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Dr Richard Kenderdine

The Cambridge text briefly describes how to obtain the equation of a plane given the coordinates of

three points Py, P;and P.,. Let u be the vector Py P, and v be the vector Py P,. Then the equation
of the plane containing the three points is given by

r=Py + Au + uv
There is another methd that uses a point in the plane and a vector normal to the plane.
In the following derivations we use the fixed point (2, 1, 4) and normal vector (1, - 2, 3).
(A) Equation using a point and two vectors in the plane normal to another vector
The equation will be of the form Py + Au + pv
Letu=(a, b, ¢c) and v =(d, e, f) where u and v are perpendicular to (1, -2, 3)

We can choose the values for two of the components of each of u and v and then calculate the
third such that the dot product is 0.

We have u.(1,-2,3)=a-2b+3c=0 and letting b =1, ¢ =1 yields a = -1, Similarly, letting f =2
and e =1 yields d =- 4.

Thus (- 1,1, 1) and (- 4, 1, 2) are vectors in the plane perpendicular to (1, - 2, 3) and therefore the
equation of the plane through (2, 1, 4) is

2 -1 -4
r=1| +A[ 1 [+ pul1 (1)
4 1 2

(B) Using a point and a normal to the plane

Let P (x, y, z) be an arbitrary point in the plane, Py(Xg, Yo, Zo) a fixed point in the plane and n be a

vector normal to the plane. Then the vector Py P is perpendicular to n.

Thus n.Py P = 0 and therfore the equation of the plane is, using n = (a, b, c)
(a’ b, C) ’ (X-X01y-y01z'20)=0
Thus reduces to ax+by+cz=k

In our example, using n = (1, - 2, 3), we have x -2y + 3z =k and using (2, 1, 4) in the plane we
calculate 2 - 2(1) + 3(4) = 12 yielding the equation of the plane as

X-2y+3z=12 (2)
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Note that we did not need to use the dot product as the coefficients are just the components
of the normal vector.

That is, if (a, b, c) is a normal vector to the plane then the equation of the plane takes the form
ax+ by+cz=k
where k is determined by substituting the coordinates of a point in the plane.

Aside: Suppose we have a line with gradient % then the equation of the line is y = %x +c or

a x - b y = k. The gradient has horizontal component b and vertical component a. The normal
therefore has horizontal component a and vertical component - b.

Thus the components of the normal are the coefficients for the equation of the line.

(C) Connecting the two methods
In(1),letA=1and y=1,then r= (-3, 3, 7). Check that this satisfies (2):
-3-2(3)+3(7)=12
Now use A =2 and u=-1, then r= (4, 2, 4). Check that this satisfies (2):
4-2(2)+3(4)=12

Thus two arbitrarily chosen values for A and p in Eqn (1) yield points in the plane defined by (2) as
expected.

Now do the reverse by elimating the parameters A and yin Eqn (1). Start with the parametric equa-
tions

X =2-A-4u y=1+A+u Z=4+A+2u

These yield x+y=3-3y and x +z=6-2y =>/J=3-%(X—Z)

Then x+y=3—3(3—;—(x—z)) = Xx-2y+3z=12



