

DR. ALAA ALANI

LITE TECHNOLOGY LTD.

Contents:

- System Level Model

 Signal Integrity Analysis

 Power Integrity Analysis

 IR Drop

 Peccur

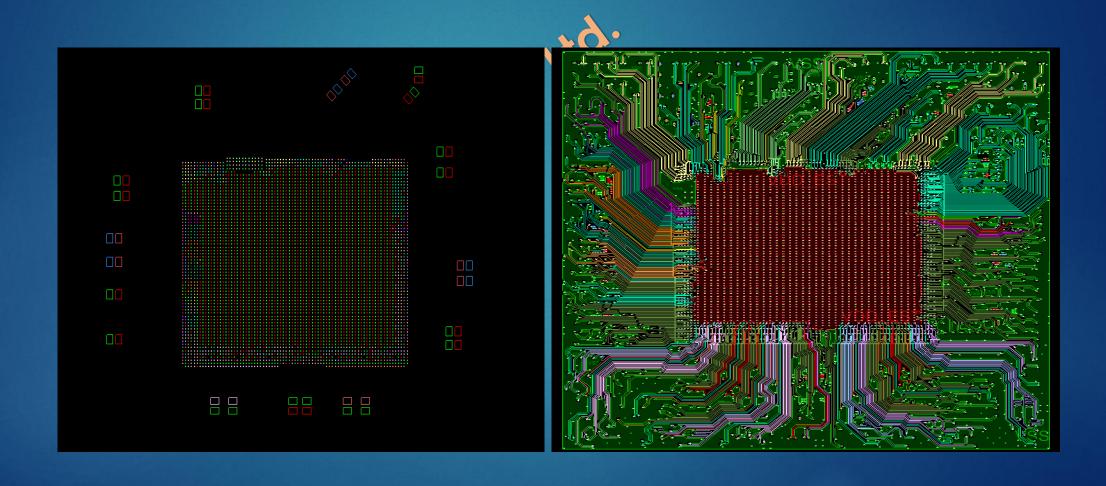
 - Decoupling Capacitors
 - Summary

PKG Overview:

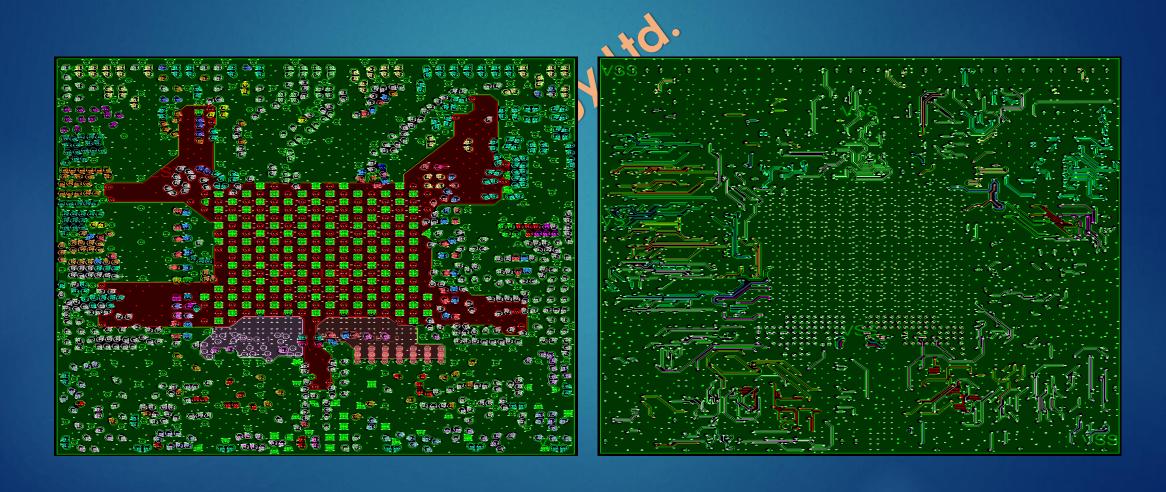
- Die size: 13.071x10994 (post shrink incl. seal ring/scribe lines)
- Die Bumps: 5231
- Bump pitch: 162.95x162.00um
- Package type: 8-layers flip ship BGA
- Package size: 25x25mm
- Ball count: 1086 with 0.65mm pitch
- Channelled ball pattern for ease of routability
- Decaps: 24 (core:14, DDR:4, VDDIO: 6, HDMI:3)

Ballout with Chnnels

25x25mm FC BGA 1086 Balls 0.65mm Pitch


```
00
                             00
                   90
000000000000000
                               G@@@@@@@@
୭ ଜଣ୍ଡ ଜଣ୍ଡ ଜଣ୍ଡ ଜଣ
ବଳ୍ପର୍ଥ୍ୟ ବ୍ୟବ୍ୟ ଜଣ
appla a coppo a
                               ୯୭ଜ୍ଜ୍ଜ୍ନ
G00990000
                               aa000a0aa
@@@@@@@@@@@
00
ຨຨໟໟຨຨຨໟໟຎ
                               @@@@@@@@@@
କ ଓ ଜ ବ କ କ ଅ ଶ କ ଅ ନ
                               രമെക്കെക്കെക്കെ
                           999999999999
                                  ₽₽○♥₽₽♥
   ලාල්චල
                                   @0
                             00
             0
                          Ð 💇
                   (4)
                      Ö.C
                          @@
                         ର ଅପ୍ରତ୍ୟ ଜଣ ଜଣ ପ୍ରତ୍ୟ ଜଣ ଜଣ ପ୍ରତ୍ୟ ଜଣ ଜଣ
                       @DDDDCG@DDDQDDG@D
                    C
```

Substrate Stackup

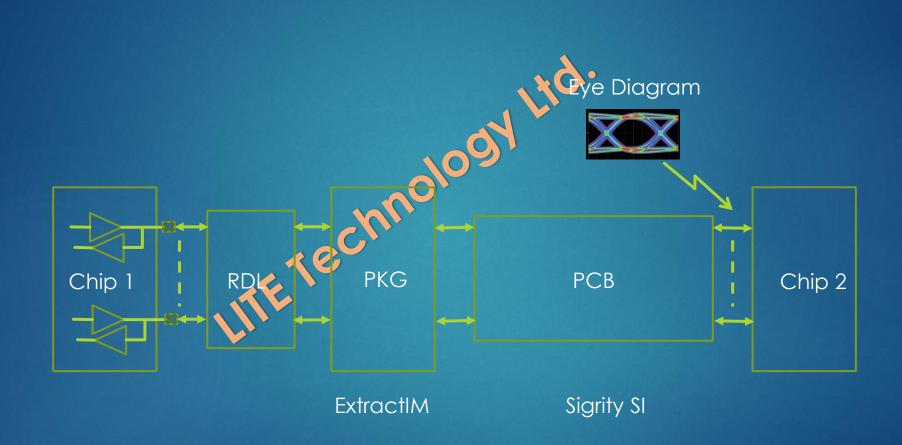


Subclass Name	Туре	Material	Thickness (UM)	Conductivity (mho/cm)	Dielectric Constant	Loss Tangent	Freq Dep File	Negative Artwork	Shield	Width (UM)	Etch Factor (Degrees)	Unused Pin Pad Suppression	Unused Via Pad Suppression
	SURFACE	AIR		0	1	0							
	DIELECTRIC												
CU-1	CONDUCTOR	COPPER	15.000000	595900	4.5	0				14	90.00		
DRILL1-2	DIELECTRIC	ABF-GX13	35.000000	0	3.35	0.012							
CU-2	CONDUCTOR	COPPER	15.000000	595900	3.35	0.012				75	90.00		
DRILL2-3	DIELECTRIC	ABF-GX13	35.000000	0	3.35	0.012							
CU-3	CONDUCTOR	COPPER	15.000000	595900	3.35	0.012				75	90.00		
DRILL3-4	DIELECTRIC	ABF-GX13	35.000000	0	3.35	0.012							
CU-4	CONDUCTOR	COPPER	18.000000	595900	3.35	0.012				75	90.00		
DRILL4-5	DIELECTRIC	E679FGR	800.000000	0	4.7	0.018							
CU-5	CONDUCTOR	COPPER	18.000000	595900	3.35	0.012				75	90.00		
DRILL5-6	DIELECTRIC	ABF-GX13	35.000000	0	3.35	0.012							
CU-6	CONDUCTOR	COPPER	15.000000	595900	3.35	0.012				75	90.00		
DRILL6-7	DIELECTRIC	ABF-GX13	35.000000	0	3.35	0.012							
CU-7	CONDUCTOR	COPPER	15.000000	595900	3.35	0.012				14	90.00		
DRILL7-8	DIELECTRIC	ABF-GX13	35.000000	0	3.35	0.012							
CU-S	CONDUCTOR	COPPER	15.000000	595900	4.5	0				14	90.00		
	DIELECTRIC												
	SURFACE	AIR		0	1	0							

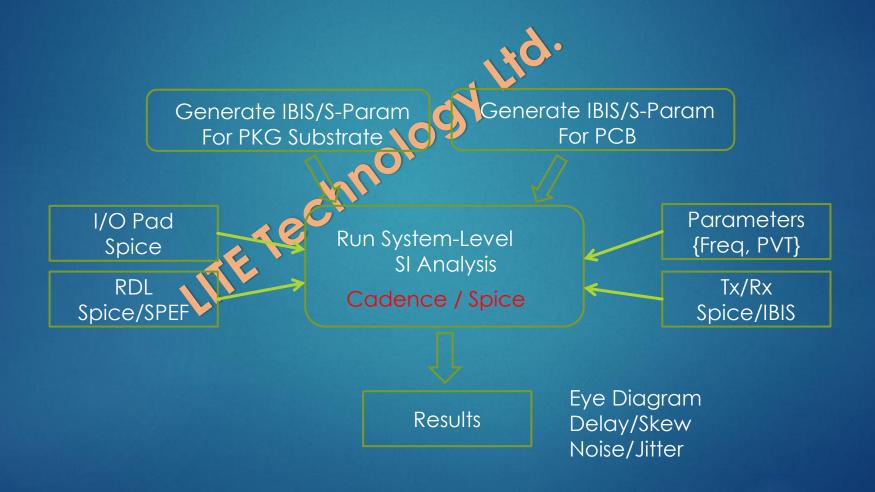
Substrate Layers

Substrate Layers (Cont.)

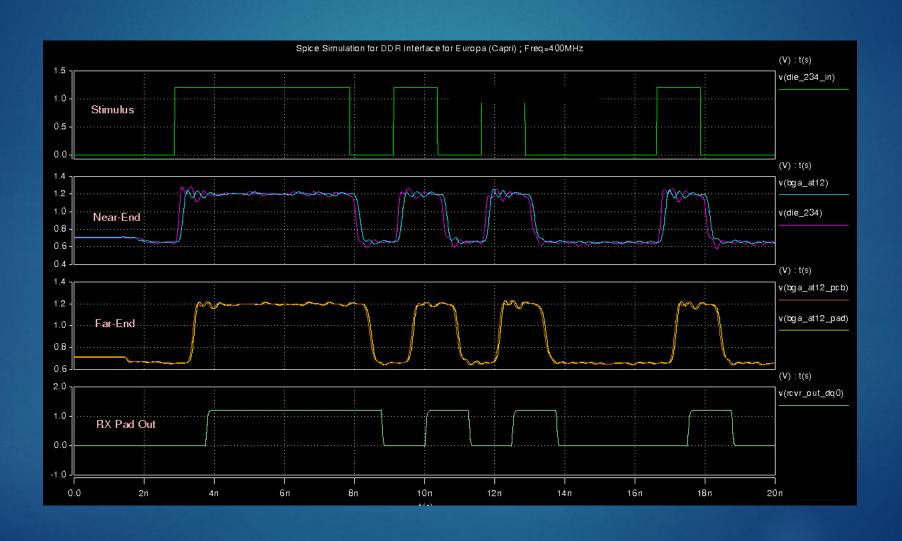
High Speed Nets Balancing


Skew Budget

Package Design Requirement: Please specify by group															
Interface/Net	DDR	MIPI CSI	MIPI DSI	HiSPi	NAND	SDHOST	LVDS	ETHERNET	HDMI-RX	HDMI-TX	USB	RF	AFE	SENSOR	LR ADC
Single End Impedance	50 Ω	50 Ω	50 Ω	50 Ω	50 Ω	50 Ω	50 Ω	50 Ω	-	-					
Differential Impedance	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	$100\;\Omega$	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω	100 Ω
Time Skew in Pair	3ps	10ps	10ps	50ps	-	-	7ps	-	25ps	5ps	3ps		3ps	5ps	3ps
Time Skew in Group (Lane to Lane) - CMD/ADDR/CTRL lines	25ps	50ps	50ps	-	100ps	1.92ns	10ps	100ps	100ps	30ps	50ps			50ps	
Time Skew in Group (Lane to Lane) - data lines	10ps	-	-	100ps				-	-						
Return Loss @ Frequency															
Insertion Loss @ Frequency															
Resistance/Inductance/Capacitance															
Cross Talk noise Coefficient to Adjacent Signal															


System Level SI Analysis

- High Speed Interfaces
 - DDR, HDMI, USB, etc.
- End-to-End Model
 - ▶ I/O pads: Spice, IBIS
 - ▶ RDL: RLC, SPEF, Spice
 - Package: IBIS, S-Parameters, Spice
 - ▶ PCB: IBIS, S-Parameters, Spice
 - DDR (3rd Party). Spice, IBIS
- Tools
 - Star-RC / RedHawk for RDL extraction
 - XtractIM for PKG extraction
 - Sigrity SI for PCB extraction and analysis


System Model

Signal Integrity Analysis Flow

DDR Spice Simulation @400MHz

Power Integrity Analysis

- Analyses:
 - IR-Drop (DIE, PKG, PCB)
 - Electro migration
- Technology Itd. Decoupling capacitors selection/ optimisation
- **PKG Supplies**
 - Core Power Plane
 - I/O Power Plane
 - DDR Power Plane
 - Special Power Nets

- Tools
 - Voltus / RedHawk for IC power integrity (IR-Drop, EM and decap optimisation)
 - RDL: Voltus / RedHawk / Star RC?
 - PowerDC for PKG IR-Drop, impedance measurement, decaps
 - Sigrity SI/PI for PCB power analysis

IR Drop

Calculated IR drop for all supplies against a 2.5% voltage drop target

$$V_{drop} = \frac{\rho.L.I}{A} = \frac{\rho.L.I}{T.W}$$

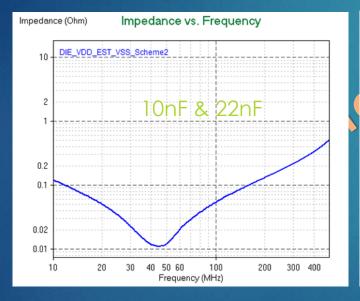
 ρ - Resistivity of Cu, 1.68e-8 Ωm

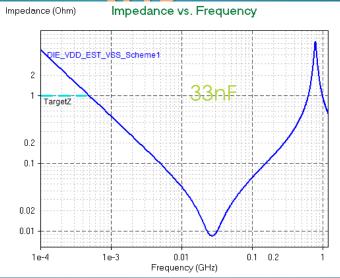
L - Length of Trace (um)

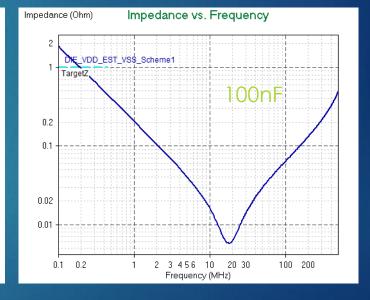
T - Trace thickness (15um)

W - Trace width (um)

I - Current (A)

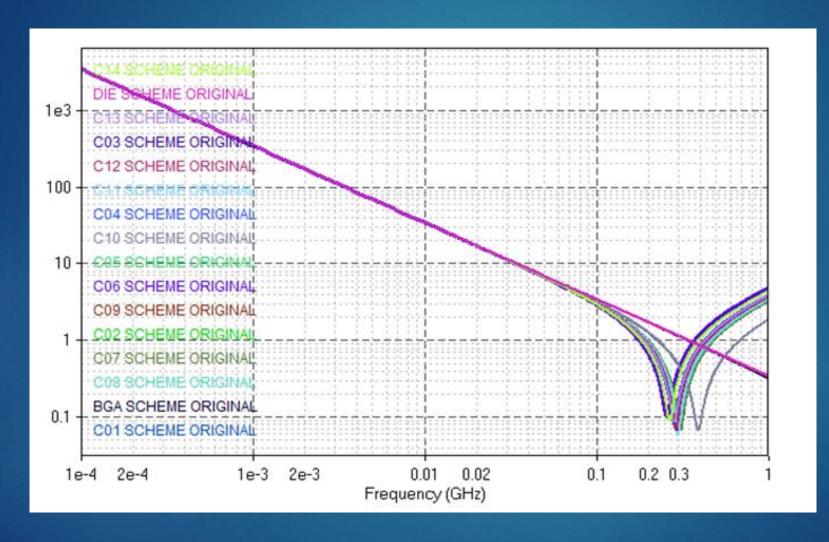

Non violating supplies


Violating supplies


NET-NAMES	No of Pads	No of Bumps	Trace width (um) 🔻	Length (um)	Sup _i aly (V)	Current drawn per interface (mA)		% IR drop	▼	No of Pads	No of Bumps	(um) ▼	Length (um)	Supply (V)	(mA	IR drop (mV)	·	
HDMI RX VPH	1	1	20	817.164	1.8	60	2.74567104	-	DDR_IF_0_PLL_DX_0	3	3	100	235.85	1.8	498	.31547696	-	CU-5
HDMI RX VPH	1	1	50	7971.627	1.8	60	10.71386669		DDR_IF_0_PLL_DX_0	3	3	26	4880.635	1.8	498	10 7008838	-	CU-6
	1	1			1.0	00		-	DDR_IF_0_PLL_DX_0	3	3	100	285.044	1.8	498	1.589861414	-	CU-8
HDMI_RX_VPH	1	1	50	125	1.8	50	0.168	-	DDR_IF_0_PLL_DX_0 TOTAL - IR drop					139.8456816	7.769205	-		
HDMI_RX_VPH	1	1	100	235.85	1.8	60	0.1584912	-	DDR_IF_0_PLL_AC	3	3	20	1745.079	1.8	498	48.66676315	-	CU-1
HDMI_RX_VPH	1	1	100	235.85	1.8	60	0.1584912	-	DDR_IF_0_PLL_AC	3	3	100	233.24	1.8	498	1 300919424	-	CU-4
HDMI_RX_VPH	1	1	26	2220.721	1.8	60	5.739709662	-	DDR_IF_0_PLL_AC	3	3	100	235.85	1.8	498	1.31547696	-	CU-5
HDMI_RX_VPH	1	1	100	285.044	1.8	60	0. 1549568	_	DDR_IF_0_PLL_AC	3	3	26	1703.858	1.8	498	36.551.68608	-	CU-6
	-	-			1.0				DDR_IF_0_PLL_AC	3	3	100	285.044	1.8	498	1.58361414	-	CU-8
HDMI_RX_VPH	TOTAL - IR drop						19.87577936	1.10421	DDR_IF_0_PLL_AC TOTAL - IR drop						89.42470703	4.968039	-	

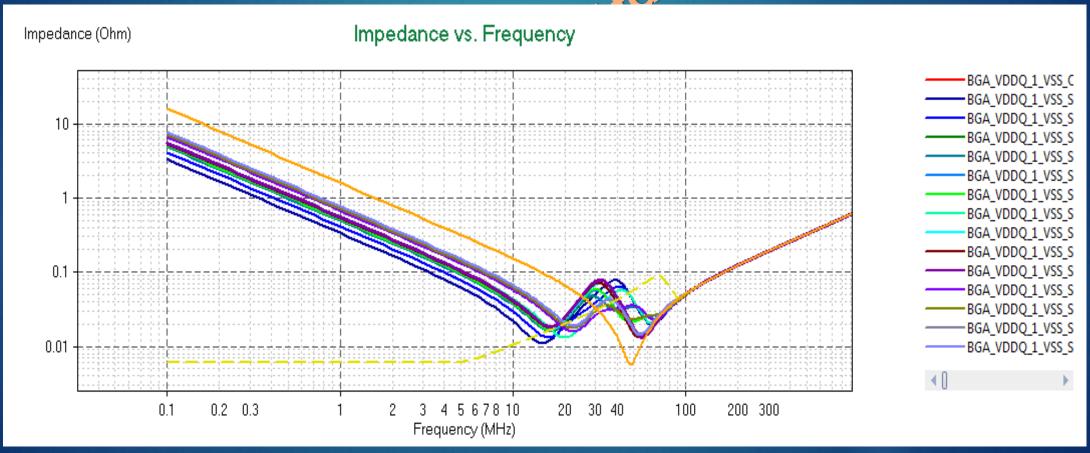
Decoupling Capacitors

Sweeping frequency with various combinations of decaps 10nF ~ 220nF Generate loop inductance for each decap



Decoupling Capacitors (Cont.)

Core VDD/VSS (13 decaps)


Various schemes have different min impedance but show similar results at low and high frequencies

Decoupling Capacitors (Cont.)

DDR1 VDDQ/VSS

Decaps values: 10nF~220nF

Decoupling Capacitors

▶ DDR0 VDDQ/VSS

Number

Capacitor Types Impedance Measure

49.2646

33.0678

34.8968

36.6132

36.6442 37.1949

37.2352

37.3981

37.9243

37.9697

38.3442

39.6548

40.3549

40.3722

41.2521

41,2745

41.8233

42.6417

43.5923

44.6324

41.799

400

400

400

400

400

400

400

400

Show Impedance with Capacitors Opened

Show Impedance with Original Capacitors
Show Relative Values to Original Scheme

Cost Number

Total Cost

Original ...

Scheme 1

Scheme 2

Scheme 3

Scheme 4

Scheme 6

Scheme 7

Scheme 8

Scheme 10

Scheme 11

Scheme 13

Scheme 14

Scheme 15

Scheme 16

Scheme 17

Scheme 18

Scheme 19

Scheme 20

✓ Component Cost
✓ Mounting Cost
✓ BOM penalty Cost

Show Impedance with All Capacitors Shorted

Decaps values: 10nF~220nF Performance vs. Scheme Z/Threshold in Log ··· - Optimum Sc Original Sch 34 15 10 20 Scheme Impedance vs. Frequency Impedance (Ohm) BGA_VDDQ_ 10 BGA VDDQ BGA_VDDQ_ BGA_VDDQ_ BGA_VDDQ_ BGA VDDQ BGA_VDDQ_ 0.1 BGA VDDQ BGA VDDQ BGA_VDDQ 1e-3 2e-3 0.2 0.3 1e-4 2e-4

Frequency (GHz)

Summary

- Ballout and substrate stackup for flipchip BGA presented
- Delay/skew of DDR interface based in trace length and simulation compared
- System level SI analyses are required for high-speed interfaces
- ▶ IR Drop simulation is mandatory to ensure system power integrity
- Decoupling capacitors analysis have been done in OptimizePI tool
- Assign different decaps to each supply to avoid anti-resonance peaks

Thank Year! INFO@LITEC.CO.UK