Contents: - Extraction/Simulation Results Summary #### PKG Overview: - Die size: 13.071x10994 (post shrink incl. seal ring/scribe lines) - ▶ Die Bumps: 5231 - ▶ Bump pitch: 162x162um - Package type: 8-layers flip chip BGA - Package size: 25x25mm - ▶ Ball count: 1086 with 0.65mm pitch - Channelled ball pattern for ease of routability - Decaps: 24 (core:14, DDR:4, VDDIO: 6, HDMI:3) ### Ballout with Channels 25x25mm FC BGA 1086 Balls 0.65mm Pitch Pitch | | _ | - | - | - | - | - | | | | _ | = | | | - | _ | _ | - | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | - | _ | |------------|--------------|------------|------|------------|-----|----------|----------|------------|----------|-----------------|----|---------------------------------|---------------|----------------|---------------|---------------------|--------------------|-----------------------|---------------|-------------|---------------|------------------------|----------|--------------|----------|------------|-------|------------|----------|------|---------------|--------------|----|------------|------------| | 6 | | | | | | ₽ | P | ₽ | 0 | Đ, | 0 | _ | P | _ | _ | | Q | | | - | | ч- | P | - 1 | Ø | P | P | P | P | ₽ | ₽ | ₽ | P | Đ, | Đ | | ⊕ € |) D | 0 | • | € | • | ø. | Ð | Ð | 0 | (D) | Ð | @ | Ð | Ø | | | G | Ø | 9 | | • | | Ð | O | 0 | Ð | Ð | Ð | O | Ð | Ð | 0 | Ð | 0 | 1 | | ⊕ € |) (i) |) | (a | Ð | | @ | 0 | | ø | ₽ | | ٨ | Ð | | (9 | 0 | | Ð | | | 9 | | | € | 6 | | ø | | | (1) | 0 | | 9 | ₽, | a | | 96 | | | Ø | Ð | | G. | 0 | | 1 | œ | | ඬ | € | | | 0 | | Ð | O | | ۹ | œ. | | | 9 | | ٠ | Θ | | | (4) | | | (D) | 0 | | G (|) G | Ø | | Ð | | ۵ | Ó | | 0 | Ð | | Ð | a | | 0 | ø | 10 | 0 | ø | | Ø | Ø | | _G | (a | | G | ø | | (| @ | _G | 0 | 0 | O | | 6 0 | 0 | Ó | ۵ | ۳ | | Ð | ۵ | | ٥ | ۵ | | Ö | Ō | | G | ø | J | | Ø | | 0 | ā | | Ò | ø | | Ġ | Ō | | ø | | Ø | ۵ | Ĝ. | Ø | | ÕÜ | | | | | | ō | ā | | 100 | œ. | | Ō | ā | | Ğ | | | ā | | | ø | _ | | Ö | | | õ | ō | | | | | ٠. | ã. | ō | | စ်မို | | (B) | ക | (| | ă | ŏ | | - 77 | ĕ | | ŏ | | | ŏ | 100 | | ē | | | | õ | | ĕ | | | ж. | ഒ | a | a | 6 0 | ø | െ | ã | | | 06 | | | _ | _ | _ | ŏ | _ | | | ĕ | | ŏ | | | ŏ | | | ŏ | _ | | | ŏ | | ĕ | | | | | - | | - | | Ξ. | ă | 5 | | lo c | - | | ~ | \sim | (C) | ~ | SEL. | | ð | | | | ã | | ĕ | | | ě | | | F-7 | ă | | ŏ | | | | .~ | \sim | | - | VIN. | | Ġ. | 新 | | G 6 | • | e de la | m | en. | ക | en. | _ | ø, | | - Pi - 1 | | ĕ | 8 | | ĕ | | | Ğ | | | Б | - | | | | øs. | Æ, | ۵ | 78 | ft. | | Œ | | G
G | 5 1 | | - | - 10 | | | | | | | | | | _ | 2 | 2 | | \geq | \sim | | <u></u> | 7 | ,
/b. | K | × | | | | | | 4 0 | _ | - 7- | | | | _ | | | 93 | | Ю | (D) | Ø) | | (D) | W | V. | (U) | | 2 | | | | | | | | | VID. | $\frac{1}{2}$ | X | | | <u> </u> | | ₹ | 9 | W | . • | Ø | (D) | Đ | | | | 96 | | | | _ | _ | | #T | | er. | | J. | $\frac{\vee}{\sim}$ | \subseteq | \circ | \mathcal{O} | <u> </u> | \bigcirc | $\underline{\vee}$ | ets. | 極 | \subseteq | $\stackrel{\smile}{=}$ | <u>@</u> | <u></u> | · | _ | | | _ | | | -75 | · | œ. | | | © (| | - | - | | - | | | _ | | 9 | | | | Ñ | Я | | | | Ď | | 9 | | | | _ | | | | _ | | | _ | • | | | | 0.8 | | | Ð | (4) | Ø | q | 6 | 0 | U | \underline{a} | 0 | $\frac{\circ}{\circ}$ | \circ | | <u> </u> | $\overline{\Omega}$ | <u> </u> | Ω | \mathcal{Q} | \circ | <u> </u> | $\overline{\Omega}$ | Ω | <u>O</u> | ש | W | œ | 戽 | 0 | 6 | 0 | 0 | 0 | - | | | Ø6 | | | | ٠ ١ | | Ш | | | | | | q | | | | Ю | | q | | | | Ю | 0 | Q | Γ. | €. | | Ľ | | ٠, | | | | œ. | _ | | € 6 | | | | | | | | | | | O, | Ω | Ω | Ω | Ω | \bigcirc | 0 | α | Ω | Ω | Ω | Ö. | Q | g | ₽ | 0 | Q | Ø | (| G | 0 | 0 | 0 | Ф, | 0 | | @ 6 |) 🗊 | 0 | ø | O | 0 | ₽ | • | 1 | 0 | \odot | q | \blacksquare | \oplus | \blacksquare | B | 0 | 0 | 0 | B | \oplus | 噩 | \blacksquare | 0 | 0 | 0 | (| Q) | P | (| Ø | 9 | (| ø, | (P) | (3) | | 6 |) | | | | | _ | | | | | q | ⊞ | \oplus | 8 | 圕 | | | | 8 | ₿ | 噩 | \oplus | Ю. | | | | | _ | | | | ١. | | 0 | 0 | | G 6 | (| 1 | ٠ | ٦ | ඬ | ◐ | @ | G | | | J | 噩 | O | 0 | 0 | a | | Q | O | 0 | 0 | Ø | O. | | G. | @ | G | 0 | (9 | (4) | (B) | Ø | 0 | (3) | (3) | | @ 0 | 0 | (0) | 0 | Ø | 1 | 1 | 1 | (| 6 | (B) | 1 | æ | | Ö | \circ | b | 0 | d | O | Ö | <u>'0</u> | b | | \circ | 0 | 6 | 6 | Ø | G | 0 | 0 | 0 | 0 | €. | 0 | | € | ١. | | | | | | | | | (9) | 9 | Ó | Ō | 0 | α | O | O | $\overline{\bigcirc}$ | Ó | \circ | O | O | \circ | đ | | | | ſ | | | | | Ī | Ō. | വ | | O6 | 100 | 6 | 0 | ø | 0 | € | • | 0 | | 94 | 5 | | | | d | | | | O | | | | | d | æ | (3) | ø | Œ | æ | G | (6) | 0 | Ð | Ó. | െ | | 6 0 | | | | | | _ | | | | lo o | 5 | | | | | $\overline{\circ}$ | $\overline{\circ}$ | $\overline{\circ}$ | Õ | | | | | d | ā | Ō | Ō | ā | ā | Œ | Ó | ā | Ö | ā. | ല | | G 6 | | 400 | | | _ | | | | • | \tilde{F}_{0} | ŏ. | a | 8 | E | # | 翻 | õ | (13) | | (13) | | | õ | ă | - | | ~ | _ | - | _ | ~ | | | Ø. | | | œ û | | Œ | 74 | 飾 | 飾 | 솰 | (III) | <u>(a)</u> | Ø | | Ŧ | Ħ | = | m | A | ă | m | Ä | | Ä | 繭 | ä | 垂 | 짉 | 俥 | a | 勸 | 74 | 酉 | 01 | O | ക | ø | - | - | | G E | | | | | | | | | | | | | | | 100 | | | | ă | æ | A | Ħ | 4 | | | | | | | | | | ŏ | | | | 9 | | 4 | - CO | , III, | ~ | Ч | - | \sim | a | 6 | | Ē | | بجلجة | ĕ | ĕ | Y | | 6 | | 曲 | $^{\circ}$ | (ATS) | | Ö | ~ | · 120 | ۲ | * | ~ | ~ | din. | | ĕ | | | 000 | | (a) | dia. | ø, | | ക | 0 | | | ğ | - | $\frac{\mathbf{w}}{\mathbf{O}}$ | Ö | | | Ö | | | ĕ | | | ĕ | | | 8 | | ದ | 6 | ۵ | | Ø5 | 0 | | ğ | | | Ø € | | G | | | 心 | - | ŏ | | | 9 | | | Ö | | 9 | | | | Ö | | Ö | | | _ | Ğ | | ŏ | | • | | - | | | - 72 | | | 100 | | ΛĎ | V | 9 | | | | | | | | | | | | 100 | | | | | | | | | | | _ | | V. | w | L.D | VI. | Ð | | | | 90 | 7 _ | | _ | _ | | 9 | | | - 12 | <u>Q</u> . | | _ | ŏ | | 0 | | | _ | 0 | | 9 | _ | | | 0 | | 9 | | | | $\overline{}$ | _ | | 9 | | | 96 | | | _ | _ | | 9 | 77 | | Ó | 9 | | ĕ | | | Ğ | - | | | Ö | | e | | | ĕ | 100 | | 9 | _ | | | _ | 9 | _ | | Ø | | 0 (| | r (d) | _ | | | 9 | 100 | | 9 | <u>Q</u> . | | õ | Õ | | 9 | | | 9 | | | 0 | | | 0 | | | - | Q | | | ø | Đ | | 0 | - X 1 | | Œ å | | | G | 100 | | 9 | | | | 9 | | • | $\overline{}$ | | 0 | - 107 | | Õ | Ō | | ā | | | 9 | | | 9 | | | 9 | 0 | | | Ō. | | | 9 6 | _ | | 0 | e | | ۹ | | | - | 1 | | ٥ | - | | 0 | Ō | | 0 | | | 9 | Ō | | | Ø | | ٩ | | | | 0 | | | Œ. | | | ₽ (| | | | | | | | | | | | Θ | | 0 | 0 | P | P | 0 | | | | | | | | | | | | | | | Ø | G, | (D) | | (D) |) (C | O | (4) | 0 | Ø | O | 0 | (9 | (9 | 0 | Ð | Ð | (Ja | 0 | | 0 | Ð | | 0 | 0 | 0 | 0 | ø | (4) | (| 0 | O | 0 | Ð | 1 | 0 | Ø | ⅉ | Œ. | Ø | ## Substrate Stackup | Subclass
Name | Туре | Material | Thickness
(UM) | Conductivity
(mho/cm) | Dielectric
Constant | Loss
Tangent | Freq
Dep File | Negative
Artwork | Shield | Width
(UM) | Etch Factor
(Degrees) | Unused Pin Pad
Suppression | Unused Via Pad
Suppression | |------------------|------------|----------|-------------------|--------------------------|------------------------|-----------------|------------------|---------------------|--------|---------------|--------------------------|-------------------------------|-------------------------------| | | SURFACE | AIR | | 0 | 1 | 0 | | | | | | | | | | DIELECTRIC | | | | | | | | | | | | | | CU-1 | CONDUCTOR | COPPER | 15.000000 | 595900 | 4.5 | 0 | | | | 14 | 90.00 | | | | DRILL1-2 | DIELECTRIC | ABF-GX13 | 35.000000 | 0 | 3.35 | 0.012 | | | | | | | | | CU-2 | CONDUCTOR | COPPER | 15.000000 | 595900 | 3.35 | 0.012 | | | | 75 | 90.00 | | | | DRILL2-3 | DIELECTRIC | ABF-GX13 | 35.000000 | 0 | 3.35 | 0.012 | | | | | | | | | CU-3 | CONDUCTOR | COPPER | 15.000000 | 595900 | 3.35 | 0.012 | | | | 75 | 90.00 | | | | DRILL3-4 | DIELECTRIC | ABF-GX13 | 35.000000 | 0 | 3.35 | 0.012 | | | | | | | | | CU-4 | CONDUCTOR | COPPER | 18.000000 | 595900 | 3.35 | 0.012 | | | | 75 | 90.00 | | | | DRILL4-5 | DIELECTRIC | E679FGR | 800.000000 | 0 | 4.7 | 0.018 | | | | | | | | | CU-5 | CONDUCTOR | COPPER | 18.000000 | 595900 | 3.35 | 0.012 | | | | 75 | 90.00 | | | | DRILL5-6 | DIELECTRIC | ABF-GX13 | 35.000000 | 0 | 3.35 | 0.012 | | | | | | | | | CU-6 | CONDUCTOR | COPPER | 15.000000 | 595900 | 3.35 | 0.012 | | | | 75 | 90.00 | | | | DRILL6-7 | DIELECTRIC | ABF-GX13 | 35.000000 | 0 | 3.35 | 0.012 | | | | | | | | | CU-7 | CONDUCTOR | COPPER | 15.000000 | 595900 | 3.35 | 0.012 | | | | 14 | 90.00 | | | | DRILL7-8 | DIELECTRIC | ABF-GX13 | 35.000000 | 0 | 3.35 | 0.012 | | | | | | | | | CU-S | CONDUCTOR | COPPER | 15.000000 | 595900 | 4.5 | 0 | | | | 14 | 90.00 | | | | | DIELECTRIC | | | | | | | | | | | | | | | SURFACE | AIR | | 0 | 1 | 0 | | | | | | | | ### Substrate Layers ## Substrate Layers (Cont.) #### High Speed Nets Balancing #### Skew Budget | A SECOND PROPERTY OF THE PROPE | | | | | | | | | | | | | | | | |--|-------|----------|----------|-------|-------|--------|---------------|----------|---------|---------|-------|-------|-------|--------|--------| | Package Design Requirement: Please specify by group | | | | | | | | | | | | | | | | | Interface/Net | DDR | MIPI CSI | MIPI DSI | HiSPi | NAND | SDHOST | LVDS | ETHERNET | HDMI-RX | HDMI-TX | USB | RF | AFE | SENSOR | LR ADC | | Single End Impedance | 50 Ω - | - | | | | | | | Differential Impedance | 100 Ω | $100\;\Omega$ | 100 Ω | Time Skew in Pair | 3ps | 10ps | 10ps | 50ps | - | - | 7ps | - | 25ps | 5ps | 3ps | | 3ps | 5ps | 3ps | | Time Skew in Group (Lane to Lane) - CMD/ADDR/CTRL lines | 25ps | 50ps | 50ps | - | 100ps | 1.92ns | 10ps | 100ps | 100ps | 30ps | 50ps | | | 50ps | | | Time Skew in Group (Lane to Lane) - data lines | 10ps | - | - | 100ps | | | | - | - | | | | | | | | Return Loss @ Frequency | | | | | | | | | | | | | | | | | Insertion Loss @ Frequency | | | | | | | | | | | | | | | | | Resistance/Inductance/Capacitance | | | | | | | | | | | | | | | | | Cross Talk noise Coefficient to Adjacent Signal | | | | | | | | | | | | | | | | | Cross Talk noise Coefficient to Adjacent Signal | | | | | | | | | | | | | | A A | | ### Delay/Skew Results - Generated net delay based on RDL + Substrate trace lengths - Inaccurate due to Z-direction and coupling - Extracted delay using Cadence XtractIM tool - Includes Z-direction (vias) and coupling effect - Simulation: Used extracted ibis & Spice models - Suitable for small circuits; doesn't include RDL - Used for cross checking to validate extracted data ## Delay/Skew Results (Cont.) | | | | | | _ | | _ | | | | | | | | _ | - | | | | | |-----|----------------|-------------|-----------|-----------------------|------------------|------------|-----------------------|--------------|--------------|-----------|-----------|----------------|------------|----------------|--------------|----------------|-------------|-------------|---------------|-------------------------------| | - 4 | A | В | С | D | E | F | G | Н | l l | J | K | L | M | N | 0 | Р | Q | R | S | T | | 1 | Cond | Sub Trace | Extracted | RDL Length | Total Length | | Total Length | | Tolerance | Total Delay | Xtracted | Total Delay | Skew based | | net length | | | | | | Net Name | Skew -/+ ps | | length | Length (mm) | (mm) | SiP (mm) | Total Length | Extracted | Tolerance | Extracted | (ps) | Delay (ps) | Extracted (ps) | on Xtraction | Judge (length) | improvement | diff (skew) | CLK-Data Skew | data-strobe | | 2 | | | 16 (mm) | 160526a | | | | | (mm) | | (mm) | | | | (ps) | | | | | | | 3 | DDR_0_ACT_N | | 12.447694 | 12.447694 | 13.983 | 0.259652 | 12.707346 | 12.707346 | 14.242252 | 1.728756 | 1.727136 | 80.06 | 106.41 | 108.04 | | | 0 | | | Differential | | 4 | DDR_0_ATO | | 12.379426 | 12.379426 | 13.910 | 0.615067 | 12.994493 | 12.994493 | 14.524967 | 2.015903 | 2.009851 | 81.87 | 105.92 | 109.80 | | | 0 | | | Addresses/Ctrl | | 5 | DDR_0_A[0] | 25 | 6.409426 | 7.596303 | 7.946 | 0.793017 | 7.202443 | 8.38932 | 8.738947 | 3.776147 | 3.776169 | 52.85 | 59.55 | 64.55 | 31.78 | OK | 16 | | ERROR | ADDR/CTRL signals -ddr0 | | 6 | DDR_0_A[1] | 25 | 7.360917 | 7.645101 | 8.896 | 0.264656 | 7.625573 | 7.909757 | 9.160246 | 3.353017 | 3.35487 | 49.83 | 69.50 | 71.17 | 25.16 | OK | 4 | | ERROR | ADDR/CTRL signals -ddr0 | | 7 | DDR_0_A[2] | 25 | 7.707614 | 7.707614 | 9.239 | 0.611733 | 8.319347 | 8.319347 | 9.850323 | 2.659243 | 2.664793 | 52.41 | 70.84 | 74.69 | 21.64 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 8 | DDR_0_A[3] | 25 | 7.656859 | 7.656859 | 9.193 | 0.991532 | 8.648391 | 8.648391 | 10.184922 | 2.330199 | 2.330194 | 54.48 | 66.72 | 72.96 | 23.36 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 9 | DDR_0_A[4] | 25 | 9.614462 | 9.614462 | 11.151 | 0.992464 | 10.606926 | 10.606926 | 12.143364 | 0.371664 | 0.371752 | 66.82 | 86.64 | 92.89 | 3.43 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 10 | DDR_0_A[5] | 25 | 6.803301 | 6.803301 | 8.340 | 0.809461 | 7.612762 | 7.612762 | 9.149211 | 3.365828 | 3.365905 | 47.96 | 67.61 | 72.71 | 23.61 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 11 | DDR_0_A[6] | 25 | 6.980873 | 7.38694 | 8.517 | 0.261827 | 7.2427 | 7.648767 | 8.779257 | 3.73589 | 3.735859 | 48.19 | 69.01 | 70.66 | 25.67 | OK | 6 | | ERROR | ADDR/CTRL signals -ddr0 | | 12 | DDR_0_A[7] | 25 | 6.603911 | 7.217632 | 8.139 | 0.612729 | 7.21664 | 7.830361 | 8.751269 | 3.76195 | 3.763847 | 49.33 | 66.32 | 70.18 | 26.14 | OK | 9 | | ERROR | ADDR/CTRL signals -ddr0 | | 13 | DDR_0_A[8] | 25 | 8.244123 | 8.244123 | 9.781 | 0.611733 | 8.855856 | 8.855856 | 10.392373 | 2.122734 | 2.122743 | 55.79 | 77.62 | 81.47 | 14.85 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 14 | DDR_0_A[9] | 25 | 6.847743 | 7.359872 | 8.383 | 0.263704 | 7.111447 | 7.623576 | 8.646334 | 3.867143 | 3.868782 | 48.03 | 67.79 | 69.45 | 26.87 | OK | 7 | | ERROR | ADDR/CTRL signals -ddr0 | | 15 | DDR_0_A[10] | 25 | 9.969958 | 9.969958 | 11.503 | 0.975129 | 10.945087 | 10.945087 | 12.478229 | 0.033503 | 0.036887 | 68.95 | 89.14 | 95.29 | 1.04 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 16 | DDR_0_A[11] | 25 | 9.077543 | 9.077543 | 10.611 | 0.983142 | 10.060685 | 10.060685 | 11.594042 | 0.917905 | 0.921074 | 63.38 | 81.46 | 87.65 | 8.68 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 17 | DDR_0_A[12] | 25 | 8.424149 | 8.424149 | 9.961 | 0.790842 | 9.214991 | 9.214991 | 10.751462 | 1.763599 | 1.763654 | 58.05 | 76.06 | 81.04 | 15.29 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 18 | DDR_0_A[13] | 25 | 6.876038 | 7.514067 | 8.411 | 0.258989 | 7.135027 | 7.773056 | 8.669959 | 3.843563 | 3.845157 | 48.97 | 67.02 | 68.65 | 27.68 | OK | 9 | | ERROR | ADDR/CTRL signals -ddr0 | | 19 | DDR_0_A[14] | 25 | 7.977397 | 7.977397 | 9.514 | 0.626976 | 8.604373 | 8.604373 | 10.140946 | 2.374217 | 2.37417 | 54.21 | 73.93 | 77.88 | 18.44 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 20 | DDR_0_A[15] | 25 | 8.676195 | 8.676195 | 10.213 | 0.796051 | 9.472246 | 9.472246 | 11.008851 | 1.506344 | 1.506265 | 59.68 | 80.32 | 85.34 | 10.99 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 21 | DDR_0_A[16] | 25 | 9.201461 | 9.201461 | 10.738 | 0.614404 | 9.815865 | 9.815865 | 11.352404 | 1.162725 | 1.162712 | 61.84 | 84.51 | 88.38 | 7.94 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 22 | DDR_0_A[17] | 25 | 9.412962 | 9.412962 | 10.948 | 0.266831 | 9.679793 | 9.679793 | 11.214731 | 1.298797 | 1.300385 | 60.98 | 86.15 | 87.83 | 8.50 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 23 | DDR_0_BA[0] | 25 | 9.863657 | 9.863657 | 11.400 | 0.794937 | 10.658594 | 10.658594 | 12.195037 | 0.319996 | 0.320079 | 67.15 | 88.44 | 93.45 | 2.88 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 24 | DDR_0_BA[1] | 25 | 9.666925 | 9.666925 | 11.201 | 0.996544 | 10.663469 | 10.663469 | 12.197244 | 0.315121 | 0.317872 | 67.18 | 88.27 | 94.55 | 1.78 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 25 | DDR_0_BG[0] | 25 | 11.174381 | 11.174381 | 12.711 | 0.805878 | 11.980259 | 11.980259 | 13.516778 | 1.001669 | 1.001662 | 75.48 | 97.91 | 102.99 | 6.66 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 26 | DDR_0_BG[1] | 25 | 13.269942 | 13.269942 | 14.798 | 0.636938 | 13.90688 | 13.90688 | 15.434538 | 2.92829 | 2.919422 | 87.61 | 112.34 | 116.36 | 20.03 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 27 | DDR_0_CK | 3 | 10.349874 | 10.349874 | 11.886 | 0.628716 | 10.97859 | 10.97859 | 12.515116 | 0 | 0 | 69.17 | 92.37 | 96.33 | 1.04 | OK | 0 | OK | OK | Reference Clock - ADDR/CTRL s | | 28 | DDR_0_CKE | 25
3 | 11.44387 | 11.44387 | 12.980 | 0.618671 | 12.062541
11.16455 | 12.062541 | 13.599071 | 1.083951 | 1.083955 | 75.99 | 98.99 | 102.89 | 6.56 | OK | 0 | OK | OK | ADDR/CTRL signals -ddr0 | | 29 | DDR_0_CK_N | _ | 10.368261 | 10.368261 | 11.905 | 0.796289 | | 11.16455 | 12.700989 | 0.18596 | 0.185873 | 70.34 | 90.27 | 95.29 | 1.04 | OK | 0 | OK | OV | ADDD/CTDL sissals disc | | 30 | DDR_0_CS_N | 25 | 10.763678 | 10.763678 | 12.300 | 0.256815 | 11.020493 | 11.020493 | 12.557015 | 0.041903 | 0.041899 | 69.43 | 93.34 | 94.96 | 1.37 | OK | 0 | | OK | ADDR/CTRL signals -ddr0 | | 31 | DDR_0_DM[0] | 10 | 8.15192 | 8.15192
12.008362 | 9.688 | 0.802834 | 8.954754 | 8.954754 | 10.491204 | 0.054544 | 0.058336 | 56.41 | 77.83 | 82.88 | 0.42 | OK
OK | 0 | | OK | Bytelane 0 | | 32 | DDR_0_DM[1] | 10 | 12.008362 | 12.638272 | 13.539
14.309 | 0.611733 | 12.620095 | 12.620095 | 14.150833 | 1.132691 | 1.138373 | 79.51 | 103.74 | 107.59 | 8.43 | OK
OK | 1 | | OK
ERROR | Bytelane 1 | | 33 | DDR_0_DM[2] | 10 | 12.778207 | | | | 13.57781 | 13.437875 | 15.108403 | 1.443435 | 1.439378 | 84.66 | 112.87 | 117.91 | 11.09 | | -1 | | | Bytelane 2 | | 34 | DDR_0_DM[3] | 10 | 10.363551 | 10.363551 | 11.893 | 0.620183 | 10.983734 | 10.983734 | 12.513283 | 0.567276 | 0.560379 | 69.20 | 95.16 | 99.06 | 6.69 | OK | 0 | OK | OK | Bytelane 3 | | 35 | DDR_0_DQS[0] | 3 | 8.638342 | 8.638342 | 10.171 | 0.261868 | 8.90021 | 8.90021 | 10.432868 | 0.263598 | 0.267458 | 56.07 | 81.66 | 83.31 | 1.99 | OK | 0 | OK | - | Reference signal to bytelane | | 36 | DDR_0_DQS[1] | 3 | 12.73988 | 12.73988
12.310487 | 14.276 | 1.012906 | 13.752786 | 13.752786 | 15.289206 | 0.243951 | 0.243911 | 86.64
79.24 | 109.64 | 116.02 | 1.72 | OK
OK | 4 | OK
OK | - | Reference signal to bytelane | | 37 | DDR_0_DQS[2] | 3 | 11.86655 | | 13.401 | 0.267825 | 12.134375 | 12.578312 | 13.669025 | 0.319878 | 0.319723 | | 105.13 | 106.81 | 2.78 | | 4 | | | Reference signal to bytelane | | 38 | DDR_0_DQS[3] | 3 | 9.394854 | 9.394854 | 10.931 | 1.021604 | 10.416458 | 10.416458 | 11.952904 | 0.429519 | 0.429511 | 65.62 | 85.94 | 92.37 | 1.94 | OK | 0 | OK | | Reference signal to bytelane | | 39 | DDR_0_DQS_N[0] | 3 | 8.731582 | 8.731582 | 10.268 | 0.432226 | 9.163808 | 9.163808 | 10.700326 | 0.263598 | 0.267458 | 57.73 | 82.58 | 85.30 | 1.99 | OK | 0 | OK | | | ### Delay/Skew Results (Cont.) #### Extraction Vs. Simulation | | Classical and a second | | - | Contraction at the | on results - Separat | | (DATA G ADDD) | |----------------|---------------------------------|---------|---|--------------------|----------------------|-------|---------------| | | Simulation result NetLength(mm) | | | | NetLength(mm) | | Delta (pS) | | | 7.94593 | 59.5357 | | | 7.94593 | 59.13 | 0.4057 | | DDR_0_A[0] | | | | DDR_0_A[0] | | | | | DDR_0_A[1] | 8.89559 | 69.6253 | | DDR_0_A[1] | 8.89559 | 77.9 | 8.2747 | | DDR_0_A[2] | 9.23859 | 70.8286 | | DDR_0_A[2] | 9.23859 | 72.8 | 1.9714 | | DDR_0_A[3] | 9.19339 | 66.6323 | | DDR_0_A[3] | 9.19339 | 73.83 | 7.1977 | | DDR_0_A[4] | 11.1509 | 86.5493 | | DDR_0_A[4] | 11.1509 | 100.8 | 14.2507 | | DDR_0_A[5] | 8.33975 | 67.7612 | | DDR_0_A[5] | 8.33975 | 67.72 | 0.0412 | | DDR_0_A[6] | 8.51743 | 69.1471 | | DDR_0_A[6] | 8.51743 | 69.15 | 0.0029 | | DDR_0_A[7] | 8.13854 | 66.3938 | | DDR_0_A[7] | 8.13854 | 58.15 | 8.2438 | | DDR_0_A[8] | 9.78064 | 77.6018 | | DDR_0_A[8] | 9.78064 | 81.78 | 4.1782 | | DDR_0_A[9] | 8.38263 | 67.7613 | | DDR_0_A[9] | 8.38263 | 67.81 | 0.0487 | | DDR_0_A[10] | 11.5031 | 89.1093 | | DDR_0_A[10] | 11.5031 | 94.51 | 5.4007 | | DDR_0_A[11] | 10.6109 | 81.501 | | DDR_0_A[11] | 10.6109 | 83.8 | 2.299 | | DDR_0_A[12] | 9.96062 | 76.0402 | | DDR_0_A[12] | 9.96062 | 77.28 | 1.2398 | | DDR_0_A[13] | 8.41097 | 66.8931 | | DDR_0_A[13] | 8.41097 | 70.52 | 3.6269 | | DDR_0_A[14] | 9.51397 | 73.9172 | | DDR_0_A[14] | 9.51397 | 77.82 | 3.9028 | | DDR_0_A[15] | 10.2128 | 80.3645 | | DDR_0_A[15] | 10.2128 | 81.6 | 1.2355 | | DDR_0_A[16] | 10.738 | 84.6467 | | DDR_0_A[16] | 10.738 | 88.59 | 3.9433 | | DDR_0_A[17] | 10.9479 | 86.1217 | | DDR_0_A[17] | 10.9479 | 95.01 | 8.8883 | | DDR_0_BA[0] | 11.4001 | 88.3166 | | DDR_0_BA[0] | 11.4001 | 92.76 | 4.4434 | | DDR_0_BA[1] | 11.2007 | 88.3575 | | DDR_0_BA[1] | 11.2007 | 90.86 | 2.5025 | | DDR_0_BG[0] | 12.7109 | 97.9009 | | DDR_0_BG[0] | 12.7109 | 102.5 | 4.5991 | | DDR_0_BG[1] | 14.7976 | 112.401 | | DDR_0_BG[1] | 14.7976 | 122.1 | 9.699 | | DDR_0_CK | 11.8864 | 92.4043 | | DDR_0_CK | 11.8864 | 113.3 | 20.8957 | | DDR_0_CKE | 12.9804 | 99.1017 | | DDR_0_CKE | 12.9804 | 104.6 | 5.4983 | | DDR_0_CK_N | 11.9047 | 90.1875 | | DDR_0_CK_N | 11.9047 | 100.2 | 10.0125 | | DDR_0_CS_N | 12.3002 | 93.3203 | | DDR_0_CS_N | 12.3002 | 104.6 | 11.2797 | | DDR_0_DM[0] | 9.68837 | 78.0277 | | DDR_0_DM[0] | 9.68837 | 89.54 | 11.5123 | | DDR_0_DM[1] | 13.5391 | 103.784 | | DDR 0 DM[1] | 13.5391 | 115.2 | 11.416 | | DDR 0 DM[2] | 14.3088 | 112.978 | | DDR 0 DM[2] | 14.3088 | 127.5 | 14.522 | | DDR 0 DM[3] | 11.8931 | 95.1765 | | DDR 0 DM[3] | 11.8931 | 107.2 | 12.0235 | | DDR 0 DQS[0] | 10.171 | 81.6469 | | DDR 0 DQS[0] | 10.171 | 89.11 | 7.4631 | | DDR 0 DQS[1] | 14.2763 | 109.595 | | DDR 0 DQS[1] | 14.2763 | 119.7 | 10.105 | | DDR 0 DQS[2] | 13.4012 | 105.098 | | DDR 0 DQS[2] | 13.4012 | 115.8 | 10.702 | | DDR 0 DQS[3] | 10.9313 | 85,9996 | | DDR 0 DQS[3] | 10.9313 | 93.56 | 7.5604 | | _5.10_5.4.5[6] | 20,3020 | 30.3333 | | | 20,5025 | 55.55 | 7,555 | Table represents part of the nets in DDR interface For the same trace length, the propagation delay shows some discrepancy between extraction and Spice simulation setups Hspice simulation delay is consistently greater than that calculated by XtractIM Final skew could not be determined because the RDL delay is missing in the flow ### Extraction Vs. Simulation (Cont.) # Summary - Ballout and substrate stackup for flipchip BGA presented - Delay/skew of DDR interface based on trace length and simulation compared - Net balancing based on tracelength matching is inaccurate - Accurate delay/skew (Xtract IM tool) reasonably match Spice simulation - IBIS/Spice/S-Param models are available for the i/o pad, pkg, pcb and memory; RDL model is missing.