1. ANSWER: When going from odds in favour to odds against, or vice versa, we just switch the order.
Odds against Pi knocking her dish over: 7:3
2. ANSWER: First, determine how many dogs do not like to play with frisbees.

30 total -21 who like frisbee $=9$ who do not

9:21

3. ANSWER: First, convert the odds for each game into a probability of winning. Then compare them to find the highest.
Since the odds are expressed against winning, we need to use the second number in our probability statements since we want the probability of winning.

- Lazy Susan $-\frac{3}{8+3}=\frac{3}{11}=0273=27.3 \%$ chance of winning
- Rowdy Rays $-\frac{2}{5+2}=\frac{2}{7}=0.286=28.6 \%$ chance of winning
- Bird Balloon $-\frac{4}{4+7}=\frac{4}{11}=0.364=36.4 \%$ chance of winning

You would be most likely to win the Bird Balloon game.

4. ANSWER:

- We will call drawing a number divisible by 3 'Event A' and drawing a multiple of 4 'Event B'.
- 5 numbers could be drawn for Event A, 4 numbers for Event B and there are a total of 16 numbers.
- Since there are overlapping outcomes (EVENTS ARE NON-MUTUALLY EXLCUSIVE) we can use the INCLUSION-EXCLUSION PRINCIPLE

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$$
P(A \cup B)=\frac{5}{16}+\frac{4}{16}-\frac{1}{16}=\frac{8}{16}=\frac{1}{2}=0.50
$$

The probability that a number drawn is divisible by 3 or divisible by 4 is 50\%.

5. ANSWER:

a) First, are the events mutually exclusive? No, because $P(A \cap B) \neq 0$

- That means the Principle of Inclusion-Exclusion applies
- We can use it to solve for the probability of Roger scoring.

$$
\begin{gathered}
P(M \cup R)=P(M)+P(R)-P(M \cap R) \\
0.63=0.41+P(R)-0.35 \\
P(R)=0.57
\end{gathered}
$$

The probability of Roger scoring in a game is 57%.
b) Using part a, we can fill in a Venn Diagram and determine:

$$
P\left(M \cap R^{\prime}\right)=0.06=6 \%
$$

Who scores in a hockey game?

c) $\boldsymbol{P}\left(\boldsymbol{R} \cap M^{\prime}\right)=\mathbf{0 . 2 2}=\mathbf{2 2} \%$

6. ANSWER:

- A card cannot be both a face card and a 5 at the same time. These are MUTUALLY EXCLUSIVE events: $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$
- Let's call drawing a face card 'Event A ' and drawing a 5 'Event B '

$$
P(A \cup B)=P(A)+P(B)=\frac{12}{52}+\frac{4}{52}=\frac{16}{52}=\frac{4}{13}=0.308
$$

The probability of drawing a face card or a 5 is $\mathbf{3 0 . 8 \%}$.
7. ANSWER:

- There are 5 weekdays per week
- Probability she does not jump on the bed $=1-0.8=0.20$
- Weekdays she does not jump on bed $=0.20 \times 5$ days $=1$ day

8. ANSWER:

- Start by identifying the rolls associated with each outcome:
A. $1,2,3$
B. $4,5,6$
C. $1,3,5$
a) A and B have no overlapping values. Therefore A and B are mutually exclusive.
b) A and C have overlapping outcomes and are not mutually exclusive to each other. B and C have overlapping outcomes and are also not mutually exclusive to each other.

9. ANSWER: A Venn Diagram would be helpful to visualize the probabilities of each outcome. The outcomes of the second game are dependent on the first game, so we will use conditional probability.

B: GAME 2

a) $P\left(A^{\prime} \cap B^{\prime}\right)=P\left(A^{\prime}\right) \times P\left(B^{\prime} \mid A^{\prime}\right)=0.35 \times 0.70=0.245=\mathbf{2 4 . 5} \%$
b) $P\left(\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right)=P(A) \times P\left(\left.B\right|^{\prime} A\right)+P\left(A^{\prime}\right) \times P\left(B \mid A^{\prime}\right)=$ $0.65 \times 0.15+0.35 \times 0.3=0.2025=\mathbf{2 0 . 3} \%$
c) The probabilities from the first round continue into the second. This makes the events independent now.

$$
P\left(A^{\prime} \cap B^{\prime}\right)=P\left(A^{\prime}\right) \times P\left(B^{\prime}\right)=0.35 \times 0.35=01225=12.3 \%
$$

10. ANSWER:

- Probabilities are always \# desired outcomes/\#possible outcomes
- There are 12 students total and 5 will be selected. The total number of possible groups of five is: ${ }_{12} \mathrm{C}_{5}=792$
- The number of possible groups with three grade 11 and two grade 12 students is: ${ }_{6} \mathrm{C}_{3} \times{ }_{4} \mathrm{C}_{2}=20 \times 6=120$

$$
P(\text { three } G R 11 \& \text { two } G R 12)=\frac{120}{792}=0.152=15.2 \%
$$

There is a 15.2% chance that three grade 11 and two grade 12 students will be chosen.

