PROBLEMS

1. Which statemen is TRUE?
A. A quadratic function has a degree of 3 .
B. A polynomial function can have more than one y-intercept.
C. A polynomial function can have more than one x-intercept.
D. The maximum number of turning points a function may have is equal to its degree plus one.
2. What are the domain and range of the function $y=\frac{1}{2} x^{2}+2 x-4$, shown below?

3. What is the degree of the polynomial shown below?

POLYNOMIAL FUNCTIONS

PROBLEMS

4. Write (make-up) a polynomial function that will satisfy the following conditions:

- 1 turning point
- End behaviour: Quadrant III to Quadrant IV

5. Write (make-up) a polynomial function that will satisfy the following conditions:

- 2 turning points
- End behaviour: Quadrant III to Quadrant I

6. Roughly sketch a graph for a function that satisfies the following conditions:

- 2 turning points
- Degree 3
- End behaviour: Quadrant II to Quadrant IV

7. What is the maximum number of x-intercepts a function of degree 5 can have? What is the minimum?
8. For each function, list the statements that would apply to the graph:

Functions:
a) $a(x)=5 x^{2}-x+2$
b) $b(x)=-x^{3}-x-5$
c) $c(x)=-2 x+7$
d) $d(x)=-3 x^{5}+2$
e) $e(x)=3 x^{4}+2 x^{2}-1$

Statements:
i) End behaviour goes from Quadrant II to Quadrant I.
ii) The graph has a minimum.
iii) The graph has a range of $y \in R$.
iv) The graph decreases from Quadrant II to Quadrant IV.
v) The graph is a quadratic function that opens up.

POLYNOMIAL FUNCTIONS PROBLEMS

9. $g(x)$ is an odd function. If $g(5)=7$, then what is $g(-5)$?
10. Use these functions to answer the following question:

$$
\begin{gathered}
f(x)=2 x^{2}-3 \\
g(x)=x^{3}+2 x \\
h(x)=4 x^{4}
\end{gathered}
$$

Which of the following would give us an EVEN function:
A. $f(x) h(x)$
B. $g(x) h(x)+f(x)$
C. $f(x) g(x) h(x)$
D. $f(x)+g(x)+h(x)$

