
Past Problems from PoTW

AperioMAT

Week 13

Level 1

Let a, b, c, d, and e be positive integers such that

abcde = a+ b+ c+ d+ e.

Find the maximum possible value of max{a, b, c, d, e}.

Answer: 5
Solution:
Suppose that a ≤ b ≤ c ≤ d ≤ e. We need to find the maximum value of e. Since

e < a+ b+ c+ d+ e ≤ 5e,

then e < abcde ≤ 5e, i.e. 1 < abcd ≤ 5. Hence (a, b, c, d) = (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 1, 4), (1, 1, 2, 2),
or (1, 1, 1, 5), which leads to max{e} = 5.

Level 2

We start with the three numbers 0, 1,
√
2, to which the following operation is repeat-

edly applied: one of the numbers is chosen and an arbitrary rational multiple of the
difference of the two others is added. Is it possible to obtain the triple 0,

√
2−1,

√
2+1

after a number of applications of this operation?

Answer: No
Solution:

Proof. Since
√
2 is irrational, all numbers that are obtained during this process must have

the form a + b
√
2 for some rational a and b. Such a number can be represented by the

point (a, b) in the plane. We consider the triangle that is formed by the three numbers. In
the beginning, its vertices are (0, 0), (1, 0) and (0, 1). The described operation amounts to
a translation of one of the points along a line parallel to the opposite side of the triangle.
This operation does not change the area of the triangle, so the area remains constant. In
the beginning, the area is 1

2
. The triangle that is formed by the three points (0, 0), (−1, 1)

and (1, 1), however, has area 1 , so it is impossible to reach the triple 0,
√
2− 1,

√
2 + 1.
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Week 8

Level 1

The tetrahedron ABCD is divided into five convex polyhedra so that each face of
ABCD is a face of one of the polyhedra (no faces are divided), and the intersection of
any two of the five polyhedra is either a common vertex, a common edge, or a common
face. What is the smallest possible sum of the number of faces of the five polyhedra?

Answer: 22
Solution: No polyhedron shares two faces with ABCD; otherwise, its convexity would

imply that it is ABCD. Then exactly one polyhedron P must not share a face with ABCD,
and has its faces in ABCD ’s interior. Each of P ’s faces must then be shared with another
polyhedron, implying that P shares at least 3 vertices with each of the other polyhedra. Also,
any polyhedron face not shared with ABCD must be shared with another polyhedron. This
implies that the sum of the number of faces is even. Each polyhedron must have at least four
faces for a sum of at least 20. Assume this is the sum. Then each polyhedron is a four-vertex
tetrahedron, and P shares at most 2 vertices with ABCD. Even if it did share 2 vertices
with ABCD, say A and B, it would then share at most 2 vertices with the tetrahedron
containing ACD, a contradiction. Therefore, the sum of the faces must be at least 22. This
sum can indeed be obtained. Let P and Q be very close to A and B, respectively; then the
five polyhedra APCD,PQCD,BQCD,ABDPQ, and ABCPQ satisfy the requirements.

Level 2

Express the sum
n∑

k=0

(−1)k

k3 + 9k2 + 26k + 24

(
n
k

)
in the form p(n)/q(n), where p, q are polynomials with integer coefficients.

Answer: 1
2(n+3)(n+4)

Solution: We have
n∑

k=0

(−1)k

k3 + 9k2 + 26k + 24

(
n
k

)
=

n∑
k=0

(−1)k

(k + 2)(k + 3)(k + 4)

(
n
k

)

=
n∑

k=0

(−1)k
k + 1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

(
n+ 4
k + 4

)

=
1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

n+4∑
k=4

(−1)k(k − 3)

(
n+ 4
k

)
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and
n+4∑
k=0

(−1)k(k − 3)

(
n+ 4
k

)

=
n+4∑
k=0

(−1)kk

(
n+ 4
k

)
− 3

n+4∑
k=0

(−1)k
(

n+ 4
k

)

=
n+4∑
k=1

(−1)kk

(
n+ 4
k

)
− 3(1− 1)n+4

=
1

n+ 4

n+4∑
k=1

(−1)k
(

n+ 3
k − 1

)
=

1

n+ 4
(1− 1)n+3 = 0.

Therefore

n+4∑
k=4

(−1)k(k − 3)

(
n+ 4
k

)

= −
3∑

k=0

(−1)k(k − 3)

(
n+ 4
k

)
= 3

(
n+ 4
0

)
− 2

(
n+ 4
1

)
+

(
n+ 4
2

)
=

(n+ 1)(n+ 2)

2

and the given sum equals 1
2(n+3)(n+4)

.

Week 7

Level 1

How many pairs (x, y) of positive integers with x ≤ y satisfy gcd(x, y) = 5! and
lcm(x, y) = 50!?

Solution: First, note that there are 15 primes from 1 to 50 :

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47).

To make this easier, let’s define f(a, b) to be the greatest power of b dividing a. (Note
g(50!, b) > g(5!, b) for all b < 50.)

Therefore, for each prime p, we have either f(x, p) = f(5!, p) and f(y, p) = f(50!, p) OR
f(y, p) = f(5!, p) and f(x, p) = f(50!, p). Since we have 15 primes, this gives 215 pairs, and
clearly x ̸= y in any such pair (since the gcd and lcm are different), so there are 214 pairs
with x ≤ y.
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Level 2

For any real number b, let f(b) denote the maximum of the function∣∣∣∣sinx+
2

3 + sin x
+ b

∣∣∣∣
over all x ∈ R. Find the minimum of f(b) over all b ∈ R.

Solution: The minimum value is 3/4. Let y = 3 + sinx; note y ∈ [2, 4] and assumes
all values therein. Also let g(y) = y + 2/y; this function is increasing on [2, 4], so g(2) ≤
g(y) ≤ g(4). Thus 3 ≤ g(y) ≤ 9/2, and both extreme values are attained. It now follows
that the minimum of f(b) = max(|g(y) + b − 3|) is 3/4, which is attained by b = −3/4; for
if b > −3/4 then choose x = π/2 so y = 4 and then g(y) + b − 3 > 3/4, while if b < −3/4
then choose x = −π/2 so y = 2 and g(y) + b− 3 = −3/4; on the other hand, our range for
g(y) guarantees −3/4 ≤ g(y) + b− 3 ≤ 3/4 for b = −3/4.

Week 6

Level 1

Let n be a positive integer. Call a nonempty subset S of {1, 2, . . . , n} ‘good’ if the
arithmetic mean of the elements of S is also an integer. Further let Tn denote the
number of ‘good’ subsets of {1, 2, . . . , n}. Prove that Tn and n are either both odd or
both even.

Source: INMO 2013; Problem 4.

Solution: The official solution can be found at this link. Here’s my solution:

Let us look for a recursion for general term Tn+1. Here, the sets {1, 2, . . . , n} and
{2, 3, . . . , n+ 1} are denoted by X1 and X2, respectively.

By definition, there are Tn ‘good’ subsets S ∈ X1. Observe that there are also Tn

‘good’ subsets of X2, as every such subset can be formed by adding 1 to all elements in the
corresponding subset of {1, 2, . . . , n}.

If n + 1 is even, all ‘good’ subsets of Tn+1 are either in X1, X2, or both. The overlap
contains ‘good’ subsets of {2, 3, . . . , n} = {1 + 1, 2 + 1, . . . , (n− 1) + 1}. Hence, we subtract
the overcount of Tn−1 elements. This gives Tn+1 = 2Tn − Tn−1. Thus, Tn+1 and Tn−1 have
the same parity (i.e. for all even n, Tn ≡ T2(= 2) ≡ 0 (mod 2)).

If n+ 1 is odd, the full set {1, 2, . . . , n+ 1} must also be counted in Tn+1 (so we add 1).
This means that Tn for odd n has opposite parity to Tn for even n, and we are done.
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Level 2

If n ≥ 2 is an integer and 0 < a1 < a2 · · · < a2n+1 are real numbers, prove the
inequality:

n
√
a1 − n

√
a2 + n

√
a3 − · · · − n

√
a2n + n

√
a2n+1 <

n
√
a1 − a2 + a3 − · · · − a2n + a2n+1.

Source: 1998 Balkan MO; Problem 2.
Solution: Again, we use induction. This may seem unusual, but we will treat the

exponents and subscripts as two separate variables, and only perform induction on the
latter. Let the exponent remain denoted by n, but call the subscript variable m.

We do this because m = 1 is now valid, which is much simpler to evaluate than m = 2.
In this case, the inequality becomes n

√
a1− n

√
a2+ n

√
a3 < n

√
a1 − a2 + a3. By definition, both

LHS and RHS are positive. Thus, we can take the nth power of both sides and rewrite as an
equation:

( n
√
a1 − n

√
a2 + n

√
a3)

n < a1 − a2 + a3

(a1 − a2 + a3)− ( n
√
a1 − n

√
a2 + n

√
a3)

n > 0

This may also seem strange, but taking the derivative of both sides with respect to a1
gives 1− (( n

√
a1)/( n

√
a1 − n

√
a2 + n

√
a3))

n−1 > 0. It is given that a3 > a2, so the denominator
of the expression is greater than the numerator (i.e., this becomes 1− (some x < 1)n−1 > 0).
For n ≥ 2, this is evidently true.

If instead m = 2, we add the terms a4 and a5. Given a5 − a4 > 0, following the same
procedure and taking the derivative gives the same result. Similarly, for every subsequent
m, we add two terms with difference a2m+1 − a2m > 0. Thus, the statement holds. (Note
that this is only a rough sketch of the induction step and not enough for a formal proof.)

Week 5

Level 1

For each natural number n ≥ 2, determine the largest possible value of the expression

Vn = sinx1 cosx2 + sinx2 cosx3 + · · ·+ sinxn cosx1,

where x1, x2, . . . , xn are arbitrary real numbers.

Solution:
By the inequality 2ab ≤ a2 + b2, we get

Vn ≤ sin2 x1 + cos2 x2

2
+ · · ·+ sin2 xn + cos2 x1

2
=

n

2
,
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with equality for x1 = · · · = xn = π/4.

Level 2

For any natural number n ≥ 3, let m(n) denote the maximum number of points lying
within or on the boundary of a regular n-gon of side length 1 such that the distance
between any two of the points is greater than 1. Find all n such that m(n) = n− 1.

Answer: n = 4, 5, 6

Solution:
We can easily show that m(3) = 1, e.g. dissect an equilateral triangle ABC into 4

congruent triangles and then for two points P,Q there is some corner triangle inside which
neither lies; if we assume this corner is at A then the circle with diameter BC contains the
other three small triangles and so contains P and Q;BC = 1 so PQ ≤ 1. This method will
be useful later; call it a lemma.

On the other hand, m(n) ≥ n − 1 for n ≥ 4 as the following process indicates. Let the
vertices of our n-gon be A1, A2, . . . , An. Take P1 = A1. Take P2 on the segment A2A3 at
an extremely small distance d2 from A2; then P2P1 > 1, as can be shown rigorously, e.g.
using the Law of Cosines in triangle P1A2P2 and the fact that the cosine of the angle at A2

is nonnegative (since n ≥ 4 ). Moreover P2 is on a side of the n-gon other than A3A4, and
it is easy to see that as long as n ≥ 4, the circle of radius 1 centered at A4 intersects no side
of the n-gon not terminating at A4, so P2A4 > 1 while clearly P2A3 < 1. So by continuity
there is a point P3 on the side A3A4 with P2P3 = 1. Now slide P3 by a small distance d3
on A3A4 towards A4; another trigonometric argument can easily show that then P2P3 > 1.
Continuing in this manner, obtain P4 on A4A5 with P3P4 = 1 and slide P4 by distance d4 so
that now P3P4 > 1, etc. Continue doing this until all points Pi have been defined; distances
PiPi+1 are now greater than by construction, Pn−1P1 > 1 because P1 = A1 while Pn−1 is in
the interior of the side An−1An; and all other PiPj are greater than 1 because it is easy to see
that the distance between any two points of nonadjacent sides of the n-gon is at least 1 with
equality possible only when (among other conditions) Pi, Pj are endpoints of their respective
sides, and in our construction this never occurs for distinct i, j. So our construction succeeds.
Moreover, as all the distances di tend to 0 each Pi tends toward Ai, so it follows that the
maximum of the distances AiPi can be made as small as desired by choosing di sufficiently
small. On the other hand, when n > 6 the center O of the n-gon is at a distance greater
than 1 from each vertex, so if the Pi are sufficiently close to the Ai then we will also have
OPi > 1 for each i. Thus we can add the point O to our set, showing that m(n) ≥ n for
n > 6.

It now remains to show that we cannot have more than n− 1 points at mutual distances
greater than 1 for n = 4, 5, 6. As before let the vertices of the polygon be A1, etc. and the
center O; suppose we have n points P1, . . . , Pn with PiPj > 1 for i not equal to j. Since
n ≤ 6 it follows that the circumradius of the polygon is not greater than 1 , so certainly no
Pi can be equal to O. Let the ray from O through Pi intersect the polygon at Qi and assume
WLOG our numbering is such that Q1, Q2, . . . , Qn occur in that order around the polygon,
in the same orientation as the vertices were numbered. Let Q1 be on the side AkAk+1.
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A rotation by angle 2π/n brings Ak into Ak+1; let it also bring Q1 into Q′
1, so triangles

Q1Q
′
1O and AkAk+1O are similar. We claim P2 cannot lie inside or on the boundary of

quadrilateral OQ1Ak+1Q
′
1. To see this, note that P1Q1Ak+1 and P1Ak+1Q

′
1 are triangles

with an acute angle at P1, so the maximum distance from P1 to any point on or inside either
of these triangles is attained when that point is some vertex; however P1Q1 ≤ OQ1 ≤ 1, and
P1Ak+1 ≤ O1Ak+1 ≤ 1 (e.g. by a trigonometric argument similar to that mentioned earlier),
and as for P1Q

′
1, it is subsumed in the following case: we can show that P1P ≤ 1 for any P

on or inside OQ1Q
′
1, because n ≤ 6 implies that ∠Q1OQ′

1 = 2π/n ≥ π/3, and so we can erect
an equilateral triangle on Q1Q

′
1 which contains O, and the side of this triangle is less than

AkAk+1 = 1 (by similar triangles OAkAk+1 and OQ1Q
′
1) so we can apply the lemma now to

show that two points inside this triangle are at a distance at most 1 . The result of all this is
that P2 is not inside the quadrilateral OQ1Ak+1Q

′
1, so that ∠P1OP2 = ∠Q1OP2 > 2π/n. On

the other hand, the label P1 is not germane to this argument; we can show in the same way
that ∠PiOPi+1 > 2π/n for any i (where Pn+1 = P1 ). But then adding these n inequalities
gives 2π > 2π, a contradiction, so our points Pi cannot all exist. Thus m(n) ≤ n − 1 for
n = 4, 5, 6, completing the proof.

Week 4

Level 1

Solve the equation

ex
1/e · x(1/e)x = 1

in positive x.

Answer: 1
e

Solution:
Notice that x = 1

e
satisfies the equation:

e(
1
e)

1
e

·
(
1

e

)( 1
e)

1
e

= e(
1
e)

1
e

· e−(
1
e)

1
e

= e(
1
e)

1
e −( 1

e)
1
e

= e0

= 1

Let us show that it is the only solution.
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Let us take the natural logarithm of both sides of the equation and rewrite it as

ln

(
e

(
x
1
e

)
· x(

1
e)

x
)

= ln(1)

ln

(
e

(
x
1
e

))
+ ln

(
x(

1
e)

x)
= 0

x
1
e +

(
1
e

)x
lnx = 0

x
1
e ex + lnx = 0

Let us now consider the function

f(x) = x
1
e ex + lnx

Its first derivative is

f ′(x) =
(
x

1
e ex + lnx

)′
=

ex

x
e−1
e

+ x
1
e ex +

1

x

Notice that f ′(x) > 0 for all positive x. This implies that the left-hand side of the last
equation represents a strictly increasing function, which takes each of its values exactly
once. Therefore, it takes the value 0 only at x = 1

e
, which implies that x = 1

e
is the only

solution of the initial equation.

Level 2

Let n be the number of all functions f : {1, 2, ..., 12} → {1, 2, ..., 12} ,such that for
any positive integers i and j, where 1 ≤ i < j ≤ 12 it holds true min{f(i), f(i +
1), ..., f(j)} = min(f(1), f(j)) and f(i) ̸= f(j). Find n

4
.

Answer: 512

Solution:
Let f(j) = 12, then let us prove that

f(1) < f(2) < . . . < f(j − 1)

and
f(j + 1) > f(j + 2) > . . . > f(12).

Let us prove that if j > 1 and f(j) = 12, then

f(j − 1) > . . . > f(1)

We proceed the proof by contradiction argument and let i (where i < j ) be the greatest
number, such that

f(i+ 1) < f(i)

Thus, it follows that

f(i) > f(i+ 1) < f(i+ 2) < . . . < f(j)
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Hence, we obtain that

min{f(i), f(i+ 1), . . . , f(j)} = f(i+ 1)

This leads to a contradiction. In a similar way, one can prove that

f(j + 1) > f(j + 2) > . . . > f(12)

Note that the number of functions simultaneously satisfying the assumptions of the prob-

lem and the condition f(j) = 12 is equal to

(
11

12− j

)
. Therefore, we obtain that the

number of functions satisfying the assumptions of the problem is:

n =
12∑
j=1

(
11

12− j

)
= 211

Thus, it follows that
n

4
=

211

4
= 512

Week 3

Level 1

Find all positive integers n such that 3n−1 + 5n−1 divides 3n + 5n.

Answer: 1

Source: St. Petersburg 1996

Solution:
This only occurs for n = 1. Let sn = 3n + 5n and note that

sn = (3 + 5)sn−1 − 3 · 5 · sn−2

So sn−1 must also divide 3 · 5 · sn−2.
If n > 1, then sn−1 is coprime to 3 and 5, then sn−1 must divide sn−2, which is impossible

since sn−1 > sn−2.

Level 2

Let m, n and p are real numbers such that

(m+ n+ p)
(

1
m
+ 1

n
+ 1

p

)
= 1

Find all possible values of

1

(m+ n+ p)2023
− 1

m2023
− 1

n2023
− 1

p2023
.
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Answer: 0

Source: BdMO 2023 Secondary National

Solution:
Claim: (m+ n+ p)

(
1
m
+ 1

n
+ 1

p

)
= 1 ⇒ (m+ n)(n+ p)(p+m) = 0.

Proof: (m+ n+ p)
(

1
m
+ 1

n
+ 1

p

)
= 3 + m

n
+ m

p
+ n

m
+ n

p
+ p

m
+ p

n
= 1, note that this

implies, (m+ n+ p)(mn+mp+ np)−mnp = (m+ n)(m+ p)(n+ p) = 0.

Now, without loss of generality, assume m+ p = 0 ⇒ m = −p
Hence,

1
(m+n+p)2023

− 1
m2023 − 1

n2023 − 1
p2023

= 1
(m+n+p)2023

− 1
p2023

= 1
p2023

− 1
p2023

= 0. (Answer)

1 Week 2

Level 1

For each positive integer n, let f1(n) be 2 times the number of positive integer divisors
of n, and for j ≥ 2, let fj(n) = f1(fj−1(n)). If n ≤ 49 and f49(n) = 12, find the
difference between the largest and smallest values of n.

Answer: 1
2

Source: AMC

Solution:

Level 2

Let ABC be a triangle, and I its incenter. Let the incircle of ABC touch side BC
at D, and let lines BI and CI meet the circle with diameter AI at points P and Q,
respectively. Given BI = 6, CI = 5, DI = 3, determine the value of (DP

DQ
)2.

Answer: 1
2

Source: HMMT

Solution:

Week 1

Level 1

Amy tosses a fair coin 2024 times, and Bill tosses a fair coin 2023 times. What is the
probability that Amy gets more heads than Bill does?
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Answer: 1
2

Source: Mandelbrot

Solution:
For simplicity, assume a scenario in which Amy tosses her coin once and Bill does not

flip his at all. Amy will have more heads only if her one coin lands on heads (P = 1
2
).

Now, let’s say that Amy and Bill toss their coins n more times each. By symmetry, the
probability that Amy flips more heads than Bill in these n tosses is 1

2
.

Therefore, the probability (P = 1
2
) of Amy flipping more heads is not dependent on the

value of n (only the difference in the number of tosses).

Level 2

Solve the following system of three equations for the unknown x, y, and z (a, b, c are
given):

x2y2 + x2z2 = axyz
y2z2 + y2x2 = bxyz
z2x2 + z2y2 = cxyz

Source: Stanford Mathematics Competition (1946-1965)

Solution:
If x = 0, the second, or third, equation yields y2 ∗ z2 = 0, so one more unknown must

be zero. If two variables are equal to zero, the equations are satisfied. So, let’s consider the
case where no one of the three unknowns is zero. By diving xyz, we obtain the following
system -

zx
y
+ xy

z
= a

yz
x
+ xy

z
= b

yz
x
+ xz

y
= c

Adding these three equations and diving by 2, we get

yz
x
+ zx

y
+ xy

z
= a+b+c

2

From this equation, we subtract each of the three equations of the foregoing system and
obtain

yz
x
= −a+b+c

2
zx
y
= a−b+c

2
xy
z
= a+b−c

2

The product of these

xyz = (−a+b+c)(a−b+c)(a+b−c
8
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Diving this by each equation of the foregoing system to get (after extracting a square
root) -

x = (a−b+c)(a+b−c)
1
2

2

y = (−a+b+c)(a+b−c)
1
2

2

z = (−a+b+c)(a−b+c)
1
2

2

[Answer]
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