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The probability of each possible outcome occurring in a discrete probability distribution 
can be calculated using a specific formula. In the continuous case, where there are an 
uncountable number of outcomes, it is impossible to assign a probability to each 
possible outcome such that the sum of the probabilities equals 1. We avoid this 
difficulty by calculating the probability of an outcome of the random variable 𝑦 lying 
between two values, 𝑃(𝑎 ≤ 𝑦 ≤ 𝑏). In this case we are considering an area and 
therefore our thoughts turn to integration to find the area under a curve. 

 

Probability Density Function (PDF) 

A Probability Density Function, 𝑓(𝑦), is a non-negative function (probabilities cannot be 
negative) that integrates to 1. The function is non-zero in an interval [a, b] and zero 
elsewhere and hence we have  

∫ 𝑓(𝑦) ⅆ𝑦
𝑏

𝑎

= 1 

Cumulative Distribution Function (CDF) 

The Cumulative Distribution Function, 𝐹(𝑦), is defined in terms of an integral 

𝐹(𝑦) =  ∫ 𝑓(𝑡) ⅆ𝑡
𝑦

𝑎

 

and therefore calculates the area under the PDF from the lower limit 𝑎 to 𝑦. Note that 
𝐹(𝑦) is a function of 𝑦 and is used to find probabilities. For example, 

𝑃(𝑐 ≤ 𝑦 ≤ ⅆ) = 𝐹(ⅆ) − 𝐹(𝑐) 

The CDF is often just referred to as the distribution function. 

Two properties that 𝐹(𝑦) must satisfy are 𝐹(𝑎) = 0 and 𝐹(𝑏) = 1 when 𝑓(𝑦) is non-zero 
in [𝑎, 𝑏] and zero elsewhere. 

Statistical Properties 

The mode: if the PDF is an increasing function over [𝑎, 𝑏] then the mode is 𝑏 while if it is 
a decreasing function the mode is 𝑎. Otherwise, it is more common for a PDF to have a 
maximum turning point and therefore we need to find the value of 𝑦 for which 𝑓′(𝑦) = 0 
and 𝑓′′(𝑦) < 0. 
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The median: the 𝑘𝑡ℎ −percentile of a distribution is found from 𝑘

100
= 𝐹(𝑦) and hence 

𝑦 = 𝐹−1 (
𝑘

100
) where 𝐹−1 is the inverse of the CDF. The median is therefore found from 

𝑦 = 𝐹−1(0.5). Sometimes the inverse function an be found algebraically, in other 
situations the solution must be found numerically. 

The mean (Expected Value): replacing summation in the discrete case is the integral  

𝐸(𝑌) = ∫ 𝑦𝑓(𝑦) ⅆ𝑦
𝑏

𝑎

 

The variance: using the relationship 𝑉𝑎𝑟(𝑌) =  𝐸(𝑌2) − [𝐸(𝑌)]2  we need 

𝐸(𝑌2) = ∫ 𝑦2𝑓(𝑦) ⅆ𝑦
𝑏

𝑎

 

 

The Uniform Distribution 

The simplest continuous distribution is the Uniform Distribution where the probability is 
constant for all values of the random variable in the domain, that is 

𝑓(𝑦) = 𝑐     for      𝑎 ≤ 𝑦 ≤ 𝑏 

Since the area under the curve is a rectangle with width 𝑏 − 𝑎 and height 𝑐 we have 

𝑐(𝑏 − 𝑎) = 1 and hence 𝑐 =
1

𝑏−𝑎
. Thus the PDF is 𝑓(𝑦) =

1

𝑏−𝑎
. 

The mean is then     ∫ 𝑦 (
1

𝑏−𝑎
) ⅆ𝑦

𝑏

𝑎

=
1

𝑏−𝑎
∫ 𝑦 ⅆ𝑦

𝑏

𝑎
=

𝑎+𝑏

2
   

This is logical as it is the average of the endpoints.  

The variance is           1

𝑏−𝑎
∫ 𝑦2 ⅆ𝑦

𝑏

𝑎
− (

𝑎+𝑏

2
)

2

= (
𝑏−𝑎

12
)

2

 

The moment generating function is 1

𝑏−𝑎
∫ ⅇ𝑡𝑦 ⅆ𝑦

𝑏

𝑎
=

ⅇ𝑡𝑏−ⅇ𝑡𝑎

𝑡(𝑏−𝑎)
 

The Normal Distribution 

This most commonly used continuous distribution has PDF 

𝑓(𝑦) =
1

𝜎√2𝜋
exp (−

1

2
(

𝑦−𝜇

𝜎
)

2
)     for       −∞ < 𝑦 < ∞ 

with mean 𝜇, variance 𝜎2 and moment generating function exp (𝜇𝑡 +
𝑡2𝜎2

2
). 

 

 



The Gamma Distribution 

Some random variables are always non-negative and right skewed. For example, time 
between failure for engines and other manufactured items, time between arrivals at a 
checkout and repair time for breakdowns. In such cases the distribution of the data can 
be modelled by gamma density function 

𝑓(𝑦) =
𝑦𝛼−1ⅇ

−
𝑦
𝛽

𝛽𝛼𝛤(𝛼)
       for    0 ≤ 𝑦 < ∞ 

The parameter 𝛼 determines the shape of the distribution while 𝛽 is a scale parameter. 

The gamma function, 𝛤(𝛼), is defined as 𝛤(𝛼) = ∫ 𝑦𝛼−1ⅇ−𝑦 ⅆ𝑦
∞

0
 and is the continuous 

equivalent of the factorial function. Two useful properties are 𝛤(𝛼) = (𝛼 − 1)𝛤(𝛼 − 1) 
and 𝛤(𝑛) = (𝑛 − 1)! for integer 𝑛. The first property comes from integration by parts: 

𝛤(𝛼) = ∫ 𝑦𝛼−1ⅇ−𝑦 ⅆ𝑦 = 
∞

0

𝑦𝛼−1(−ⅇ−𝑦)|0
∞ + ∫ (𝛼 − 1)𝑦𝛼−2ⅇ−𝑦 ⅆ𝑦

∞

𝑜

 

 

= 0 + (𝛼 − 1) ∫ 𝑦(𝛼−1)−1ⅇ−𝑦 ⅆ𝑦
∞

0
= (𝛼 − 1)𝛤(𝛼 − 1) 

From the definition, 𝛤(1) = ∫ ⅇ−𝑦 ⅆ𝑦
∞

0
= −ⅇ−𝑦|0

∞ = 1 = 0!   

And   𝛤(2) = ∫ 𝑦ⅇ−𝑦 ⅆ𝑦
∞

0
= −𝑦ⅇ−𝑦|0

∞ + ∫ ⅇ−𝑦 ⅆ𝑦
∞

0
= 1 = 1! 

Then  𝛤(3) = 2𝛤(2) = 2 × 1 = 2! etc. 

The Exponential, Chi-Square and Weibull Distributions are related to the Gamma 
Distribution.  

Here is a gamma density function with 𝛼 = 3 and 𝛽 = 2 

 

When both 𝛼 and 𝛽 equal 1 the density function is  

 

 



To find the Expected Value we use the fact that   ∫
𝑦𝛼−1ⅇ

−
𝑦
𝛽

𝛽𝛼𝛤(𝛼)

∞

0
ⅆ𝑦 = 1 and therefore 

∫ 𝑦𝛼−1ⅇ
−

𝑦

𝛽
∞

0
ⅆ𝑦 = 𝛽𝛼𝛤(𝛼). Then 

𝐸(𝑌) = ∫ 𝑦
𝑦𝛼−1ⅇ

−
𝑦
𝛽

𝛽𝛼𝛤(𝛼)

∞

0

ⅆ𝑦 =
1

𝛽𝛼𝛤(𝛼)
∫ 𝑦𝛼ⅇ

−
𝑦
𝛽

∞

0

ⅆ𝑦 

 

  =   1

𝛽𝛼𝛤(𝛼)
𝛽𝛼+1𝛤(𝛼 + 1)  =     𝛽𝛼𝛤(𝛼)

𝛤(𝛼)
= 𝛼𝛽 

Here use is made of the relationship 𝛤(𝛼 + 1) = 𝛼𝛤(𝛼) 

A similar approach yields  

𝐸(𝑌2) =
1

𝛽𝛼𝛤(𝛼)
(𝛽𝛼+2𝛤(𝛼 + 2)) 

                  =   𝛽
2(𝛼+1)𝛼𝛤(𝛼)

𝛤(𝛼)
= 𝛼(𝛼 + 1)𝛽2 

 

Then Var(𝑌) = 𝛼(𝛼 + 1)𝛽2 − (𝛼𝛽)2 = 𝛼𝛽2 

Hence the Expected Value and Variance of the Gamma Distribution are 𝛼𝛽 and 𝛼𝛽2 
respectively. 

The moment generating function, 𝑚(𝑡),  is (1 − 𝛽𝑡)−𝛼, derived in the following manner. 

𝑚(𝑡) = 𝐸(ⅇ𝑡𝑦) =   ∫
∞

0

ⅇ𝑡𝑦
𝑦𝛼−1ⅇ

−
𝑦
𝛽

𝛽𝛼𝛤(𝛼)
ⅆ𝑦 =  ∫

∞

0

𝑦𝛼−1ⅇ
𝑡𝑦−

𝑦
𝛽

𝛽𝛼𝛤(𝛼)
 ⅆ𝑦   

 

= 1

𝛽𝛼𝛤(𝛼)
∫ 𝑦𝛼−1ⅇ

−(
1−𝛽𝑡

𝛽
)𝑦

∞

0

=
(

𝛽

1−𝛽𝑡
)

𝛼
𝛤(𝛼)

𝛽𝑛𝛤(𝛼)
= (1 − 𝛽𝑡)−𝛼 

 

Note that in the standard form the power of ⅇ is − 𝑦

𝛽
  hence whatever divides −𝑦 is 𝛽. In 

𝑚(𝑡) the coefficient of −𝑦 is 1−𝛽𝑡

𝛽
 which means division by 𝛽

1−𝛽𝑡
. 

The expressions for 𝐸(𝑌) and 𝐸(𝑌2) and then found using 𝑚′(0) and 𝑚′′(0) respectively, 
remembering that differentiation is in respect of the variable 𝑡.  

The distribution function, 𝐹(𝑦), has to be found using integration by parts. There is a 
connection with the Poisson Distribution when the shape parameter, 𝛼, is an integer. 



           Example  

Consider the Gamma Distribution with 𝛼 = 3 and 𝛽 = 2. The density function is 

𝑓(𝑦) =
𝑦𝛼−1ⅇ

−
𝑦
𝛽

𝛽𝛼𝛤(𝛼)
=  

𝑦2ⅇ−
1
2

𝑦

8 × 2
=

1

16
𝑦2ⅇ−

1
2

𝑦 

Then the distribution function is 

𝐹(𝑦) =
1

16
∫ 𝑡2ⅇ−

1
2

𝑡 ⅆ𝑡
𝑦

0

 

Using integration by parts, this becomes when integrating the exponential and 
differentiating the power, 

𝐹(𝑦) =
1

16
[−2𝑡2ⅇ−

1
2

𝑡 + 2∫ 2𝑡ⅇ−
1
2

𝑡 ⅆ𝑡] 

Now the integral inside the brackets becomes 

∫ 𝑡ⅇ−
1
2

𝑡 ⅆ𝑡 = −4𝑡ⅇ−
1
2

𝑡 + 4∫ ⅇ−
1
2

𝑡 ⅆ𝑡 

with  ∫ ⅇ−
𝑙

2
𝑡 ⅆ𝑡 = −2ⅇ−

1

2
𝑡. Putting all this together, we have 

𝐹(𝑦) = −
1

8
ⅇ−

1
2

𝑡[𝑡2 + 4𝑡 + 8]0
𝑦

= 1 −
1

8
ⅇ−

1
2

𝑦(𝑦2 + 4𝑦 + 8) 

 

Then, for example, 𝐹(8) = 1 − 13ⅇ−4 ≈ 0.7619 

 

Since 𝛼(3) is an integer we can use the Poisson approach. The distribution function is 

𝐹(𝑦) = 1 − ∑ ⅇ
−

𝑦
𝛽

𝑦𝑘

𝛽𝑘𝑘!

𝛼−1

𝑘=0

 

Then, using 𝑦 = 8, 𝛼 = 3, 𝛽 = 2 we have, as previously, 

𝐹(8) = 1 − ⅇ−4 (1 +
8

2 × 1
+

82

22 × 2
) = 1 − 13ⅇ−4 

Related distributions 

1) Exponential, when 𝛼 = 1 

2) Chi-square, when 𝛼 =
𝑣

2
, 𝛽 = 2 

3) Weibull, 𝑓(𝑦) =
𝑚

𝛼
𝑦𝑚−1ⅇ−

𝑦𝑚

𝛼   for 𝑦 > 0  



The Exponential Distribution 

As stated, the Exponential Distribution is a particular case of the Gamma Distribution 

when 𝛼 = 1. Hence the PDF is 𝑓(𝑦) =
1

𝛽
ⅇ

−
𝑦

𝛽 for 𝑦 > 0, the Expected Value is 𝛽, the 

Variance is 𝛽2 and the MGF is (1 − 𝛽𝑡)−1. 

The Cumulative Distribution Function is 

𝐹(𝑦) =
1

𝛽
∫ ⅇ

−
𝑡
𝛽 ⅆ𝑡

𝑦

0

= [−ⅇ
−

𝑡
𝛽]

0

𝑦

= 1 − ⅇ
−

𝑦
𝛽  

Hence 𝑃(𝑌 > 𝑦) = ⅇ
−

𝑦

𝛽 and, consequently, 

𝑃(𝑌 > 𝑎 + 𝑦|𝑌 > 𝑎) =
𝑃(𝑌 > 𝑎 + 𝑦)

𝑃(𝑌 > 𝑎)
=

ⅇ
−(𝑎+𝑦)

𝛽

ⅇ
−

𝑎
𝛽

= ⅇ
−

𝑦
𝛽 

This is the memoryless property of the Exponential Distribution. For example, if we are 
modelling a waiting line, the probability of waiting one further minute, having been in the 
queue for five minutes, is the same as joining the queue and waiting one minute.    

Further properties of the Exponential Distribution are 

i) The sum of 𝑛 independent and identically distributed exponential random 
variables with mean 𝛽 has a Gamma distribution with parameters 𝑛 and 𝛽. 
Proof of this requires knowledge of joint distributions, not yet covered. 

ii) Given two independent exponential random variables 𝑌1 and 𝑌2 with 
parameters 𝛽1 and 𝛽2 respectively, we can determine the probability that 𝑌1 is 
less than 𝑌2. 

 

∫ ∫
1

𝛽1
ⅇ

−
𝑥1
𝛽1 ⅆ𝑥1

𝑥2

0

1

𝛽2
ⅇ

−
𝑥2
𝛽2 ⅆ𝑥2

∞

0

 

=   ∫ [−ⅇ
−

𝑥1
𝛽1]

0

𝑥2
1

𝛽2
ⅇ

−
𝑥2
𝛽2  

∞

0
 ⅆ𝑥2      =      ∫ (1 − ⅇ

−
𝑥2
𝛽1)

1

𝛽2
ⅇ

−
𝑥2
𝛽2  ⅆ𝑥2

∞

0
    

=  1

𝛽2
∫ (ⅇ

−
𝑥2
𝛽2 − ⅇ

−(
1

𝛽1
+

1

𝛽2
)𝑥2)

∞

0
ⅆ𝑥2    

=   1

𝛽2
[−𝛽2ⅇ

−
𝑥2
𝛽2 +

1
1

𝛽1
+

1

𝛽2

ⅇ
−(

1

𝛽1
+

1

𝛽2
)𝑥2]

0

∞

   

=       1

𝛽2
[−𝛽2 +

𝛽1𝛽2

𝛽1+𝛽2
] = −1 +

𝛽1

𝛽1+𝛽2
=

𝛽2

𝛽1+𝛽2
 

 



For example, suppose a machine has two components, A and B, with expected lifetimes 
of 1000 hours and 500 hours respectively. The probability that component A fails before 

component B is 500

1000+500
=

1

3
. 

iii) Hazard rate (failure rate) function is defined as 

𝑟(𝑡) =
𝑓(𝑡)

1 − 𝐹(𝑡)
 

For the Exponential Distribution we have  

𝑟(𝑡) =

1

𝛽
ⅇ

−
𝑢
𝛽

1−(1−ⅇ
−

𝑦
𝛽)

 = 1

𝛽
 

Hence the failure rate is constant and the reciprocal of the mean. 

If the arrivals to a queue is modelled by a Poisson distribution then the time between 
arrivals is Exponential. 

The Beta Distribution 

The Beta Distribution is based on the Beta function 𝐵(𝛼, 𝛽) = ∫ 𝑦𝛼−1(1 − 𝑦)𝛽−1ⅆ𝑦
1

0
 that 

equals 𝛤
(𝛼)𝛤(𝛽)

𝛤(𝛼+𝛽)
. Since a valid PDF equals 1, we have the Beta Distribution PDF 

𝑓(𝑦) =
𝛤(𝛼 + 𝛽)

𝛤(𝛼)𝛤(𝛽)
∫ 𝑦𝛼−1(1 − 𝑦)𝛽−1 ⅆ𝑦

1

0

 

Note that the domain is [0,1] (any other domain will need to be transformed before the 
Beta Distribution can be used), contrasting with Gamma-based distributions with 
infinite domains, and therefore suitable for use with proportions. As the integrand is 
similar to the Binomial Distribution the Beta Distribution is often used as a prior in 
Bayesian statistics. 

The Expected Value is easily found. 

Since   ∫ 𝑦𝛼−1(1 − 𝑦)𝛽−1ⅆ𝑦
1

0
=

𝛤(𝛼)𝛤(𝛽)

𝛤(𝛼+𝛽)
  then  

𝐸(𝑌) =
𝛤(𝛼 + 𝛽)

𝛤(𝛼)𝛤(𝛽)
∫ 𝑦 ⋅ 𝑦𝛼−1(1 − 𝑦)𝛽−1 ⅆ𝑦

1

0

 

= 𝛤(𝛼+𝛽)

𝛤(𝛼)𝛤(𝛽)
∫ 𝑦𝛼(1 − 𝑦)𝛽−1 ⅆ𝑦

1

0
 

= 𝛤(𝛼+𝛽)

𝛤(𝛼)𝛤(𝛽)
⋅

𝛤(𝛼+1)𝛤(𝛽)

𝛤(𝛼+𝛽+1)
 

=  𝛤
(𝛼+1)

𝛤(𝛼)
⋅

𝛤(𝛼+𝛽)

𝛤(𝛼+𝛽+1)
     =    𝛼

𝛼+𝛽
         (using    𝛤(𝛼 + 1) = 𝛼𝛤(𝛼)  ) 



Similarly,  

𝐸(𝑌2) =
𝛤(𝛼 + 𝛽)

𝛤|𝛼|𝛤(𝛽)
∫ 𝑦𝑎+1(1 − 𝑦)𝛽−1 ⅆ𝑦

1

0

 

=  𝛤(𝛼+𝛽)

𝛤|𝛼|𝛤(𝛽)
   

𝛤(𝛼+2)𝛤(𝛽)

𝛤(𝛼+𝛽+2)
 

=   𝛤(𝛼+𝛽)

𝛤|𝛼|𝛤(𝛽)
   

𝛼(𝛼+1)𝛤(𝛼)𝛤(𝛽)

(𝛼+𝛽)(𝛼+𝛽+1)𝛤(𝛼+𝛽)
 

=   𝛼(𝛼+1)

(𝛼+𝛽)(𝛼+𝛽+1)
 

Then  

Var(𝑌) = 𝐸(𝑌2) − [𝐸(𝑌)]2 

=   𝛼(𝛼+1)

(𝛼+𝛽)(𝛼+𝛽+1)
  -  ( 𝛼

𝛼+𝛽
)

2

 

=   𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
 

 

A closed form for the CDF does not exist. When 𝛼 and 𝛽 are integers the CDF integral 
can be evaluated either by integration by parts or expanding and integrating each term. 
For non-integral 𝛼, 𝛽 numerical integration can be used. Most users will have access to 
software that can provide the solution. 

There is no closed form MGF for the Beta Distribution.   

The Lognormal Distribution 

A random variable 𝑌 that can only take positive values has a Lognormal distribution if 
𝑋 = 𝐿𝑜𝑔 (𝑌) is normal. Equivalently, 𝑌 = ⅇ𝑋 for a normally distributed variable 𝑋. The 
distribution is used in both biological and physical sciences to model right-skewed 
data. 

To obtain the PDF of 𝑌 we can use the Method of Transformations. If we have a random 
variable 𝑋 with density 𝑓𝑋(𝑥) and an increasing function ℎ(𝑥) then we can find the 
density of 𝑌 = ℎ(𝑋). 

We have 

𝑃(𝑌 ≤ 𝑦) = 𝑃(ℎ(𝑋) ≤ 𝑦) = 𝑃 (ℎ−1(ℎ(𝑋)) ≤ ℎ−1(𝑦)) = 𝑃(𝑋 ≤ ℎ−𝑙(𝑦)) 

This means, in terms of the CDFs, 

𝐹𝑌(𝑦) = 𝐹𝑋(ℎ−1(𝑦)) 



 

 

To obtain the density function for 𝑌 we differentiate 

𝑓𝑌(𝑦) =
ⅆ

ⅆ𝑦
𝐹𝑌(𝑦) =

ⅆ

ⅆ𝑦
𝐹𝑋(ℎ−1(𝑦)) 

=      ⅆ

ⅆ(ℎ−1(𝑦))
𝐹𝑋(ℎ−1(𝑦))

ⅆ(ℎ−1(𝑦))

ⅆ𝑦
 

=    𝑓𝑋(ℎ−1(𝑦)) 
ⅆ(ℎ−1(𝑦))

ⅆ𝑦
 

Thus, to obtain the density of 𝑌 we substitute the inverse function into the density of 𝑋 
and multiply by the derivative of the inverse function. 

For the Lognormal example we have 𝑦 = ℎ(𝑥) = ⅇ𝑥  and 𝑥 = ℎ−1(𝑦) = log(𝑦). Note that 
this function satisfies the conditions that 𝑦 > 0 and the function is always increasing.   

The Normal PDF is  

𝑓(𝑥) =
1

𝜎√2𝜋
exp (−

1

2
(

𝑥−𝜇

𝜎
)

2
)     for  −∞ < 𝑥 < ∞ 

Hence the Lognormal PDF is 

𝑓(𝑦) =
1

𝜎√2𝜋
exp (−

1

2
(

log (𝑦)−𝜇

𝜎
)

2
) (

1

𝑦
)      =      1

𝑦𝜎√2𝜋
exp (−

1

2
(

log (𝑦)−𝜇

𝜎
)

2
)    for  𝑦 > 0 

 

We can obtain the mean and variance using integration but it is more efficient to use the 
Method of Moments. The MGF for the Normal Distribution is 

𝐸(ⅇ𝑡𝑥) = ⅇ𝜇𝑡+
1

2
𝜎2𝑡2

    where   𝑥~𝑁(𝜇, 𝜎2) 

Now for Lognormal 𝑌 = ⅇ𝑋, hence we can find the expected values of the powers of 𝑌: 

𝐸(𝑌) = 𝐸(ⅇ𝑋) = ⅇ𝜇+
1
2

𝜎2

 

𝐸(𝑌2) = 𝐸(ⅇ2𝑋) = ⅇ2(𝜇+𝜎2) 

var(𝑌) = ⅇ2(𝜇+𝜎2) − ⅇ2𝜇+𝜎2
= ⅇ2𝜇+𝜎2

(ⅇ𝜎2
− 1) 

The Standard Normal Distribution can be used to obtain quantiles for the Lognormal 
Distribution,  𝐹(𝑦): 

𝐹(𝑦) = 𝛷 (
log(𝑦) − 𝜇

𝜎
) 



 

 

Thus 

𝑝 = 𝛷 (
log(𝑦) − 𝜇

𝜎
) 

∅−1(𝑝) =
log(𝑦) − 𝜇

𝜎
 

𝑦 = ⅇ𝜇+𝜎 𝛷−1(𝑝) 

As an example, consider the case where 𝜇 = 3, 𝜎 = 0.5 and 𝑝 = 0.25 (the lower 
quartile). The Standard Normal lower quartile is z= −0.67449, and therefore the lower 
quartile for this Lognormal distribution is 

𝑦 = ⅇ3+0.5(−0.67449) = 14.3357 

The mode is found by setting the derivative of the density to 0. Using the product rule, 
the derivative is, upon simplification, 

𝑓′(𝑦) =
1

𝜎√2𝜋
ⅇ

−
1
2

(
log 𝑦−𝜇

𝜎
)

2

[−
1

𝑦2
(1 +

log 𝑦 − 𝜇

𝜎2
)] 

Then 

1 +
log 𝑦 − 𝜇

𝜎2
= 0  ⇒   𝑦 = ⅇ𝜇−𝜎2

    

Thus the mode occurs at 𝑦 = ⅇ𝜇−𝜎2
 with corresponding function value  1

√2𝜋𝜎
ⅇ

1

2
𝜎2−𝜇  

Using the example above, the mode of the distribution occurs at 𝑦 = ⅇ3−0.52
= 15.642 

with function value 0.045. 

This plot shows the lower quartile at 14.3357: 

   


