning and Refrigeration Institute (ARI), 4301 North Fairfax Drive, Arlington, Virginia 22203, U.S.A.

Sizing Considerations

Heating and cooling loads should be determined by using a recognized sizing method such as CSA F280-M90, "Determining the Required Capacity of Residential Space Heating and Cooling Appliances."

While a heat pump can be sized to provide most of the heat required by a house, this is not generally a good idea and not possible in most off-grid situations. In Canada, heating loads are larger than cooling loads. If the heat pump is sized to match the heating load, it will be too large for the cooling requirement, and will operate only intermittently in the cooling mode. This may reduce performance and the unit's ability to provide dehumidification in the summer.

Also, as the outdoor air temperature drops, so does the efficiency of an air-source heat pump. Consequently, it doesn't make economic sense to try to meet all your winter heating needs with an air-source heat pump.

Installation Considerations

In installing any kind of heat pump, it is most important that the contractor follow manufacturers' instructions carefully. The following are general guidelines that should be taken into consideration when installing an air-source heat pump:

- The outdoor unit should be protected from high winds, which may reduce efficiency by causing defrost problems. At the same time, it should be placed in the open so that outdoor air is not recirculated through the coil.
- To prevent snow from blocking airflow over the coil and to permit defrost water drainage, the unit should be placed on a stand that raises it 30 to 60 cm (12 to 24 in.) above the ground. The stand should be anchored to a concrete pad, which in turn should sit on a bed of gravel to enhance drainage. Alternatively, the unit might be mounted from the wall of the house on a suitably constructed frame.
- It is advisable to locate the heat pump outside the drip-line of the house (the area where water drips off the roof) to prevent ice and water from falling on it, which could reduce airflow or cause fan or motor damage.
- The pan under the inside coil must be connected to the house's interior floor drain or directly outside, to ensure that the condensate that forms on the coil drains properly.
- The heat pump should be placed so that a service person has enough room to work on the unit.
- Refrigerant lines should be as short and straight as possible. It is good practice to insulate the lines to minimize unwanted heat loss and to prevent condensation.
- Fans and compressors make noise. Locate the outdoor unit away from windows and adjacent buildings. Some units make additional noise when they vibrate. You can reduce this by selecting quiet equipment or by mounting the unit on a noise-absorbing base.

The cost of installing an air-source heat pump varies depending on the type of system and the existing heating equipment.

Operation Considerations

The indoor thermostat should be set at the desired comfort temperature (20°C is recommended) and not readjusted.

Continuous indoor fan operation can reduce the overall efficiency achieved by a heat pump system, unless a high-efficiency variable-speed fan motor is used. Operate this system with the "auto" fan setting on the thermostat.

Heat pumps have longer operation times than conventional furnaces because their heating capacity is considerably lower.

Major Benefits of Air-Source Heat Pumps

Efficiency

At 10°C, the coefficient of performance (COP) of air-source heat pumps is typically about 3.3. This means that 3.3 kilowatt hours (kWh) of heat are transferred for every kWh of electricity supplied to the heat pump. At -8.3°C, the COP is typically 2.3.

The COP decreases with temperature because it is more difficult to extract heat from cooler air.

Energy Savings

You may be able to reduce your heating costs by up to 65 percent if you convert from electric baseboard heating to an all-electric air-source heat pump. Your actual savings will vary, depending on factors such as local climate, the efficiency of your current heating system, the cost of fuel and electricity, and the size and HSPF of the heat pump installed. For off-grid applications, the practical heating alternatives are wood stoves or propane furnaces. Operating costs on a BTU basis using a small gasoline powered generator to supply power (in the worst case absence of any Solar Charging contribution) are similar to propane. Of course, neither electric nor propane heaters can provide air conditioning in summer months.

More advanced designs of air-source heat pumps can provide domestic water heating. Such systems are called "integrated" units because heating of domestic water has been integrated with a house space-conditioning system. Water heating can be provided with high efficiency in this way.

Maintenance

Proper maintenance is critical to ensure that your heat pump operates efficiently and has a long service life. You can do some of the simple maintenance yourself, but you may also want to have a competent service contractor do an annual inspection of your unit. The best time to service your unit is at the end of the cooling season, prior to the start of the next heating season.

• Filter and coil maintenance has a dramatic impact on system performance and service life. Dirty filters, coils and fans reduce airflow through the system. This reduces system performance, and can lead to compressor damage if it continues for extended periods of time.

Filters should be inspected monthly and cleaned or replaced as required by the manufacturer's instructions. The coils should be vacuumed or brushed clean at regular intervals as indicated in the manufacturer's instruction booklet. The outdoor coil may be cleaned using a garden hose. While cleaning filters and coils, look for symptoms of other potential problems such as those described on the following page.

• The fan should be cleaned but the fan motor should only be lubricated if the manufacturer instructions specify this. This should be done annually to ensure that the fan provides the airflow required for proper operation. The fan speed should be checked at the same time. Incorrect pulley settings, loose fan belts, or incorrect motor speeds in the case of direct drive fans can all contribute to poor performance.

Operating Costs

The energy costs of a heat pump can be lower than those of other heating systems, particularly electric or oil heating systems if available.

However, the relative savings will depend on whether you are currently using electricity, oil, propane or natural gas, and on the relative costs of different energy sources in your area. By running a heat pump, you will use less gas or oil, but more electricity. If you live in an area where electricity is expensive, your operating costs may be higher. Depending on these factors, the payback period for investment in an air-source heat pump could be anywhere from two to seven years. With multiple provincial and utility subsidies available along the Sunshine Coast, payout could be reduced to just 1-2 years for the most basic system.

Over the past several years, home insurance rates have increased noticeably with renewed concerns about wood stoves / fireplaces as a home's primary heat source. The addition of a Heat Pump as a primary heat source with existing wood heating as a backup will often have a significant positive impact on premiums.

Life Expectancy and Warranties

Air-source heat pumps have a service life of between 15 and 20 years. The compressor is the critical component of the system.

Most heat pumps are covered by a one-year warranty on parts and labour, and an additional fiveto ten-year warranty on the compressor (for parts only). However, warranties vary between manufacturers, so check the fine print.