Chapter 1

(RELATIONSAND FUNCTIONS)

«*There is no permanent place in the world for ugly mathematics ... . It may
be very hard to define mathematical beauty but that is just as true of
beauty of any kind, we may not know quite what we mean by a
beautiful poem, but that does not prevent us from recognising
one when we read it. — G. H. HARDY «*

1.1 Introduction

Recall that the notion of relations and functions, domain, P A SRy
co-domain and range have been introduced in Class XI| '
aongwith different types of specific real valued functions
and their graphs. The concept of the term ‘relation’ in
mathematics has been drawn from the meaning of relation
in English language, according to which two objects or
quantitiesarerelated if thereisarecognisable connection
or link between the two objects or quantities. Let A be
the set of students of Class XII of aschool and B be the
set of studentsof Class X| of the same school. Then some
of the examples of relations from A to B are ey e
() {(a, b) € A xB: aisbrother of b}, Lejeune Dirichlet
(i) {(a, b) e AxB:aissister of b}, (1805-1859)
@) {(a, b) e A xB: ageof aisgreater than age of b},
(iv) {(a, b) € A x B:total marks obtained by ain the final examination islessthan
thetotal marks obtained by bin thefinal examination},
(v) {(a, b) e AxB:alivesinthesamelocality asb}. However, abstracting from
this, we define mathematically arelation R from A to B as an arbitrary subset
of A x B.
If (&, b) € R, we say that a isrelated to b under the relation R and we write as
a R b. In general, (a, b) € R, we do not bother whether there is a recognisable
connection or link between a and b. Asseenin Class X1, functions are special kind of
relations.
Inthischapter, wewill study different types of relationsand functions, composition
of functions, invertiblefunctionsand binary operations.
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1.2 Typesof Relations

In this section, we would like to study different types of relations. We know that a
relation in aset A isasubset of A x A. Thus, the empty set ¢ and A x A are two
extremerelations. For illustration, consider arelation Rintheset A ={1, 2, 3,4} given by
R={(a, b): a—b=10}. Thisisthe empty set, asno pair (a, b) satisfies the condition
a—b=10. Similarly, R"={(a, b) : |a—b | >0} isthewhole set A x A, as all pairs
(& b) in A x A satisfy | a — b | > 0. These two extreme examples lead us to the
following definitions.
Definition 1 A relation R in a set A is called empty relation, if no element of A is
related to any element of A, i.e, R=¢0 c A xA.
Definition 2 Arelation Rinaset A iscalled universal relation, if each element of A
isrelated to every element of A, i.e, R=A X A.

Both the empty relation and the universal relation are some times called trivial
relations.

Example 1 Let A be the set of al students of a boys school. Show that the relation R
inA givenby R={(a, b) : aissister of b} isthe empty relationand R ={(a, b) : the
difference between heights of a and b isless than 3 meters} isthe universal relation.

Solution Since the school isboys school, no student of the school can be sister of any
student of the school. Hence, R = ¢, showing that R is the empty relation. It is also
obviousthat the difference between heights of any two students of the school hasto be
less than 3 meters. This showsthat R” = A x A isthe universal relation.

Remark In Class XI, we have seen two ways of representing a relation, namely
roaster method and set builder method. However, arelation R in the set {1, 2, 3, 4}
defined by R = {(a, b) : b =a + 1} is also expressed as a R b if and only if
b =a+ 1 by many authors. We may a so use this notation, as and when convenient.

If (&, b) € R, we say that aisrelated to b and we denoteit asa R b.

One of the most important relation, which playsasignificant rolein Mathematics,
is an equivalence relation. To study equivalence relation, we first consider three
types of relations, namely reflexive, symmetric and transitive.

Definition 3A relation Rinaset Aiscalled
(i) reflexive, if (a, @) € R, for every ae A,
(i) symmetric, if (a, &) € Rimpliesthat (a, a)) € R, foral a, a, e A.
(i) transtive, if (a,, a) € Rand (a, a,)e Rimpliesthat (a,, a,)e R, fordl a;, a,
a, € A.
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Definition 4 A relation R in a set A is said to be an equivalence relation if R is
reflexive, symmetric and transitive.

Example 2 Let T bethe set of all trianglesin aplane with R arelation in T given by
R={(T, T): T iscongruentto T,}. Show that R is an equivalence relation.

Solution R is reflexive, since every triangle is congruent to itself. Further,
(T, T,)e R=T, iscongruentto T,= T,iscongruentto T, = (T,, T,) € R. Hence,
R is symmetric. Moreover, (T, T,), (T,, T,) € R=T, is congruentto T, and T, is
congruentto T, = T, iscongruentto T, = (T,, T,) € R. Therefore, Risan equivalence
relation.

Example 3 Let L betheset of al linesinaplaneand R betherelation in L defined as
R={(L, L) : L, isperpendicular to L,}. Show that R is symmetric but neither
reflexive nor transitive.

Solution Risnot reflexive, asaline L, can not be perpendicular to itself, i.e., (L, L,)

¢ R Rissymmetricas (L, L)) e R L

= L, isperpendicularto L,

= L, isperpendicular to L, L,

= (LyL)eR L
Risnot transitive. Indeed, if L, is perpendicular to L, and Fig1.1

L, isperpendicular to L, then L, can never be perpendicular to
L. Infact, L ispardleltolLie,(L,L)e R, (L,L)e Rbut(L,L)¢e R

Example 4 Show that the relation R inthe set {1, 2, 3} givenby R={(1, 1), (2, 2),
(3,3), (1, 2), (2, 3)} isreflexive but neither symmetric nor transitive.
Solution Risreflexive, since (1, 1), (2, 2) and (3, 3) liein R. Also, Risnot symmetric,

as(1,2)e Rbut (2, 1) ¢ R. Similarly, Risnot transitive, as(1,2) e Rand (2,3) e R
but (1, 3) ¢ R.

Example 5 Show that the relation R in the set Z of integers given by
R={(a, b): 2dividesa—b}
isan equivalencerelation.

Solution Risreflexive, as 2 divides (a—a) for al ae Z. Further, if (a, b) € R, then
2 dividesa—b. Therefore, 2 dividesb —a. Hence, (b, @) € R, which showsthat R is
symmetric. Similarly, if (a, b) e Rand (b, ) € R, thena—b and b —c are divisible by
2.Now, a—c=(a—b) + (b-c) iseven (Why?). So, (a—c) isdivisible by 2. This
showsthat R istransitive. Thus, R isan equivalencerelationin Z.
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In Example 5, note that all even integers are related to zero, as (0,  2), (0, + 4)
etc., liein R and no odd integer isrelated to 0, as (0, + 1), (0, £ 3) etc., donot liein R.
Similarly, all odd integers are related to one and no even integer is related to one.
Therefore, the set E of al evenintegers and the set O of all odd integers are subsets of
Z satisfying following conditions:

(i) All elements of E are related to each other and all elements of O are related to
each other.
(i) No element of E isrelated to any element of O and vice-versa.
(i) EandOaredigointandZ =Eu O.

The subset E is called the equivalence class containing zero and is denoted by
[O]. Similarly, O isthe equiva ence class containing 1 and is denoted by [1]. Note that
[0] #[1],[0] =[2r] and [1] =[2r + 1], r € Z. Infact, what we have seen aboveistrue
for an arbitrary equivalence relation R in a set X. Given an arbitrary equivalence
relation R in an arbitrary set X, R divides X into mutually disjoint subsets A, called
partitionsor subdivisions of X satisfying:

(i) all elementsof A arerelated to each other, for al i.
(i) no element of A isrelated to any element of A, i #].
(i) WA =XandA NA=0,i#].

The subsetsA, are called equivalence classes. The interesting part of the situation
isthat we can go reverse also. For example, consider a subdivision of the set Z given
by three mutually disjoint subsetsA_ , A, and A, whose unionisZ with

A ={xe Z:xisamultipleof 3} ={...,-6,-3,0,3,6, ...}
AZZ{XE Z:x—1isamultipleof 3} ={...,—5,-2,1,4,7, ...}
A,={xe Z:x-2isamultipleof 3} ={...,-4,-1,2,5,8, ...}

Define arelation Rin Z given by R = {(a, b) : 3 divides a — b}. Following the
arguments similar to those used in Example 5, we can show that R is an equivalence
relation. Also, A, coincideswith the set of all integersinZ which arerelated to zero, A,
coincides with the set of all integers which are related to 1 and A, coincides with the
set of all integersin Z which are related to 2. Thus, A, = [0], A, = [1] and A, = [2].
Infact, A, =[3r], A,=[3r+1] andA,=[3r + 2], fordlre Z.

Example 6 Let R be the relation defined in the set A = {1, 2, 3, 4, 5, 6, 7} by
R = {(a, b) : both a and b are either odd or even}. Show that R is an equivalence
relation. Further, show that all the elementsof thesubset {1, 3,5, 7} arerelated to each
other and all the elements of the subset {2, 4, 6} are related to each other, but no
element of the subset {1, 3, 5, 7} isrelated to any element of the subset {2, 4, 6}.



RELATIONS AND FUNCTIONS 5

Solution Given any element a in A, both a and a must be either odd or even, so
that (a, a) € R. Further, (a, b) € R = both a and b must be either odd or even
= (b, a) e R. Similarly, (a, b) € Rand (b, c) € R = dl elements a, b, ¢, must be
either even or odd simultaneously = (a, ¢) € R. Hence, R is an equivalence relation.
Further, all the elements of {1, 3, 5, 7} are related to each other, as all the elements
of this subset are odd. Similarly, all the elements of the subset { 2, 4, 6} arerelated to
each other, as all of them are even. Also, no element of the subset {1, 3, 5, 7} can be
related to any element of {2, 4, 6}, aselementsof {1, 3, 5, 7} are odd, while elements
of {2, 4, 6} are even.

|EXERCISE 1.1|
1. Determinewhether each of thefollowing relations are reflexive, symmetric and
trangtive:
() RelationRinthesetA={1, 2,3, ..., 13, 14} defined as
R={(xy):3x-y=0}
(i) Relation Rintheset N of natural numbers defined as
R={(x,y):y=x+5andx <4}
(i) RelationRinthesetA={1,2,3,4,5,6} as
R={(xy):yisdivisible by x}
(iv) RelationRintheset Z of all integers defined as
R={(x,y) : x—yisaninteger}
(v) ReéationRinthesetA of human beingsinatown at aparticular timegiven by
(@ R={(x,y) : xandywork at the same place}
(b) R={(xy):xandy liveinthe samelocality}
(©) R={(xy) : xisexactly 7 cmtaler than y}
(d) R={(x,y): xiswifeof y}
(e) R={(x,y) : xisfather of y}
2. Show that the relation R in the set R of real numbers, defined as
R ={(a, b) : a<b? isneither reflexive nor symmetric nor transitive.
3. Check whether therelation R defined inthe set {1, 2, 3, 4, 5, 6} as
R={(a b): b= a+ 1} isreflexive, symmetric or transitive.
Show that the relation R in R defined as R = {(a, b) : a < b}, isreflexive and
transitive but not symmetric.

5. Check whether therelation R in Rdefined by R={(a, b) : a< b3} isreflexive,
symmetric or transitive.

B
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Show that the relation R in the set {1, 2, 3} givenby R = {(1, 2), (2, 1)} is
symmetric but neither reflexive nor transitive.
Show that the relation R in the set A of all the books in alibrary of a college,
given by R = {(x, y) : xand y have same number of pages} is an equivalence
relation.
Show that therelation Rintheset A ={1, 2, 3, 4, 5} given by
R ={(a b) : |]a—Db|iseven}, is an equivalence relation. Show that al the
elementsof {1, 3, 5} arerelated to each other and all the elements of {2, 4} are
related to each other. But no element of {1, 3, 5} isrelated to any element of { 2, 4}.
Show that each of therelation Rintheset A={xe Z : 0<x <12}, given by
(i) R={(a, b):|Ja—Db|isamultiple of 4}

(i) R={(a,b):a=b}
isan equivalence relation. Find the set of all elementsrelated to 1 in each case.
Give an example of arelation. Whichis

(i) Symmetric but neither reflexive nor transitive.

(if) Transitive but neither reflexive nor symmetric.

(i) Reflexive and symmetric but not transitive.

(iv) Reflexiveand transitive but not symmetric.

(V) Symmetric and transitive but not reflexive.
Show that the relation R in the set A of points in a plane given by
R ={(P, Q) : distance of the point Pfrom the origin is same asthe distance of the
point Q fromtheorigin}, isan equivalencerelation. Further, show that the set of

all pointsrelatedto apoint P+ (0, 0) isthe circle passing through Pwith origin as
centre.

Show that therelation R defined inthe set A of all trianglesasR={(T, T,) : T,
issimilarto T, }, isequivalencerelation. Consider threeright angletriangles T,
with sides 3, 4, 5, T, with sides 5, 12, 13 and T, with sides 6, 8, 10. Which
trianglesamong T, T, and T, are related?

Show that the relation R defined in the set A of all polygonsasR ={(P, P,) :
P, and P, have same number of sides}, is an equivalence relation. What is the
set of al elementsinA related to theright angletriangle T with sides 3, 4 and 5?
Let L bethe set of dl linesin XY plane and R be the relation in L defined as
R={(L, L, :L, isparalel toL}. Show that Risan equivalencerelation. Find
the set of al linesrelated to theliney = 2x + 4.
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15. LetRbetherelationintheset{1,2,3,4} givenby R={(1, 2), (2,2),(1, 1), (4,4),
(1, 3), (3, 3), (3, 2)}. Choose the correct answer.

(A) Risreflexiveand symmetric but not transitive.
(B) Risreflexive and transitive but not symmetric.
(C) Rissymmetric and transitive but not reflexive.
(D) Risanequivalencerelation.

16. LetRbetherdationintheset Ngivenby R={(a, b):a=b—-2, b>6}. Choose
the correct answer.

(A) 24eR (B) 38eR (C) (6,8cR (D) (87)eR

1.3 Typesof Functions

Thenotion of afunction along with some specia functionslikeidentity function, constant
function, polynomial function, rational function, modulusfunction, signum function etc.
along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have a so been
studied. As the concept of function is of paramount importance in mathematics and
among other disciplinesaswell, wewould liketo extend our study about function from
where we finished earlier. In this section, we would like to study different types of
functions.

Consider the functions f, f,, f, and f, given by the following diagrams.

InFig 1.2, we observethat theimages of distinct elementsof X, under thefunction
f, are distinct, but the image of two distinct elements 1 and 2 of X, under f, is same,
namely b. Further, there are some elements like e and f in X, which are not images of
any element of X under f , whileall elementsof X, areimages of some elementsof X,
under f.. The above observations|ead to the following definitions:

Definition 5A function f: X — Y isdefined to be one-one (or injective), if theimages
of distinct elements of X under f are digtinct, i.e,, for every x, X, € X, f(x) = f(x)
implies x, = x,. Otherwisg, f is called many-one.

The function f, and f,in Fig 1.2 (i) and (iv) are one-one and the function f, and f,
inFig 1.2 (ii) and (iii) are many-one.
Definition 6 A function f: X — Y is said to be onto (or surjective), if every element
of Y isthe image of some element of X under f, i.e., for every y € Y, there exists an
element x in X such that f(x) = y.

Thefunctionf,andf,inFig 1.2 (iii), (iv) areonto and thefunction f inFig 1.2 (i) is
not onto as elements e, f in X, are not the image of any element in X, under f..
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Remark f: X — Y isontoif and only if Rangeof f =Y.
Definition 7 A functionf: X — Y is said to be one-one and onto (or bijective), if fis
both one-one and onto.

Thefunctionf, inFig 1.2 (iv) is one-one and onto.

Example 7 Let A bethe set of all 50 students of Class X inaschool. Letf: A — Nbe
function defined by f(x) = roll number of the student x. Show that f is one-one
but not onto.

Solution No two different students of the class can have sameroll number. Therefore,
f must be one-one. We can assume without any |oss of generality that roll numbers of
studentsarefrom 1 to 50. Thisimpliesthat 51 in Nisnot roll number of any student of
the class, so that 51 can not beimage of any element of X under f. Hence, fisnot onto.

Example 8 Show that the function f: N — N, given by f(x) = 2x, is one-one but not
onto.

Solution The function f is one-one, for f(x)) = f(X)) = 2x = 2x, = x, = X,. Further,
fisnot onto, asfor 1 € N, there does not exist any x in N such that f(x) = 2x = 1.
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Example9 Provethat thefunctionf: R — R, given by f (x) = 2%, isone-one and onto.
Solution fisone-one, asf(x) =f(x) = 2x, = 2x, = X, = X,. Also, given any real

number y in R there exists % in R such that f(%) =2. (%) =y. Hence, f is onto.

Y
A
) =2x
X'<€ >
0 X
v
Y/
Figl3

Example10 Show that thefunctionf: N— N, givenby f (1) =f(2) =1and f(X) = x—1,
for every x> 2, is onto but not one-one.

Solution fisnot one-one, asf(1) =f(2) = 1. But fisonto, asgivenanyye N, y#1,
we can choose x asy + 1 such that f(y + 1) =y+1-1=y. Alsofor 1 € N, we
havef(1) = 1.

Example 11 Show that the functionf: R — R, Y
defined asf (X) = X2, is neither one-one nor onto. 5
fx)=x
Solution Sincef(-1) =1 =1f(1), f is not one-
one. Also, the element — 2 in the co-domain R is
not image of any element x in the domain R X,,f(—1)=1 f(1)=1=X
(Why?). Therefore f is not onto. x=-1 %=1
Example 12 Show that f : N — N, given by
x+1if xisodd, v
f(x)= L. : Y’
x—-1if xiseven The image of 1 and -1 under f is 1.

is both one-one and onto. Figl.4
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Solution Supposef(x,) =f(x,). Notethat if x, isodd and x, is even, then we will have
X, +1=x,-1,i.e,Xx,—x =2whichisimpossible. Similarly, the possibility of x, being
even and x, being odd can aso be ruled out, using the similar argument. Therefore,
both x, and x, must be either odd or even. Suppose both x; and x, are odd. Then
f(x) =f(x) = x +1=x,+1=x =x, Similarly, if both x, and x, are even, then also
f(x) =f(x) = x —1=X%X,—-1= X =X, Thus, f is one-one. Also, any odd number
2r + 1intheco-domain N istheimage of 2r + 2inthedomain N and any even number
2r in the co-domain N isthe image of 2r — 1 in thedomain N. Thus, f is onto.

Example 13 Show that an onto functionf: {1, 2, 3} — {1, 2, 3} isaways one-one.

Solution Supposef is not one-one. Then there exists two elements, say 1 and 2 in the
domain whose image in the co-domain is same. Also, the image of 3 under f can be
only one element. Therefore, the range set can have at the most two elements of the
co-domain{1, 2, 3}, showingthat f isnot onto, acontradiction. Hence, f must be one-one.

Example 14 Show that aone-one function f: {1, 2, 3} — {1, 2, 3} must be onto.

Solution Since f is one-one, three elements of {1, 2, 3} must be taken to 3 different
elements of the co-domain {1, 2, 3} under f. Hence, f has to be onto.

Remark The results mentioned in Examples 13 and 14 are also true for an arbitrary
finite set X, i.e., aone-one function f : X — X is necessarily onto and an onto map
f: X — X isnecessarily one-one, for every finite set X. In contrast to this, Examples 8
and 10 show that for aninfinite set, thismay not betrue. In fact, thisisacharacteristic
difference between afinite and an infinite set.

EXERCISE 1.2|

1
1. Show that the functionf : R, — R, defined by f(x) = X is one-one and onto,

whereR_ isthe set of all non-zero real numbers. Istheresult true, if the domain
R, isreplaced by N with co-domain being same as R,?
2. Check theinjectivity and surjectivity of thefollowing functions:
(i) f:N—> Ngivenby f(x) =x?
(i) f:Z > Z givenby f(x) = x?
(i) f: R > Rgivenby f(x) = x
(iv) f:N—> Ngivenby f(x) =x3
(v) f:Z —> Z givenby f(x) = x®
3. Provethat the Greatest Integer Functionf: R — R, given by f(X) =[X], isneither
one-one nor onto, where [X] denotes the greatest integer less than or equal to x.
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Show that the Modulus Functionf: R — R, given by f(x) = | x|, is neither one-
one nor onto, where | x | isx, if xispositive or 0 and |x|is—X, if X is negative.

Show that the Signum Functionf : R — R, given by

1,if x>0
f(x)=40,if x=0
-1,if x<0

is neither one-one nor onto.

LetA={1,23},B={4,56,7} andletf={(1, 4), (2,5), (3, 6)} beafunction
from A to B. Show that f is one-one.

In each of the following cases, state whether the function is one-one, onto or
bijective. Justify your answer.

(i) f: R — R defined by f(x) = 3 —4x
(i) f: R — R defined by f(x) = 1 + 2

Let A and B be sets. Show that f: A x B — B x A such that f(a, b) = (b, a) is
bijectivefunction.

N1 i nisodd
Letf: N — N bedefined by f(n) = N foral ne N.
,if niseven

State whether the function f is bijective. Justify your answer.
LetA=R—{3} and B =R —{1}. Consider the function f: A — B defined by

X
f(x) = (—j . Is f one-one and onto? Justify your answer.

x-3
Let f: R —» R be defined as f(x) = x*. Choose the correct answer.
(A) fisone-oneonto (B) fismany-oneonto
(C) fisone-one but not onto (D) fisneither one-one nor onto.
Letf: R — R be defined as f(x) = 3x. Choose the correct answer.
(A) fisone-oneonto (B) fismany-oneonto

(C) fisone-one but not onto (D) fisneither one-one nor onto.
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1.4 Composition of Functionsand Invertible Function

In this section, we will study composition of functions and the inverse of a bijective
function. Consider the set A of all students, who appeared in Class X of a Board
Examination in 2006. Each student appearing in the Board Examination is assigned a
roll number by the Board which is written by the students in the answer script at the
time of examination. In order to have confidentiality, the Board arranges to deface the
roll numbers of studentsin the answer scripts and assigns a fake code number to each
roll number. Let B < N bethe set of all roll numbersand C — N be the set of all code
numbers. Thisgivesriseto two functionsf: A— Bandg: B — Cgivenby f(a) =the
roll number assigned to the student a and g(b) = the code number assigned to theroll
number b. In this process each student is assigned aroll number through the function f
and each roll number is assigned a code number through the function g. Thus, by the
combination of these two functions, each student iseventually attached acode number.

Thisleadsto thefollowing definition:

Definition 8Letf: A — B andg: B — C betwo functions. Then the composition of
f and g, denoted by gof, is defined as the function gof : A — C given by

gof () =g(f(¥), v xe A.

Figl5

Example15Letf:{2,3,4,5 —{3,4,5 9 andg:{3,4,5 9} - {7, 11, 15} be
functions defined as f(2) = 3, f(3) =4, f(4) = f(5) =5and g(3) = g(4) =7 and
g(5) = g(9) = 11. Find gof.

Solution We have gof(2) = g(f(2) = g(3) =7, gof(3) = g(f(3)) =g4) =7,
gof(4) = g(f(4)) =g(5) =11 and gof (5) = g(5) = 11.

Example 16 Find gof and fog, if f : R > Rand g : R — R are given by f(x) = cos x
and g(x) = 3x%. Show that gof # fog.

Solution We have gof (x) = g(f(X)) = g(cos x) = 3 (cos x)? = 3 cos® x. Similarly,
fog(x) = f(g(x)) = f(3x® = cos (3%?). Note that 3cos” x # cos 3x?, for x = 0. Hence,
gof # fog.
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3xX+4
5x-7

Example 17 Show that if f :R—{é}—) R—{g} is defined by f(X)=

and

R-I3L LRI isaefinedby 900 =2 thenfog=1 andgof =1 where
g: = 5 [ isdefinedby =3 thenfog =1, and gof = I , where,

3 7
A=R—{g},B=R—{g};IA(x)=x, vXxe A, I (X)=x Vxe Barecaledidentity

functions on setsA and B, respectively.
Solution We have

7((3x+4)j+

_ \6x-7) _ 20x+28+20x-28 41X
5((3x+4)j_3 15x+20-15x+21 41
(5x-7)

3X+ 4)

gof (><)=<91(5X_7

3((7X+4)j+

_ (5x-3) _ 21X+12+20X—12=ﬂzx

5((7x+4)j_7 35x+20-35x+21 41
(5x-3)

X+ 4)

Similarly, fog(x) = f
milarly, fog(x) (5x_3

Thus, gof (x) = x, vx e B and fog(x) = X, vx € A, which implies that gof = I,
and fog =1 ,.

Example 18 Show that if f : A— B and g: B — C are one-one, then gof : A — C is
also one-one.

Solution Suppose gof (x,) = gof (x,)

= g(f(x)) =a(f(x,)
= f(x) =f(x), asgisone-one
= X, =X, asfisone-one

Hence, gof is one-one.

Example 19 Show that if f: A — B and g : B — C are onto, then gof : A — Cis
also onto.

Solution Given an arbitrary element z e C, there exists a pre-image y of z under g
such that g (y) = z, since g isonto. Further, for y € B, there exists an element x in A
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with f(x) =y, sincef isonto. Therefore, gof (x) = g(f(x)) = g(y) = z, showing that gof
isonto.

Example 20 Consider functionsf and g such that composite gof is defined and is one-
one. Aref and g both necessarily one-one.

Solution Consider f: {1, 2, 3, 4} — {1, 2, 3,4, 5, 6} defined asf(x) = x, v x and
0:{1,2,3,4,56} -{1,2,3,4,5,6} asg(x) =x,forx=1,2,3 4andg(5) =g(6) =5.
Then, gof (X) = X v X, which shows that gof is one-one. But g is clearly not one-one.

Example 21 Aref and g both necessarily onto, if gof is onto?

Solution Considerf: {1,2,3,4} —-{1,2,3,4} andg:{1,2,3,4} —>{1, 2, 3} defined
asf()=1,f(2=2 f(3)=f(4)=3,9(1)=1,9(2)=2andg(3)=g(4) =3.Itcanbe
seen that gof isonto but f is not onto.

Remark It can be verified in general that gof is one-one implies that f is one-one.
Similarly, gof isonto impliesthat gisonto.

Now, we would like to have close look at the functions f and g described in the
beginning of this section in reference to a Board Examination. Each student appearing
in Class X Examination of the Board isassigned aroll number under thefunction f and
each roll number is assigned a code number under g. After the answer scripts are
examined, examiner enters the mark against each code number in a mark book and
submitsto the office of the Board. The Board officials decode by assigning roll number
back to each code number through a process reverse to g and thus mark gets attached
to roll number rather than code number. Further, the processreverseto f assignsaroll
number to the student having that roll number. This helps in assigning mark to the
student scoring that mark. We observe that while composing f and g, to get gof, first f
and then g was applied, while in the reverse process of the composite gof, first the
reverse process of g is applied and then the reverse process of f.

Example 22 Let f : {1, 2, 3} — {a, b, ¢} be one-one and onto function given by
f(1) =a, f(2) =band f(3) = c. Show that there existsafunctiong: {a, b, ¢} — {1, 2, 3}
suchthat gof = I, and fog =1, where, X = {1, 2,3} andY ={a, b, c}.

Solution Consider g: {a, b, c} - {1,2,3} asg(a)=1,g(b)=2andg(c) =3. Itis
easy to verify that the compositegof =1, istheidentity function on X and the composite
fog =1, istheidentity functionon'Y.

Remark Theinteresting fact isthat the result mentioned in the above exampleistrue
for an arbitrary one-one and onto function f: X — Y. Not only this, even the converse
isalsotrue,i.e, if f: X —» Y isafunction such that there existsafunctiong:Y — X
such that gof = |, and fog = I, then f must be one-one and onto.

The above discussion, Example 22 and Remark |ead to the following definition:



RELATIONS AND FUNCTIONS 15

Definition 9 A functionf: X — Y isdefined to be invertible, if there exists afunction
g:Y — Xsuchthat gof=1 andfog=1,. Thefunctiongiscalledtheinverseof f and
is denoted by .

Thus, if f isinvertible, then f must be one-one and onto and conversely, if fis
one-one and onto, then f must be invertible. Thisfact significantly helpsfor proving a
function f to be invertible by showing that f is one-one and onto, specially when the
actua inverse of f is not to be determined.

Example 23 Letf: N — Y be afunction defined as f(x) = 4x + 3, where,
Y ={ye N:y=4x+ 3for somexe N}. Show that f isinvertible. Find the inverse.

Solution Consider an arbitrary element y of Y. By the definition of Y,y = 4x + 3,

(y-3)
4

for some x in the domain N. This shows that X= . Defineg: Y — N by

(4x+3-3) _

g(y)=(y—:13).Now, gof () = g(F(X)) = g(dx + 3) = X and

fog(y) = f(g(y)) =f (():3)): 4(y4—3)

and fog = I, which impliesthat f isinvertible and g isthe inverse of f.

+3 =y-3+3=Yy. Thisshowsthat gof =

Example24 LetY ={n?: ne N} c N. Consider f: N — Y asf(n) = n?. Show that
fisinvertible. Find theinverse of f.

Solution An arbitrary element y in Y is of the form n?, for some n € N. This
impliesthat n = ,/y . Thisgivesafunctiong: Y — N, defined by g(y) = \/y . Now,

2
gof(n) = g(n?) = /n2 = nand fog(y) = f(/y)=(y/y) =y, which shows that
gof =1, and fog = I,. Hence, f isinvertible with f *=g.

Example25Letf: N — R beafunction defined as f (x) = 4x2 + 12x + 15. Show that
f: N— S, where, Sistherange of f, isinvertible. Find the inverse of f.

Solution Let y be an arbitrary element of rangef. Theny = 4x? + 12x + 15, for some

Jy—-6/)-3
xin N, whichimpliesthat y = (2x + 3)? + 6. This gives xzw,asyz 6.
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Jy-6/-3
Lausdefineg:SAbeg(y)zw.
Now gof(x) = g(f(X)) = g(4x*+ 12x + 15) = g((2x + 3)* + 6)
_ ((Veex+37+6-6)-3) (2x:3-9_
2 2
2
and fog (y) = f((( y_6)_3)j=[z(( y_6)_3)+3] +6
2 2
=((\/ﬁ)—3+3))2+6=( y—6) +6=y-6+6=y.
Hence, gof =1 and fog =I.. Thisimpliesthat f isinvertible with f =* = g.

Example 26 Consider f: N - N, g: N —> Nand h: N — R defined asf(x) = 2x,
gy)=3y+4andh(® =snz vx yandzinN. Show that ho(gof) = (hog) of.

Solution We have
ho(gof) (x) = h(gof (x)) = h(g(f(x))) = h(g(2x))

=h(3(2x) +4) =h(6x +4) =sin (6x +4) ¥V xeN.
Also,  ((hog)of) (x) = (hog) (f(x)) = (hog) (2x) = h(g(2x))

=h(3(2x) + 4) =h(6x + 4) =sin (6x + 4), v x € N.
This shows that ho(gof) = (hog) of.
Thisresult istruein general situation aswell.
Theorem11ff: X ->Y,g:Y > Zand h:Z — Sarefunctions, then

ho(gof) = (hog) of.

We have
ho(gof ) () = h(gof (x)) = h(g(f(x))), vxin X
and (hog) of (x) = hog(f (X)) = h(g(f(x)), v xin X.
Hence, ho(gof) = (hog)of.

Example 27 Consider f: {1, 2, 3} —> {a, b, c} andg: {a, b, c} — {apple, ball, cat}
defined as f(1) = a, f(2) = b, f(3) = ¢, g(a) = apple, g(b) = ball and g(c) = cat.
Show that f, g and gof are invertible. Find out f -, g* and (gof)™* and show that
(gof) * =1 “og™.
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Solution Note that by definition, f and g are bijective functions. Let
f*{a b, ct - (1,2 3} and g*: {apple, bal, cat} — {a, b, c} be defined as
fHa} =1, f b} =2, fHc} =3, g{apple} =a, g{bal} =band g*{cat} =c.
It is easy to verify thet f “of =1, ,fof*=1_, ,,9%0g=1_,,ad gog"=
where, D = {apple, ball, cat}. Now gof : {1, 2 3} —>{app|e baII cat} isgiven by
gof (1) = apple, gof(2) = ball, gof (3) = cat. We can define
(gof)™*: {apple, ball, cat} — {1, 2, 3} by (gof)™ (apple) = 1,(gof)™ (ball) = 2 and
(gof)™ (cat) = 3. It is easy to see that (gof)™ o (gof) =1, , , and
(gof) o (gof)™ = 1. Thus, we have seen that f, g and gof are invertible.
Now, - og™ (apple)= f g (apple) = f “(a) = 1 = (gof)* (apple)
f-tog™ (ball) = f *(g*(ball)) = f *(b) = 2 = (gof)* (bal) and
f=og™ (cat) = f *(g™(cat)) = f 7(c) = 3 = (gof)™ (cat).
Hence (gof)?*=f og™.
The aboveresult istrue in general situation also.
Theorem2Letf: X > Y andg:Y — Z betwo invertible functions. Then gof isaso
invertible with (gof)™ = fog™.
To show that gof is invertible with (gof)™ = f2og™, it is enough to show that
(f*og™)o(gof) = I, and (gof)o(f~og™) = L.
Now, (f~*og™) o(gof) = ((f*og™) og) of, by Theorem 1
= (f*o(g™og)) of, by Theorem 1
= (f*ol,) of, by definition of g*
=1,
Similarly, it can be shown that (gof )o(f *og ™) =1..

Example 28 Let S={1, 2, 3}. Determine whether the functionsf : S— Sdefined as
below haveinverses. Find f %, if it exists.

(@ f={(112),(22),(3 3)}
(b) £={(12),(2 1), G 1}

(¢ £={(123).,(32),(2 1}

Solution

(@) Itiseasytoseethat f isone-oneand onto, sothat f isinvertiblewith theinverse
flof fgivenby f1={(1, 1), (2 2),(3,3)} =H.

(b) Sincef(2) =f(3) =1, f isnot one-one, so that f isnot invertible.

(c) Itiseasytoseethatf isone-oneand onto, sothat f isinvertible with

f1={(3 1), (2 3),(1, 2)}.
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|EXERCISE 1.3|
Letf:{1,3,4 - {1,2 5 andg:{1, 2,5 — {1, 3} begiven by
f={(1,2),(3,5), (4,1} andg={(1, 3), (2, 3), (5, 1)} . Write down gof.
Let f, g and h be functions from R to R. Show that
(f + gyoh = foh + goh
(f . g)oh = (foh) . (goh)

Find gof and fog, if
(i) fO9 =Ix]and g(x) =|5x -2

1

(i) T(x) =8¢ and g(x) = X°.

100 = 4D L2 ow that fof () = x, for adl xe2. What is th
X = (6x—4) " 3 ow that fof (x) = x, for x¢§. at is the
inverse of f ?

State with reason whether following functions have inverse
(i) T:{1,2,3,4} - {10} with
f ={(1, 10), (2, 10), (3, 10), (4, 10)}
(i) 9:{5/6,7,8 —>{1,2, 3,4} with
9={(5.4).(6,3),(7.4), (8,2}
@) h:{2,3,4,5 —{7,9, 11, 13} with
h={(2,7),(3,9), (4, 11), (5, 13)}

X
Show that f: [-1, 1] — R, given by f (X) = m isone-one. Find theinverse
of the function f : [-1, 1] — Range f.

Hint: F R fy=f —Lf in[-1, 1], i _
(Hint: Fory e Rangef,y="f(x) = 12’ orsomexin[-1,1],i.e,x= -y

Consider f: R — R given by f(x) = 4x + 3. Show that f isinvertible. Find the
inverse of f.

Consider f: R, — [4, ) given by f(X) = x> + 4. Show that f isinvertible with the
inversef-tof f given by f(y) = \/y—4,whereR, isthe set of all non-negative
real numbers.
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Consider f: R, — [—5, ) given by f (X) = 9x* + 6x—5. Show that f isinvertible

(e)3)

with f(y) = ( 2

Let f: X — Y beaninvertible function. Show that f has unique inverse.

(Hint: suppose g, and g, aretwo inverses of f. Thenfor adl y € Y,

fog,(y) = 1,(y) = fog,(y). Use one-one ness of f).

Consider f: {1, 2,3} —{a, b,c} givenbyf(1) =a,f(2) =bandf(3) =c. Find
f 1 and show that (f )= f.

Letf: X — Y bean invertible function. Show that the inverse of f L isf, i.e,,
(fhH?t=Hf.

1
If f: R — R be given by f(x) = (3—x%)3, then fof (x) is

1
(A) 3 (B) x° (€ x (D) B=x).
4
Letf:R-— {—f} — R be afunction defined asf (x) = X . Theinverse of
3 3x+4

fisthemap g: Rangef > R — {—g} given by

__ %y __4y
(A) g(y)—3_4y B 9 23y
4y _ 3y
©) g(y)——s_4y (D) 9() 73y

1.5 Binary Operations

Right from the school days, you must have come across four fundamental operations
namely addition, subtraction, multiplication and division. The main feature of these
operationsis that given any two numbers a and b, we associate another number a + b

a
ora—borabor —, b=0. Itisto benoted that only two numbers can be added or

b

multiplied at atime. When we need to add three numbers, we first add two numbers
and theresult isthen added to the third number. Thus, addition, multiplication, subtraction
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and division are examples of binary operation, as ‘binary’ means two. If we want to
have a general definition which can cover al these four operations, then the set of
numbers is to be replaced by an arbitrary set X and then general binary operation is
nothing but association of any pair of elements a, b from X to another element of X.
Thisgivesriseto agenera definition asfollows:

Definition 10 A binary operation * on aset A isafunction = : A x A — A. We denote
* (a, b) by a * b.

Example 29 Show that addition, subtraction and multiplication are binary operations
onR, but divisionisnot abinary operation on R. Further, show that divisionisabinary
operation on the set R, of nonzero real numbers.

Solution  +:R xR — Risgiven by
(a,b)—>a+hb

—:R xR — Risgiven by
(a,b)—>a-b
xR xR — Risgiven by
(@ b) — ab
Since‘+’, ‘= and ‘x’ arefunctions, they are binary operations on R.

But +: Rx R — R, givenby (a, b) —» %, isnot afunction and hence not abinary

a
operation, asfor b =0, b is not defined.

However,+: R, x R, —» R, given by (a, b) — % is a function and hence a

binary operationon R_.

Example 30 Show that subtraction and division are not binary operations on N.

Solution —: N x N — N, givenby (a, b) —» a—Db, isnot binary operation, astheimage

of (3,5) under ‘— is3—-5=—2¢ N. Smilarly,+: NxN — N, givenby (a,b) > a+b
3

is not a binary operation, astheimage of (3, 5) under +is3+5= 5 ¢ N.

Example 31 Show that # : R x R — R given by (a, b) — a + 4b? is a binary
operation.

Solution Since * carries each pair (a, b) to aunique element a + 4b?in R, * isabinary
operation on R.
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Example 32 Let P be the set of al subsets of agiven set X. Show that u: Px P — P
givenby (A,B) >AuBandn:PxP— Pgivenby (A, B) > An B arebinary
operations on the set P,

Solution Since union operation u carrieseach pair (A, B) in P x Pto aunique element
A U B inP uisbinary operation on P. Similarly, the intersection operation N carries
each pair (A, B) in Px Ptoaunique element A N B in P, nisabinary operation on P

Example 33 Show that the v : R x R — R given by (a, b) - max {a, b} and the
A R xR — Rgivenby (a, b) » min{a, b} are binary operations.
Solution Since v carries each pair (a, b) in R x R to a unique element namely
maximum of aand b lyingin R, v isabinary operation. Using the similar argument,
one can say that A isalso abinary operation.
Remark v (4, 7)=7,v (4, -7)=4, A(4 7)=4and A (4, -7)=-T7.

When number of elementsinaset A issmall, we can express abinary operation : on
the set A through a table called the operation table for the operation *. For example

considerA={1,2,3}. Then, theoperation v on A defined in Example 33 can be expressed
by thefollowing operationtable (Table 1.1) . Here, v (1,3)=3, v (2,3)=3, v (1,2 =2

Tablel.1
\% 1 2 3
1 1 2 3
2 2 2 3
3 3 3 3

Here, we are having 3 rows and 3 columns in the operation table with (i, j) the
entry of the table being maximum of i™" and j™ elements of the set A. This can be
generalised for general operation * : A xA — A IfA={a, a, .., a}. Then the
operation table will be having n rows and n columns with (i, j)" entry being a * a.
Conversely, given any operation table having n rows and n columns with each entry
being an element of A={a, a,, ..., a }, we can define abinary operation * : A XA — A
givenby a * a = theentry in the i"" row and j'" column of the operation table.

One may note that 3 and 4 can be added in any order and the result is same, i.e.,
3+4 =4+ 3, but subtraction of 3 and 4 in different order give different results, i.e.,
3—4+#4-3. Similarly, in case of multiplication of 3 and 4, order isimmaterial, but
division of 3 and 4 in different order give different results. Thus, addition and
multiplication of 3 and 4 are meaningful, but subtraction and division of 3 and 4 are
meaningless. For subtraction and division we havetowrite‘ subtract 3from4’, * subtract
4from3’, ‘divide3by 4 or ‘divided by 3.
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Thisleadsto thefollowing definition:

Definition 11 A binary operation * on the set X is called commutative, if a*= b =b* a,
for every a, b e X.

Example 34 Showthat +: R x R > R and X : R x R —» R are commutative binary
operations, but —: R xR - Rand +: R, x R, —» R_ are not commutative.

Solution Sincea+b=b+aandaxb=bxa, yva be R, '+ and ‘x" are
commutative binary operation. However, ‘— is not commutative, since3—4 =4 —3.
Similarly, 3+ 4 # 4+ 3 showsthat ‘+' isnot commutative.

Example 35 Show that * : R x R — R defined by a = b =a + 2b isnot commutative.

Solution Since3#4=3+8=11and 4 * 3=4+ 6 = 10, showing that the operation *
isnot commutative.

If we want to associate three el ements of aset X through a binary operation on X,
we encounter a natural problem. The expression a * b * ¢ may be interpreted as
(a=b) = cora=(b:*c)andthese two expressions need not be same. For example,
(8—5)—2#8—(5-2). Therefore, association of three numbers 8, 5 and 3 through
the binary operation ‘subtraction’ is meaningless, unless bracket is used. But in case
of addition, 8 + 5 + 2 has the same value whether we look at it as (8 + 5) + 2 or as
8 + (5 + 2). Thus, association of 3 or even more than 3 numbers through addition is
meaningful without using bracket. Thisleadsto thefollowing:

Definition 12 A binary operation * : A x A — A issaid to be associative if
(axb)yxc=a=x(b=*c), va b,c e A.

Example 36 Show that addition and multiplication are associative binary operation on
R. But subtraction is not associative on R. Division is not associativeon R_.

Solution Addition and multiplication are associative, since(a+hb) + c=a+ (b +c) and
(axbyxc=ax(bxc) v a b, ce R However, subtraction and division are not
associative, as (8 -5) -3#8—-(5-3)and (8 +5) +3# 8+ (5+ 3).

Example 37 Show that * : R x R - R given by a * b — a + 2b is not associative.

Solution The operation * is not associative, since
(8%5)*3=(8+10)*3=(8+10) +6 =24,
while 8x(5%3)=8x#(5+6)=8x*11=8+22=230.

Remark Associative property of abinary operation isvery important in the sense that
with this property of a binary operation, we can write a, * @, * ... * a which is not
ambiguous. But in absence of thisproperty, theexpressiona, * a,* ... * @ isambiguous
unlessbracketsare used. Recall that in the earlier classes brackets were used whenever
subtraction or division operations or more than one operation occurred.
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For thebinary operation‘+' on R, theinteresting feature of the number zeroisthat
a+0=a=0+a,i.e, any number remains unatered by adding zero. But in case of
multiplication, the number 1 playsthisrole,asax 1=a=1xa, v ainR. Thisleads
to thefollowing definition:

Definition 13 Given abinary operation = : A x A - A, anelementee A, if it exists,
is called identity for the operation #,ifa*e=a=e=*a, v ae€ A.

Example 38 Show that zero is the identity for addition on R and 1 isthe identity for
multiplication on R. But thereisno identity element for the operations
—-'RxR->Rad+:R xR —R.

Solutiona+0=0+a=aandaxl=a=1xa, yae Rimpliesthat 0 and 1 are
identity elementsfor the operations‘+ and * x’ respectively. Further, thereisno element
einR witha—e=e—-a, v a. Similarly, we can not find any element ein R_ such that
a+-e=e+a, vainR, . Hence ‘'~ and‘+" do not have identity el ement.

Remark Zero isidentity for the addition operation on R but it is not identity for the
addition operationon N, as0 ¢ N. In fact the addition operation on N does not have
any identity.

One further notices that for the addition operation + : R x R — R, given any
ae R, thereexists—ain R such that a + (— a) = 0 (identity for ‘+') = (- a) + a

. : : 1
Similarly, for the multiplication operationon R, givenany a= 0in R, we can choose 3

1 1
in R suchthat a x Q- 1(identity for ‘x’) = a x a. Thisleadsto thefollowing definition:

Definition 14 Given abinary operation * : A X A — A with theidentity element einA,
an element a e A issaid to be invertible with respect to the operation *, if there exists
anelement bin A suchthat a*= b=e=b:* aandbiscaled theinverse of a and is
denoted by a™.

Example 39 Show that —a istheinverse of a for the addition operation ‘+ on R and
1

a istheinverse of a = 0 for the multiplication operation ‘X’ on R.

Solution Asa+ (—a)=a—a=0and (—a) + a=0,—aistheinverse of afor addition.

1 1 1
Similarly, fora=0, axaz 1= Ex aimpliesthat a istheinverseof afor multiplication.
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Example 40 Show that —aisnot theinverse of a e N for the addition operation + on
1
N and gis not theinverse of ae N for multiplication operation x on N, for a # 1.

Solution Since—a ¢ N, —a can not be inverse of a for addition operation on N,
although — a satisfiesa+ (-a) =0=(-a) + a

1
Similarly, fora= 1inN, a ¢ N, whichimpliesthat other than 1 no element of N

hasinversefor multiplication operation on N.
Examples 34, 36, 38 and 39 show that addition on R isacommutative and associative
binary operation with O as the identity element and —a astheinverseof ain R v a.

EXERCISE 1.4
1. Determinewhether or not each of the definition of  given below givesabinary
operation. Intheevent that = is not abinary operation, givejustification for this.
(i) OnZ*, definexbya*b=a-b
(i) On Z*, define = by a * b= ab
(i) On R, define = by a* b =ab?
(iv) OnZ*, define= by a*b=]a-Db]|
(v) OnZzZ* definexbya=xb=a
2. For each binary operation * defined below, determine whether * iscommutative
or associative.
(i) OnZ, defineaxb=a-b
(i) OnQ, defineaxb=ab+1

: ab
(i) OnQ, definea* b = -

(iv) OnZ*, definea* b= 2%

(v) OnZ*, defineaxb=a°

- - __a
(Vi) OnR —{-1}, definea* b = brl

3. Consider the binary operation A on the set {1, 2, 3, 4, 5} defined by
a A b=min{a, b}. Write the operation table of the operation A .
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4. Consider abinary operation * on the set {1, 2, 3, 4, 5} given by the following
multiplicationtable (Table1.2).
(i) Compute (2 * 3) = 4and 2 = (3 * 4)
(i) Is=* commutative?
(i) Compute (2 = 3) * (4 = 5).
(Hint: usethefollowing table)

Tablel.2
% 1 2 3 4 5
1 1 1 1 1 1
2 1 2 1 2 1
3 1 1 3 1 1
4 1 2 1 4 1
5 1 1 1 1 5

5. Let *” be the binary operation on the set {1, 2, 3, 4, 5} defined by
a+" b =H.C.F of aand b. Is the operation #" same as the operation * defined
in Exercise 4 above? Justify your answer.

6. Let * bethe binary operation on N givenby a = b =L.C.M. of aand b. Find
(i) 5%7, 20*16 (i) Is* commutative?
(i) Is * associative? (iv) Findtheidentity of *inN
(v) Which elements of N are invertible for the operation *?

7. lIs= defined on the set {1, 2, 3,4, 5} by a* b =L.C.M. of a and b a binary
operation? Justify your answer.

8. Let * be the binary operation on N defined by a = b = H.C.F. of a and b.
Is * commutative? |s * associative? Does there exist identity for this binary
operation on N?

9. Let = beabinary operation on the set Q of rational numbers as follows:

() a*xb=a-b (i) a*b=a%+Db?
(i) a*b=a+ab (iv) a*b=(a-b)?
(v)a*bz% (Vi) a*b=ab?

Find which of the binary operations are commutative and which are associative.
10. Show that none of the operations given above has identity.
11. Let A=N x N and * be the binary operation on A defined by
(& b)=(c,d=(@+c b+d)
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Show that * is commutative and associative. Find the identity element for * on
A, if any.
12. State whether the following statements are true or false. Justify.
(i) For an arbitrary binary operation = onaset N,a*a=a vae N.
(i) If = isacommutative binary operationon N, thena = (b c) = (c* b) * a
13. Consider a binary operation * on N defined asa * b = a® + b%. Choose the
correct answer.
(A) Is=* both associative and commutative?
(B) Is#* commutative but not associative?
(C) Is* associative but not commutative?
(D) Is=* neither commutative nor associative?

Miscellaneous Examples

Example 41 If R and R, are equivalence relationsin aset A, show that R, " R, is
also an equivalencerelation.

Solution Since R and R, are equivalencerelations, (a,a) € R, and (a, @) € R, vae A.
This implies that (a, @) € R, R,, vV a, showing R, N R, is reflexive. Further,
@beRNR =>@beR ad(@beR =({maeR adb aecR, =
(b, ) € R, " R, hence, R, N R, is symmetric. Similarly, (a, b) e R, " R, and
b,ge RNR, = (@ ce R ad(ace R, = (ac)e R R, This shows that
R,Nn R, istransitive. Thus, R, " R, is an equivalence relation.

Example 42 Let R be a relation on the set A of ordered pairs of positive integers
defined by (%, ¥) R (u, v) if and only if xv=yu. Show that R isan equivalencerelation.

Solution Clearly, (X, ¥) R (X, y), v (X, y) € A, since xy = yx. This shows that R is
reflexive. Further, (X, y) R (u, V) = xv = yu = uy = vx and hence (u, v) R (x, y). This
shows that R is symmetric. Similarly, (X, y) R (u, v) and (u, v) R (a, b) = xv =yu and

b a
w=va= xwi-ywl= XV = YU = xb = yaand hence (x,y) R (&, b). Thus, R
u u

istransitive. Thus, R isan equivalencerelation.

Example 43 Let X ={1, 2, 3,4,5,6, 7, 8, 9}. Let R be arelation in X given
by R, ={(x,y) : x—yisdivishle by 3} and R, be another relation on X given by
R,={(x¥):{x,y} c{1,4,7}} or {x,y} c{2,5,8} or {x,y} {3, 6, 9}}. Show that
R, =R,
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Solution Note that the characteristic of sets {1, 4, 7}, {2, 5, 8} and {3, 6, 9} is
that difference between any two elements of these setsis a multiple of 3. Therefore,
(X y) e Ry, =x-yisamultipleof 3 = {x,y} c {1, 4,7} or {X,y} {25, 8}
or{x,y} c{3,6,9} = (x,y) € R,.Hence, R, c R,. Similarly, {x, y} € R, = {Xx, y}
c{lL, 4 7 or{xyt c{258 o {x,y} {3 6 9} = x-yisdvisble by
3= {x ¥} € R. Thisshowsthat R, c R,. Hence, R, = R,.

Exampled4 Letf: X — Y beafunction. Define arelation R in X given by
R ={(a, b): f(a) = f(b)}. Examineif R is an equivalence relation.

Solution For every a€ X, (a, a) € R, sincef(a) = f(a), showing that R is reflexive.
Similarly, (a, b) e R = f(a) = f(b) = f(b) =f(a) = (b, @) € R. Therefore, R is
symmetric. Further, (a, b) € Rand (b, c) e R= f(a) =f(b) and f(b) = f(c) = f(a)
=f(c) = (a ¢) € R, which impliesthat R is transitive. Hence, R is an equivalence
relation.

Example 45 Determine which of the following binary operations on the set N are
associative and which are commutative.

a+b
(@ a*b=1v abe N (b)a*b:(—;)va,bem

Solution

(@) Clearly, by definition a * b = b = a = 1, yva, b € N. Also
(axb)ysc=(@A=*c)=landa=*(b*xc)=a=* (1) =1, v a b, ce N. Hence
R isboth associative and commutative.

a+b b+a _ _
(b) a*b= IR = b * g, shows that * is commutative. Further,
a+b
(a*b)*cz( > j*c.
atby,
L2 _a+b+2c
- 2 4
b+c
But a*(b*c)za*( 2)
b+c
_a+ 2 2a+b+c a+b+2c.
= S 2 # ingeneral.

Hence, * is not associative.
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Example 46 Find the number of all one-onefunctionsfromset A ={1, 2, 3} toitself.

Solution One-one function from {1, 2, 3} to itself is simply a permutation on three
symbols 1, 2, 3. Therefore, total number of one-one maps from {1, 2, 3} to itsalf is
same as total number of permutations on three symbols 1, 2, 3whichis3! = 6.

Example47 Let A={1, 2, 3}. Then show that the number of relations containing (1, 2)
and (2, 3) which are reflexive and transitive but not symmetric isfour.

Solution The smallest relation R, containing (1, 2) and (2, 3) which is reflexive and
transitive but not symmetricis{ (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)} . Now, if weadd
thepair (2, 1) to R, to get R,, then the relation R, will be reflexive, transitive but not
symmetric. Similarly, we can obtain R, and R, by adding (3, 2) and (3, 1) respectively,
to R, to get the desired relations. However, we can not add any two pairsout of (2, 1),
(3,2) and (3, 1) to R, at atime, as by doing so, we will be forced to add the remaining
third pair in order to maintain transitivity and in the process, the relation will become
symmetric also which isnot required. Thus, the total number of desired relationsisfour.

Example 48 Show that the number of equivalenceredlationintheset {1, 2, 3} containing
(1,2) and (2, 1) istwo.

Solution The smallest equivalence relation R, containing (1, 2) and (2, 1) is{(1, 1),
(2,2),(3,3), (1, 2), (2, 1)}. Now we are left with only 4 pairs namely (2, 3), (3, 2),
(1,3) and (3, 1). If we add any one, say (2, 3) to R,, then for symmetry we must add
(3, 2) d'so and now for transitivity weareforced to add (1, 3) and (3, 1). Thus, the only
equivaence relation bigger than R isthe universal relation. This shows that the total
number of equivalence relations containing (1, 2) and (2, 1) istwo.

Example 49 Show that the number of binary operationson {1, 2} having 1 asidentity
and having 2 asthe inverse of 2 is exactly one.

Solution A binary operation = on{1, 2} isafunctionfrom{1, 2} x{1, 2} to{1, 2},i.e,
afunction from {(1, 1), (1, 2), (2, 1), (2, 2)} — {1, 2}. Since 1 isthe identity for the
desired binary operation =, * (1, 1) =1, * (1, 2) = 2, * (2, 1) = 2 and the only choice
leftisfor thepair (2, 2). Since2istheinverseof 2,i.e., * (2, 2) must beequa to 1. Thus,
the number of desired binary operationisonly one.

Example 50 Consider the identity function | : N — N defined as | (X) =x v xe N.
Show that although | isonto but | + 1 : N — N defined as

(I, +1) =1, + 1, (X) =x+x=2xisnot onto.
Solution Clearly 1 is onto. But I + | is not onto, as we can find an element 3

in the co-domain N such that there does not exist any x in the domain N with
(I, +1) () =2x=3.



RELATIONS AND FUNCTIONS 29
Example 51 Consider a function f : {0,%}—>R given by f(x) = sin x and

g: {o,g}_)R given by g(x) = cos x. Show that f and g are one-one, but f + g is not
one-one.

Solution Since for any two distinct elements x, and X, in [oﬂ , Sin X, # sin x, and
Cos X, # CoS X, both f and g must be one-one. But (f + g) (0) =sin0+cos0=1and

(f+09) (gj = sing + cosg =1. Therefore, f + g is not one-one.

Miscellaneous Exercise on Chapter 1
1. Letf:R — R bedefined asf(x) = 10x + 7. Find the functiong : R — R such
thatgof=fog=1.
2. Letf:W — W bedefinedasf(n)=n-1,if nisoddandf(n)=n+1,ifnis
even. Show that f is invertible. Find the inverse of f. Here, W is the set of all
whole numbers.

3. Iff: R — R isdefined by f(x) = x2 — 3x + 2, find f (f (x)).

X
4. Show that thefunction f: R — {xe R :—1<x< 1} defined by f(X)=—1+|X|,

X € R isone oneand onto function.

5. Show that the functionf : R — R given by f(x) = x® isinjective.

6. Give examples of two functionsf: N - Z andg:Z — Z suchthat gofis
injectivebut gisnotinjective.
(Hint : Consider f(x) = x and g(x) = |x]).

7. Giveexamplesof twofunctionsf: N — Nandg: N — N suchthat gofisonto
but f is not onto.

x—=1if x>1

(Hint : Consider f(x) =x + 1 and g(X)={ 1 if xo1

8. Given anon empty set X, consider P(X) which is the set of all subsets of X.



30

10.
11.

12.

13.

14.

15.

16.

17.
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Definetherelation R in P(X) asfollows:
For subsets A, B in P(X), ARB if and only if A c B. ISR an equivalencerelation
on P(X)? Justify your answer.
Given anon-empty set X, consider the binary operation  : P(X) x P(X) — P(X)
givenby AxB=AnB VA, B inP(X), where P(X) is the power set of X.
Show that X istheidentity element for thisoperation and X istheonly invertible
element in P(X) with respect to the operation .
Find the number of all onto functionsfromtheset {1, 2, 3, ..., n} toitself.
LetS={a,b,c} and T ={1, 2, 3}. Find F* of thefollowing functions F from S
to T, if it exists.

() F={(a3).(b,2),(c. )} () F={(a 2, (b 1), (c. 1}
Consider the binary operations* : R xR - Rando: R x R — R defined as
ax*b=Ja—blandaob=a, Va, be R. Show that * is commutative but not

associative, o isassociative but not commutative. Further, show that v a,b, ce R,
a=x(boc)=(a*b)o(a=Db).[Ifitisso, wesay that the operation * distributes
over the operation o]. Does o distribute over *? Justify your answer.

Given a non-empty set X, let = : P(X) x P(X) —» P(X) be defined as
A*B=(A-B)uU (B-A), vA, Be P(X). Show that the empty set ¢ is the
identity for the operation * and al the elements A of P(X) are invertible with
Al=A. Hint: (A-d)u (d0—-A)=Aand (A-A)U (A-A)=AxA=0¢).
Define abinary operation = onthe set {0, 1, 2, 3, 4, 5} as

a+b, ifa+tb<6

axb= _
a+b-6 ifa+b>6

Show that zero isthe identity for this operation and each element a of the setis
invertible with 6 —a being theinverse of a.

LeeA={-1,0,1,2},B={-4,-2,0,2} andf, g:A — B befunctions defined

by f(X) = x2—x, x € A and 9(X)=2

1
X—E‘—L x e A. Are f and g equa?

Justify your answer. (Hint: One may note that two functionsf: A — B and
g:A —>Bsuchthat f(a) =g(a) vae A, are called equa functions).

LetA={1,2, 3}. Then number of relationscontaining (1, 2) and (1, 3) which are
reflexive and symmetric but not transitiveis

(A) 1 (B) 2 € 3 (D) 4
LetA={1, 2, 3}. Then number of equivalencerelations containing (1, 2) is
(A) 1 (B) 2 € 3 (D) 4
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Let f: R - R bethe Signum Function defined as

1 x>0
f(X)=410, x=0
-1 x<0
and g : R — R bethe Greatest Integer Function given by g(x) =[], where[x] is
greatest integer less than or equal to x. Then, does fog and gof coincidein (0, 1]?
Number of binary operations on the set { a, b} are
(A) 10 (B) 16 (©) 20 (D) 8

Summary

In this chapter, we studied different types of relations and equivalence relation,
composition of functions, invertible functionsand binary operations. The main features
of this chapter are asfollows:

L 2R 2 2R 2R 2

*

*

Empty relation istherelation Rin X givenby R=¢ < X x X.

Universal relation istherelation Rin X givenby R =X x X.

Reflexive relation R in X isarelation with (a, a) e R vae X.
Symmetric relation R in X isardation satisfying (a, b) e Rimplies(b, a) € R.
Transitive relation R in X is arelation satisfying (a, b) e Rand (b, c) € R
impliesthat (a, c) € R.

Equivalencerelation R in X isarelation which is reflexive, symmetric and
transitive.

Equivalence class[a] containingae X for an equivalencerelationRin X is
the subset of X containing all elementsb related to a.

A function f : X — Y isone-one (or injective) if

fOQ) =1() = X, =X, V X, X, € X.

A functionf: X — Y isonto (or surjective) if givenany y € Y, 3 xe X such
that f(x) = y.

A functionf: X — Y is one-one and onto (or bijective), if f is both one-one
and onto.

The composition of functionsf: A — B and g : B — C is the function
gof : A — Cgiven by gof (x) = g(f(X)) v xe A.

A function f: X — Y isinvertibleif 3 g: Y — X such that gof = I, and
fog=1,.

A functionf: X — Y isinvertibleif and only if f is one-one and onto.
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€ Givenafiniteset X, afunctionf: X — X isone-one (respectively onto) if and
only if fisonto (respectively one-one). Thisisthe characteristic property of a
finite set. Thisisnot true for infinite set

@ A binary operation * on aset A isafunction * from A x A to A.

¢ Andementee X istheidentity element for binary operation : : X x X — X,
ifa*e=a=exaVvVae X.

¢ Anédement ae X isinvertible for binary operation * : X x X — X, if

thereexistsb € X such that a = b =e=b * awhere, eistheidentity for the
binary operation . The element b is called inverse of a and is denoted by a.

€ Anoperation * on X is commutativeif a*b=b=*a ya, binX.
4 Anoperation = on X isassociativeif (a*=b) *c=a=* (b*c)ya, b, cinX.

Historical Note

The concept of function has evolved over along period of time starting from
R. Descartes (1596-1650), who used the word ‘function’ in his manuscript
“Geometrie” in 1637 to mean some positive integral power x" of a variable x
while studying geometrical curves like hyperbola, parabola and ellipse. James
Gregory (1636-1675) in his work “ Vera Circuli et Hyperbolae Quadratura”
(1667) considered function as a quantity obtained from other quantities by
successive use of algebraic operations or by any other operations. Later G. W.
Leibnitz (1646-1716) in his manuscript “ Methodus tangentium inversa, seu de
functionibus” writtenin 1673 used theword ‘ function’ to mean aquantity varying
from point to point on acurve such asthe coordinates of a point on the curve, the
slope of the curve, the tangent and the normal to the curve at a point. However,
in his manuscript “Historia” (1714), Leibnitz used the word ‘function’ to mean
quantities that depend on avariable. He was the first to use the phrase ‘function
of X'. John Bernoulli (1667-1748) used the notation ¢x for thefirst timein 1718to
indicate afunction of x. But the general adoption of symbolslikef, F, ¢, v ... to
represent functionswas made by Leonhard Euler (1707-1783) in 1734 inthefirst
part of his manuscript “Analysis Infinitorium”. Later on, Joeph Louis Lagrange
(1736-1813) published his manuscripts “Theorie des functions analytiques’ in
1793, where hediscussed about analytic function and used the notion f (x), F(x),
d(x) etc. for different function of x. Subsequently, Lejeunne Dirichlet
(1805-1859) gave the definition of function which was being used till the set
theoretic definition of function presently used, was given after set theory was
devel oped by Georg Cantor (1845-1918). The set theoretic definition of function
knownto us presently issimply an abstraction of the definition given by Dirichlet
in arigorous manner.
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