

- An EXPONENT is written on the top right hand side of a BASE number
- The exponent tells us how many times to multiply the BASE together
- If the exponent is negative, we multiply the base together on the BOTTOM of a fraction,

$$
\text { ©g. } 5^{-2}=\frac{1}{5 \times 5}=\frac{1}{25}
$$

- A number to the power of one is equal to that base number.

$$
\text { 。Eg. } 7^{1}=7, \text { or } y^{1}=y
$$

- Any number to the power of zero equals 1.

。Eg. $\mathbf{4}^{0}=1$, or $\boldsymbol{x}^{0}=1$

Exponent laws:

- Multiplying terms with exponents:

$$
a^{m} \times a^{n}=a^{m+n}
$$

- Dividing terms with exponents:

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

- An exponent on terms that are being multiplied (power of a product):

$$
(a b)^{m}=a^{m} b^{m}
$$

- An exponent on terms that are being divided (power of a fraction):

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

- An exponent on a term with an exponent... (power of a power):

$$
\left(a^{m}\right)^{n}=a^{m \times n}
$$

- Fractional exponents:

$$
a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

EXPONENTS REVIEW \& PRACTICE PROBLEMS

Practice Questions:

(Solutions at the end)

Solve:

1. $4^{3}=$
2. $(-5)^{2}=$
3. $-5^{2}=$
4. $7^{-2}=$
5. $2^{2} \times 3^{4}=$
6. $2^{3} \times 4^{-2}=$

Simplify:

Multiplying numbers with exponents that have the same base:

$$
a^{m} \times a^{n}=a^{m+n}
$$

1. $4^{3} \times 4^{2}=$
2. $7^{6} \times 7^{4} \times 7 \times 6=$
3. $9^{8} \times 9^{-2}=$
4. $x^{3} \times x^{2} \times y^{7}=$
5. $a^{5} \cdot a^{-2} \cdot b \cdot c^{-4} \cdot c=$

Dividing numbers with exponents that have the same base:

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

EXPONENTS REVIEW \& PRACTICE PROBLEMS

Simplify:

1. $\frac{13^{5}}{13^{3}}=$
2. $\frac{5^{23}}{5^{2} 6^{3}}=$
3. $\frac{x^{7}}{x^{4}}=$
4. $\frac{5 x^{3}}{5^{-2} x^{2}}=$
5. $\frac{4^{6}}{4^{3} 4^{2}}=$

An exponent on numbers that are being multiplied (power of a product):

$$
(a b)^{m}=a^{m} b^{m}
$$

Change the expression by applying the above exponent rule:

1. $(5 \times 3)^{6}=$
2. $(a \cdot b \cdot c)^{-2}=$
3. $3^{4} \times 5^{4} \times x^{2}=$
4. $d^{3} \cdot e^{-3} \cdot f^{3}=$
5. $(3 c)^{-2}=$

EXPONENTS REVIEW \& PRACTICE PROBLEMS

An exponent on numbers that are being divided (power of a fraction):

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

Change the expression by applying the above exponent rule:

1. $\left(\frac{5}{3}\right)^{2}=$
2. $\left(\frac{x}{y}\right)^{m}=$
3. $\frac{5^{15}}{3^{15} 7^{2}}=$
4. $\left(\frac{4}{x y}\right)^{7}=$
5. $\frac{3^{-3}}{a^{-3} \cdot b^{-3}}=$

A power of a power...

$$
\left(a^{m}\right)^{n}=a^{m \times n}
$$

Simplify:

1. $\left(5^{2}\right)^{4}=$
2. $\left(7^{9}\right)^{-2}=$
3. $\left(x^{3}\right)^{2}=$
4. $\left(a^{3} \cdot b^{2}\right)^{4}=$
5. $\left(3^{4} \cdot x^{m}\right)^{n}=$

EXPONENTS REVIEW \& PRACTICE PROBLEMS

Fractional exponents:

$$
a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

- Remember, when an exponent has a fraction of $1 / n$, it is describing the $n^{\text {th }}$ root of our base.

$$
\text { Eg. } 25^{\frac{1}{2}}=\sqrt{25}, \text { or } 27^{\frac{1}{3}}=\sqrt[3]{27} \ldots
$$

- When we have an exponent of $\boldsymbol{m} / \boldsymbol{n}$, that means we want to take the $\boldsymbol{n}^{\text {th }}$ root of our base and put it to the power of \boldsymbol{m}. Or put Our base to the power of \boldsymbol{m} and then take the $\boldsymbol{n}^{\text {th }}$ root of THAT. Our rule says that the order we do them in doesn't matter.

1. True or False: $\sqrt{x^{3}}=x^{\frac{3}{2}}$
2. Solve: $8^{2 / 3}=$
3. Write with an exponent as a fraction: $\sqrt[5]{x^{7}}=$
4. Write with an exponent as a fraction: $(\sqrt[3]{27})^{2}=$
5. Solve: $(\sqrt[3]{15})^{3}=$

EXPONENTS REVIEW \& PRACTICE PROBLEMS

Altogether now ...

Simplify:

1. $7^{8} \cdot 7^{2} \cdot 7^{3} \cdot 7 \cdot 7^{-5}=$
2. $y^{\frac{1}{2}} \cdot y^{3} \cdot \frac{z^{3}}{z^{2}}=$
3. $\left(5 x^{2} y\right)^{2}+\frac{6 c}{2 c^{2}}=$
4. $\left(3 a^{8}\right)^{2}+\left(2 a^{4}\right)^{4}=$
5. $\left(\frac{8 x^{5} y^{3}}{y}\right)^{-2}=$

Solutions:

Solve:

1. $4^{3}=4 \times 4 \times 4=64$
2. $(-5)^{2}=(-5) \times(-5)=25$
3. $-5^{2}=-(5 \times 5)=-25$ *Using BEDMAS this is like -1×5^{2}, where we deal with our EXPONENT first, and then have our negative sign in front. Question 2 is different because the BRACKETS indicate that it is the full number "-5" that we are multiplying together. .

EXPONENTS REVIEW \& PRACTICE PROBLEMS

4. $7^{-2}=\frac{1}{7 \times 7}=\frac{1}{49}$
5. $2^{2} \times 3^{4}=2 \times 2 \times 3 \times 3 \times 3 \times 3=324$
6. $2^{3} \times 4^{-2}=\frac{2 \times 2 \times 2}{4 \times 4}=\frac{4 \times 2}{4 \times 4}=\frac{2}{4}=\frac{1}{2}=0.5$

Simplify:
Multiplying numbers with exponents that have the same base:

$$
a^{m} \times a^{n}=a^{m+n}
$$

1. $4^{3} \times 4^{2}=4^{3+2}=4^{5}$
2. $7^{6} \times 7^{4} \times 7 \times 6=7^{6+4+1} \times 6=7^{11} \times 6$ *Only the exponents that have MATCHING bases can be added together. When a number has no exponent, it is the same as that number having an exponent of 1.
3. $9^{8} \times 9^{-2}=9^{8+(-2)}=9^{8-2}=9^{6}$
4. $x^{3} \times x^{2} \times y^{7}=x^{3+2} \times y^{7}=x^{5} y^{7}$
5. $a^{5} \cdot a^{-2} \cdot b \cdot c^{-4} \cdot c=a^{5-2} \cdot b \cdot c^{-4+1}=a^{3} \cdot b \cdot c^{-3}$

Dividing numbers with exponents that have the same base:

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

Simplify:

1. $\frac{13^{5}}{13^{3}}=13^{5-3}=13^{2}$

EXPONENTS REVIEW \& PRACTICE PROBLEMS

2. $\frac{5^{23}}{5^{2} 6^{3}}=\frac{5^{23-2}}{6^{3}}=\frac{5^{21}}{6^{3}}$
3. $\frac{x^{7}}{x^{4}}=x^{7-4}=x^{3}$
4. $\frac{5 x^{3}}{5^{-2} x^{2}}=5^{1-(-2)} \cdot x^{3-2}=5^{1+2} \cdot x^{1}=5^{3} \cdot x \quad *$ the numbers with the same base can each be combined.
5. $\frac{4^{6}}{4^{3} 4^{2}}=4^{6-3-2}=4^{1}=4$

An exponent on numbers that are being multiplied (power of a product):

$$
(a b)^{m}=a^{m} b^{m}
$$

Change the expression by applying the above exponent rule:

1. $(5 \times 3)^{6}=5^{6} \times 3^{6}$
2. $(a \cdot b \cdot c)^{-2}=a^{-2} \cdot b^{-2} \cdot c^{-2}$
3. $3^{4} \times 5^{4} \times x^{2}=(3 \times 5)^{4} \times x^{2}=15^{4} \cdot x^{2} \quad$ *Only terms that have the SAME exponent can be combined with the product rule
4. $d^{3} \cdot e^{-3} \cdot f^{3}=(d \cdot f)^{3} \cdot e^{-3}$
5. $(3 c)^{-2}=3^{-2} \times c^{-2}$

An exponent on numbers that are being divided (power of a fraction):

$$
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

EXPONENTS REVIEW \& PRACTICE PROBLEMS

Change the expression by applying the above exponent rule:

1. $\left(\frac{5}{3}\right)^{2}=\frac{5^{2}}{3^{2}}$
2. $\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$ *Your exponent may be a variable. Treat it the same way you would treat a number.
3. $\frac{5^{15}}{3^{15} 7^{2}}=\left(\frac{5}{3}\right)^{15} \cdot \frac{1}{7^{2}}$
4. $\left(\frac{4}{x y}\right)^{7}=\frac{4^{7}}{x^{7} y^{7}}$
5. $\frac{3^{-3}}{a^{-3} \cdot b^{-3}}=\left(\frac{3}{a \cdot b}\right)^{-3}$

A power of a power...

$$
\left(a^{m}\right)^{n}=a^{m \times n}
$$

Simplify:

1. $\left(5^{2}\right)^{4}=5^{2 \times 4}=5^{8}$
2. $\left(7^{9}\right)^{-2}=7^{9 \times(-2)}=7^{-18}$
3. $\left(x^{3}\right)^{2}=x^{3 \times 2}=x^{6}$
4. $\left(a^{3} \cdot b^{2}\right)^{4}=a^{3 \times 4} \cdot b^{2 \times 4}=a^{12} \cdot b^{8} \quad$ *If you have more than one term, your outermost exponent will multiply each of your inner exponents.
5. $\left(3^{4} \cdot x^{m}\right)^{n}=3^{4 n} \cdot x^{m n}$

EXPONENTS REVIEW \& PRACTICE PROBLEMS

Fractional exponents:

$$
a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

1. True or False: $\sqrt{x^{3}}=x^{\frac{3}{2}}$
true
2. Solve: $8^{2 / 3}=(\sqrt[3]{8})^{2}=2^{2}=4$
3. Write with an exponent as a fraction: $\sqrt[5]{x^{7}}=x^{7 / 5}$
4. Write with an exponent as a fraction: $(\sqrt[3]{27})^{2}=27^{2 / 3}$
5. Solve: $(\sqrt[3]{15})^{3}=15^{3 / 3}=15^{1}=15$

Altogether now ...

Simplify:

1. $7^{8} \cdot 7^{2} \cdot 7^{3} \cdot 7 \cdot 7^{-5}=7^{8+2+3+1+(-5)}=7^{9}$
2. $y^{\frac{1}{2}} \cdot y^{3} \cdot \frac{z^{3}}{z^{2}}=y^{\left(\frac{1}{2}\right) \times 3} \cdot z^{3-2}=y^{\frac{3}{2}} \cdot z$ Also acceptable are $: \sqrt{y^{3}}$. $z O R(\sqrt{y})^{3} \cdot z$
3. $\left(5 x^{2} y\right)^{2}+\frac{6 c}{2 c^{2}}=\left(5^{2}\right) \cdot x^{2 \times 2} \cdot y^{2}+\left(\frac{6}{3}\right) \cdot c^{1-2}=25 x^{4} y^{2}+2 c^{-1} \quad$ *Note that the rules apply to each term in the addition, but because our final terms are still not "like terms" we cannot combine them.
4. $\left(3 a^{8}\right)^{2}+\left(2 a^{4}\right)^{4}=3^{2} a^{8 \times 2}+2^{4} a^{4 \times 4}=9 a^{16}+16 a^{16}=25 a^{16} \quad$ *We can combine our addition terms because they are "like terms"; our variables have the same base and exponent.

EXPONENTS REVIEW \& PRACTICE PROBLEMS

5. $\left(\frac{8 x^{5} y^{3}}{y}\right)^{-2}=\left(8 \cdot x^{5} \cdot y^{3-1}\right)^{-2}=\left(8 \cdot x^{5} \cdot y^{2}\right)^{-2}=8^{-2} \cdot x^{5 \times(-2)} \cdot y^{2 \times(-2)}=$ $\frac{x^{-10} y^{-4}}{64}$ *Using BEDMAS, we simplify inside the brackets before we get to the outer exponent.

CONGRATULATIONS! As a reward for making it to the end of this worksheet, here is a cat joke:

What is a cat's favourite cereal?

MICE KRISPIES!

