ADHIKAANSH ACADEMY (IITJEE NEET IX X XI XII)

RUN BY: DEEPAK SAINI SIR

B.TECH, M.TECH (N.S.I.T. DELHI UNIVERSITY) Ex. Faculty of Resonance Kota, Career Point Kota Aakash Institute Mumbai

MATHS NOTES (CLASS 11TH)

Adhikaansh Academy

225/5, Panchsheel Colony, Apposite to Nandini Plaza , Garh Road Meerut. Contact no: 7665186856

FOR MORE FREE QUESTION BANKS AND SAMPLE PAPER WT'S UP ON : 7665186856

Chapter 11

CONIC SECTION

CIRCLE:

The equation of a circle with centre at (h, k) and radius r is $(x - h)^2 + (y - k)^2 = r^2$

Equation of a circle with centre at origin and radius r is $x^2 + y^2 = r^2$

PARABOLA(Symmetric about its axis)

	Right	Left	Upward	Downward	
Equation	$y^2 = 4ax$	$y^2 = -4ax$	$x^2 = 4ay$	$x^2 = -4ay$	
Axis	y = 0	y= 0	x= 0	x=0	
Figure					
Focus	(a, 0)	(-a, 0)	(0, a)	(0, -a)	
Vertex	(0,0)	(0,0)	(0,0)	(0,0)	
Latus	4a	4a	4a	4a	
Rectum					
Directrix	x = -a	$\mathbf{x} = \mathbf{a}$	y = -a	y =a	
FULIDSE (Symmetric shout both the axis)					

ELLIPSE (Symmetric about both the axis)

Equation	x^2 y^2	$x^2 y^2$
-	$\frac{1}{a^2} + \frac{1}{b^2} = 1$	$\frac{1}{b^2} + \frac{1}{a^2} = 1$
Equation of the major	y=0	x=0
axis		
Length of major axis	2a	2a
Length of minor axis	2b	2b
Vertices	(± a, 0)	(0,± a)
Foci	(± c, 0)	(0,± c)
Eccentricity	$e = \frac{c}{a}$	$e = \frac{c}{a}$
Latus Rectum	2 <i>b</i> ²	$2b^2$

HYPERBOLA

Equation	x^2 y^2	$y^2 x^2$
	$\frac{1}{a^2} - \frac{1}{b^2} = 1$	$\frac{1}{a^2} - \frac{1}{b^2} = 1$
Equation of the	y =0	x =0
transverse axis		
Length of transverse axis	2a	2a
Length of conugate axis	2b	2b
Vertices	(± a, 0)	(0,± a)
Foci	(± c, 0)	(0,± c)
Eccentricity	$e = \frac{c}{a}$	$e = \frac{c}{a}$
Latus Rectum	$2b^{2}$	$2b^{2}$
	<u>a</u>	<u> </u>

TEXT BOOK QUESTIONS

* \rightarrow Exercise 11.1 \rightarrow Qns 10,11
* \rightarrow Exercise 11.2 \rightarrow Qns 5,6,8
* \rightarrow Exercise 11.3 \rightarrow Qns 5,6,7,8,9,10
* \rightarrow Exercise 11.4 \rightarrow Qns 4,5,6
* \rightarrow Example \rightarrow 4,17,18,19
** \rightarrow Exercise 11.1 \rightarrow Qns 9,12,13,14
** \rightarrow Exercise 11.2 \rightarrow Qns 11,12
** \rightarrow Exercise 11.3 \rightarrow Qns 13 to Qns 20
** \rightarrow Exercise 11.4 \rightarrow Qns 10 to Qns 15
Extra Questions:

1. Find the centre and the radius of $3x^2 + 3y^2 + 6x - 4y - 1 = 0$

(ans : (-1, 2/3), 4/3)

2. Find the value of p so that $x^2 + y^2 + 8x + 10y + p = 0$, is the equation of the circle of radius 7 units. (ans : -8)

3. Find the equation of the circle when the end points of the diameter are

A (-2,3), B (3,-5) (ans: $x^2 + y^2 - x + 2y - 21 = 0$)

4. Find the equation of the circle circumscribing the triangle formed by the straight lines: x + y = 6, 2x + y = 4 and x + 2y = 5

(ans:
$$x^2 + y^2 - 17x - 19y + 50 = 0$$
)

5. Find the area of the triangle formed by the lines joining the vertex of the parabola $x^2 = 12y$ to the ends of its latus rectum. (ans : $\frac{1}{2} \times 12 \times 3$ sq.units)

6. Find the equation of the ellipse with eccentricity $\frac{3}{4}$, foci on y- axis, center at the origin and passes through the point (6, 4) (ans: $16x^2 + 7y^2 = 688$)

7. Find the length of major axis and minor axis of $4x^2 + y^2 = 100$

8. Find the equation of the parabola with the centre at origin, length of transverse axis 6 units and a focus at(0, 4). (ans: $7y^2 - 9x^2 = 63$)

9. The line 5x - y = 3 is a tangent to a circle at a point (2, 7) and its centre is on the line x + 2y = 19. Find the equation of the circle (ans: $x^2 + y^2 - 14x - 12y + 59 = 0$)

10. Find equation of the circle which touches the y - axis at origin and whose radius is 3 units. (ans: $x^2 + y^2 - 6x = 0$)

FOR MORE FREE QUESTION BANKS AND SAMPLE PAPER WT'S UP ON : 7665186856

