RATIONAL EXPRESSIONS

SOLUTIONS

1. ANSWER:
A. FALSE - The largest exponent on a quadratic function is a 2 .
B. FALSE - A polynomial has one unique y-value for every ' x ' in its domain. It can only cross the y-axis once.
C. TRUE - A function may cross the x-axis 0 times, or up to a maximum of number of times equal to the degree of the function.
D. FALSE - The maximum number of turning points a function may have is equal to it's degree minus one.
2. ANSWER: Domain: $\{x \in R\}$ Range: $\{y \geq-6\}$

Domain -> The arrows on the ends of the function indicate that it continues forever in the left and right directions. Meaning that the function is defined for all real numbers. Range -> The function has a minimum value at $\mathrm{y}=-6$. There are no lower values, but it continues in the upward direction, so may be any value greater than -6.

3. ANSWER: 0

The polynomial has no x-term, only a constant. That means it could have been:

$$
y=-2 x^{0}
$$

And since $x^{0}=1$, it simplifies to: $y=-2$.
4. ANSWER: More than one solution is possible. An example would be:

$$
f(x)=-2 x^{2}+x+1
$$

- For there to be 1 turning point, the highest exponent must be a 2 .
- For the end behaviour to be from Quadrant III to Quadrant IV, the leading coefficient must be a negative number, so that the quadratic opens down. Our example solution uses a negative 2.
- The following graph is for reference only, not required for solution.

5. ANSWER: More than one solution is possible. An example would be:

$$
f(x)=5 x^{3}+2 x^{2}-x+1
$$

- For there to be 2 turning point, the highest exponent must be a 3 .
- For the end behaviour to be from Quadrant III to Quadrant I, the leading coefficient must be a positive number. Our example solution uses a positive 5 .
- The following graph is for reference only, not required for solution.

6. ANSWER: A rough sketch showing a shape similar to the below would be correct:

7. ANSWER: Maximum is 5 . Minimum is 1 .

The maximum number of x-intercepts a function may have is equal to its degree. Since the degree of the function is an odd number, we know the end behaviour will either go from Q III to Q I or from Q II to Q IV, which means it has to cross the x-axis at least once. The example graph below shows a rough sketch of two $5^{\text {th }}$ degree polynomials.
Depending on how where it is located, there may be $5 x$-intercepts or 1 .

RATIONAL EXPRESSIONS

8. ANSWER:
a) $a(x)=5 x^{2}-x+2 \quad$ i, ii and v
b) $b(x)=-x^{3}-x-5 \quad$ iii and iv
c) $c(x)=-2 x+7 \quad$ iii and iv
d) $d(x)=-3 x^{5}+2 \quad$ iii and iv
e) $e(x)=3 x^{4}+2 x^{2}-1$
9. ANSWER: $g(-5)=-7$

A function is 'ODD' when $-f(x)=f(-x)$, so if $g(x)$ is an odd function, then:

$$
\begin{gathered}
-g(5)=g(-5) \\
\therefore g(-5)=-7
\end{gathered}
$$

10. ANSWER: A is the only statement with a result that is an even function.
A. $f(x) h(x)$: EVEN x EVEN $=$ EVEN function $->$ CORRECT
B. $g(x) h(x)+f(x)$: ODD \times EVEN + EVEN $=$ resulting function is neither odd nor even
C. $f(x) g(x) h(x)$: EVEN \times ODD \times EVEN $=$ ODD \times EVEN $=$ ODD function
D. $f(x)+g(x)+h(x)$: EVEN + ODD + EVEN $=$ resulting function is neither odd nor even
