Chapter 2

INVERSE TRIGONOMETRIC
FUNCTIONS

+ Mathematics, in general, is fundamentally the science of
self-evident things. — FELIX KLEIN «

2.1 Introduction

In Chapter 1, we have studied that theinverse of afunction  jisisibe bl itk
f, denoted by f %, existsif fisone-one and onto. There are
many functions which are not one-one, onto or both and
hence we can not talk of their inverses. In Class XI, we
studied that trigonometric functions are not one-one and
onto over their natural domainsand ranges and hencetheir
inverses do not exist. In this chapter, we shall study about
the restrictions on domains and ranges of trigonometric
functions which ensure the existence of their inversesand
observetheir behaviour through graphical representations.
Besides, someelementary propertieswill also be discussed.

Theinversetrigonometric functions play animportant AryaBhatta
role in calculus for they serve to define many integrals. (476-550A.D)
The concepts of inversetrigonometric functionsisalso used in science and engineering.

2.2 Basic Concepts
In Class X1, we have studied trigonometric functions, which are defined as follows:
sinefunction,i.e, sine: R - [-1, 1]
cosinefunction, i.e,, cos: R — [-1, 1]
T
tangent function, i.e, tan: R —{ x: x=(2n+ 1) > ne Z} >R

cotangent function, i.e, cot: R—{ x:x=nn,ne Z} - R

T
secant function, i.e., sec: R—-{ x: x=(2n+1) 5. ne Z} >R-(-1,1

cosecant function, i.e., cosec: R—{ x:x=nm, ne Z} > R-(-1,1)
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We have also learnt in Chapter 1 that if f: X—Y such that f(X) = yisone-one and
onto, then we can define aunique function g : Y —X such that g(y) = x, wherex e X
andy =f(x), y € Y. Here, the domain of g = range of f and the range of g = domain
of f. The function g is called the inverse of f and is denoted by f~. Further, g isaso
one-one and onto and inverse of gisf. Thus, g=*= (f )= f. We also have

(fFof)()=171(f(x)=1f7(y) =x
and fof)(=F("y) =t =y
Since the domain of sine function is the set of all real numbers and range is the

closed interval [-1, 1]. If werestrict its domain to{_—zTE : ﬂ , then it becomes one-one

and onto with range [— 1, 1]. Actually, sine function restricted to any of the intervals

ﬂ,__”: I I, F, S—R} etc., is one-one and its range is [-1, 1]. We can,
2 2 2 2 2 2
therefore, define the inverse of sine function in each of these intervals. We denote the

inverse of sine function by sin™ (arc sine function). Thus, sin™* is a function whose

domainis[— 1, 1] and range could be any of the intervals [_—Z’n _—n} : [_n E} or

2"l 22

B%ﬂ and so on. Corresponding to each such interval, we get a branch of the

function sin*. The branch with range [gﬂ is called the principal value branch,
whereas other intervals as range give different branches of sint. When we refer

to the function sin, we take it as the function whose domain is [-1, 1] and range is
- T . . - T

{7,5}.Wewnte snt:[-1,1] - {75}

From the definition of the inverse functions, it follows that sin (sin x) = x

T T
if —1<x<landsin®(sinx)=xif —ESXSE. In other words, if y = sin? x, then
sny=x.
Remarks

(i) Weknow from Chapter 1, that if y = f (x) isaninvertiblefunction, then x =1 (y).
Thus, the graph of sin™* function can be obtained from the graph of original
function by interchanging x and y axes, i.e,, if (a, b) isapoint on the graph of
sinefunction, then (b, a) becomesthe corresponding point on the graph of inverse
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of sinefunction. Thus, the graph of the function y = sin™* x can be obtained from
the graph of y = sin x by interchanging x and y axes. The graphs of y = sinx and
y=sintxareasgiveninFig 2.1 (i), (ii), (iii). The dark portion of the graph of
y = sin x represent the principal value branch.

(if) It can be shown that the graph of an inverse function can be obtained from the
corresponding graph of original function asamirror image(i.e., reflection) along
the line y = x. This can be visualised by looking the graphs of y = sin x and

y =sin* x as given in the same axes (Fig 2.1 (iii)).
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Like sine function, the cosine function isafunction whose domain is the set of all

real numbers and range isthe set [-1, 1]. If we restrict the domain of cosine function
to [0, «r], then it becomes one-one and onto with range[—1, 1]. Actualy, cosinefunction
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restricted to any of theintervals[—m, 0], [O,x], [®, 2n] etc., is bijective with range as
[-1, 1]. We can, therefore, define the inverse of cosine function in each of these
intervals. We denote the inverse of the cosine function by cos™ (arc cosine function).

Thus, cos? is a function whose domain is [-1, 1] and range Y
could be any of the intervals [-x, 0], [0, @], [, 27 etc. N
Corresponding to each such interval, we get a branch of the 5%
function cos™. The branch with range[0, ] iscalled the principal 2n >
value branch of the function cos™. We write 3n
cos? 1 [-1, 1] — [0, 7. < -
The graph of the function given by y = cos? x can be drawn %
in the same way as discussed about the graph of y = sint x. The B 1
graphsof y=cosxandy = cos*xaregiveninFig 2.2 (i) and (ii). X< 10 i >X

1 —3n
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X /—Zﬁ—QV% 01 N 3n 2n s
2 - 2 / -
v
Y’ Y’
y=cosx y=cos'x
Fig2.2(i) Fig2.2 (ii)

Let us now discuss cosec™x and secx as follows:

1
Since, cosec X = Snx’ the domain of the cosec functionistheset {x: xe R and

Xx#nm ne Z} andtherangeistheset {y:ye R,y>1ory< -1} i.e, the set
R — (-1, 1). It meansthat y = cosec x assumes all real valuesexcept—-1<y<1landis
not defined for integral multiple of w. If we restrict the domain of cosec function to

T T

{_E’E}{O} , thenitisonetooneand onto withitsrangeastheset R —(— 1, 1). Actudly,
_ _ _ -3t —-=n -T T

cosec function restricted to any of the intervals {717}{—“} : {75} - {0},

T 3%
[—,—}—{n} etc., is bijective and itsrange is the set of all real numbers R — (-1, 1).
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Thus cosec can be defined as afunction whosedomainisR — (-1, 1) and range could
o T 3n

be any of the intervals { > 2} {G { 2} {-, {2 2} {n} etc. The

function corresponding to therange [7 —} {0} iscaled the principal value branch

of cosec™. We thus have principal branch as

cosec? : R—(-1, 1) - [_— —} {0

The graphs of y = cosec x and y = cosec™* x are given in Fig 2.3 (i), (ii).

N &o—o—o—0o——o0—0—o0—o—> X
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y=cosec 'x
y = cosec x

Fig2.3(i) Fig 2.3 (ii)

1 o
Also, sincesecx = osx’ thedomainof y=secxisthesetR —{x:x=(2n+ 1) o

ne Z} and rangeisthe set R — (=1, 1). It means that sec (secant function) assumes

al real values except —1 <y < 1 and is not defined for odd multiples of g If we

T
restrict thedomain of secant functionto [0, ] —{ 5 }, thenitisone-one and onto with
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its range as the set R — (-1, 1). Actually, secant function restricted to any of the

intervals[—m, 0] —{ _—Zn}, [0, ] — g} [, 2n] —{ 37“} etc., ishijective and itsrange
iISR—{-1, 1} . Thus sec™ can be defined as afunction whose domainisR— (-1, 1) and

- 3
range could be any of theintervals [, 0] —{ 7“}, [0, 7] —{g}, [, 21] —{ 7“} etc.

Corresponding to each of theseintervals, we get different branches of the function sec™.

The branch with range [0, wt] — { g} is called the principal value branch of the

function sec?. We thus have

sec® 1 R - (-11) - [0,7] ~{ 3}
The graphs of the functionsy = sec x and y = sec* x are given in Fig 2.4 (i), (ii).
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Finally, we now discuss tan and cot™

Fig 2.4 (ii)

We know that the domain of the tan function (tangent function) is the set

T
{x:xe Rand x# (2n +1) 5. ne Z} and therangeis R. It means that tan function

T
isnot defined for odd multiples of 5 If werestrict the domain of tangent function to
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(__Zn g j , then it is one-one and onto with itsrange as R. Actually, tangent function

: . -3t —=« -T T n 3n .
restricted to any of the intervals (7?) ( > ’2)’ (2, > j etc., isbijective
and its range is R. Thus tan™* can be defined as a function whose domain is R and

. S I B O h
range could be any of theintervals 5 5 2223 and soon. These
- T
intervalsgivedifferent branches of thefunction tan™. The branch with range (7 S j
is called the principal value branch of the function tan™.

We thus have
tant: R — (_—REJ
2 2
The graphs of the function y =tan x and y = tan*x are given in Fig 2.5 (i), (ii).

y=tan'x
y=tanx

Fig 2.5 (i) Fig 2.5 (ii)

We know that domain of the cot function (cotangent function) is the set
{x:xe Randx#nm, ne Z} and rangeisR. It means that cotangent function is not
defined for integral multiples of . If we restrict the domain of cotangent function to
(0, ™), then it ishijective with and itsrange asR. In fact, cotangent function restricted
to any of theintervals (-, 0), (0, &), (n, 2r) etc., isbijective and itsrangeisR. Thus
cot~* can be defined as a function whose domain is the R and range as any of the
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intervals (-, 0), (O, m), (m, 2r) etc. These intervals give different branches of the
function cot™. The function with range (0, i) is called the principal value branch of
the function cot™. We thus have

cot?: R — (0, m)

The graphs of y = cot x and y = cot*x are given in Fig 2.6 (i), (ii).

y=cotx
Fig2.6 (i) Fig 2.6 (ii)
The following table gives the inverse trigonometric function (principal value
branches) along with their domains and ranges.

st [,1] o -2
: - 2'2]
cost : -1, 1] - [O, 7]
cosec?t : R-(-11) - —E,E —{0}
L 2 2]
sect 1 R-(-L1) - [0, 7] —{g}
tan™t : R - (_—n,E)
2 2
cot™ ; R - (0, m
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1
1. sin’x should not be confused with (sinx)™*. In fact (sn X)*= —— and

similarly for other trigonometric functions. Snx

2. Whenever no branch of an inverse trigonometric functions is mentioned, we
mean the principal value branch of that function.

3. The value of an inverse trigonometric functions which lies in the range of
principal branch is called the principal value of that inverse trigonometric
functions.

We now consider some examples:

1
Example 1 Find the principal value of sin (ﬁj .

1 1
Solution Letsin? | —= [=y. Then, siny= —.
(ﬁj Y =2

)

N a
N a

We know that the range of the principal value branch of sint is (—

1 1
S n(%) = ﬁ . Therefore, principal value of sin? (ﬁj is %

Example 2 Find the principal value of cot™ (_—1J

NE

-1
Solution Let cot? (Ej =y. Then,

mty:%z_cm(%) = cot(n—%j = cot(z—;j

We know that the range of principal value branch of cot™ is (0, ®) and

cot 2n)_ 1 Hence, principal value of cot™ (;1} is 2n
3 - \/é . 1 p p \/é 3
| EXERCISE 2.1
Find the principal values of thefollowing:
1 3
1. sin? 5 2. cost | 5 3. cosec? (2)

4. tan? (—/3) 5. cos? (-%) 6. tan™ (1)
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- (%) 8. cot* (+/3) 9. cos™ (_%j

10. cosec™ (—/2)
Find thevaluesof thefollowing:

—1, 1 _1 f 1 _1 1 l f 1 l
11. tan*(1) + cos 5 +sin > 12. cos +2sin

13. If sintx =Yy, then

(A) O<ysm (B) ~5<y<~
== 2772
) 0 D) —=<y<—
(C) 0<y<m (D) —5<¥<5
14. tant +3-sec(-2) isequal to
i T 2n
(A) m (B) ~3 © 3 (D) 3

2.3 Propertiesof InverseTrigonometric Functions

In this section, we shall prove some important properties of inverse trigonometric
functions. It may be mentioned here that these results are valid within the principal
value branches of the corresponding inverse trigonometric functions and wherever
they are defined. Some results may not bevalid for all values of thedomains of inverse
trigonometric functions. In fact, they will be valid only for some values of x for which
inverse trigonometric functions are defined. We will not go into the details of these
values of x in the domain as this discussion goes beyond the scope of this text book.

Let usrecall that if y=sinx, thenx=sinyandif x=siny, theny = sin™x. Thisis
equivalent to

. . . . T T
sn(sintx)=x,xe [-1,1] andsin? (sSnx) =X, X e [_E’ E}

Sameistruefor other five inverse trigonometric functions as well. We now prove

some properties of inverse trigonometric functions.

1
1. (i) sn? N cosec?x,x21lorx<-1

1
(i) cosl;zseclx,leorxs—l
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1
(iii) tan™ M cot* x,x >0
To prove the first result, we put cosec x =y, i.e., X = COSec y

1
Therefore < siny
o1
Hence sint N y

or sint % = cosect x
Similarly, we can prove the other parts.
2. (i) snt(x)= —dntx, xe [-1, 1]
(i) tant () =—tan'x, x € R
(i) cosect (x) = —cosect x, |x| 21
Letsint(—x) =y, i.e,—x=sinysothat x=—-sny,i.e, x=sn(-y).
Hence sntx=—-y=—-sn?(-x)
Therefore  sin? () = —sin?x
Similarly, we can prove the other parts.
3. (i) cos*(—x) =m —cos'x, x e [-1, 1]
(i) sec? (x) =m —sec’x, x| 21
(iif) cot® (x) =m —cot?x, x € R
Let cos® (—x) =yi.e, —Xx=cosy sothat x=—cosy = cos (t — )
Therefore costX=m—y =7 —cos?t (—X)
Hence cost (X) = —cos? x
Similarly, we can prove the other parts.

T
4. () sin?tx + cos?t x = 5 XE [-1,1]

Y
(i) tan™x + cot*x = S X€ R

T
(iif) cosec™x + sectx = o |x] 21
- - Tc
Letsin'x=y. Thenx=siny = cos E_y

18 T . 4
Therefore cos?t x = E_y = E_Sm X
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T
Hence sintx+ costx= 5
Similarly, we can prove the other parts.
ty

5. (i) tan?x + tan?y = tan™ X Xy <1
(i) tanx —tanty =tan? =Y xy>—1
1+xy
(iii) 2tan-x = tan 2X2 x| <1
1-xX

Lettantx=06andtan'y=¢. Thenx=tan 0,y =tan ¢
tan0+tan¢g  x+y

tan(6+¢) = =
Now (0+4) 1-tan6tand 1-xy
o Xty
Thisgives 0+ ¢ =tan -y
1 1 1 X+y
Hence tan? x + tan? y = tan Ty

Inthe aboveresult, if wereplacey by —y, we get the second result and by replacing
y by x, we get the third result.

6. (i) 2tan? x = sin: 1?’;2 x| <1

2
(i) 2tan” x = cos* =X x>0
1+x?
iii) 2tantx = tant —2X_ _1<x<1
1 2
—X

Let tan? x =y, then x = tany. Now
2% _ 2tany
12 9 1+tan’y
=simt (sin 2y) = 2y = 2tan x

sim?
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| , 1o X 1 —1‘ta”2 y
Also cos 1o Cos™ 1 ian? y

= cos? (cos 2y) = 2y = 2tant X

(iii) Canbeworked out similarly.
We now consider some examples.

Example 3 Show that

1
(i) sint (2x~/1— XZ) =2sintx, ——=<X<

1
(i) sin? (2xy1-x2) =2 cos?x, ﬁgxs1

Solution
(i) Letx=sn®6.Thensin™x=0.Wehave

sin? (2x1-x2) =sin? (2sin6+/1-sin?0
= sin?(2sinB cosh) = sin*(sin20) = 20
=2sntx

N
Sl

(i) Takex = cos 0, then proceeding as above, we get, Sn™ (2x« /1— x? ) =2costx

E le 4 Show that tan 1t 2o a3
xample oW an 5 11 4
Solution By property 5 (i), we have
1 2
1 2 21 13
L.H.S = tan* =+tant— =tan‘1ﬁ=tan ’1E = tan'==RH.S
2 11 1_})(3 20
2 11

COS X
1-sinx

Example 5 Express tan‘l[ ) , —g<x<g in the simplest form.

Solution We write
X
2 2
cos? X +sin? X 2sin X cos®
2 2 2 2

tanl( COSX

cos? X_gn2 X
= tan?
1—sinxj

45
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I X . X X . X
cos=+sSn= || cos=—sin=
e )
- X . X)a
cos- —sin=
o303
cos> +sin> 1+tan
= tan_l # :tan_l 2
X . X X
cos--sn—- 1-tan>
L 2 2 2
= tan| tan| D+ 2| |24 X
a4 2)] a2
Alternatively,
e . [ m—2X
COSX sn(z—xj sm( 2 j
tan‘l(1 : jztan‘1 —|=tan™ — S
—sinx 1—cos(n—xj 1—cos(n_2 X

. (TE— ZXJ (n— ZXJ
2sin Cos
A 4 4

tan™*| cot n—ZXH :tan‘l{tan(g—n_zx

tan™

- 1 : .
Example 6 Write cot 1[?] |x]>1inthe simplest form.
X" -1

Solution Let x = sec 6, then \/x? —1= +/sec?9—1=tano
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Therefore, cot™

= cot* (cot 8) = 6 = sec x, which is the simplest form.

1
VX2 -1

3
Example 7 Prove that tan™ x + tan™ 2x = tan? 3X_X2 | x| < 1
1-x2 1-3x° )’ J3

Solution Let x = tan 6. Then 6 = tan™* x. We have

RHS - tan (3x—x3]_tan_1(3tan6—tan3ej
. . ) ™ 2 -

1-3x 1-3tan?0

=tan™ (tan30) = 30 = 3tan*x = tan x + 2 tan™* x

2x
=tan? x + tan 12 - L.H.S. (Why?)

Example 8 Find the value of cos (sec® x + cosec™ X), [x| =1

Solution We have cos (sec™ x + cosec™ x) = cos (gjz 0

| EXERCISE 2.2|
Provethefollowing:
11
i x = st (3x— 4x0) xe| —=. 1
1. 3sin?tx=sin? (3x —4x3), 6{ > 2}

2. 3cost x =cos? (4x¥— 3x), Xe E 1}

2 a7 a1
A ttan T —=tan 1=
ST 24 2
1 1 31
4 2tant=+tant==tant—
2 7 17
Writethefollowing functionsin the simplest form:
Vi+x2 -1 a1
5. tantX2T2 T2 x20 6. tan x> 1
tan ” X 1 X

_ 1- cosx X—Sin X
7. tant ,/ X< T 8. tanflM , X<T
1+ cosx COSX+SINnX
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3a’x-x° -a
o A < X< —
10- ten (a3—3ax2j’a>o’ NE 3

Find the values of each of thefollowing:
.41
11. tan‘{2cos(23| n™" Eﬂ 12. cot (tana + cot™a)

1] . 4 2% 4 y2
13. tanE sn 7 +C0S 2 |, |X|<l,y>0andxy<1

1+x 1+y

.41 _
14. If sin (sm 1§+COS 1X)=1,thenfind the value of x

4 x-1 4 X+1 = )
15. If tan——=+tan""——==— then find the value of x
X—2 X+2 4

Find the values of each of the expressions in Exercises 16 to 18.
16. Sin‘l(sinﬁj 17. tan‘l(tan3—nj
3 4
. 13 3
tan| sin™"=+cot =
o i
-1 Tm).
19. cos (cos€j|sequal to
A ﬁ B 5_7'C C E D E
") 5 ®) 5 © 3 (D) %
. T .1 1 .
20. sin| =—sin""(-=) | isequal to
(3 (z)j o

(D) 1

AP

e B) = c
(A) 5 (B) 3 ©
21. tan*/3-cot(—/3) isequal to

(A) = ® -5  (©0 (D) 23
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Miscellaneous Examples

i .1 3n
Example 9 Find the value of Sin (smg)

. . _q,. . 3m, 3m
Solution We know that sin"*(sinx) = x. Therefore, sin (smg)=€
3n T T L o .
But gsé[—?ﬂ , Which isthe principal branch of sin™ x
However in Y = sin(r—5 =sin2® and Ee{—ﬁ 5}
57 57 75 5 2'2
. . 3m . . 21 21
sin}(sin=")=sin}(sin=—) ==
Therefore ( 5) ( 5) z

Example 10 Show that SirFlE— Sin&i: Cos’lﬁ
5 17 85

Solution Let sin’1§=x and sin’liz y
5 17

Therefore sinx=§ and siny:E
5 17

Now cosx=+1-sn’x = /1—2%=g (Why?)
. 64 15
cosy=y1-sin’y= [1-—— ==
and y y 289 17

We have COS (Xx—y) =cosX cosy + sinxsiny
4 15 3 8 &4
= =X—+=X-—7—=—
5 17 5 17 85

84
Theref X— =cosl(—)
erefore y o

Hence sin*1§—sin’13= cos’l%
5 17 85
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Example 11 Show that a2, cost? S,
13 5 16
Solution Let sinflgzx, cos’lﬂ: 2 tan’lﬁ: z
13 5 16
Then sinx:g, cosyzil, tanz=§
13 5 16
Theref cosx—E sin _3 tanx—E and tan _3
erefore 13 y=-—, 5 y 7
12,3
tanx+tany 5 4 63
tan(x+y)=—— L =———5 =——
We have ( y) 1—tanxtany 1_Ex§ 16
Hence tan(x+y)=—-tanz
i.e, tan (x +y) =tan (-2) ortan (x + y) = tan (n — 2
Therefore X+y=—z o X+y=m—-2
Since X,y and z are positive, x + y = —z (Why?)
Hence X+y+z=7 or Sin'ngrCOS'lﬂthan'lg—n
yrz=m 13 5 16

Example 12 Simplify tan‘{

acosx—bsnx| . a
—— |, if —tanx>-1

Solution We have,

tan‘l{

bcosx+asinx b
acosx—bsinx a tanx
acosx-bsnx | il boosx | _ 01| b
bcosx+asinx bcosx+asinx
e — 1+—tanx
bcosx

= tan‘lg —tan™* (tanx) = tan‘lg—x
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T
Example 13 Solve tan™ 2x + tan™ 3x = 2
T
Solution We have tan™ 2x + tan™ 3x = 2
af 2xX+3X
or tan | X ¢
1-2xx3x 4
— 5x T
i tan ! = —
€ (1— GXZJ 4
Theref > —tant -1
eretore -6 4
or 6x*+5x—1=0i.e,(6x—1) (x+1)=0
1
which gives X = s orx=-1

Since x = — 1 does not satisfy the equation, asthe L.H.S. of the equation becomes

1
negative, XZE isthe only solution of the given equation.

Miscellaneous Exercise on Chapter 2

Find the value of thefollowing:

1 cos™t (cosﬁj 2 tan‘l(tanﬁj
6 6
Prove that
3. Zsin‘1§=tan‘1% 4. sin‘12+sin‘1§=tan‘12
5 7 17 5 36
L4 412 .33 L1243 . .56
5 cost—+cost==cost= 6. cost—=+sntZ=dnt=
5 13 65 13 5 65
7. tan‘lgzsin‘liJrcos‘1§
16 13 5

1 1 1
8. tan‘ll+ tan 1= +tan =4+ tan ==L
5 7 3 8 4
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Prove that

1 1-
9. tm‘lﬁzacos‘l(ﬁ) ,xe [0,1]

10 oot J1+8nx++/1-sinx X Xe(o
' Jl+sinx—+1-sinx | 2°
ll tan_l M —E_lcos_lx —
' Vi+x+41-x ) 4 2 ’
97[: 9 . ,11 9 . ,12\/5
12, X _Zgptz-Zgnts
8 4 3 4 3

Solvethefollowing equations:

13. 2tan? (cos x) = tan! (2 cosec x) 14.

NI

)

NG

1 < x<1 [Hint: Put x = cos 26]

tan‘ll_—xzétan‘1 X, (x> 0)

1+ X

15. sin(tan?Xx), |[x| < lisequa to
A) = B) © — ©
() V1-x? ( 1-x? 1+ %2 1+ %
16. sint(l-x)—2sin*x= g,thenxisequal to
A) O l B) 1 l C o0 D l
(A) 0,5 (B) 15 ©) D) 3
L x AX—y
tan| = |—tan™t i
17. (yj X+y isequal to
A 2 ®E o o=
2 3 4 4
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Summary

# Thedomainsand ranges (principal value branches) of inverse trigonometric

functionsaregiveninthefollowing table:

Functions Domain Range
(Principal Value Branches)
= sn? [—_’t E}
y=sintx [1, 1] s
y = cos™ L 1] [0, 7]
y = cosect x R-(-11) [__“E} —{0}
2 2
T
y =sectx R-(-1,1) [O’R]_{E}
= tan (_E E)
y = tanrt x R >
y = cot* x R (0, )

1
@ sinx should not be confused with (sinx). In fact (sin x)* = —— and

similarly for other trigonometric functions.

snx

4 The value of an inverse trigonometric functions which lies in its principal
value branch is called the principal value of that inverse trigonometric

functions.

For suitable values of domain, we have

¢ y=gnlx=x=sny

*

*

sin(sin? x) = x

1
sin? ;z cosect x

1
cost ; = secx

1
tan™ X cot™ x

X=sny = y=s8n'x
sint (sinx) = x

cos?(—x) = — costx

cot? () = — cot* x

sect! (X) = —sectx



MATHEMATICS

¢ sint(x) = —sintx ¢ tan!(—x) = —tantx
T
¢ tantx +cot?x = P & cosec? () = — cosec? x
: T T
2 S|rr1x+coslx=§ 2 coser:lx+sec*1x=§
‘ 1 1, 1 X+y ‘ 1 1 2X
- + - = - 2 = -
tanx + tany = tan 7 taix = tant T3
X-y
¢ tanlx —tanly = tan? 1
+ Xy
2X 1-x°

= cos*
1+ x° 1+ %2

¢ 2tantx=sn?

Historical Note

The study of trigonometry was first started in India The ancient Indian
Mathematicians, Aryabhatta (476A.D.), Brahmagupta (598 A.D.), Bhaskara |
(600A.D.) and Bhaskarall (1114 A.D.) got important results of trigonometry. All
this knowledge went from India to Arabia and then from there to Europe. The
Greeks had also started the study of trigonometry but their approach was so
clumsy that when the I ndian approach became known, it wasimmediately adopted
throughout the world.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and the introduction of the sine function represents one of
the main contribution of the siddhantas (Sanskrit astronomical works) to
mathematics.

Bhaskaral (about 600A.D.) gaveformulaeto find the values of sinefunctions
for angles more than 90°. A sixteenth century Malayalam work Yuktibhasa
contains a proof for the expansion of sin (A + B). Exact expression for sines or
cosines of 18°, 36°, 54°, 72°, etc., were given by Bhaskara ll.

Thesymbolssin? x, cos? x, etc., for arc sin x, arc cosx, etc., were suggested
by the astronomer Sir John F.W. Hersehel (1813) The name of Thales
(about 600 B.C.) isinvariably associated with height and distance problems. He
is credited with the determination of the height of a great pyramid in Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
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height, and comparing theratios:

E—D—t 'saltitud
S s—an(suns itude)

Thalesis also said to have calculated the distance of a ship at sea through
the proportionality of sidesof similar triangles. Problems on height and distance
using the similarity property are also found in ancient Indian works.

—_— % —
L4



