SCIENCE FICTION

JULY 1967 60 CENTS (5/-)

SCIENCE FACT

THE MAN FROM P.I.G. Harry Harrison

This is a fact article. It is, in fact, the legal annual report of a genuine corporation, Listening, Inc., a privately owned stock corporation, closely held, and—sorry about that! with no stock for sale.

Annual Report

The research work Listening, Inc. is actually carrying out, however, sounds so much like some of our more advanced science fiction that when I got this annual report, it seemed necessary to publish it to let the readers see what's actually being done now!

51

INFORMATION COMMUNICATION KNOWLEDGE

19 December 1966

6 Garden Street Arlington, Mass. 02174 USA

- Introduction
- Dolphin Communications Program
- ► Man-Dolphin Translator
- Sondol
- Spatial Localization: Ears
- Phoneme Detector
- Square Wave Speech Generator
- ► Neurophone
- ► Spectrum Analyzer
- Color Sonar
- Computer Recognition of Environments

Imagine sitting by the seashore Imagine sitting to the waves. If you and listening to the waves. If you and listening to the waves. If you and imagine that the sound of can, now imagine that the sound of waves along the shore is talking to you. The sounds might say, "In you. The sounds might say, "In you of you is sandy, sloping beach, front of you is sandy sloping beach, front

Now can you imagine wind in a forest, and the sounds tell of leaves and branches, of large and small trees, and of the brush and forest floor. The sound from the floor is a quiet sound, the trunks of the trees are columns of whispers, and the leaves are a flutter and rustle of sound. Again, no matter the weather, whether rain or wind, the sounds tell of the same forest, and the voices may change but the message is the same except as the seasons change the character of features of which the whispers comment.

These are not merely romantic imaginings; they are facts for the observing. Doesn't your kitchen sound like your kitchen, and your living room sound like your living room? Isn't the office of one character to be heard and the neighborhood bar another? Not by reason of the sounds of voices, footsteps, and movement alone, but by reason Annual Report

of what the rooms do to the sounds which fill them. Movie sound men have been aware of this for decades, and always tape silence on the set, for dubbing if necessary. Inescapably, each feature of our environment modifies the sound of nature in its own way, which we may hear, if we listen.

Now think of the human vocal tract as a room of mobile walls, and that the shape and substance of the room can be heard when filled with sound. And this whether by whisper, shout, or song. Or by a buzzer, a belch, or an electronic reproduction of a train. Isn't it clear that the particular sound is of lesser importance than what the structure does to the sound? We may say that sound is *transformed* by the vocal tract, and that the resultant sound carries the marks of having been there.

Consider that sound is transformed by its environment, then if it were possible to create an inverse to the environmental transformation, we would have a picture of that environment. We at Listening are learning how to do this.

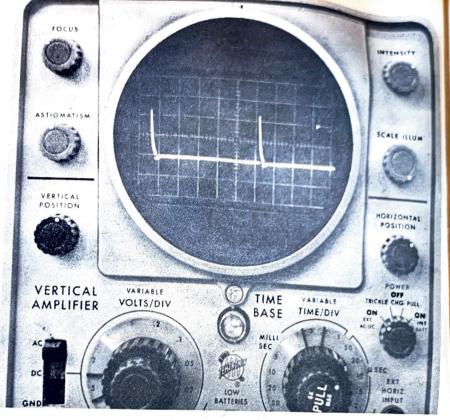
We are rapidly becoming expert at information, communication, and knowledge in the recognition and synthesis of acoustical signals and environmental characteristics.

The following is a summary of Listening activities and products resulting from our specialized knowledge in the field.

53

Dolphin Communications Program One of Listening's current activities is the establishment of verbal communications with the species Tursiops Truncatus, or Dolphin. This work is being performed under contract with the U.S. Naval Ordnance Test Station, China Lake, California. At present we have two dolphins located in a lagoon, near the University of Hawaii facility on Coconut Island off of Oahu, Hawaii. We have a language of eighteen words in use between man and dolphin at this time.

Man-Dolphin Translator


One of the products evolving out of the program is a translator to detect human speech forms and translate them into a whistle language using sounds normally used by Dolphins. The translator's mate, the DMT (Dolphin-Man-Translator) performs the reverse function, making sounds like human speech from dolphin whistle inputs.

Sondol

The Sonic Dolphin is an acoustical generator that produces pulses very similar to those produced by Dolphins in echo location and recognition when darkness or muddy water prevents the use of vision.

Sondol has been tested by human subjects and shows potential as an aid to the blind in sensing his environment and to the scuba diver for perception in murky waters. With practice, anyone with normal

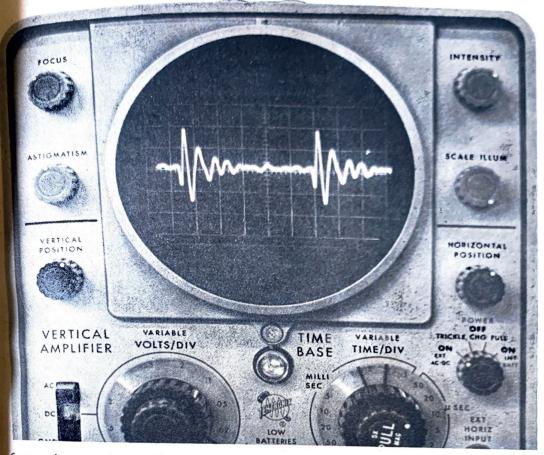
Ear is an array designed to be used in conjunction with the human computer,

hearing can find his way around in total visual darkness.

The unique feature of the Sondol is the use of the human computer as a readout device.

A trained diver with practice should be able to identify objects accurately under water at distances up to three hundred yards.

Spatial Localization: Ears


Research by Dr. Dwight Wayne Batteau, President of Listening, has resulted in a most unusual product, the ear.

Dr. Batteau's research under Navy contracts into the phenomenon of human spatial sound localization has revealed that the pinna, or external ear, is a very delicate computer-steered array which produces transformations on incoming sound fronts. These transformations are then used to compute sound source location in space.

We have three main products as a result of this research.

A. Air-Ears: These are two microphones mounted in molds of human pinnae and spaced approximately the width of the human head to produce a binaural pickup. Tape recordings made with the "ears" retain the localization trans-

Analog Science Fiction / Science Fact

formation and position is readily identified when the result is listened to using headphones. If the eyes are shut, one is seemingly magically transported to the locale of the recording. Vertical, horizontal, and distance of sounds is preserved not just the left or right as in recordings made with bare stereo microphones.

One of the most interesting uses for the ears is in the recording of conferences or lectures. In this application, the location of the speakers is preserved and the ability to put attention on different people is retained; for example, if two or Annual Report more people are talking at one time, one can listen selectively to any one person without interference from the others.

Recordings made in this manner could be played through many times in order to "hear" everyone. The ability to pay attention selectively is called the "cocktail party effect." If the same recording were made with bare microphones, the voices would all have the same "location" and would result in confusion of speakers.

B. Underwater Ears: The underwater ears are stainless steel ears eleven inches in size designed for

localizing and recording underwater. The exact location of sounds under water $\pm 8^{\circ}$ can be identified in real time by a listener. The locations can be recorded permanently on tape or disc and listened to later ... as previously—azimuth, elevation, and range are easily identi-

C. Location Synthesis: As a result fiable. of ear research we can program a computer to take any sound and produce variable transformations on it to give any chosen subjective "locale." Possible uses for this computer are many, among these are exotic spatial music, not only stereo, but up and down and distance as well.

One of the problems of building a space station, be it outerspace or innerspace, is that personal orientation is lost in the use of intercoms or radio communications.

With localization computation, the various people could be given synthetic positions and thus retain proper orientation to each other. If Joe calls you over the radio, you know instantly that Joe is behind you and below you to the right at an angle of 45° and about thirty feet away. Without the system, you would have no idea where Joe is located.

Phoneme Detector

In the development of the Man-Dolphin Translator, it became necessary to recognize various speech patterns electronically. Part of this

Detector Phoneme various the system is recognizes "marks" or features given vocal

pulses by the vocal tract. The Phoneme detector coupled

with a vocal pulse detector and a fricative detector-also appropriate logic could enable verbal control of ma. chines in any area requiring speech recognition.

Square Wave Speech Generator A rather unusual development is

the DDCS which converts human speech into square waves which are completely recognizable. The device offers potential as a ninety-five percent efficient modulator to radio transmitters, hearing aids, hydrophone drivers (for speech under water), an easy form for scrambling and unscrambling, and for use in speech synthesizers and recognition equipment.

Neurophone

The Neurophone is a radio transmitter designed to produce the phenomenon of hearing electrically without mechanical vibration. The device was invented by Pat Flanagan in 1959 and was widely reported in leading magazines.

Mr. Flanagan has sold development rights to Listening, Inc.

The Neurophone is being marketed by Listening as a research instrument to qualified institutions interested in working with the phenomenon.

Analog Science Fiction / Science Fact

60

Spectrum Analyzer

The MSA-1 is a real time spectrum analyzer originally designed to print out an analysis of dolphin whistles. Thirty filters are used to construct a thirty point spectrum diagram on electrically sensitive paper.

The analyzer can be tailored to fit any spectrum up to 100KHz. and can be changed by the replacement of filter cards.

Color Sonar

Color Sonar is an active sonar system developed by Dr. Batteau to give a variable color readout to aid in identification of objects under water regardless of distance.

The property of the materials of which an object is made to reflect sound of different frequencies with different efficiency is called "acoustic coloration." This is the physical property made use of in Color Sonar. In order to present significant differences in material or obacoustical iect coloration. the spectrum is translated into a visible color spectrum to produce a color photograph, or to present color distinguishability to an observer.

In this manner, the difference between a whale and a submarine would be easily recognizable due to different color readouts.

Computer Recognition of Environments

When a Dirac pulse is transmitted into a reverberant environment, the features of the environment transform or filter the pulse such that the return signal contains a "picture" of the environment. See Diagram.

Our work in computer recognition programming will soon enable us to take a "picture" with a sound pulse, create an inverse, and draw a binocular 3-D picture of that environment with the computed information.

Sound pictures taken under water would enable man to "see" and identify details of objects previously impossible to recognize by any other method but raising them to the surface.

The sound picture system coupled with Color Sonar would enable recognition of type of material at the same time.

Copyright © 1966 Annual Report

DIRAC

Listening, Inc.