Can Rotational Grazing be an Alternative to Traditional Mechanical Mowing at Solar Sites?

Ashley Bennett, PhD EPRI Aron Patrick, LG&E and KU Michael Moore, Shaker Village of Pleasant Hill December 2021

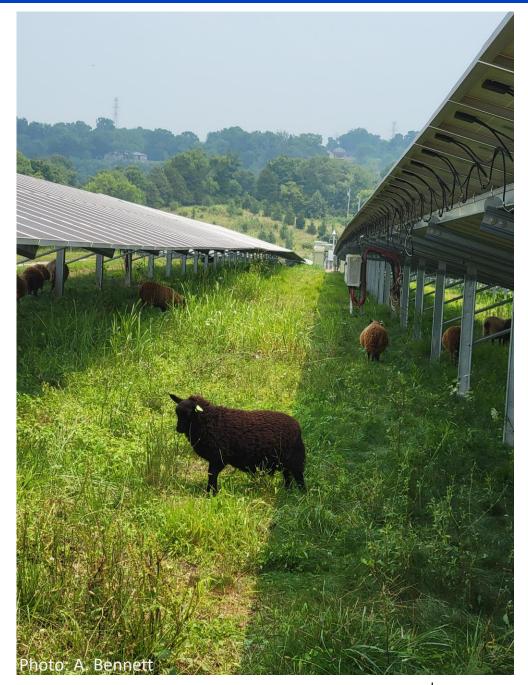


 Image: margin black
 Image: margin black

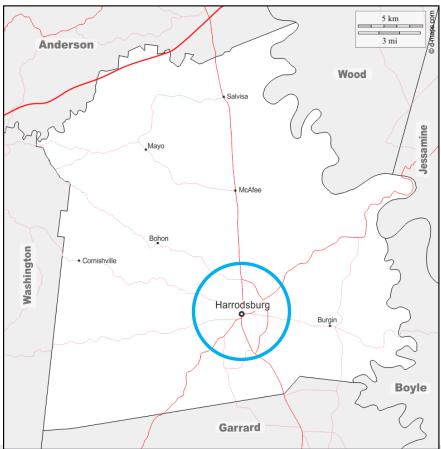
 www.epri.com
 © 2021 Electric Power Research Institute, Inc. All rights reserved.

Project Background

- Solar farms regularly use non-native cool season grasses to vegetate the site
- Traditional vegetation maintenance uses mowing and herbicides to control grasses and weeds to prevent shading and avoid loss of energy production
- Traditional maintenance practices are costly and labor intensive
- This study was design to address questions around the cost, stocking densities, and duration of using sheep to manage vegetation at solar farms

Research Questions

- 1. Can sheep provide adequate control of vegetation?
 - What is the appropriate stocking density?
 - What is the appropriate stocking duration?
- 2. Are sheep economically feasible compared to mowing?


RESEARCH INSTITUTE

Project Location

- Solar Array Mercer County, KY
 - Town Harrodsburg, KY
 - Size of solar array 50 acres

© 2021 Electric Power Research Institute, Inc. All rights reserved.

- Grazing Demonstration
 - \circ 10 acres of the solar site
 - 9 ~1-acre paddocks

Grazing Paddocks

Demonstration Area

- Selected Sheep Breeds
 - 1. Shetland Sheep
 - Small in size
 - Heritage Breed
 - Persists on poor forage
 - \circ Value added Wool
 - 2. Katahdin Sheep
 - Small in size
 - Naturally shed hair so low maintenance
 - \circ Value added Meat
 - Value added High lambing rate

Shetland Sheep

Katahdin Sheep

- Project Partners
 - Utility LG&E and KU
 - Grazing Expert Shaker Village of Pleasant Hill
 - Local non-profit with regenerative grazing expertise
 - Located ~4 miles from the solar site
 - Project Coordinator EPRI

Grazing Partnership

- LG&E and KU provided the land and project materials
- Shaker Village developed and implemented the grazing plan
- Shaker Village was responsible for the sheep prior to and after the grazing season

PPL companies

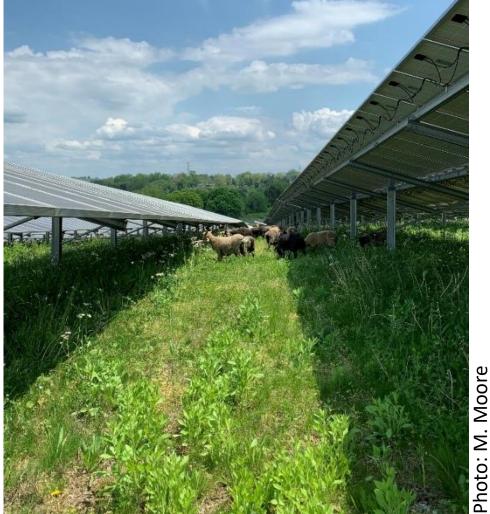
• Shaker Village would receive any value-add products generated by the sheep

2020 Grazing Plan

- Stocking **Density** = 35 sheep
- Stocking **Duration** = 5 days
- **Recovery** Period = 45 days
 - Sheep foraged in each paddock for 5 days followed by 45 days of recovery
 - After 5 days, sheep were rotated to a new paddock
 - Grazed paddocks rested for 45 days
 - After a 45-day recovery period, sheep were rotated back into the previously grazed paddock

Metrics and Observations

- Results consist of observational data only as this is a demonstration project
- Data were recorded on the following metrics: ${\bullet}$
 - Vegetation response to the grazing plan Ο
 - Documentation of problem weeds \bigcirc
 - Project start-up costs and labor Ο
 - Health of the sheep \bigcirc
 - Safety Incidence \bigcirc


Observational Data – Vegetation, cool-season grasses:

Spring

- Sheep were introduced onto the solar site on April 7th, 2020
- Sheep successfully controlled vegetation at heights below solar panels during the spring
- Vegetation was regularly grazed down to 1-2"
- Higher grazing pressure was observed under panels compared to the rows between panel arrays

Spring Season – Results of 5-day rotation

Day 1

Observational Data – Vegetation, cool-season grasses:

Summer

- Vegetation transitioned from being dominated by cool-season grasses to summer annuals
- Higher coverage of cool-season grasses was observed under panels compared to areas between panel rows receiving higher levels of sun
- Height of vegetation after a 5-day grazing period was 3-5"
- Less forage was removed in the summer due to forage palatability

Summer Season – Results of 5-day rotation

Day 1

Photos: M. Moore

Day 5

Observational Data – Vegetation, cool-season grasses:

> Fall

- Vegetation returned to being dominated by cool-season grasses
- Growth rate of forage is reduced due to lower temperatures
- Grazing goal in the fall is to avoid overgrazing the paddocks
 - Retain vegetation cover to protect and stabilize the soil over winter months
- Adequate forage was available at the solar site through November
- Height of vegetation after a 5-day grazing period was 3-5"
 - Unpalatable stems were generally not consumed
- Late November sheep were returned to Shaker Village

Fall Season – Results of 5-day rotation

Day 1

Observational Data – Vegetation, weedy species:

- Johnson Grass (Sorghum halepense)
 - Johnson Grass is an invasive species in Kentucky
 - This plant was present throughout paddocks
 - Sheep grazed the tender leaves but left stalks
 - Result Supplemental string trimming was needed to suppress this species, especially along fence lines
- Key Learning
 - Adapt grazing plan to increase control of Johnson Grass
 - Increase stocky density and duration in 2021
 - Introduce sheep early in season before growth of unpalatable stalks

Photo: Chris Evans, U of IL, Bugwood.org

2021 Grazing Plan

- Stocking Density & Duration adjusted to match seasonal vegetation growth
 - Higher stocking densities early in the growing season specifically targeted problem weeds such as Johnson grass

	Early Spring	Late Spring / Summer	Fall
Stocking Density	18 sheep	51 sheep	51 sheep
Stocking Duration	7 days	3 days	5 days
Recovery	63 days	27 days	45 days

Observational Data – Vegetation, cool-season grasses:

Spring

- Sheep were introduced onto the solar site on March 22nd, 2021
- A lower stocking density, 18 sheep, was used due to slow vegetation growth early in the spring
- March and April vegetation heights were 3-5" post-grazing
- To offset faster forage growth rates during May, stocking density was increase to 52 sheep
- Vegetation was reaching 20-25" in height during May
- The higher stocking density continued to graze vegetation to heights of 3-5" post-grazing

Spring Season – Results of 7-day rotation

Day 1

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Observational Data – Vegetation, cool-season grasses:

Summer

- Higher stocking density improved suppression of weedy species
- Sheep greatly reduced growth of Johnson grass
- Patches of Johnson grass did escape grazing along perimeter fencing and required mechanical management
- Grazing duration was reduced to 3 days and the recovery 27 days
- Reduced recovery promoted growth and limited plant maturity, increasing the quality and palatability of the forage
- Summer vegetation heights were 3-5" post-grazing

Summer Season – Results of 3-day rotation on Johnson grass

Day 1

www.epri.com

Photos: M. Moore

Day 3

2021 Observational Results Day 1 Summer Season Results of 3-day rotation

ullet

Observational Data – Vegetation, cool-season grasses:

Fall

- Still in progress
- Vegetation has returned to being dominated by cool-season grasses
- Growth rate of forage is reduced due to lower temperatures
- Grazing goal in the fall is to avoid overgrazing the paddocks
 - Retain vegetation cover to protect and stabilize the soil over winter months
- Height of vegetation after a 5-day grazing period is 3-5"
- Sheep will be returned to Shaker Village late fall

➢ Fall Season – Results of 5-day rotation

Day 1

Observational Data – Vegetation, Weedy species:

- Higher stocking density and duration reduced Johnson Grass
- String trimming was needed on 3 occasions
- Time spent string trimming in 2020 = 46 h
- Time spent string trimming in 2021 = 6 h
- 87% reduction in labor on weed management

Observational Data – Sheep Health:

- April June sheep gained weight lost over winter months
- Health checks confirmed sheep remained in good health in 2020 and 2021

<u>Observational Data – Safety Incidence:</u>

• No reportable safely incidences during 2020 or 2021

Observational Data – 2020 Start-Up Costs:

Estimated Startup Capital Costs				
Sheep				
Grazing Land (Acres)	10			
Grazing Ratio (Sheep Per Acre)	3.5			
Number of Sheep Needed	35			
Individual Sheep Price	\$300.00			
Total Initial Sheep Cost	\$10,500.00			
Infrastructure and Tools				
Fence, Water Tank, Supporting Infrastructure	\$5,691.46			
Sheep Feed	\$205.43			
Other	\$48.70			
Initial Infrastructure and Tool Cost	\$5,945.59			
Subtotal – Sheep + Infrastructure	\$16,445.59			

Observational Data – 2020 Costs:

- Labor = 135 hours
 - Sheep rotations 40 total
 - Paddock establishment
 - String trimming to suppress weedy species
 - Health checks

Observational Data – 2021 Costs:

- Labor = 63 hours as of October
 - Sheep rotations 42 to date
 - String trimming required was greatly reduced
 - Higher stocking density improved management of Johnson grass
 - Health checks
 - Total estimated hours for 2021 = 75
 - Includes remaining rotations, sheep movement to Shaker Village for winter

27

Estimated O&M - 2020		
Mileage		
2020 IRS Mileage Reimbursement Rate (\$/mile)	0.575	
Miles Round Trip (Shaker Village to Solar Farm)	10	
Miles Per Week	50	
Miles Per Year	2600	
Total Annual Mileage Cost (\$/yr.)	\$1,495.00	
Shepherd		
Hours Per Year	135	
Shepherd Hourly Rate (\$/hr.)	\$25.00	
Annual Shepherd Cost (\$/yr.)	\$3,375.00	
Paddock Installation and Maintenan	ce	
Hours Per Year	48	
Shepherd Hourly Rate	\$25.00	
Annual Installation Cost (\$/yr.)	\$1,200.00	
Sheep	_	
Veterinarian and Miscellaneous	\$5,500	
Total O&M	\$11,570	

Estimated O&M - 2021				
Mileage				
2020 IRS Mileage Reimbursement Rate (\$/mile)	0.575			
Miles Round Trip (Shaker Village to Solar Farm)	10			
Miles Per Week	50			
Miles Per Year	2600			
Total Annual Mileage Cost (\$/yr.)	\$1,495.00			
Shepherd				
Hours Per Year - estimated	75			
Shepherd Hourly Rate (\$/hr.)	\$25.00			
Annual Shepherd Cost (\$/yr.)	\$1875.00			
Paddock Installation and Maintenance				
Hours Per Year	8			
Shepherd Hourly Rate	\$25.00			
Annual Installation Cost (\$/yr.)	\$200.00			
Sheep				
Veterinarian and Miscellaneous	\$5,500			
Total O&M	\$9,070			

2020	Contract	Costs
LG&E and KU contractor	Mowing (10 acres)	Estimated \$14,000
Shaker Village	Grazing (10 acres)	Estimate total = \$28,015.59
Shaker Village - 2020	Grazing (10 acres)	Estimate with capital excluded = $$11,570$
Shaker Village - 2021	Grazing (10 acres)	Estimated with capital excluded = \$9,070

Estimated grazing costs with capital excluded range from \$1,157 to \$907 / acre
 The reduction in cost from 2020 to 2021 is the result of lower labor costs

- In 2021 for the relation of the relation of the result of tower labor to the result of tower labor to the result of the relation of the rel
- In 2021, fewer site visits and less maintenance was required
- Shaker Village estimates going forward ~2h / week needed in labor
 - This estimate assumes paddocks are installed and all infrastructure is on site

Summary

> Demonstration results suggest grazing is a viable option at this solar site

- Sheep were able to successfully control vegetation below solar panels in both 2020 and 2021
- > Adapting the grazing plan did improve control of weedy species, reducing labor costs
- > Initiating a grazing plan can, in the short-term, increase management costs
- > Over the long-term, grazing does seem comparable with mowing at this solar site
- Grazing costs decreased from year 1 to year 2 as the grazing plan was adapted, methods improved, and weedy species reduced
- A local grazing partner in close proximity to the site was critical to successfully implementing the grazing plan and keeping project costs low

Next Steps

- > Are sheep compatible with pollinator habitat?
- What is the correct stocking densities, duration, and timing for grazing solar pollinator plantings?

31

Thank You!

32

