

## Adhikaansh Academy Revision Test -08 Physics: Moving Charge & Magnetism Class : XII

| Roll No<br>Date | 0. :<br>: 22.07.23 MM                                                                                                                                                                                                                                                                  | - 1hr<br>- 25  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                 |                                                                                                                                                                                                                                                                                        |                |
| 1.              | A current carrying loop is free to turn in a uniform magnetic field B. Under what conditions, will the torque acting on it be (i) minimum and (ii) maximum?                                                                                                                            | 1              |
| 2.              | Write two factors by which voltage sensitivity of a galvanometer can be increased.                                                                                                                                                                                                     | 1              |
| 3.              | An ammeter and a milliammeter are converted from the same galvanometer. Out of the two, which current measuring instrument has higher resistance?                                                                                                                                      | 1              |
| 4.              | What is the advantage of using radial magnetic field in a moving coil galvanometer?                                                                                                                                                                                                    | 1              |
| 5.              | Under what conditions will the force exerted by the magnetic field on a charged particle be (i) maximum and (ii) minimum?                                                                                                                                                              | 1              |
| 6.              | Which one of the following will experience maximum force, when projected with the same velocity 'v' perpendicular to the magnetic field 'B': (i) $\alpha$ -particle, and (ii) $\beta$ -particle?                                                                                       | 1              |
| 7.              | Two identical circular wires P and Q each of radius R and carrying current I are kept in perpendicular planes such that they have a common centre as shown in the figure. Find the magnitude and direction of the net magnetic field at the common centre of the two coils.            | 2              |
|                 |                                                                                                                                                                                                                                                                                        |                |
| 8.              | How is a moving coil galvanometer converted into a voltmeter? Explain, giving the necessary circuit diagram and the required mathematical relation used.                                                                                                                               | 2              |
| 9.              | Define the current sensitivity of a moving coil galvanometer. "Increasing the current sensitivity may not necessarily increase the voltage sensitivity." Justify this statement.                                                                                                       | 2              |
| 10              | . (a) Using Biot–Savart's law, derive the expression for the magnetic field in the vector form at a point on the axis of a circular current loop.                                                                                                                                      | 5              |
|                 | (b) What does a toroid consist of? Find out the expression for the magnetic field inside a toroid <i>N</i> turns of the coil having the average radius <i>r</i> and carrying a current <i>I</i> . Show that the magnetic in the open space inside and exterior to the tortoid is zero. | for<br>; field |

- 11. (a) Derive the expression for the torque on a rectangular current carrying loop suspended in a uniform magnetic field.
  (b) A proton and a deuteron having equal momenta enter in a region of uniform magnetic field at right angle to the direction of the field. Depict their trajectories in the field.
- 12. A circular coil of radius 4 cm and of 20 turns carries a current of 3 amperes. It is placed in a magnetic field of intensity of 0.5 weber/m<sup>2</sup>. The magnetic dipole moment of the coil is
   (a) 0.15 ampere-m<sup>2</sup> (b) 0.3 ampere-m<sup>2</sup>

(c) 0.45 ampere $-m^2$  (d) 0.6 ampere $-m^2$ 

13. The maximum current that can be measured by a galvanometer of resistance 40 Ω is 10 mA. It is 1 converted into voltmeter that can read upto 50 V. The resistance to be connected in the series with the galvanometer is

1

- (a) 2010  $\Omega$  (b) 4050  $\Omega$
- (c) 5040  $\Omega$  (d) 4960  $\Omega$

14. In a circular coil of radius r, the magnetic field at the centre is proportional to

(a) 
$$r^2$$
 (b)  $r$   
(c)  $\frac{1}{r}$  (d)  $\frac{1}{r^2}$