

Space-grade Gallium Arsenide IQ and Modulator Arrays for VHTS Photonic SatCom Systems

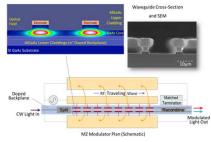
Robert Walker, Nigel Cameron, Yi Zhou, Stephen Clements aXenic Limited, Thomas Wright Way, Sedgefield, Durham TS21 3FD, UK

Why GaAs Electro-Optic Modulators?

Electro-optic modulators are a Critical Technology for microwave photonic payloads, with increasing interest in 50°GHz .

Of the possible material bases for such devices, GaAs (with AlGaAs providing refractive-index contrast) features:

- A fast Linear Electro-Optic (LEO) effect;
- AlGaAs lattice-matched to GaAs for all compositions providing unfettered design potential;
- o High electron mobility and intrinsic resistivity;
- o Conductivity engineered by epitaxial doping;

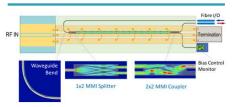

GaAs has excellent environmental credentials:

- o Radiation resistant
- o Bias-point stability: temperature control not required

Space-qualified foundry manufacture route

- Well proven MMIC-compatible manufacture to industry-standard design-rules
- Preferred material for solar-cells in space and for mm-wave electronics (MMICs)

GaAs/AlGaAs Mach-Zehnder Modulator

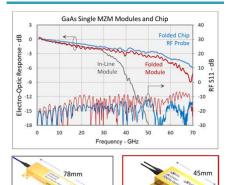

RF/Optical velocity-matching keeps the RF wave in-step with the resultant modulation, allowing a long interaction for low drive-voltage and high bandwidth.

- o Velocity-matching by means of a slow-wave structure.
 - Segmented electro-optic electrodes arrayed along a CPW coplanar transmission-line.
 - RF velocity is controlled by the capacitive loading of the electrodes and is set by the geometry and filling-factor of the segmented electrode array.

RF loss/dispersion is hugely influential and must be carefully managed to achieve >50GHz bandwidths.

 CPW with arrayed ground-strap bond wires provide suitable RF properties.

Folded Modulator Topology

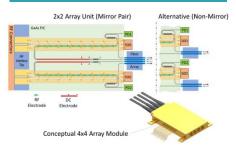

Array-compatible configuration has a simple direct \underline{RF} path but a folded $\underline{optical}$ path.

- o Preserves RF feed integrity for higher bandwidth
- Perfect channel balance in arrays and IQ modulators
- o Chip-length barely exceeds RF/Optical interaction
- o Space-hungry fibre interfacing all at one end.

Enabling Guided-wave Optics:

- Low-loss waveguides (<0.3dB/cm). State-of-art RIE process provides smooth vertical walls.
- Low-loss (<0.05dB) corner-bends with optimised graded curvature
- Low-loss (<0.1dB) Multi-Mode Interference (MMI) Structures
 - Splitters
 - Recombiners
 - Mode-filters
 - Power-taps

Single MZ Modulators


aXenic folded modulators show clear advantage in terms of performance and package footprint.

MZM Module

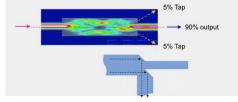
- \circ Design objective was for an electro-optic response above –5dB at 50GHz with $V\pi$ below 5V.
- o 4.65V achieved using 18mm interaction length.

In-Line MZM Module

Modulator Array Topology

- NxN modulator array requires the folded configuration with straight-through RF
- Many different ways to configure the fibre interfaces: e.g. (as shown)
 - Mirror-pair with x2 or x4 fibre blocks
 - Repeat units with x2 fibre I/O blocks

New Design Features 1) Optical Power Taps

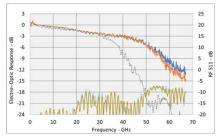

1) Optical Power Taps

Though environmentally stable, GaAs modulators still require active <u>bias-control</u>. Dependence of $V\pi$ on wavelength and temperature is inherent to the material. Optical monitor port:

- Complementary MZ output (illustrated opposite) is a good option for pilot-tone control methods.
- Direct power-tap needed where pilot-tone control is unsuitable or where both complementary outputs are wanted for a differential detection system.

Integrated optical power-tap using perturbed 1x1 MMI:

- o 1x1 re-imaging MMI commonly used as mode filter.
- Odd-order (antisymmetric) modes are imaged to the output 'shoulder' regions.
- o Perturbed input waveguide (offset or angled) generates controlled, stable odd-mode component.
- Faceted shoulders totally-reflect the tap-light to a side-port.



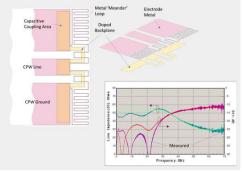
IQ Modulators with $V\pi$ <3V

IQ modulators are a specialised x2 modulator array

- Mirror-pair
- o Single optical I/O with on-board splitter & recombiner
- o Applications:
 - · QPSK and QAM encoding
 - SSB generation
 - RF/photonic signal processing
- Latest IQ and single MZ modulators use a new epitaxial design and longer 22mm interaction-zone
 - o Vπ below 3V
 - o Low S11
 - o ~40GHz bandwidth
 - o Excellent channel balance

Conclusions

- Folded-optics provide a straight uncompromised RF feed to the modulator. This enables modulator arrays, shrinks both chip and module and reduces cost, footprint and weight.
- Single MZM and dual-parallel IQ versions show similar characteristics.
- Folded GaAs EO modulators have achieved Vπ of 4.6V at 1550nm and ~50GHz bandwidth.
- New design with improved GaAs/AlGaAs epitaxy has <3V drive with 40GHz bandwidth.
- New innovations further enabling GaAs modulator technology in general; for example, arrays including integrated RF terminations and on-chip optical powertaps.


2) Integrated RF Termination

The RF termination is essential in a travelling-wave modulator, absorbing 'spent' RF energy, preventing back-reflection which would compromise system performance.

- o Bulky external ceramic component
- o Competes for space with fibre I/O blocks
- o Bondwire connections cause RF reflections

An Integrated Termination has been demonstrated:

- o Fabrication entirely within existing process
- Parallel combination of direct metallic, and AC coupled doped-semiconductor resistance elements.
- Cross-couplings to smooth the crossover band.

