Use of Sirolimus for Refractory Cutaneous Dermatomyositis: A Retrospective Case Series

UNIVERSITY OVIRGINIA

SCHOOL OF MEDICINE

Nakul Dar¹ BS, Amanda L. Lusa² MD, William C. Petersen³ MD, Kenneth E. Greer⁴ MD, R. Hal Flowers⁴ MD

¹University of Virginia School of Medicine, Charlottesville, VA, USA.

²Division of Rheumatology, University of Virginia, Charlottesville, VA, USA.

³Division of Pediatric Hematology/Oncology, University of Virginia, Charlottesville, VA, USA.

⁴Department of Dermatology, University of Virginia Medical Center, Charlottesville, VA, USA.

Background

- Dermatomyositis is an idiopathic inflammatory myopathy that classically presents with symmetric muscle weakness and heliotrope rash, Gottron papules and photodistributed erythema
- Cutaneous lesions may be more refractory to treatment than muscular disease
- First-line systemic therapy for cutaneous dermatomyositis includes anti-malarials, methotrexate and mycophenolate mofetil, and second- and third-line treatments include intravenous immunoglobulin (IVIG), cyclosporine and Janus kinase inhibitors
- Sirolimus is a mammalian target of rapamycin (mTOR) inhibitor with immunomodulatory properties
- Sirolimus received FDA approval in 1999 for prophylaxis against organ rejection in kidney transplant patients
- Within dermatology, topical sirolimus was approved in 2022 to treat angiofibromas in tuberous sclerosis complex and is occasionally used for inflammatory dermatoses as well as orally for complex vascular anomalies
- Less is known regarding the outcomes of patients with recalcitrant cutaneous dermatomyositis treated with sirolimus
- We present a single center retrospective case series of four female patients (mean age: 71-years-old) who were treated with oral sirolimus for clinically amyopathic dermatomyositis, with a mean follow-up time of 9 years

Methods

- A total of six patients were identified who underwent treatment for dermatomyositis at our institution and who were also prescribed oral sirolimus
- Two patients were excluded from the study: one who received sirolimus following lung transplantation and one patient who did not initiate sirolimus
- All included patients started sirolimus after failing multiple other therapies, including azathioprine, hydroxychloroquine, and methotrexate (mean number of failed therapies = 5)
- Patients took a dosage of 1 to 2 mg sirolimus daily
- To assess response to sirolimus treatment, the primary endpoint was global improvement in cutaneous disease, based on clinical examination by a physician
- Treatment response was graded as complete, significant, moderate, or mild, and time to effect was recorded

Results

- Three of four patients achieved at least significant control of disease, including one patient with complete remission who was able to discontinue therapy without recurrence
- Three patients concurrently taking prednisone were able to decrease their dose while on sirolimus
- Adverse effects during sirolimus therapy included anemia, hypercholesterolemia, and peripheral edema
- One patient developed renal insufficiency during the course of treatment, which was likely secondary to a prior history of hypertension
- No clinically significant infections or new malignancies occurred during sirolimus therapy or follow-up
- One patient with lung cancer did not experience progression of malignancy despite 6 months of sirolimus therapy

Case	Age/gender	Diagnosis	MSA	Malignancy	Prior therapies	Outcomes	Concomitant treatments	Disease duration (months)	Sirolimus dose	Effect	treatment duration (months)	Adverse Effects	•
1	61/F	CADM	Non e	None	OCS, AZA, MTX, HCQ, MMF	All prior therapies were ineffective except OCS	IVIG, OCS (15mg/day decreased to 2.5mg/day)	98	1 mg daily, 2 mg daily	Moderate control of disease after 8 months on 1 mg daily, Complete clearance after 6 months on 2 mg daily	37, stopped with disease remission	None	•
										Moderate control			
2	65/F	CADM	Non e	None	OCS, AZA, MTX, HCQ, MMF	All prior therapies were ineffective except OCS	OCS (7.5mg/day decreased to 2.5mg/day)	178	1 mg daily, 2 mg daily	of disease after 7 months on 1 mg daily, Significant control of disease after 11 months on 2 mg daily	142, remains on long- term therapy	HLD	•
3	78/F	CADM	Anti- PM/ Scl- 100	None	HCQ, MMF, MTX, AZA, IVIG, OCS	All prior therapies were ineffective except OCS	OCS (60mg/day decreased to 2.5mg/day)	193	1 mg daily, 2 mg daily	Mild control of disease after 6 months on 1 mg daily, Significant control of disease after 4 months on 2 mg daily	112, stopped due to side effects	Renal insufficiency	•
			Anti- TIF1		HCQ,								
			-γ (Anti -		MTX, IVIG, RTX, MMF,	All prior				Moderate control	6, stopped	Danim kanal	
4	79/F	CADM	P15 5/14 0)	Lung cancer	AZA, apremila st	therapies were ineffective	None	45	2 mg daily	of disease after 2 months on 2 mg daily	due to side effects	Peripheral edema, anemia	1. Re

Table 1. Characteristics of patients included in the study.

Table legend:

F, female; CADM, clinically amyopathic dermatomyositis; MSA, myositis specific antibody; PM, polymyositis; Scl, scleroderma; TIF1-γ, transcriptional intermediary factor 1 gamma; OCS, oral corticosteroids; HCQ, hydroxychloroquine; MTX, Methotrexate; IVIG, Intravenous immunoglobulin; AZA, azathioprine; MMF, mycophenolate mofetil; RTX, rituximab; HLD, hyperlipidemia.

Discussion

- There is currently a dearth of published literature regarding the use of sirolimus in dermatomyositis
- Although sirolimus has been studied in randomized clinical trials to treat cutaneous sarcoidosis and inclusion body myositis, only a single published case report has described its use in treating dermatomyositis
- There is a known association between dermatomyositis and an increased risk of malignancy
- As sirolimus possesses antiangiogenic and antiproliferative properties, it may theoretically be used cautiously in concomitant malignancy
- Side effects of sirolimus include anemia, hyperlipidemia, increased creatinine and peripheral edema, which was consistent with the results of our study
- These adverse effects generally improve with sirolimus cessation, and the drug is otherwise well tolerated by patients
- This retrospective series is limited by the lack of a control group, small sample size, and subjective outcome measure
- Sirolimus trough level monitoring was inconsistent, and our cohort was exclusively women with clinically amyopathic dermatomyositis

Conclusions

- The safety and apparent efficacy of sirolimus in these patients suggests that the mTOR inhibitor may represent an underutilized treatment option for patients with refractory cutaneous dermatomyositis
- Further controlled studies in larger cohorts are needed to explore the safety and efficacy of sirolimus in this population, including in the setting of malignancy

References

- 1. Wolstencroft PW, Chung L, Li S, Casciola-Rosen L, Fiorentino DF. Factors Associated With Clinical Remission of Skin Disease in Dermatomyositis [published correction appears in JAMA Dermatol. 2018 Jan 1;154(1):116]. JAMA Dermatol. 2018;154(1):44-51. doi:10.1001/jamadermatol.2017.3758.
- 2. Fogel AL, Hill S, Teng JM. Advances in the therapeutic use of mammalian target of rapamycin (mTOR) inhibitors in dermatology. J Am Acad Dermatol. 2015;72(5):879-889. doi:10.1016/j.jaad.2015.01.014.
- 3. Redl A, Doberer K, Unterluggauer L, et al. Efficacy and safety of mTOR inhibition in cutaneous sarcoidosis: a single-centre trial. Lancet Rheumatol. 2024;6(2):e81-e91. doi:10.1016/S2665-9913(23)00302-8.
- 4. Benveniste O, Hogrel JY, Belin L, et al. Sirolimus for treatment of patients with inclusion body myositis: a randomised, double-blind, placebo-controlled, proof-of-concept, phase 2b trial. Lancet Rheumatol. 2021;3(1):e40-e48. doi:10.1016/S2665-9913(20)30280-0.
- 5. Nadiminti U, Arbiser JL. Rapamycin (sirolimus) as a steroid-sparing agent in dermatomyositis. J Am Acad Dermatol. 2005;52(2 Suppl 1):17-19. doi:10.1016/j.jaad.2004.05.044.