## ARITHMETIC PROGRESSION

## DEFINITION

When the terms of a sequence or series are arranged under a definite rule then they are said to be in a Progression. Progression can be classified into 5 parts as -
(i) Arithmetic Progression (A.P.)
(ii) Geometric Progression (G.P.)
(iii) Arithmetic Geometric Progression (A.G.P.)
(iv) Harmonic Progression (H.P.)
(v) Miscellaneous Progression

## ARITHMETIC PROGRESSION (A.P.)

Arithmetic Progression is defined as a series in which difference between any two consecutive terms is constant throughout the series. This constant difference is called common difference.
If ' $a$ ' is the first term and ' $d$ ' is the common difference, then an AP can be written as
$a+(a+d)+(a+2 d)+(a+3 d)+\ldots .$.
Note: If $a, b, c$, are in AP $\Leftrightarrow 2 b=a+c$

## General Term of an AP

General term ( $\mathrm{n}^{\text {th }}$ term) of an AP is given by

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}
$$

## Note :

(i) General term is also denoted by $\lambda$ (last term)
(ii) n (No. of terms) always belongs to set of natural numbers.
(iii) Common difference can be zero, + ve or - ve. $\mathrm{d}=0 \Rightarrow$ then all terms of AP are same
Eg. 2, 2, 2, 2,

$$
d=0
$$

$\mathrm{d}=+\mathrm{ve} \Rightarrow$ increasing AP
Eg. $\frac{5}{2}, 3, \frac{7}{2}, 4, \frac{9}{2}, \ldots \ldots \ldots . \mathrm{d}=+\frac{1}{2}$
$\mathrm{d}=-\mathrm{ve} \Rightarrow$ decreasing A.P.

Eg. $57,52,47,42,37, \ldots \ldots \ldots . \mathrm{d}=-\frac{1}{2}$
$r^{\text {th }}$ term from end of an A.P.
If number of terms in an A.P. is $n$ then
$T_{r}$ from end $=T_{n}-(r-1) d=(n-r+1)^{\text {th }}$ from beginning
or we can use last term of series as first term and use ' $d$ ' with opposite sign of given A.P.
Eg. : Find $26^{\text {th }}$ term from last of an AP 7, 15, 23. $\qquad$ 767 consits 96 terms.
Sol. Method : I
$\mathrm{r}^{\text {th }}$ term from end is given by

$$
\begin{array}{rlrl} 
& =\mathrm{T}_{\mathrm{n}}-(\mathrm{r}-1) \mathrm{d} \\
\text { or } & & =(\mathrm{n}-\mathrm{r}+1)^{\text {th }} \text { term from beginning }
\end{array}
$$

where n is total no. of terms.
$\mathrm{m}=96, \mathrm{n}=26$
$\therefore \mathrm{T}_{26}$ from last $=\mathrm{T}_{(96-26+1)}$ from beginning

$$
=\mathrm{T}_{71} \text { from beginning }
$$

$$
=\mathrm{a}+70 \mathrm{~d}
$$

$$
=7+70(8)=7+560=567
$$

## Method : II

$\mathrm{d}=15-7=8$
$\therefore$ from last, $a=767$ and $d=-8$
$\therefore \mathrm{T}_{26}=\mathrm{a}+25 \mathrm{~d}=767+25(-8)$

$$
\begin{aligned}
& =767-200 \\
& =567 .
\end{aligned}
$$

## Sum of $\boldsymbol{n}$ terms of an A.P.

The sum of first $n$ terms of an A.P. is given by

$$
\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \quad \text { or } \quad \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}\left[\mathrm{a}+\mathrm{T}_{\mathrm{n}}\right]
$$

## Note:

(i) If sum of $n$ terms $S_{n}$ is given then general term $T_{n}=S_{n}-S_{n-1}$ where $S_{n-1}$ is sum of ( $\mathrm{n}-1$ ) terms of A.P.
(ii) $\mathrm{n}^{\text {th }}$ term of an AP is linear in ' n '

Eg. : $a_{n}=2-n, a_{n}=5 n+2 \ldots \ldots \ldots$
Also we can find common difference ' $d$ ' from $a_{n}$ or $T_{n}: d=$ coefficient of $n$

For $\mathrm{a}_{\mathrm{n}}=2-\mathrm{n}$
$\therefore \mathrm{d}=-1$ Ans.
Verification : by putting $n=1,2,3,4, \ldots \ldots \ldots$
we get AP : $1,0,-1,-2, \ldots \ldots$.
$\therefore \mathrm{d}=0-1=-1$ Ans.
\& for $a_{n}=5 n+2$

$$
\mathrm{d}=5 \text { Ans. }
$$

(iii) Sum of $n$ terms of an AP is always quadratic in ' $n$ '
Eg. : $S_{n}=2 n^{2}+3 n$.
Eg. : $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{4}(\mathrm{n}+1)$
we can find 'd' also from $S_{n}$.
$\mathrm{d}=2$ (coefficient of $\mathrm{n}^{2}$ )
for eg. : $2 n^{2}+3 n, d=2(2)=4$
Verification $\quad S_{n}=2 n^{2}+3 n$
at $n=1 \quad S_{1}=2+3=5=$ first term
at $\quad \mathrm{n}=2 \quad \mathrm{~S}_{2}=2(2)^{2}+3(2)$
$=8+6=14 \neq$ second term
$=$ sum of first two terms.
$\therefore$ second term $=\mathrm{S}_{2}-\mathrm{S}_{1}=14-5=9$
$\therefore \mathrm{d}=\mathrm{a}_{2}-\mathrm{a}_{1}=9-5=4$
Eg. : $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{4}(\mathrm{n}+1)$

$$
\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}^{2}}{4}+\frac{\mathrm{n}}{4}
$$

$\therefore \mathrm{d}=2\left(\frac{1}{4}\right)=\frac{1}{2}$ Ans.

## * EXAMPLES *

Ex. 1 If the nth term of a progression be a linear expression in $n$, then prove that this progression is an AP.
Sol. Let the nth term of a given progression be given by

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{an}+\mathrm{b}, \text { where } \mathrm{a} \text { and } \mathrm{b} \text { are constants. }
$$

Then, $\mathrm{T}_{\mathrm{n}-1}=\mathrm{a}(\mathrm{n}-1)+\mathrm{b}=[(\mathrm{an}+\mathrm{b})-\mathrm{a}]$
$\therefore\left(\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{n}-1}\right)=(\mathrm{an}+\mathrm{b})-[(\mathrm{an}+\mathrm{b})-\mathrm{a}]=\mathrm{a}$, which is a constant.
Hence, the given progression is an AP.

Ex. 2 Write the first three terms in each of the sequences defined by the following -
(i) $a_{n}=3 n+2$
(ii) $\mathrm{a}_{\mathrm{n}}=\mathrm{n}^{2}+1$

Sol.(i) We have,
$a_{n}=3 n+2$
Putting $\mathrm{n}=1,2$ and 3 , we get
$a_{1}=3 \times 1+2=3+2=5$,
$a_{2}=3 \times 2+2=6+2=8$,
$a_{3}=3 \times 3+2=9+2=11$
Thus, the required first three terms of the sequence defined by $a_{n}=3 n+2$ are 5,8 , and 11 .
(ii) We have,
$a_{n}=n^{2}+1$
Putting $\mathrm{n}=1$, 2, and 3 we get
$a_{1}=1^{2}+1=1+1=2$
$\mathrm{a}_{2}=2^{2}+1=4+1=5$
$a_{3}=3^{2}+1=9+1=10$
Thus, the first three terms of the sequence defined by $\mathrm{a}_{\mathrm{n}}=\mathrm{n}^{2}+1$ are 2,5 and 10 .
Ex. 3 Write the first five terms of the sequence defined by $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}-1} \cdot 2^{\mathrm{n}}$
Sol. $\quad a_{n}=(-1)^{n-1} \times 2^{n}$
Putting $\mathrm{n}=1,2,3,4$, and 5 we get
$\mathrm{a}_{1}=(-1)^{1-1} \times 2^{1}=(-1)^{0} \times 2=2$
$\mathrm{a}_{2}=(-1)^{2-1} \times 2^{2}=(-1)^{1} \times 4=-4$
$\mathrm{a}_{3}=(-1)^{3-1} \times 2^{3}=(-1)^{2} \times 8 \times 8$
$\mathrm{a}_{4}=(-1)^{4-1} \times 2^{4}=(-1)^{3} \times 16=-16$
$a_{5}=(-1)^{5-1} \times 2^{5}=(-1)^{4} \times 32=32$
Thus the first five term of the sequence are $2,-4,8,-16,32$.
Ex. 4 The $n^{\text {th }}$ term of a sequence is $3 n-2$. Is the sequence an A.P. ? If so, find its $10^{\text {th }}$ term.
Sol. We have $\mathrm{a}_{\mathrm{n}}=3 \mathrm{n}-2$
Clearly $a_{n}$ is a linear expression in $n$. So, the given sequence is an A.P. with common difference 3.
Putting $\mathrm{n}=10$, we get

$$
\mathrm{a}_{10}=3 \times 10-2=28
$$

REMARK : It is evident from the above examples that a sequence is not an A.P. if its nth term is not a linear expression in $n$.

Ex. 5 Find the $12^{\text {th }}, 24^{\text {th }}$ and nth term of the A.P. given by $9,13,17,21,25, \ldots \ldots \ldots$
Sol. We have,
$\mathrm{a}=$ First term $=9$ and,
$\mathrm{d}=$ Common difference $=4$
$[\Theta 13-9=4,17-13=4,21-7=4$ etc. $]$
We know that the nth term of an A.P. with first term a and common difference $d$ is given by

$$
a_{n}=a+(n-1) d
$$

Therefore,

$$
\begin{aligned}
a_{12} & =a+(12-1) d \\
& =a+11 d=9+11 \times 4=53 \\
a_{24} & =a+(24-1) d \\
& =a+23 d=9+23 \times 4=101
\end{aligned}
$$

and, $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$

$$
=9+(n-1) \times 4=4 n+5
$$

$$
\mathrm{a}_{12}=53, \mathrm{a}_{24}=101 \text { and } \mathrm{a}_{\mathrm{n}}=4 \mathrm{n}+5
$$

Ex. 6 Which term of the sequence $-1,3,7,11, \ldots .$. , is 95 ?
Sol. Clearly, the given sequence is an A.P.
We have,
$\mathrm{a}=$ first term $=-1$ and,
$\mathrm{d}=$ Common difference $=4$.
Let 95 be the $\mathrm{n}^{\text {th }}$ term of the given A.P. then,
$a_{n}=95$
$\Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=95$
$\Rightarrow-1+(\mathrm{n}-1) \times 4=95$
$\Rightarrow-1+4 \mathrm{n}-4=95 \Rightarrow 4 \mathrm{n}-5=95$
$\Rightarrow 4 \mathrm{n}=100 \quad \Rightarrow \mathrm{n}=25$
Thus, 95 is $25^{\text {th }}$ term of the given sequence.
Ex. 7 Which term of the sequence 4, 9, 14, 19, ...... is 124 ?
Sol. Clearly, the given sequence is an A.P. with first term $\mathrm{a}=4$ and common difference $\mathrm{d}=5$.
Let 124 be the $\mathrm{n}^{\text {th }}$ term of the given sequence.
Then, $a_{n}=124$
$a+(n-1) d=124$
$\Rightarrow 4+(\mathrm{n}-1) \times 5=124$
$\Rightarrow \mathrm{n}=25$
Hence, $25^{\text {th }}$ term of the given sequence is 124 .
Ex. 8 The $10^{\text {th }}$ term of an A.P. is 52 and $16^{\text {th }}$ term is 82. Find the $32^{\text {nd }}$ term and the general term.

Sol. Let a be the first term and $d$ be the common difference of the given A.P. Let the A.P. be $a_{1}, a_{2}, a_{3}, \ldots . . a_{n}, \ldots \ldots$
It is given that $\mathrm{a}_{10}=52$ and $\mathrm{a}_{16}=82$
$\Rightarrow \mathrm{a}+(10-1) \mathrm{d}=52$ and $\mathrm{a}+(16-1) \mathrm{d}=82$
$\Rightarrow a+9 d=52$
and, $a+15 d=82$
Subtracting equation (ii) from equation (i), we get

$$
-6 d=-30 \Rightarrow d=5
$$

Putting $d=5$ in equation (i), we get

$$
\begin{aligned}
& \quad a+45=52 \Rightarrow a=7 \\
& \therefore \quad a_{32}=a+(32-1) d=7+31 \times 5=162 \\
& \text { and, } a_{n}=a+(n-1) d=7(n-1) \times 5=5 n+2 \\
& \text { Hence } a_{32}=162 \text { and } a_{n}=5 n+2
\end{aligned}
$$

Ex. 9 Determine the general term of an A.P. whose $7^{\text {th }}$ term is -1 and $16^{\text {th }}$ term 17 .
Sol. Let a be the first term and d be the common difference of the given A.P. Let the A.P. be $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}, \ldots \ldots$
It is given that $\mathrm{a}_{7}=-1$ and $\mathrm{a}_{16}=17$
$a+(7-1) d=-1$ and, $a+(16-1) d=17$
$\Rightarrow a+6 d=-1$
and, $a+15 d=17$
Subtracting equation (i) from equation (ii), we get

$$
9 \mathrm{~d}=18 \quad \Rightarrow \mathrm{~d}=2
$$

Putting $d=2$ in equation (i), we get

$$
a+12=-1 \Rightarrow a=-13
$$

Now, General term $=\mathrm{a}_{\mathrm{n}}$
$=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=-13+(\mathrm{n}-1) \times 2=2 \mathrm{n}-15$
Ex. 10 If five times the fifth term of an A.P. is equal to 8 times its eight term, show that its $13^{\text {th }}$ term is zero.
Sol. Let $a_{1}, a_{2}, a_{3}, \ldots . ., a_{n}, \ldots$. be the A.P. with its first term $=\mathrm{a}$ and common difference $=\mathrm{d}$.

It is given that $5 \mathrm{a}_{5}=8 \mathrm{a}_{8}$
$\Rightarrow 5(a+4 d)=8(a+7 d)$
$\Rightarrow 5 \mathrm{a}+20 \mathrm{~d}=8 \mathrm{a}+56 \mathrm{~d} \Rightarrow 3 \mathrm{a}+36 \mathrm{~d}=0$
$\Rightarrow 3(a+12 d)=0 \quad \Rightarrow a+12 d=0$
$\Rightarrow a+(13-1) d=0 \quad \Rightarrow a_{13}=0$
Ex. 11 If the $\mathrm{m}^{\text {th }}$ term of an A.P. be $1 / \mathrm{n}$ and $\mathrm{n}^{\text {th }}$ term be $1 / \mathrm{m}$, then show that its $(\mathrm{mn})^{\text {th }}$ term is 1 .

Sol. Let a and d be the first term and common difference respectively of the given A.P. Then,

$$
\begin{align*}
& \frac{1}{\mathrm{n}}=\mathrm{m}^{\text {th }} \text { term } \Rightarrow \frac{1}{\mathrm{n}}=\mathrm{a}+(\mathrm{m}-1) \mathrm{d}  \tag{i}\\
& \frac{1}{\mathrm{~m}}=\mathrm{n}^{\text {th }} \text { term } \Rightarrow \frac{1}{\mathrm{~m}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \tag{ii}
\end{align*}
$$

On subtracting equation (ii) from equation (i), we get

$$
\begin{aligned}
& \frac{1}{n}-\frac{1}{m}=(m-n) d \\
\Rightarrow & \frac{m-n}{m n}=(m-n) d \Rightarrow d=\frac{1}{m n}
\end{aligned}
$$

Putting $\mathrm{d}=\frac{1}{\mathrm{mn}}$ in equation (i), we get

$$
\begin{aligned}
& \frac{1}{n}=\mathrm{a}+\frac{(\mathrm{m}-1)}{\mathrm{mn}} \Rightarrow \mathrm{a}=\frac{1}{\mathrm{mn}} \\
\therefore \quad(\mathrm{mn})^{\text {th }} \text { term } & =\mathrm{a}+(\mathrm{mn}-1) \mathrm{d} \\
& =\frac{1}{\mathrm{mn}}+(\mathrm{mn}-1) \frac{1}{\mathrm{mn}}=1
\end{aligned}
$$

Ex. 12 If $m$ times $m^{\text {th }}$ term of an A.P. is equal to $n$ times its nth term, show that the $(\mathrm{m}+\mathrm{n})$ term of the A.P. is zero.
Sol. Let a be the first term and $d$ be the common difference of the given A.P. Then, $m$ times $\mathrm{m}^{\text {th }}$ term $=\mathrm{n}$ times $\mathrm{n}^{\text {th }}$ term
$\Rightarrow \mathrm{ma}_{\mathrm{m}}=\mathrm{na}_{\mathrm{n}}$
$\Rightarrow \mathrm{m}\{\mathrm{a}+(\mathrm{m}-1) \mathrm{d}\}=\mathrm{n}\{\mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}$
$\Rightarrow \mathrm{m}\{\mathrm{a}+(\mathrm{m}-1) \mathrm{d}\}-\mathrm{n}\{\mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}=0$
$\Rightarrow \mathrm{a}(\mathrm{m}-\mathrm{n})+\{\mathrm{m}(\mathrm{m}-1)-\mathrm{n}(\mathrm{n}-1)\} \mathrm{d}=0$
$\Rightarrow \mathrm{a}(\mathrm{m}-\mathrm{n})+(\mathrm{m}-\mathrm{n})(\mathrm{m}+\mathrm{n}-1) \mathrm{d}=0$
$\Rightarrow(\mathrm{m}-\mathrm{n})\{\mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}\}=0$
$\Rightarrow \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}=0$
$\Rightarrow \mathrm{a}_{\mathrm{m}+\mathrm{n}}=0$
Hence, the $(m+n)^{\text {th }}$ term of the given A.P. is zero.
Ex. 13 If the $p^{\text {th }}$ term of an A.P. is $q$ and the $q^{\text {th }}$ term is $p$, prove that its $n^{\text {th }}$ term is $(p+q-n)$.
Sol Let a be the first term and $d$ be the common difference of the given A.P. Then,
$\mathrm{p}^{\text {th }}$ term $=\mathrm{q} \Rightarrow \mathrm{a}+(\mathrm{p}-1) \mathrm{d}=\mathrm{q}$
$q^{\text {th }}$ term $=p \Rightarrow a+(q-1) d=p$
Subtracting equation (ii) from equation (i), we get

$$
(p-q) d=(q-p) \Rightarrow d=-1
$$

Putting $d=-1$ in equation (i), we get

$$
\begin{aligned}
& \quad \mathrm{a}=(\mathrm{p}+\mathrm{q}-1) \\
& \mathrm{n}^{\text {th }} \operatorname{term}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
& =(\mathrm{p}+\mathrm{q}-1)+(\mathrm{n}-1) \times(-1)=(\mathrm{p}+\mathrm{q}-\mathrm{n})
\end{aligned}
$$

Ex. 14 If $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an A.P. are $a, b, c$ respectively, then show that
(i) $\mathrm{a}(\mathrm{q}-\mathrm{r})+\mathrm{b}(\mathrm{r}-\mathrm{p})+\mathrm{c}(\mathrm{p}-\mathrm{q})=0$
(ii) $(\mathrm{a}-\mathrm{b}) \mathrm{r}+(\mathrm{b}-\mathrm{c}) \mathrm{p}+(\mathrm{c}-\mathrm{a}) \mathrm{q}=0$

Sol. Let A be the first term and D be the common difference of the given A.P. Then,

$$
\begin{align*}
& \mathrm{a}=\mathrm{p}^{\text {th }} \text { term } \Rightarrow \mathrm{a}=\mathrm{A}+(\mathrm{p}-1) \mathrm{D}  \tag{i}\\
& \mathrm{~b}=\mathrm{q}^{\text {th }} \text { term } \Rightarrow \mathrm{b}=\mathrm{A}+(\mathrm{q}-1) \mathrm{D}  \tag{ii}\\
& \mathrm{c}=\mathrm{r}^{\text {th }} \text { term } \Rightarrow \mathrm{c}=\mathrm{A}+(\mathrm{r}-1) \mathrm{D} \tag{iii}
\end{align*}
$$

(i): We have,

$$
\begin{aligned}
& \mathrm{a}(\mathrm{q}-\mathrm{r})+\mathrm{b}(\mathrm{r}-\mathrm{p})+\mathrm{c}(\mathrm{p}-\mathrm{q}) \\
& \begin{aligned}
=\{\mathrm{A}+(\mathrm{p}-1) \mathrm{D}\} & (\mathrm{q}-\mathrm{r}) \\
+ & \{\mathrm{A}+(\mathrm{q}-1)\}(\mathrm{r}-\mathrm{p}) \\
& +\{\mathrm{A}+(\mathrm{r}-1) \mathrm{D}\}(\mathrm{p}-\mathrm{q})
\end{aligned}
\end{aligned}
$$

[Using equations (i), (ii) and (iii)]

$$
\begin{aligned}
& =\mathrm{A}\{(\mathrm{q}-\mathrm{r})+(\mathrm{r}-\mathrm{p})+(\mathrm{p}-\mathrm{q})\} \\
& +D\{(p-1)(q-r)+(q-1)(r-p) \\
& +(\mathrm{r}-1)(\mathrm{p}-\mathrm{q})\} \\
& =\mathrm{A}\{(\mathrm{q}-\mathrm{r})+(\mathrm{r}-\mathrm{p})+(\mathrm{p}-\mathrm{q})\} \\
& +\mathrm{D}\{(\mathrm{p}-1)(\mathrm{q}-\mathrm{r})+(\mathrm{q}-1)(\mathrm{r}-\mathrm{p}) \\
& +(\mathrm{r}-1)(\mathrm{p}-\mathrm{q})\} \\
& =\mathrm{A} .0+\mathrm{D}\{\mathrm{p}(\mathrm{q}-\mathrm{r})+\mathrm{q}(\mathrm{r}-\mathrm{p}) \\
& +\mathrm{r}(\mathrm{p}-\mathrm{q})-(\mathrm{q}-\mathrm{r})-(\mathrm{r}-\mathrm{p})-(\mathrm{p}-\mathrm{q})\} \\
& =\mathrm{A} .0+\mathrm{D} .0=0
\end{aligned}
$$

(ii) : On subtracting equation (ii) from equation
(i), equation (iii) from equation (ii) and equation (i) from equation (iii), we get
$\mathrm{a}-\mathrm{b}=(\mathrm{p}-\mathrm{q}) \mathrm{D},(\mathrm{b}-\mathrm{c})=(\mathrm{q}-\mathrm{r}) \mathrm{D}$ and $c-a=(r-p) D$
$\therefore \quad(\mathrm{a}-\mathrm{b}) \mathrm{r}+(\mathrm{b}-\mathrm{c}) \mathrm{p}+(\mathrm{c}-\mathrm{a}) \mathrm{q}$
$=(p-q) D r+(q-r) D p+(r-p) D q$
$=D\{(p-q) r+(q-r) p+(r-p) q\}$
$=\mathrm{D} \times 0=0$
Ex. 15 Determine the $10^{\text {th }}$ term from the end of the A.P. 4, 9, 14, ........ 254.

Sol. We have,

$$
\begin{aligned}
& I=\text { Last term }=254 \text { and, } \\
& d=\text { Common difference }=5
\end{aligned}
$$

$10^{\text {th }}$ term from the end $=I-(10-1) \mathrm{d}$

$$
=I-9 d=254-9 \times 5=209
$$

## ARITHMETIC MEAN (A.M.)

If three or more than three terms are in A.P., then the numbers lying between first and last term are known as Arithmetic Means between them.i.e.
The A.M. between the two given quantities $a$ and $b$ is A so that $\mathrm{a}, \mathrm{A}, \mathrm{b}$ are in A.P.
i.e. $A-a=b-A \Rightarrow A=\frac{a+b}{2}$

Note : A.M. of any $n$ positive numbers $a_{1}, a_{2}$ $\ldots . . a_{n}$ is

$$
\mathrm{A}=\frac{\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots . \mathrm{a}_{\mathrm{n}}}{\mathrm{n}}
$$

## n AM's between two given numbers

If in between two numbers ' $a$ ' and ' $b$ ' we have to insert $n$ AM $A_{1}, A_{2}, \ldots . A_{n}$ then $a, A_{1}, A_{2}, A_{3} \ldots . A_{n}$, $b$ will be in A.P. The series consist of $(n+2)$ terms and the last term is $b$ and first term is $a$.

$$
\begin{aligned}
& a+(n+2-1) d=b \\
& d=\frac{b-a}{n+1} \\
A_{1} & =a+d, A_{2}=a+2 d, \ldots . A_{n}=a+n d \text { or } \\
A_{n}= & b-d
\end{aligned}
$$

## Note :

(i) Sum of n AM's inserted between a and b is equal to $n$ times the single $A M$ between $a$ and $b$ i.e.
$\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{A}_{\mathrm{r}}=\mathrm{nA}$ where

$$
A=\frac{a+b}{2}
$$

(ii) between two numbers

$$
=\frac{\text { sum of } \mathrm{mAM's}}{\text { sum of } \mathrm{nAM's}}=\frac{\mathrm{m}}{\mathrm{n}}
$$

## SUPPOSITION OF TERMS IN A.P.

(i) When no. of terms be odd then we take three terms are as: $a-d, a, a+d$ five terms are as $-2 d$, $a-d, a, a+d, a+2 d$
Here we take middle term as ' $a$ ' and common difference as 'd'.
(ii) When no. of terms be even then we take 4 term are as : $a-3 d, a-d, a+d, a+3 d$

6 term are $\mathrm{as}=\mathrm{a}-5 \mathrm{~d}, \mathrm{a}-3 \mathrm{~d}, \mathrm{a}-\mathrm{d}, \mathrm{a}+\mathrm{d}, \mathrm{a}+3 \mathrm{~d}$, $a+5 d$
Here we take ' $a-d$, $a+d$ ' as middle terms and common difference as ' 2 d '.

## Note :

(i) If no. of terms in any series is odd then only one middle term is exist which is $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term where n is odd.
(ii) If no. of terms in any series is even then middle terms are two which are given by
$(\mathrm{n} / 2)^{\text {th }}$ and $\left\{\left(\frac{\mathrm{n}}{2}\right)+1\right\}^{\text {th }}$ term where n is even.

## SOME PROPERTIES OF AN A.P.

(i) If each term of a given A.P. be increased, decreased, multiplied or divided by some non zero constant number then resulting series thus obtained will also be in A.P.
(ii) In an A.P., the sum of terms equidistant from the beginning and end is constant and equal to the sum of first and last term.
(iii) Any term of an AP (except the first term) is equal to the half of the sum of terms equidistant from the term i.e.

$$
\mathrm{a}_{\mathrm{n}}=\frac{1}{2}\left(\mathrm{a}_{\mathrm{n}-\mathrm{k}}+\mathrm{a}_{\mathrm{n}+\mathrm{k}}\right), \mathrm{k}<\mathrm{n}
$$

(iv) If in a finite AP , the number of terms be odd, then its middle term is the AM between the first and last term and its sum is equal to the product of middle term and no. of terms.

## SOME STANDARD RESULTS

(i) Sum of first n natural numbers

$$
\Rightarrow \quad \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}
$$

(ii) Sum of first n odd natural numbers

$$
\Rightarrow \sum_{\mathrm{r}=1}^{\mathrm{n}}(2 \mathrm{r}-1)=\mathrm{n}^{2}
$$

(iii) Sum of first n even natural numbers
$=\sum_{\mathrm{r}=1}^{\mathrm{n}} 2 \mathrm{r}=\mathrm{n}(\mathrm{n}+1)$
(iv) Sum of squares of first n natural numbers
$=\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}$
(v) Sum of cubes of first n natural numbers
$=\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}^{3}=\left[\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right]^{2}$
(vi) If for an A.P. $p^{\text {th }}$ term is $q, q^{\text {th }}$ term is $p$ then $\mathrm{m}^{\text {th }}$ term is $=\mathrm{p}+\mathrm{q}-\mathrm{m}$
(vii) If for an AP sum of $p$ terms is $q$, sum of $q$ terms is $p$, then sum of $(p+q)$ term is: $(\mathbf{p}+\mathbf{q})$.
(viii)If for an A.P. sum of $p$ terms is equal to sum of $q$ terms then sum of $(p+q)$ terms is zero.

## * EXAMPLES *

Ex. 16 The sum of three numbers in A.P. is -3 , and their product is 8 . Find the numbers.
Sol. Let the numbers be $(a-d), a,(a+d)$. Then,
Sum $=-3 \Rightarrow(a-d)+a(a+d)=-3$
$\Rightarrow 3 \mathrm{a}=-3$
$\Rightarrow \mathrm{a}=-1$
Product $=8$
$\Rightarrow(a-d)(a)(a+d)=8$
$\Rightarrow a\left(\mathrm{a}^{2}-\mathrm{d}^{2}\right)=8$
$\Rightarrow(-1)\left(1-\mathrm{d}^{2}\right)=8$
$\Rightarrow \mathrm{d}^{2}=9 \Rightarrow \mathrm{~d}= \pm 3$
If $\mathrm{d}=3$, the numbers are $-4,-1,2$. If $\mathrm{d}=-3$, the numbers are $2,-1,-4$.
Thus, the numbers are $-4,-1,2$, or $2,-1,-4$.
Ex. 17 Find four numbers in A.P. whose sum is 20 and the sum of whose squares is 120 .
Sol. Let the numbers be $(a-3 d),(a-d),(a+d)$, $(a+3 d)$, Then
Sum $=20$
$\Rightarrow(\mathrm{a}-3 \mathrm{~d})+(\mathrm{a}-\mathrm{d})+(\mathrm{a}+\mathrm{d})+(\mathrm{a}+3 \mathrm{~d})=20$
$\Rightarrow 4 a=20$
$\Rightarrow \quad \mathrm{a}=5$
Sum of the squares $=120$
$(a-3 d)^{2}+(a-d)^{2}+(a+d)^{2}+(a+3 d)^{2}=120$
$\Rightarrow 4 \mathrm{a}^{2}+20 \mathrm{~d}^{2}=120$
$\Rightarrow \mathrm{a}^{2}+5 \mathrm{~d}^{2}=30$
$\Rightarrow 25+5 \mathrm{~d}^{2}=30$
$[\Theta \mathrm{a}=5]$
$\Rightarrow 5 \mathrm{~d}^{2}=5 \Rightarrow \mathrm{~d}= \pm 1$
If $\mathrm{d}=1$, then the numbers are $2,4,6,8$. If $\mathrm{d}=-1$, then the numbers are $8,6,4,2$. Thus, the numbers are $2,4,6,8$ or $8,6,4,2$.

Ex. 18 Divide 32 into four parts which are in A.P. such that the product of extremes is to the product of means is $7: 15$.
Sol. Let the four parts be $(a-3 d),(a-d),(a+d)$ and $(a+3 d)$. Then,
Sum $=32$
$\Rightarrow(\mathrm{a}-3 \mathrm{~d})+(\mathrm{a}-\mathrm{d})+(\mathrm{a}+\mathrm{d})+(\mathrm{a}+3 \mathrm{~d})=32$
$\Rightarrow 4 a=32 \Rightarrow a=8$
It is given that $\frac{(a-3 d)(a+3 d)}{(a-d)(a+d)}=\frac{7}{15}$
$\Rightarrow \frac{\mathrm{a}^{2}-9 \mathrm{~d}^{2}}{\mathrm{a}^{2}-\mathrm{d}^{2}}=\frac{7}{15} \quad \Rightarrow \frac{64-9 \mathrm{~d}^{2}}{64-\mathrm{d}^{2}}=\frac{7}{15}$
$\Rightarrow \quad 128 \mathrm{~d}^{2}=512$
$\Rightarrow \mathrm{d}^{2}=4 \Rightarrow \mathrm{~d}= \pm 2$
Thus, the four parts are $a-d, a-d, a+d$ and $a+3$ di.e. $2,6,10$ and 14.
Ex. 19 Find the sum of 20 terms of the A.P. 1, 4, $7,10, \ldots \ldots$.
Sol. Let a be the first term and $d$ be the common difference of the given A.P. Then, we have $\mathrm{a}=1$ and $\mathrm{d}=3$.
We have to find the sum of 20 terms of the given A.P.
Putting $\mathrm{a}=1, \mathrm{~d}=3, \mathrm{n}=20$ in
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$, we get
$\mathrm{S}_{20}=\frac{20}{2}[2 \times 1+(20-1) \times 3]$

$$
=10 \times 59=590
$$

Ex. 20 Find the sum of first 30 terms of an A.P. whose second term is 2 and seventh term is 22 .
Sol. Let a be the first term and $d$ be the common difference of the given A.P. Then,
$\mathrm{a}_{2}=2$ and $\mathrm{a}_{7}=22$
$\Rightarrow \mathrm{a}+\mathrm{d}=2$ and $\mathrm{a}+6 \mathrm{~d}=22$
Solving these two equations, we get

$$
\begin{aligned}
& \quad \mathrm{a}=-2 \text { and } \mathrm{d}=4 . \\
& \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
& \therefore \quad \mathrm{S}_{30}=\frac{30}{2}[2 \times(-2)+(30-1) \times 4] \\
& \Rightarrow \quad 15(-4+116)=15 \times 112 \\
& \quad=1680
\end{aligned}
$$

Hence, the sum of first 30 terms is 1680.

Ex. 21 Find the sum of all natural numbers between 250 and 1000 which are exactly divisible by 3 .
Sol. Clearly, the numbers between 250 and 1000 which are divisible by 3 are 252, 255, 258, ...., 999. This is an A.P. with first term $\mathrm{a}=252$, common difference $=3$ and last term $=999$. Let there be n terms in this A.P. Then,
$\Rightarrow \mathrm{a}_{\mathrm{n}}=999$
$\Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=999$
$\Rightarrow 252+(\mathrm{n}-1) \times 3=999 \Rightarrow \mathrm{n}=250$
$\therefore$ Required sum $=\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[\mathrm{a}+\mathrm{I}]$

$$
=\frac{250}{2}[252+999]=156375
$$

Ex. 22 How many terms of the series 54, 51, 48, .... be taken so that their sum is 513 ? Explain the double answer.

Sol. $\Theta \quad a=54, d=-3$ and $S_{n}=513$
$\Rightarrow \frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=513$
$\Rightarrow \frac{\mathrm{n}}{2}[108+(\mathrm{n}-1) \times-3]=513$
$\Rightarrow \mathrm{n}^{2}-37 \mathrm{n}+342=0$
$\Rightarrow(\mathrm{n}-18)(\mathrm{n}-19)=0 \Rightarrow \mathrm{n}=18$ or 19
Here, the common difference is negative, So, $19^{\text {th }}$ term is $\mathrm{a}_{19}=54+(19-1) \times-3=0$.

Thus, the sum of 18 terms as well as that of 19 terms is 513 .

Ex. 23 If the $\mathrm{m}^{\text {th }}$ term of an A.P. is $\frac{1}{\mathrm{n}}$ and the $\mathrm{n}^{\text {th }}$ term is $\frac{1}{\mathrm{~m}}$, show that the sum of mn terms is $\frac{1}{2}(m n+1)$.

Sol. Let a be the first term and $d$ be the common difference of the given A.P. Then,
$\mathrm{a}_{\mathrm{m}}=\frac{1}{\mathrm{n}} \Rightarrow \mathrm{a}+(\mathrm{m}-1) \mathrm{d}=\frac{1}{\mathrm{n}}$
and $\mathrm{a}_{\mathrm{n}}=\frac{1}{\mathrm{~m}} \Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d}=\frac{1}{\mathrm{~m}}$
Subtracting equation (ii) from equation (i), we get

$$
(\mathrm{m}-\mathrm{n}) \mathrm{d}=\frac{1}{\mathrm{n}}-\frac{1}{\mathrm{~m}}
$$

$\Rightarrow(\mathrm{m}-\mathrm{n}) \mathrm{d}=\frac{\mathrm{m}-\mathrm{n}}{\mathrm{mn}} \Rightarrow \mathrm{d}=\frac{1}{\mathrm{mn}}$
Putting $\mathrm{d}=\frac{1}{\mathrm{mn}}$ in equation (i), we get

$$
\begin{aligned}
& a+(m-1) \frac{1}{m n}=\frac{1}{n} \\
\Rightarrow & a+\frac{1}{n}-\frac{1}{m n}=\frac{1}{n} \Rightarrow a=\frac{1}{m n}
\end{aligned}
$$

Now, $\mathrm{S}_{\mathrm{mn}}=\frac{\mathrm{mn}}{2}\{2 \mathrm{a}+(\mathrm{mn}-1) \times \mathrm{d}\}$
$\Rightarrow \mathrm{S}_{\mathrm{mn}}=\frac{\mathrm{mn}}{2}\left[\frac{2}{\mathrm{mn}}+(\mathrm{mn}-1) \times \frac{1}{\mathrm{mn}}\right]$
$\Rightarrow \mathrm{S}_{\mathrm{mn}}=\frac{1}{2}(\mathrm{mn}+1)$
Ex. 24 If the term of $m$ terms of an A.P. is the same as the sum of its $n$ terms, show that the sum of its $(\mathrm{m}+\mathrm{n})$ terms is zero.
Sol. Let a be the first term and $d$ be the common difference of the given A.P. Then,

$$
\begin{align*}
& \mathrm{S}_{\mathrm{m}}=\mathrm{S}_{\mathrm{n}} \\
\Rightarrow & \frac{\mathrm{~m}}{2}[2 \mathrm{a}+(\mathrm{m}-1) \mathrm{d}]=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
\Rightarrow & 2 \mathrm{a}(\mathrm{~m}-\mathrm{n})+\{\mathrm{m}(\mathrm{~m}-1)-\mathrm{n}(\mathrm{n}-1)\} \mathrm{d}=0 \\
\Rightarrow & 2 \mathrm{a}(\mathrm{~m}-\mathrm{n})+\left\{\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right)-(\mathrm{m}-\mathrm{n})\right\} \mathrm{d}=0 \\
\Rightarrow & (\mathrm{~m}-\mathrm{n})[2 \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}]=0 \\
\Rightarrow & 2 \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}=0 \\
\Rightarrow & 2 \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}=0[\Theta \mathrm{~m}-\mathrm{n} \neq 0] \ldots .(\mathrm{i} \tag{i}
\end{align*}
$$

Now, $\mathrm{S}_{\mathrm{m}+\mathrm{n}}=\frac{\mathrm{m}+\mathrm{n}}{2}\{2 \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}\}$
$\mathrm{S}_{\mathrm{m}+\mathrm{n}}=\frac{\mathrm{m}+\mathrm{n}}{2} \times 0=0$ [Using equation (i)]
Ex. 25 The sum of $n, 2 n, 3 n$ terms of an A.P. are $S_{1}$, $S_{2}, S_{3}$ respectively. Prove that $S_{3}=3\left(S_{2}-S_{1}\right)$.

Sol. Let a be the first term and d be the common difference of the given A.P. Then,
$S_{1}=$ Sum of $n$ terms
$\Rightarrow \mathrm{S}_{1}=\frac{\mathrm{n}}{2}\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}$
$S_{2}=$ Sum of $2 n$ terms
$\Rightarrow \mathrm{S}_{2}=\frac{2 \mathrm{n}}{2}[2 \mathrm{a}+(2 \mathrm{n}-1) \mathrm{d}]$
and, $\mathrm{S}_{3}=$ Sum of 3 n terms
$\Rightarrow \mathrm{S}_{3}=\frac{3 \mathrm{n}}{2}[2 \mathrm{a}+(3 \mathrm{n}-1) \mathrm{d}]$

Now, $\quad S_{2}-S_{1}$
$=\frac{2 \mathrm{n}}{2}[2 \mathrm{a}+(2 \mathrm{n}-1) \mathrm{d}]-\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{2}-\mathrm{S}_{1}=\frac{\mathrm{n}}{2}[2\{2 \mathrm{a}+(2 \mathrm{n}-1) \mathrm{d}\}-\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}]$
$=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(3 \mathrm{n}-1) \mathrm{d}]$
$\therefore \quad 3\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right)=\frac{3 \mathrm{n}}{2}[2 \mathrm{a}+(3 \mathrm{n}-1) \mathrm{d}]=\mathrm{S}_{3}$
[Using (iii)]
Hence, $\mathrm{S}_{3}=3\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right)$
Ex. 26 The sum of $n$ terms of three arithmetical progression are $S_{1}, S_{2}$ and $S_{3}$. The first term of each is unity and the common differences are 1,2 and 3 respectively. Prove that $S_{1}+S_{3}=2 S_{2}$.
Sol. We have,
$S_{1}=$ Sum of $n$ terms of an A.P. with first term 1 and common difference 1

$$
=\frac{\mathrm{n}}{2}[2 \times 1+(\mathrm{n}-1) 1]=\frac{\mathrm{n}}{2}[\mathrm{n}+1]
$$

$S_{2}=$ Sum of $n$ terms of an A.P. with first term 1 and common difference 2

$$
=\frac{\mathrm{n}}{2}[2 \times 1+(\mathrm{n}-1) \times 2]=\mathrm{n}^{2}
$$

$S_{3}=$ Sum of $n$ terms of an A.P. with first term 1 and common difference 3

$$
=\frac{\mathrm{n}}{2}[2 \times 1+(\mathrm{n}-1) \times 3]=\frac{\mathrm{n}}{2}(3 \mathrm{n}-1)
$$

Now, $\quad \mathrm{S}_{1}+\mathrm{S}_{3}=\frac{\mathrm{n}}{2}(\mathrm{n}+1)+\frac{\mathrm{n}}{2}(3 \mathrm{n}-1)$

$$
=2 \mathrm{n}^{2} \text { and } \mathrm{S}_{2}=\mathrm{n}^{2}
$$

Hence $\mathrm{S}_{1}+\mathrm{S}_{3}=2 \mathrm{~S}_{2}$
Ex. 27 The sum of the first p, q, r terms of an A.P. are $a, b, c$ respectively. Show that

$$
\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{b}{r}(p-q)=0
$$

Sol. Let A be the first term and D be the common difference of the given A.P. Then,

$$
\begin{align*}
& a=\text { Sum of } p \text { terms } \Rightarrow a=\frac{p}{2}[2 A+(q-1) D] \\
& \Rightarrow \quad \frac{2 a}{p}=[2 A+(p-1) D]  \tag{i}\\
& \quad b=\text { Sum of } q \text { terms }
\end{align*}
$$

$$
\begin{align*}
& \Rightarrow \mathrm{b}=\frac{\mathrm{q}}{2}[2 \mathrm{~A}+(\mathrm{q}-1) \mathrm{D}] \\
& \Rightarrow \quad \frac{2 \mathrm{~b}}{\mathrm{q}}=[2 \mathrm{~A}+(\mathrm{q}-1) \mathrm{D}] \tag{ii}
\end{align*}
$$

and, $c=$ Sum of $r$ terms
$\Rightarrow \mathrm{c}=\frac{\mathrm{r}}{2}[2 \mathrm{~A}+(\mathrm{r}-1) \mathrm{D}]$
$\Rightarrow \frac{2 \mathrm{c}}{\mathrm{r}}=[2 \mathrm{~A}+(\mathrm{r}-1) \mathrm{D}]$
Multiplying equations (i), (ii) and (iii) by $(\mathrm{q}-\mathrm{r}),(\mathrm{r}-\mathrm{p})$ and $(\mathrm{p}-\mathrm{q})$ respectively and adding, we get

$$
\begin{aligned}
& \quad \frac{2 a}{p}(q-r)+\frac{2 b}{q}(r-p)+\frac{2 c}{r}(p-q) \\
& =[2 A+(p-1) D](q-r)+[2 A+(q-1) D](r-p) \\
& + \\
& +[(2 A+(r-1) D](p-q) \\
& =2 A(q-r+r-p+p-q)+D[(p-1)(q-r) \\
& \quad+(q-1)(r-p)+(r-1)(p-q)] \\
& =2 A \times 0+D \times 0=0
\end{aligned}
$$

Ex. 28 The ratio of the sum use of $n$ terms of two A.P.'s is $(7 n+1):(4 n+27)$. Find the ratio of their $\mathrm{m}^{\text {th }}$ terms.
Sol. Let $a_{1}, a_{2}$ be the first terms and $d_{1}, d_{2}$ the common differences of the two given A.P.'s .Then the sums of their $n$ terms are given by

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}= \\
& \frac{\mathrm{n}}{2}\left[2 \mathrm{a}_{1}+(\mathrm{n}-1) \mathrm{d}_{1}\right], \text { and } \\
\mathrm{S}_{\mathrm{n}}^{\prime} & =\frac{\mathrm{n}}{2}\left[2 \mathrm{a}_{2}+(\mathrm{n}-1) \mathrm{d}_{2}\right] \\
\therefore \quad & \frac{\mathrm{S}_{\mathrm{n}}}{\mathrm{~S}_{\mathrm{n}}^{\prime}}=\frac{\frac{n}{2}\left[2 \mathrm{a}_{1}+(\mathrm{n}-1) \mathrm{d}_{1}\right]}{\frac{\mathrm{n}}{2}\left[2 \mathrm{a}_{2}+(\mathrm{n}-1) \mathrm{d}_{2}\right]}=\frac{2 \mathrm{a}_{1}+(\mathrm{n}-1) \mathrm{d}_{1}}{2 \mathrm{a}_{2}+(\mathrm{n}-1) \mathrm{d}_{2}}
\end{aligned}
$$

It is given that $\frac{\mathrm{S}_{\mathrm{n}}}{\mathrm{S}_{\mathrm{n}}^{\prime}}=\frac{7 \mathrm{n}+1}{4 \mathrm{n}+27}$
$\Rightarrow \frac{2 \mathrm{a}_{1}+(\mathrm{n}-1) \mathrm{d}_{1}}{2 \mathrm{a}_{2}+(\mathrm{n}-1) \mathrm{d}_{2}}=\frac{7 \mathrm{n}+1}{4 \mathrm{n}+27}$
To find the ratio of the $\mathrm{m}^{\text {th }}$ terms of the two given A.P.'s, we replace $n$ by $(2 m-1)$ in equation (i). Then we get

$$
\begin{aligned}
& \therefore \quad \frac{2 a_{1}+(2 m-2) \mathrm{d}_{1}}{2 \mathrm{a}_{2}+(2 \mathrm{~m}-2) \mathrm{d}_{2}}=\frac{7(2 \mathrm{~m}-1)+1}{4(2 \mathrm{~m}-1)+27} \\
& \Rightarrow \quad \frac{\mathrm{a}_{1}+(\mathrm{m}-1) \mathrm{d}_{1}}{\mathrm{a}_{2}+(\mathrm{m}-1) \mathrm{d}_{2}}=\frac{14 \mathrm{~m}-6}{8 \mathrm{~m}+23}
\end{aligned}
$$

Hence the ratio of the $\mathrm{m}^{\text {th }}$ terms of the two A.P.'s is $(14 m-6):(8 m+23)$

Ex. 29 The ratio of the sums of $m$ and $n$ terms of an A.P. is $\mathrm{m}^{2}: \mathrm{n}^{2}$. Show that the ratio of the $\mathrm{m}^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ terms is $(2 \mathrm{~m}-1):(2 \mathrm{n}-1)$.
Sol. Let a be the first term and d the common difference of the given A.P. Then, the sums of $m$ and $n$ terms are given by

$$
\begin{aligned}
& S_{m}=\frac{m}{2}[2 a+(m-1) d], \text { and } \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d]
\end{aligned}
$$

respectively.Then,

$$
\begin{aligned}
& \frac{S_{m}}{S_{n}}=\frac{m^{2}}{n^{2}} \Rightarrow \frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}} \\
& \Rightarrow \quad \frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n} \\
& \Rightarrow[2 a+(m-1) d] n=\{2 a+(n-1) d\} m \\
& \Rightarrow 2 a(n-m)=d\{(n-1) m-(m-1) n\} \\
& \Rightarrow 2 a(n-m)=d(n-m) \\
& \Rightarrow d=2 a \\
& \text { Now, } \quad \frac{T_{m}}{T_{n}}=\frac{a+(m-1) d}{a+(n-1) d} \\
& \quad=\frac{a+(m-1) 2 a}{a+(n-1) 2 a}=\frac{2 m-1}{2 n-1}
\end{aligned}
$$

Ex. 30 If 4 AM's are inserted between $1 / 2$ and 3 then find 3rd AM.
Sol. Here $\mathrm{d}=\frac{3-\frac{1}{2}}{4+1}=\frac{1}{2}$
$\therefore \mathrm{A}_{3}=\mathrm{a}+3 \mathrm{~d} \Rightarrow \frac{1}{2}+3 \times \frac{1}{2}=2$
Ex. 31 n AM's are inserted between 2 and 38. If third AM is 14 then n is equal to.
Sol. Here $2+3 d=14 \quad \Rightarrow d=4$
$\therefore 4=\frac{38-2}{n+1}$
$\Rightarrow 4 \mathrm{n}+4=36 \Rightarrow \mathrm{n}=8$
Ex. 32 Four numbers are in A.P. If their sum is 20 and the sum of their square is 120 , then find the middle terms.
Sol. Let the numbers are $a-3 d, a-d, a+d, a+3 d$
given $a-3 d+a-d+a+d+a+3 d=20$
$\Rightarrow 4 \mathrm{a}=20 \Rightarrow \mathrm{a}=5$
and $(a-3 d)^{2}+(a-d)^{2}+(a+d)^{2}+(a+3 d)^{2}$
$=120$
$4 \mathrm{a}^{2}+20 \mathrm{~d}^{2}=120$
$4 \times 5^{2}+20 \mathrm{~d}^{2}=120$
$\mathrm{d}^{2}=1 \Rightarrow \mathrm{~d}= \pm 1$
Hence numbers are 2, 4, 6, 8
Ex. 33 Find the common difference of an AP, whose first term is 5 and the sum of its first four terms is half the sum of the next four terms.

## Sol. ATQ

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}+a_{4}=\frac{1}{2}\left(a_{5}+a_{6}+a_{7}+a_{8}\right) \\
\Rightarrow & 2\left[a_{1}+a_{2}+a_{3}+a_{4}\right]=a_{5}+a_{6}+a_{7}+a_{8} \\
\Rightarrow & 2\left[a_{1}+a_{2}+a_{3}+a_{4}\right]+\left(a_{1}+a_{2}+a_{3}+a_{4}\right) \\
& =\left[a_{1}+a_{2}+a_{3}+a_{4}\right]+\left(a_{5}+a_{6}+a_{7}+a_{8}\right)
\end{aligned}
$$

(adding both side $a_{1}+a_{2}+a_{3}+a_{4}$ )
$\Rightarrow 3\left(\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\mathrm{a}_{4}\right)=\mathrm{a}_{1}+\ldots .+\mathrm{a}_{8} \Rightarrow 3 \mathrm{~S}_{4}=\mathrm{S}_{8}$
$\Rightarrow 3\left[\frac{4}{2}(2 \times 5+(4-1) \mathrm{d}]=\left[\frac{8}{2}(2 \times 5+(8-1) \mathrm{d}]\right.\right.$
$\Rightarrow 3[10+3 \mathrm{~d}]=2[10+7 \mathrm{~d}]$
$\Rightarrow 30+9 \mathrm{~d}=20+14 \mathrm{~d} \Rightarrow 5 \mathrm{~d}=10 \Rightarrow \mathrm{~d}=2$
Ex. 34 If the $\mathrm{n}^{\text {th }}$ term of an AP is $(2 \mathrm{n}+1)$ then find the sum of its first three terms.
Sol. $\quad \Theta a_{n}=2 n+1$
$\mathrm{a}_{1}=2(1)+1=3$
$\mathrm{a}_{2}=2(2)+1=5$
$\mathrm{a}_{3}=2(3)+1=7$
$\therefore a_{1}+a_{2}+a_{3}=3+5+7=15$
Ex. 35 Which term of the sequence 20, $19 \frac{1}{4}, 18 \frac{1}{2}$, $17 \frac{3}{4}, \ldots \ldots$ is the first negative terms ?
Sol. The given sequence is an A.P. in which first term $\mathrm{a}=20$ and common difference $\mathrm{d}=-\frac{3}{4}$.

Let $a_{n}$ is the first negative term
then $a_{n}<0$
$\Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d}<0 \Rightarrow 20+(\mathrm{n}-1)\left(-\frac{3}{4}\right)<0$
$\Rightarrow 20<(\mathrm{n}-1) \frac{3}{4} \Rightarrow 80<3(\mathrm{n}-1)$
$\Rightarrow 80<3 \mathrm{n}-3 \Rightarrow 83<3 \mathrm{n} \Rightarrow \mathrm{n}>\frac{83}{3}$ or $\mathrm{n}>27 \frac{2}{3}$
$\Theta 28$ is the natural number just greater than
$\therefore \mathrm{n}=28$ Ans. $27 \frac{2}{3}$

## Important Points To Be Remembered

1. A succession of numbers formed and arranged according to some definite law is called a sequence.
For example :
(a) $3,7,11,15$ $\qquad$
(b) $2,4,8,16$ $\qquad$
2. Each number of the sequence is called a term of the sequence. A sequence is said to be finite or infinite according as the number of terms in it is finite or infinite.
3. If the terms of a sequence are connected by the sign of addition $(+)$, we get a series
For example :

$$
3+7+11+15+\ldots
$$

4. If the terms of a series constantly increase or decrease in numerical value, the series is called a progression.
5. A series is said to be in A.P. if the difference of each term after the first term and the proceeding term is constant. The constant difference is called common difference.

## For Example : -

$1+3+5+7+9+$ $\qquad$ is an A.P. with
common difference 2 .
6. General form of an A.P. is
$a+(n-1) d=a_{n}$
7. Sum of $n$ terms of an A.P. is
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=\frac{\mathrm{n}}{2}\left(\mathrm{a}+\mathrm{a}_{\mathrm{n}}\right)$
8. $n$th term $\left(a_{n}\right)=\operatorname{sum}$ of $n$ terms $-\operatorname{sum}$ of $(n-1)$
terms of same AP
i.e. $a_{n}=S_{n}-S_{n-1}$
9. The $\mathrm{n}^{\text {th }}$ term is linear in ' $n$ ' and $d=$ coefficient of n .
10. The sum of $n$ terms is quadratic in ' $n$ ' and $d=$ double of coefficient of $n$.
11. $\mathrm{S}_{1}=\mathrm{a}=$ (first term of A.P.)
$S_{2}=$ sum of first two terms.
12. Sum of infinite terms $=\left\{\begin{array}{r}\infty \text { if } d>0 \\ -\infty \text { if } d<0\end{array}\right.$

## A. Very Short Answer Type Questions

Q. 1 Write the first four terms of each of the following sequences whose $\mathrm{n}^{\text {th }}$ terms are -
(i) $\mathrm{a}_{\mathrm{n}}=3 \mathrm{n}+2$
(ii) $\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{n}-2}{3}$
(iii) $a_{n}=3^{n}$
(iv) $a_{n}=\frac{3 n-2}{5}$
(v) $\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}} \cdot 2^{\mathrm{n}}$
(vi) $\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}-2)}{2}$
(vii) $\mathrm{a}_{\mathrm{n}}=\mathrm{n}^{2}-\mathrm{n}+1$
(viii) $a_{n}=2 n^{2}-3 n+1$
(ix) $a_{n}=\frac{2 n-3}{6}$
Q. 2 The general term of a sequence is given by $a_{n}=-4 n+15$. Is the sequence an A.P. ? If so, find its $15^{\text {th }}$ term and the common difference.
Q. 3 The first term of an A.P. is 5, the common difference is 3 and the last term is 80 ; find the number of terms.

## B. Short answer type Questions

Q. 4 Find :
(i) $10^{\text {th }}$ term of the A.P. $1,4,7,10, \ldots$
(ii) $18^{\text {th }}$ term of the A.P. $\sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2}, \ldots$.
(iii) $\mathrm{n}^{\text {th }}$ term of the A.P. $13,8,3,-2, \ldots$.
Q. 5 (i) Which term of the A.P. $3,8,13, \ldots$ is 248 ?
(ii) Which term of the A.P. $84,80,76, \ldots$ is 0 ?
(iii) Which term of the A.P. $4,9,14, \ldots$. is 254 ?
Q. 6 (i) Is 68 a term of the A.P. $7,10,13, \ldots$ ?
(ii) Is 302 a term of the A.P. $3,8,13, \ldots$ ?
Q. 7 (i) How many terms are there in the A.P.

$$
7,10,13, \ldots . .43 ?
$$

(ii) How many terms are there in the A.P.

$$
-1,-\frac{5}{6},-\frac{2}{3},-\frac{1}{2}, \ldots ., \frac{10}{3} ?
$$

Q. 8 The $10^{\text {th }}$ and $18^{\text {th }}$ terms of an A.P. are 41 and 73 respectively. Find $26^{\text {th }}$ term.
Q. 9 If 10 times the $10^{\text {th }}$ term of an A.P. is equal to 15 times the $15^{\text {th }}$ term, show that $25^{\text {th }}$ term of the A.P. is zero.
Q. 10 The $6^{\text {th }}$ and $17^{\text {th }}$ terms of an A.P. are 19 and 41 respectively, find the $40^{\text {th }}$ term.
Q. 11 Find the sum of all odd numbers between 100 and 200 .
Q. 12 Find the sum of all integers between 84 and 719 , which are multiples of 5 .
Q. 13 Find the sum of all integers between 50 and 500 which are divisible by7.

## C. Long answer type Questions

Q. 14 In a certain A.P. the $24^{\text {th }}$ term is twice the $10^{\text {th }}$ term. Prove that the $72^{\text {nd }}$ term is twice the $34^{\text {th }}$ term.
Q. 15 If $(m+1)^{\text {th }}$ term of an A.P. is twice the $(\mathrm{n}+1)^{\text {th }}$ term, prove that $(3 \mathrm{~m}+1)^{\text {th }}$ term is twice the $(\mathrm{m}+\mathrm{n}+1)^{\text {th }}$ term.
Q. 16 If the $\mathrm{n}^{\text {th }}$ term of the A.P. 9, 7, 5, .... is same as the $n^{\text {th }}$ term of the A.P. $15,12,9, \ldots$. find $n$.
Q. 17 The sum of three terms of an A.P. is 21 and the product of the first and the third terms exceeds the second term by 6 , find three terms.
Q. 18 Three numbers are in A.P. If the sum of these numbers be 27 and the product 648, find the numbers.
Q. 19 The angles of a quadrilateral are in A.P. whose common difference is $10^{\circ}$. Find the angles.
Q. 20 Find the four numbers in A.P., whose sum is 50 and in which the greatest number is 4 times the least.
Q. 21 Find the sum of the following arithmetic progressions :
(i) $a+b, a-b, a-3 b, \ldots$ to 22 terms
(ii) $(x-y)^{2},\left(x^{2}+y^{2}\right),(x+y)^{2}, \ldots$ to $n$ terms
(iii) $\frac{x-y}{x+y}, \frac{3 x-2 y}{x+y}, \frac{5 x-3 y}{x+y}$, to $n$ terms
Q. 22 Find the sum of $n$ terms of an A.P. whose nth terms is given by $\mathrm{a}_{\mathrm{n}}=5-6 \mathrm{n}$.
Q. 23 How many terms are there in the A.P. whose first and fifth terms are -14 and 2 respectively and the sum of the terms is 40 ?
Q. 24 The third term of an A.P. is 7 and the seventh term exceeds three times the third term by 2. Find the first term, the common difference and the sum of first 20 terms.
Q. 25 The first term of an A.P. is 2 and the last term is 50 . The sum of all these terms is 442 . Find the common difference.
Q. 26 If $12^{\text {th }}$ term of an A.P. is -13 and the sum of the first four terms is 24 , what is the sum of first 10 terms?
Q. 27 Show that the sum of all odd integers between 1 and 1000 which are divisible by 3 is 83667 .
Q. 28 In an A.P., if the $5^{\text {th }}$ and $12^{\text {th }}$ terms are 30 and 65 respectively, what is the sum of first 20 terms.
Q. 29 The production of TV in a factory increases uniformly by a fixed number every year if produced 8000 acts in $6^{\text {th }}$ years $\& 11300$ in $9^{\text {th }}$ year find the production in (i) first year (ii) $8^{\text {th }}$ year (iii) $6^{\text {th }}$ year.
Q. 30 A sum of $j 2800$ is to be used to award four prizes. If each prize after the first prize is $j 200$ less than the preceding prize, find the value of each of the prizes.

## ANSWER KEY

## A. VERY SHORT ANSWER TYPE :

1. (i) $5,8,11,14$
(ii) $-\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}$
(iii) $3,9,27,81$
(iv) $\frac{1}{5}, \frac{3}{5}, \frac{7}{5}, 2$
(v) $-2,4,-8,16$ (vi) $-\frac{1}{2}, 0, \frac{3}{2}, 4$
(vii) $1,3,7,13$ (viii) $0,3,10,21$
(ix) $-\frac{1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}$
2. $-45,-4 \quad 3.26$
B. SHORT ANSWER TYPE :
3. (i) 28
(ii) $35 \sqrt{2}$
(iii) $-5 n+18$
4. (i) 50
(ii) 22
(iii) 51 6. (i) No
(ii) No
5. (i) 13 (ii) 27
6. 105
7. 87
8. 7500
9. 50800
10. 17696
C. LONG ANSWER TYPE :
11. 7
12. 1, 7, 13
13. $6,9,12$
14. $75^{\circ}, 85^{\circ}, 95^{\circ}, 105^{\circ}$
15. 5, 10, 15, 20
16. (i) $22 a-440 b$
(ii) $n\left[(x-y)^{2}+(n-1) x y\right]$
(iii) $\frac{\mathrm{n}}{2(\mathrm{x}+\mathrm{y})}[\mathrm{n}(2 \mathrm{x}-\mathrm{y})-\mathrm{y}]$
17. $n(2-3 n)$
18. 10
19. $-1,4,740$
20. 3
21. 0
22. 1150
23. (i) 2500
(ii) 10200 (iii) 31500
24. $\mathfrak{j} 1000, \mathfrak{j} 800, j 600, j 400$.
Q. 1 How many two digit number are there which are divisible by 7 ?
(A) 13
(B) 14
(C) 15
(D) None
Q. 2 How many numbers are there between 103 and 750 which are divisible by 6 ?
(A) 125
(B) 108
(C) 107
(D) 113
Q. 3 The sum of first 60 natural numbers is -
(A) 1830
(B) 1640
(C) 3660
(D) 1770
Q. 4 The sum of all 2 digit numbers is -
(A) 4750
(B) 4905
(C) 3776
(D) 4680
Q. $523^{\text {rd }}$ term of the A.P. $7,5,3,1, \ldots \ldots$. is -
(A) 51
(B) 37
(C) -37
(D) -51
Q. 6 If $(k+1), 3 k$ and $(4 k+2)$ be any three consecutive terms of an A.P., then the value of $k$ is -
(A) 3
(B) 0
(C) 1
(D) 2
Q. 7 Which term of the A.P. 5, 8, 11, $24 \ldots$ is 320 ?
(A) $104^{\text {th }}$
(B) $105^{\text {th }}$
(C) $106^{\text {th }}$
(D) $64^{\text {th }}$
Q. 8 The $5^{\text {th }}$ and $13^{\text {th }}$ terms of an A.P. are 5 and -3 respectively. The first term of the A.P. is -
(A) 1
(B) 9
(C) -15
(D) 2
Q. 9 Which term of the A.P. 64, 60, 56, 52, ....is zero?
(A) $16^{\text {th }}$
(B) $17^{\text {th }}$
(C) $14^{\text {th }}$
(D) $15^{\text {th }}$
Q. 10 The $n^{\text {th }}$ term of an A.P. is $(3 n+5)$. Its $7^{\text {th }}$ term is -
(A) 26
(B) $(3 n-2)$
(C) $3 n+12$
(D)cannot be determined
Q. 11 The sides of a right angle triangle are in A.P. The ratio of side is -
(A) $1: 2: 3$
(B) $2: 3: 4$
(C) $3: 4: 5$
(D) $5: 8: 3$
Q. 12 The sum of $1,3,5,7,9$, $\qquad$ upto 20 terms is-
(A) 400
(B) 563
(C) 472
(D) 264
Q. 13 The sum of the series $5+13+21+\ldots+181$ is -
(A) 2139
(B) 2476
(C) 2219
(D) 2337
Q. 14 The sum of all odd numbers between 100 and 200 is -
(A) 6200
(B) 6500
(C) 7500
(D) 3750
Q. 15 The sum of all positive integral multiples of 5 less than 100 is -
(A) 950
(B) 1230
(C) 760
(D) 875
Q. 16 The sum of all even natural numbers less than 100 is -
(A) 2450
(B) 2272
(C) 2352
(D) 2468
Q. 17 Arithmetic mean between 14 and 18 is -
(A) 16
(B) 15
(C) 17
(D) 32
Q. 18 If $4, A_{1}, A_{2}, A_{3}, 28$ are in A.P., then the value of $A_{3}$ is -
(A) 23
(B) 22
(C) 19
(D) cannot be determined
Q. 19 How many terms of the A.P. 3, 6, 9, 12, 15, ..... must be taken to make the sum 108 ?
(A) 6
(B) 7
(C) 8
(D) 36
Q. 20 The $6^{\text {th }}$ and $8^{\text {th }}$ terms of an A.P. are 12 and 22 respectively, Its $2^{\text {nd }}$ term is -
(A) 8
(B) -8
(C) 6
(D) -3
Q. 21 In an AP, then sum of first $n$ terms is $\left(\frac{3 n^{2}}{2}+\frac{5 n}{2}\right)$. Find its $25^{\text {th }}$ term.
(A) 924
(B) 76
(C) 1924
(D) 1848
Q. 22200 logs are stocked in such a way that there are 20 logs in the bottom row, 19 in the next row, 18 in the next row and so on. In how many row 200 logs are placed and how many logs are there in the top row?
(A) 19,5
(B) 16,5
(C) 10, 20
(D) 20,7

| Q.No | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ans. | A | B | A | B | C | A | C | B | B | A | C | A | A | C | A | A | A | B |
| Q.No | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ans. | C | B | B | B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

