Connection between two standard integrals

Dr Richard Kenderdine

Kenderdine Maths Tutoring

24 May 2016

The standard integrals $\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x$ and $\int \frac{1}{\sqrt{x^2+1}} dx = \text{Log}[x + \sqrt{x^2+1}]$ appear to be unrelated but this can be shown to not be the case.

The complex exponential and hyperbolic functions

We have the identity

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{1}$$

and its twin

$$e^{-i\theta} = \cos\theta - i\sin\theta \tag{2}$$

giving the result

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 and $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2\pi}$ (3)

 $Sin\theta$ and $cos\theta$ are parameters for the circle; corresponding parameters for the hyperbola are $sinh\theta$ and $cosh\theta$, defined as

$$\cosh \theta = \frac{e^{\theta} + e^{-\theta}}{2} \quad \text{and} \quad \sinh \theta = \frac{e^{\theta} - e^{-\theta}}{2}$$
 (4)

We can connect sin and sinh:

$$\sin (i\theta) = \frac{e^{-\theta} - e^{\theta}}{2i} = \frac{i^2 (e^{\theta} - e^{-\theta})}{2i} = \frac{i (e^{\theta} - e^{-\theta})}{2} = i \sinh \theta$$
 (5)

Connecting the standard integrals

Now consider $\int \frac{1}{\sqrt{x^2+1}} dx$ which we write as $\int \frac{1}{\sqrt{1+x^2}} dx$

Using $1 + x^2 = 1 - i^2 x^2 = 1 - (i x)^2$ we have

$$\int \frac{1}{\sqrt{1+x^2}} \, dx = \int \frac{1}{\sqrt{1-(ix)^2}} \, dx = \frac{1}{i} \sin^{-1}(ix)$$
 (6)

Now if $\theta = \frac{1}{i} \sin^{-1}(ix)$ then $x = \frac{1}{i} \sin(i\theta) = \sinh \theta$ from (5). Hence

$$\int \frac{1}{\sqrt{1+x^2}} \, \mathrm{d}x = \sinh^{-1}x \tag{7}$$

Using the definition of $\sinh \theta$ in (4) we have

$$\sinh \theta = x \rightarrow \frac{e^{\theta} - e^{-\theta}}{2} = x$$
 (8)

ie

$$e^{\theta} - \frac{1}{e^{\theta}} = 2 x \tag{9}$$

so

$$e^{2\theta} - 2 \times e^{\theta} - 1 = 0 \tag{10}$$

The solution to this quadratic is found firstly from

$$e^{\theta} = \frac{2 \times \pm \sqrt{4 \times^2 + 4}}{2}$$

$$= \times \pm \sqrt{\times^2 + 1}$$
(11)

Since $e^{\theta} > 0$ we only have one solution, $x + \sqrt{x^2 + 1}$, and then taking logs we have

$$\theta = \text{Log}\left[\mathbf{x} + \sqrt{\mathbf{x}^2 + 1}\right] \tag{12}$$

Putting it together

We have finally, from (6) and (12)

$$\int \frac{1}{\sqrt{1+x^2}} dx = \frac{1}{i} \sin^{-1} (ix) = \theta = \text{Log}\left[x + \sqrt{x^2 + 1}\right]$$
(13)

also from (7)

$$\int \frac{1}{\sqrt{1+x^2}} \, \mathrm{d}x = \sinh^{-1}x \tag{14}$$

so

$$\int \frac{1}{\sqrt{1+x^2}} dx = \text{Log}\left[x + \sqrt{x^2 + 1}\right] = \sinh^{-1} x$$
 (15)