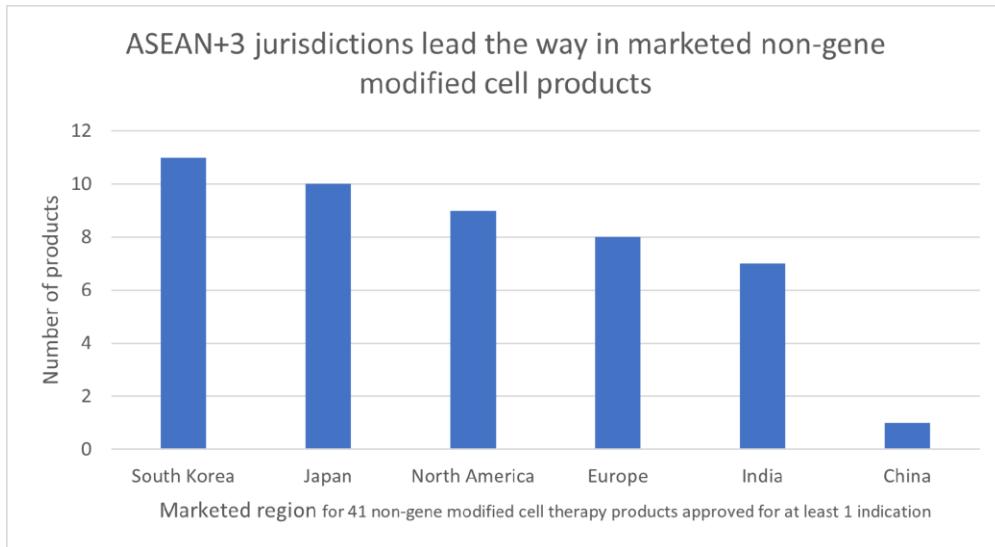
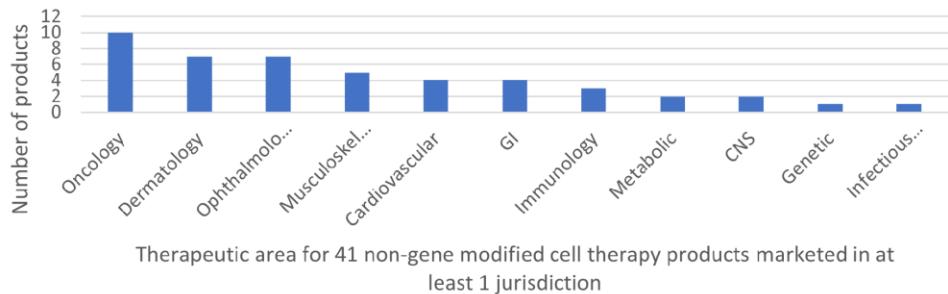


Cell Therapy: Autologous and Allogeneic

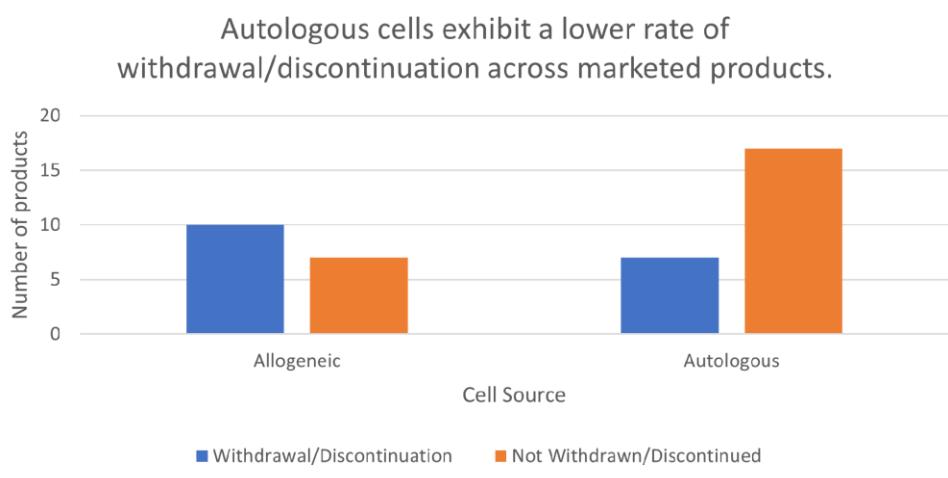

Eric Hayes

Eric@pullanconsulting.com

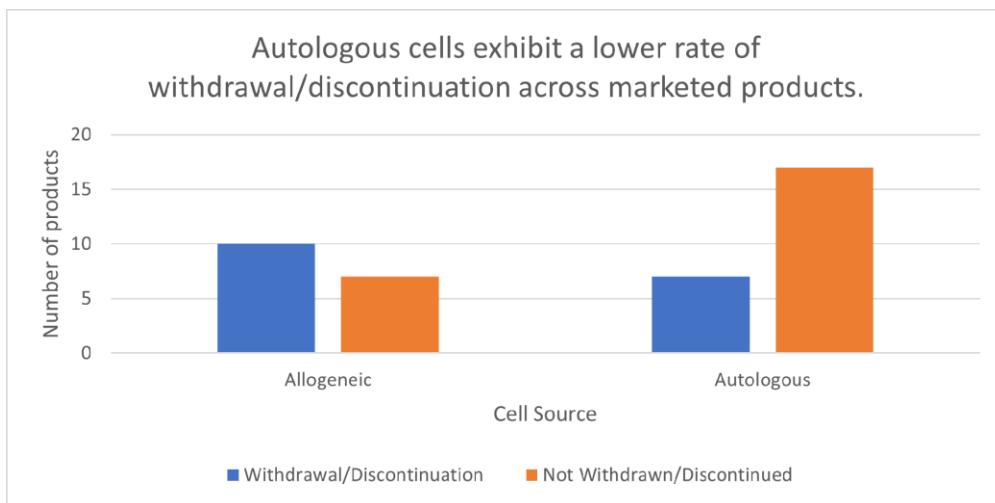

Over the next two issues I will explore cell therapies in brief, including stand-alone cell therapies, to gene-modified cell therapies and finally *in vivo/in situ* cell therapy technologies.

Cell Therapy Part I – Straight-up, non-gene modified cell products (Autologous and Allogeneic)

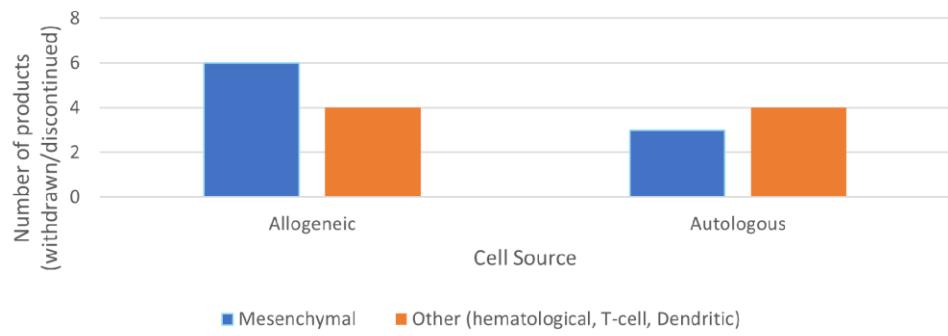
Products having received a marketing authorization for at least one indication in at least one jurisdiction represent some of the earliest cell therapies invented and provide some insights into the dynamics of primary innovation in the space.



Oncology, dermatology and ophthalmology account for more than 50% of non-gene modified marketed cell products


Marketed oncology products are primarily found in North America and Europe (7/10, 70%) whereas marketed dermatology and ophthalmology products are primarily found outside of North America and Europe (11/14, 79%) with strong presence in Japan and South Korea (8/14, 57%).

Not surprisingly, autologous cells which were used to pioneer much of the early cell therapy innovation landscape have produced a larger cohort of marketed products.


As expected with such a high global CAGR, near average growth for some treatments is bounded by very much lower and much higher growth for others within a given modality type.

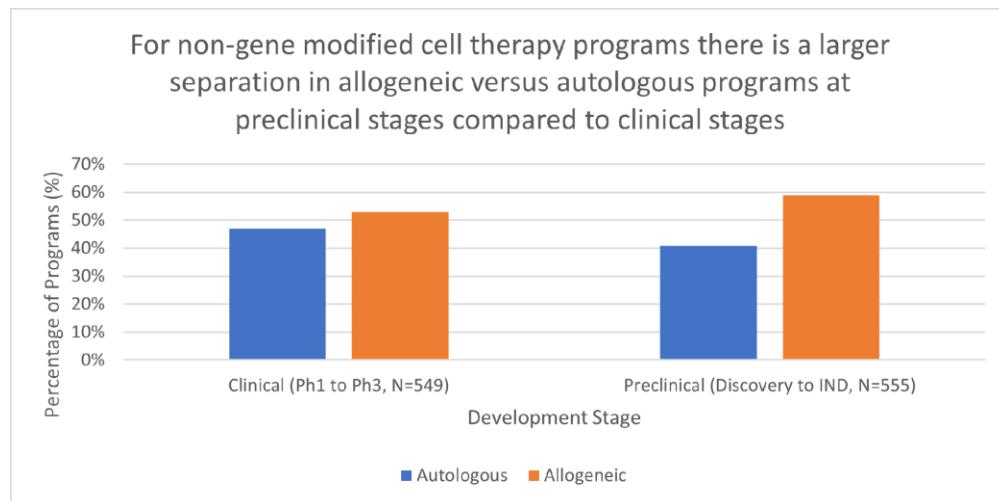
Not surprisingly, autologous cells which were used to pioneer much of the early cell therapy innovation landscape have produced a larger cohort of marketed products.

However, within the group of products having at least 1 withdrawal or discontinuation in at least 1 marketed jurisdiction allogeneic and autologous cells appear to track closely. And again, not surprisingly, mesenchymal stem cells, an early cell therapy type, predominate across withdrawn/discontinued products irrespective of cell source.

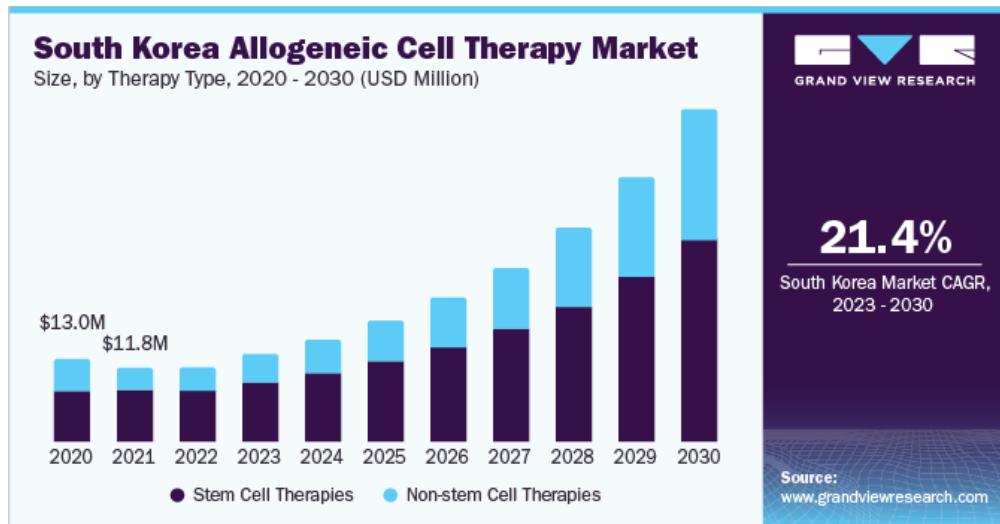
Marketed mesenchymal stem cell products exhibit higher rates of withdrawal/discontinuation relative to other products.

Indication and regulatory path have a significant impact on product uptake and growth, but sales of non-gene modified cell therapies remain weak across marketed products.

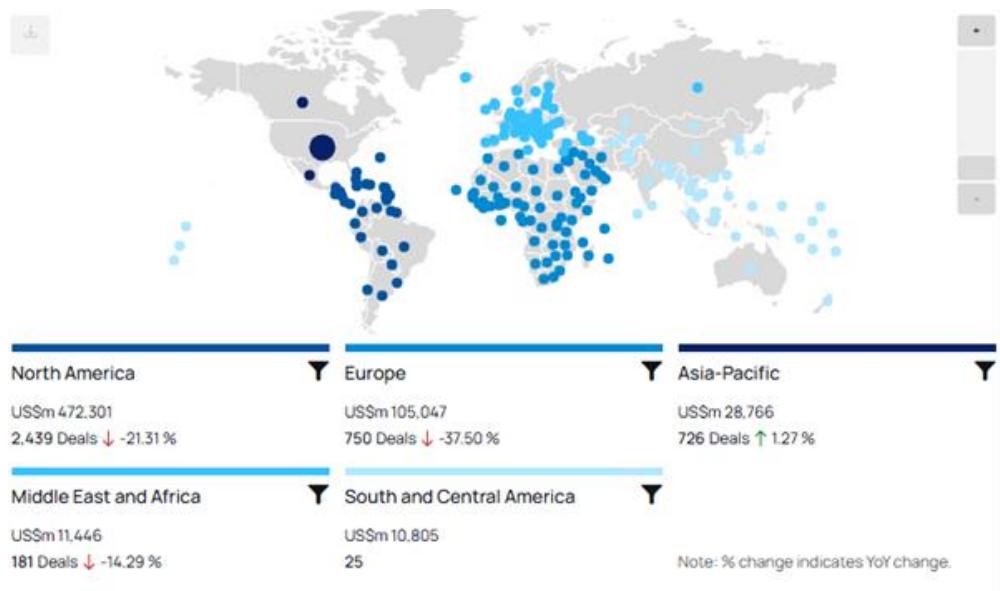
<u>Product</u>	<u>Cell Source</u>	<u>Indication</u>	<u>Review</u>	<u>1st Year Sales</u>	<u>CAGR (next 7 years)</u>	<u>CAGR (2031, 7-year forecast)</u>
Maci	Autologous	Musculoskeletal	Standard	\$26M	16.4%	13.8%
Lifileucel	Autologous	Oncology	Fast Track, Priority Review, Accelerated Approval, Orphan Drug, Regenerative Medicine Advanced Therapy Designation (RMAT)	\$104M	N/A	23.9%
Sipuleucel-T	Autologous	Oncology	Standard	\$48M	-3.70%	N/A


A handful of active pre-registration products highlight continued focus on autologous cell sources and interest in oncology.

<u>Drug Name</u>	<u>Company Name</u>	<u>Therapy Area</u>	<u>Cell Source/Type</u>
CardiAMP	BioCardia Inc	Cardiovascular	Autologous/Bone Marrow
EAL	Immunotech Biopharm Ltd	Oncology	Autologous/Lymphocyte
TRGFT-201	Orca Biosystems Inc	Oncology	Autologous/Hematopoietic


Sumitomo has a pre-registration program in CNS (Parkinson's disease) that is derived from induced pluripotent stem cells (iPSC's). While

directed (de)differentiation of a cell source to a particular lineage can involve epigenetic modifications to cell sources as opposed to direct genetic modification both may be involved and will be covered in next month's piece.


Key issues for non-gene modified cell therapy success are time and cost for therapeutic preparation, product heterogeneity, patient access and efficacy. Despite obvious benefits in immune compatibility, rapid scaling of highly homogenous autologous cell therapies has remained challenging and is driving early innovation in allogeneic cell therapies to address these key issues.

The separation between non-gene modified allogeneic and autologous therapies at the preclinical stage may be even more significant given that a relatively large number of programs may not be disclosed for cell source/type, and allogeneic cell production, and allogenic cell therapy market growth is predicted to rise substantially, particularly in jurisdictions where cell therapy adoption is common.

Historically North America and Europe are the largest markets for deal volume in the cell therapy space. However, the Asia-Pacific region is the only region that exhibited deal growth on a year-on-year basis (2024-2025) in this space (with many Asia-Pacific deals providing rights in the bigger markets of North America and Europe).

Since 2020 deal activity in non-gene modified autologous cell therapies has been very limited. Three notable deals include the Novo Nordisk – Aspect Biosystems deal for bioprinted metabolic tissues (\$725M total, \$75M upfront) and two deals by Lineage Cell

Therapeutics with Roche and Immunomic Therapeutics for ophthalmic and oncology indications (\$739M total, \$52M upfront).

Year	Acquirer / Investor	Target / Partner	Deal Type	Deal Value (Est.)	Key Rationale
2021	Public Market	Instil Bio	IPO	\$339M	Largest TIL-focused IPO; capital raised to advance ITIL-168 (later discontinued).
2023	lovance	Clinigen	Asset Acquisition	~\$223M	Purchase of <i>Proleukin</i> rights to secure critical IL-2 supply for TIL commercialization.
2023	Public Market	lovance	Follow-on Offering	\$161.5M	Financing to support pre-commercialization activities for <i>Amtagvi</i> .

Allogenic deal spaces were more active with some high value partnerships and some high value restructuring following limited efficacy and commercial impacts.

Date	Partners / Entities	Deal Type	Key Financials / Terms	Status (2026)
Nov 2020	Sanofi / Kiadis	Acquisition	€308M (approx. \$358M) all-cash offer	Assets impaired/deprioritized by Sanofi in 2024/2025 .
Jan 2021	Artiva / Merck	Collaboration	\$30M upfront; up to \$1.8B total potential	Terminated by Merck in Oct 2023 .
Jun 2021	BeiGene / Shoreline	Collaboration	\$45M upfront for iPSC-NK targets	Terminated by BeiGene in Feb 2024 .
Oct 2021	Takeda / GammaDelta	Acquisition	Exercise of exclusive option (Undisclosed amount)	Program discontinued by Takeda in Oct 2025 .
Aug 2022	Glycostem / medac	Licensing	Undisclosed upfront; Exclusive EU/UK rights	Active; oNKord in clinical development .
Nov 2022	Artiva / Affimed	Collaboration	Profit share: 67% Affimed / 33% Artiva	Active; Lead combination in Phase 2 .
Apr 2023	Gamida Cell	Regulatory	FDA Approval of Omisirge	Company taken private by Highbridge in Mar 2024 .
Aug 2025	Celularity / Celeniv	Asset Sale	\$33.8M for IP assets + License back	Restructuring to retire senior debt .
Oct 2025	Takeda	Discontinuation	JPY 58.2B (~\$400M) Impairment	Exit from internal gamma-delta T cell R&D .
Nov 2025	CytoMed / TC BioPharm	Asset Acquisition	Acquisition of TCB-002 technology	Active; targeting Asian markets .

To end, and before considering iPSC next month, I'll leave you with a comparative value proposition for both autologous and allogenic cell therapies as we are likely to see more of both given the more mature

stable autologous products in the pipeline, and the plethora of allogenic programs growing to address the autologous shortcomings.

Feature	Non-GM Autologous (e.g. TILs)	Non-GM Allogeneic (e.g. MSCs/NKs)
Primary Deal Driver	Clinical & Commercial Data (Revenue, Approvals)	Scalability & COGS (Off-the-shelf economics)
Dominant Investor	Public Markets / Specialist Healthcare Funds	Strategic Partners / Debt Financing
Key "Big Pharma" Activity	Low M&A interest; Pharma acts as <i>seller</i> of assets (e.g., Clinigen/lovance)	High partnering interest (e.g., Takeda/TiGenix), though some retreats (Merck/Artiva)
Valuation Metric	Revenue Multiples / Peak Sales Estimates	Clinical Data / Partnership Milestones
Major Strengths	Proven efficacy in solid tumors (Melanoma, Lung) ; Regulatory precedence	Immediate availability; Lower manufacturing costs per dose
Major Weaknesses	Complex, expensive manufacturing; Supply chain fragility	Durability of response; Immunogenicity risks
Recent Trend	Consolidation: Failed platforms (Instil Bio, Achilles) exiting or restructuring	Refinancing: Leaders (Mesoblast) securing non-dilutive capital to bridge to profitability

iPSC and in vivo cell therapy are going to shake this space up more in the coming years and we will get to that next time.