

Trends in Treatment and Survival Outcomes for Cutaneous Angiosarcoma: A SEER-Based Analysis, 2000-2022

Umayr R. Shaikh, BA, MPH¹; Leela K. Raj, BA²; Christopher G. Richter, BS³; Charles Lu, BS⁴; Aamir N. Hussain, MD, MAPP⁵

¹Georgetown University School of Medicine, Washington, DC, USA

³The University of Texas Medical Branch John Sealy School of Medicine, Galveston, TX, USA

⁵Galaria Plastic Surgery ad Dermatology, Chantilly, VA, USA

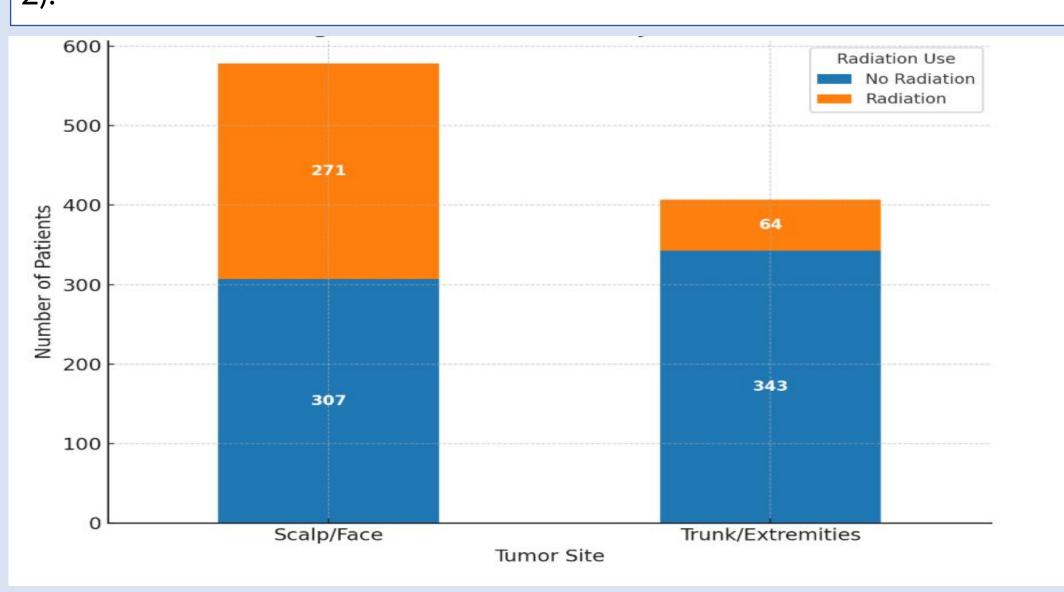
² Sidney Kimmel Medical College, Philadelphia, PA, USA

⁴ Johns Hopkins University School of Medicine, Baltimore, MD, USA

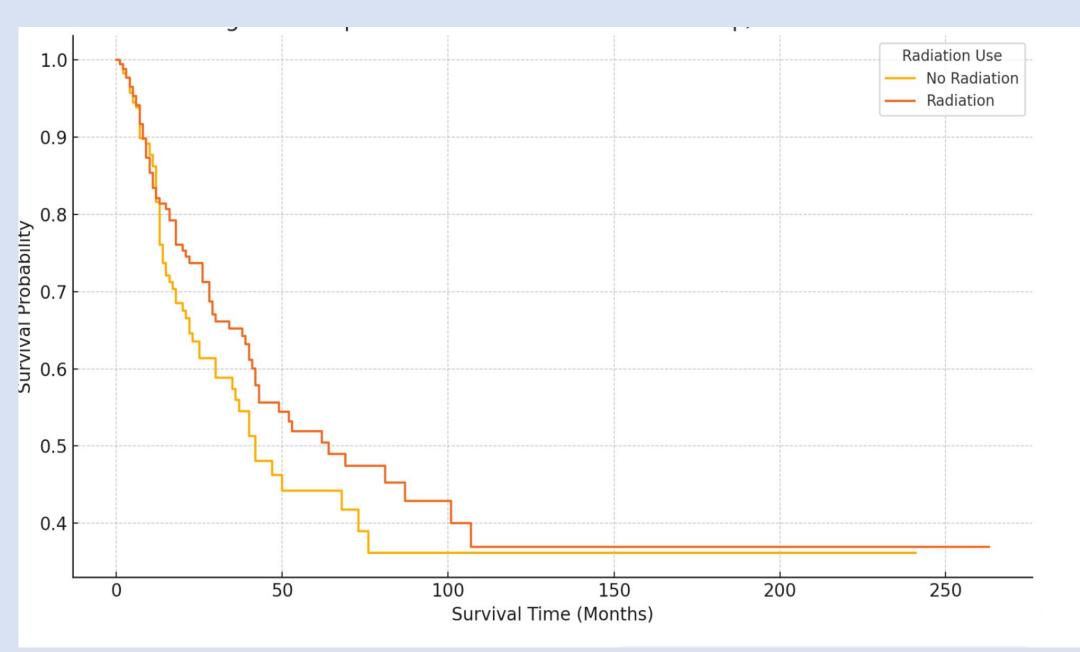
Purpose

Cutaneous angiosarcoma (cAS) is a rare, aggressive skin cancer with poor prognosis and poorly defined national treatment guidelines. This study evaluates patterns in the use of surgery and radiation for cAS using a widely validated epidemiologic database, with a focus on two predominant and clinically distinct anatomical subgroups: scalp/face and trunk/extremities. We aim to assess whether the addition of radiation to surgery confers a survival advantage and to explore differential treatment strategies across anatomical sites.

Introduction


- cAS most commonly arises on the scalp and face of elderly adults and is often misdiagnosed due to its benign appearance, leading to delayed treatment.
- With a 5-year survival of only 30–50%, optimal management remains controversial.
- While radiation therapy is frequently recommended alongside surgery, especially for head and neck lesions, there is limited population-level evidence to support this approach.
- This study leverages SEER data to characterize treatment trends and survival outcomes by site and modality.

Methods


- This retrospective cohort study utilized data from the Surveillance, Epidemiology, and End Results Database (18 registries), covering the years 2000 to 2022.
- Patients were included if they had histologically confirmed cutaneous angiosarcoma (cAS), identified using ICD-O-3 histology code 9120/3 and primary site codes corresponding to the skin (C44.x). A total of 985 eligible cases were identified for analysis.
- Patients were stratified into two anatomical subgroups based on tumor location: scalp/face and trunk/extremities. The cohort was further categorized by treatment modality into those who received radiation in addition to surgery.
- Patients who underwent radiation therapy alone or received no documented treatment (n=53) were excluded from survival analyses due to limited sample size and heterogeneity.
- Descriptive statistics were used to summarize demographic and clinical characteristics. Kaplan-Meier survival curves were generated to compare overall survival between treatment groups within each anatomical subgroup.
- Cox proportional hazards regression was used to explore the independent association of radiation therapy with survival.

Results

Of 932 patients with cAS who were included in the study, 578/62.0% had scalp/face tumors while 354/38.0% had trunk/extremity tumors. Radiation was used more frequently for scalp/face tumors (271/46.9%) than trunk/extremity tumors (64/18.1%) (p<0.001) (Figure 1). Survival was similar for both tumor groups regardless of radiation use (p=0.51) (Figure 2).

Figure 1. Stacked bar chart showing radiation use by tumor site among patients with cutaneous angiosarcoma. Radiation was administered more frequently in scalp/face tumors (p<0.001).

Figure 2. Kaplan-Meier survival analysis among patients with cutaneous angiosarcoma. No statistically significant difference in disease-specific survival was observed between those who received radiation and those who did not (p-0.51). Median survival was comparable between groups.

Discussion

- This study found no survival benefit from adding radiation to surgery in either scalp/face or trunk/extremity tumors.
- In trunk/extremity tumors, radiation was associated with the same unadjusted survival, likely reflecting clinical selection for higher-risk cases.
- Despite this, radiation use was lower in trunk/extremity cases, suggesting variation in therapeutic preference, not necessarily a care access issue.
- Given the absence of a clear benefit, these findings raise critical questions about potential use of radiation in some patients, particularly when the treatment carries morbidity without improving outcomes.
- However, limitations in SEER, particularly the absence of tumor size, grade, depth, or recurrence, prevent definitive conclusions about efficacy.

Conclusions

- Radiation therapy, when added to surgery, was not associated with improved survival in either major anatomical subgroup of cAS.
- Its lower use in trunk/extremity tumors suggests differential clinical strategies, not necessarily underuse.
- These results support the need for more selective application of radiation therapy and underscore the urgency for prospective, granular data to identify patient subgroups that may benefit from multimodal treatment.

Contact:

Umayr R. Shaikh, MPH Georgetown University School of Medicine urs3@georgetown.edu

References:

- 1. Ramakrishnan N, Mokhtari R, Charville GW, Bui N, Ganjoo K. Cutaneous Angiosarcoma of the Head and Neck-A Retrospective Analysis of 47 Patients. Cancers (Basel). 2022;14(15):3841. Published 2022 Aug 8. doi:10.3390/cancers14153841
- 2. Conic RRZ, Damiani G, Frigerio A, et al. Incidence and outcomes of cutaneous angiosarcoma: A SEER population-based study. J Am Acad Dermatol. 2020;83(3):809-816. doi:10.1016/j.jaad.2019.07.024
- Holm CE, Ørholt M, Talman ML, et al. A Population-Based Long-Term Follow-Up of Soft Tissue Angiosarcomas: Characteristics, Treatment Outcomes, and Prognostic Factors. Cancers (Basel). 2024;16(10):1834. Published 2024 May 11. doi:10.3390/cancers16101834
 - Reijers SJM, Huis In 't Veld EA, Grünhagen DJ, et al. Prognosis of Patients with Cutaneous Angiosarcoma After Surgical Resection with Curative Intent: Is There a Difference Between the Subtypes?. Ann Surg Oncol. 2023;30(1):493-502. doi:10.1245/s10434-022-12601-1