Contents

Determination of resistance

7. Stretching of Wire _ 11
8. Various electrical conducting material for Use $\quad 12$
9. Colour coding of resistance $\quad 17$
10. Grouping of resistance $\quad 18$
11. Methods of determining equivalent resistance for different network _19
12. Some Standard results for equivalent resistance $\quad 20$

Cell, Kirchoff's law and Measuring instruments

13. Cell $\quad 29$
14. Cell in various position 30
15. Grouping of cell $\quad 33$
16. Kirchoff's Laws 38
17. Measurement instrument (Ammeter, Voltmeter, Galvanometer, Shunt etc.) _ 44
18. Potentiometer and it's application 49

Heating effect of current

19. Joules heating $\quad 101$
20. Electric power 101
21. Electric consumption 103
22. Combination of bulbs (or Electrical appliance) 106
23. Some standard cases for series and parallel combination 106

Thermo-electricity

24. Seeback effect 111
25. Peltier effect 113
26. Thomson effect 115
27. Application of thermo electrical effect 115

Chemical effect of current

28. Important terms related to chemical effect __ 118
29. Faraday's law of electrolysis $\quad 119$
30. Electro chemical cell 120

Assignments \& Answers

Current and it's conduction	Basic Level Page No.	
	59	60-61
Ohm's law	61-65	65-66
Grouping of resistance	66-71	72-76
Cell	76-79	79-82
Kirchoff's law	82-83	83-84
Different measuring instrument's	84-88	88-91
Practice Network	92-95	95-98
Answer sheet (Basic and Advance level)	99	
Joule's heating	127-128	128-129
Grouping of electrical appliances	129-130	130-131
Thermo-electricity	132-133	133
Chemical effect of current	133-135	135
Answer sheet (Basic and Advance level)		

\qquad

Electric Current

(1) Definition : The time rate of flow of charge through any cross-section is called current. So if through a cross-section, ΔQ charge passes in time Δt then $i_{a v}=\frac{\Delta Q}{\Delta t}$ and instantaneous current $i=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta Q}{\Delta t}=\frac{d Q}{d t}$. If flow is uniform then $i=\frac{Q}{t}$. Current is a scalar quantity. It's S.I. unit is ampere (A) and C.G.S. unit is emu and is called biot ($B i$), or ab ampere. $1 A=(1 / 10) B i(a b a m p$.
(2) The direction of current : The conventional direction of current is taken to be the direction of flow of positive charge, i.e. field and is opposite to the direction of flow of negative charge as shown below.

Though conventionally a direction is associated with current (Opposite to the motion of electron), it is not a vector. It is because the current can be added algebraically. Only scalar quantities can be added algebraically not the vector quantities.
(3) Charge on a current carrying conductor : In conductor the current is caused by electron (free electron). The no. of electron (negative charge) and proton (positive charge) in a conductor is same. Hence the net charge in a current carrying conductor is zero.
(4) Current through a conductor of non-uniform cross-section : For a given conductor current does not change with change in cross-sectional area. In the following figure $i_{1}=i_{2}=i_{3}$

(5) Types of current : Electric current is of two type :

(iii) It's symbol is \quad (iii) It's symbol is $\quad+\vdash^{-}$

Nate :-1 In our houses ac is supplied at $220 \mathrm{~V}, 50 \mathrm{~Hz}$.
(6) Current in difference situation :
(i) Due to translatory motion of charge

In n particle each having a charge q, pass through a given area in time t thẹ
If n particles each having a charge q pass per second per unit area, the current associated with cross-sectional area A is $\boldsymbol{i}=\boldsymbol{n q} \boldsymbol{A}$

If there are n particle per unit volume each having a charge q and moving with velocity v, the current thorough, cross section A is $\boldsymbol{i}=\boldsymbol{n q v a}$
(ii) Due to rotatory motion of charge

If a point charge q is moving in a circle of radius r with speed v (frequency v, angular speed ω and time period T) then corresponding currents $i=q v=\frac{q}{T}=\frac{q v}{2 \pi}$
(iii) When a voltage \boldsymbol{V} applied across a resistance \boldsymbol{R} : Current flows through the conductor $i=\frac{V}{R}$ also by definition of power $R=\frac{P}{i}$
(7) Current carriers : The charged particles whose flow in a definite direction constitutes the electric current are called current carriers. In different situation current carriers are different.
(i) Solids : In solid conductors like metals current carriers are free electrons.
(ii) Liquids : In liquids current carriers are positive and negative ions.
(iii) Gases : In gases current carriers are positive ions and free electrons.
(iv) Semi conductor : In semi conductors current carriers are holes and free electrons.

Current density (J)

In case of flow of charge through a cross-section, current density is defined as a vector having magnitude equal to current per unit area surrounding that point. Remember area is normal to the direction of charge flow (or current passes) through that point. Current density at point P is given by $\vec{J}=\frac{d i}{d A} \vec{n}$

If the cross-sectional area is not normal to the current, the cross-sectional area normal to current in accordance with following figure will be $d A \cos \theta$ and so in this situation:
$J=\frac{d i}{d A \cos \theta} \quad$ i.e. $d i=J d A \cos \theta$ or $d i=\vec{J} \cdot \overrightarrow{d A} \Rightarrow i=\int \vec{J} \cdot \overrightarrow{d A}$
i.e., in terms of current density, current is the flux of current density.

Wate: \square If current density \vec{J} is uniform for a normal cross-section \vec{A} then : $i=\int \vec{J} \cdot \overrightarrow{d s}=\vec{J} \cdot \int \overrightarrow{d s}$ [as $\vec{J}=$ constant $]$

$$
\text { or } \quad i=\vec{J} \cdot \vec{A}=J A \cos 0=J A \Rightarrow J=\frac{i}{\boldsymbol{A}} \quad\left[\text { as } \int \overrightarrow{d A}=\vec{A} \text { and } \theta=\mathrm{o}^{\circ}\right]
$$

(1) Unit and dimension : Current density \vec{J} is a vector quantity having S.I. unit $A m p / m^{2}$ and dimension. $\left[L^{-2} A\right]$
(2) Current density in terms of velocity of charge : In case of uniform flow of charge through a cross-section normal to it as $i=n q v A$ so, $\vec{J}=\frac{i}{A} \vec{n}=(n q v) \vec{n}$ or $\vec{J}=n q \vec{v}=\vec{v}(\rho) \quad$ [With $\left.\rho=\frac{\text { charge }}{\text { volume }}=n q\right]$
i.e., current density at a point is equal to the product of volume charge density with velocity of charge distribution at that point.
(3) Current density in terms of electric field : Current density relates with electric field as $\boldsymbol{J}=\boldsymbol{\sigma} \boldsymbol{E}=\frac{\boldsymbol{E}}{\boldsymbol{\rho}} ; \quad$ where $\sigma=$ conductivity and $\rho=$ resistivity or specific resistance of substance.
(i) Direction of current density \vec{J} is same as that of electric field \vec{E}.
(ii) If electric field is uniform (i.e. $\vec{E}=$ constant) current density will be constant [as $\sigma=$ constant]
(iii) If electric field is zero (as in electrostatics inside a conductor), current density and hence current will be zero.

Conduction of Current in Metals

According to modern views, a metal consists of a 'lattice' of fixed positively charged ions in which billions and billions of free electrons are moving randomly at speed which at room temperature (i.e. $300 K$) in accordance with kinetic theory of gases is given by $v_{r m s}=\sqrt{\frac{3 k T}{m}}=\sqrt{\frac{3 \times\left(1.38 \times 10^{-23}\right) \times 300}{9.1 \times 10^{-31}}} \simeq 10^{5} \mathrm{~m} / \mathrm{s}$

The randomly moving free electrons inside the metal collide with the lattice and follow a zigzag path as shou

(A)

(B)

However, in absence of any electric field due to this random motion, the number of electrons crossing from left to right is equal to the number of electrons crossing from right to left (otherwise metal will not remain equipotential) so the net current through a cross-section is zero.

When an electric field is applied, inside the conductor due to electric force the path of electron in general becomes curved (parabolic) instead of straight lines and electrons drift opposite to the field figure (B). Due to this drift the random motion of electrons get modified and there is a net transfer of electrons across a cross-section resulting in current.
(1) Drift velocity : Drift velocity is the average uniform velocity acquired by free electrons inside a metal by the application of an electric field which is responsible for current through it. Drift velocity is very small it is of the order of $10^{-4} \mathrm{~m} / \mathrm{s}$ as compared to thermal speed $\left(\sim 10^{5} \mathrm{~m} / \mathrm{s}\right)$ of electrons at room temperature.

If suppose for a conductor
$n=$ Number of electron per unit volume of the conductor
$A=$ Area of cross-section
$V=$ potential difference across the conductor
$E=$ electric field inside the conductor

$i=$ current, $J=$ current density, $\rho=$ specific resistance, $\sigma=$ conductivity $\left(\sigma=\frac{1}{\rho}\right)$ then current relates with drift velocity as i=neAv we can also write $v_{d}=\frac{i}{n e A}=\frac{J}{n e}=\frac{\sigma E}{n e}=\frac{E}{\rho n e}=\frac{V}{\rho \ln e}$.

Nate: The direction of drift velocity for electron in a metal is opposite to that of applied electric field (i.e. current density \vec{J}).

- $v_{d} \propto E$ i.e., greater the electric field, larger will be the drift velocity.
- When a steady current flows through a conductor of non-uniform cross-section drift velocity varies inversely with area of cross-section $\left(v_{d} \propto \frac{1}{A}\right)$
I If diameter of a conductor is doubled, then drift velocity of electrons inside it will not change.
(2) Relaxation time (τ) : The time interval between two successive collisions of electrons with the positive ions in the metallic lattice is defined as relaxation time $\tau=\frac{\text { mean free path }}{\text { r.m.s. velocity of electrons }}=\frac{\lambda}{v_{r m s}}$ with rise in temperature $v_{r m s}$ increases consequently τ decreases.

Current Electricity 5

(3) Mobility : Drift velocity per unit electric field is called mobility of electron i.e. $\mu=\frac{v_{d}}{E}$. It's unit is $\frac{m^{2}}{\text { volt }-\mathrm{sec}}$.

Concepts

(s) Human body, though has a large resistance of the order of $k \Omega$ (say $10 \mathrm{k} \Omega$), is very sensitive to minute currents even as low as a few mA. Electrocution, excites and disorders the nervous system of the body and hence one fails to control the activity of the body.
1 ampere of current means the flow of 6.25×10^{18} electrons per second through any cross-section of the conductors.
dc flows uniformly throughout the cross-section of conductor while ac mainly flows through the outer surface area of the conductor. This is known as skin effect.
It is worth noting that electric field inside a charged conductor is zero, but it is non zero inside a current

For a given conductor $J A=i=$ constant so tha $\xrightarrow{i} A=J_{2} A_{2}$; this is called equation of continuity

If cross-section is constant, $I \propto J$ i.e. for a given cross-sectional area, greater the current density, larger will be current.

The drift velocity of electrons is small because of the frequent collisions suffered by electrons.
The small value of drift velocity produces a large amount of electric current, due to the presence of extremely large number of free electrons in a conductor. The propagation of current is almost at the speed of light and involves electromagnetic process. It is due to this reason that the electric bulb glows immediately when switch is on.

In the absence of electric field, the paths of electrons between successive collisions are straight line while in presence of electric field the paths are generally curved.

Free electron density in a metal is given by $n=\frac{N_{A} x d}{A}$ where $N_{A}=$ Avogrado number, $x=$ number of free electrons per atom, $d=$ density of metal and $A=$ Atomic weight of metal.

Example

Example: $1 \quad$ The potential difference applied to an X-ray tube is $5 K V$ and the current through it is 3.2 $m A$. Then the number of electrons striking the target per second is
(a) 2×10^{16}
(b) 5×10^{6}
(c) 1×10^{17}
(d) 4×10^{15}

6 Current Electricity

Solution : (a) $\quad i=\frac{q}{t}=\frac{n e}{t} \quad \Rightarrow n=\frac{i t}{e}=\frac{3.2 \times 10^{-3} \times 1}{1.6 \times 10^{-19}}=2 \times 10^{16}$
Example: 2 A beam of electrons moving at a speed of $10^{6} \mathrm{~m} / \mathrm{s}$ along a line produces a current of $1.6 \times$ $10^{-6} \mathrm{~A}$. The number of electrons in the 1 metre of the beam is
(a) 10^{6}
(b) 10^{7}
(c) 10^{13}
(d) 10^{19}

Solution : (b) $\quad i=\frac{q}{t}=\frac{q}{(x / v)}=\frac{q v}{x}=\frac{n e v}{x} \Rightarrow n=\frac{i x}{e v}=\frac{1.6 \times 10^{-6} \times 1}{1.6 \times 10^{-19} \times 10^{6}}=10^{7}$
Example: 3 In the Bohr's model of hydrogen atom, the electrons moves around the nucleus in a circular orbit of a radius 5×10^{-11} metre. It's time period is $1.5 \times 10^{-16} \mathrm{sec}$. The current associated is
[MNR 1992]
(a) Zero
(b) $1.6 \times 10^{-19} \mathrm{~A}$
(c) 0.17 A
(d) $1.07 \times 10^{-3} \mathrm{~A}$

Solution : (d) $\quad i=\frac{q}{T}=\frac{1.6 \times 10^{-19}}{1.5 \times 10^{-16}}=1.07 \times 10^{-3} \mathrm{~A}$
Example: 4 An electron is moving in a circular path of radius $5.1 \times 10^{-11} \mathrm{~m}$ at a frequency of 6.8×10^{15} revolution/sec. The equivalent current is approximately
(a) $5.1 \times 10^{-3} \mathrm{~A}$
(b) $6.8 \times 10^{-3} \mathrm{~A}$
(c) $1.1 \times 10^{-3} \mathrm{~A}$
(d) $2.2 \times 10^{-3} \mathrm{~A}$

Solution : (c) $\quad v=6.8 \times 10^{15} \Rightarrow T=\frac{1}{6.8 \times 10^{15}} \mathrm{sec} \quad \Rightarrow i=\frac{Q}{T}=1.6 \times 10^{-19} \times 6.8 \times 10^{15}=1.1 \times 10^{-3} \mathrm{~A}$
Example: 5 A copper wire of length 1 m and radius 1 mm is joined in series with an iron wire of length 2 m and radius 3 mm and a current is passed through the wire. The ratio of current densities in the copper and iron wire is
[MP PMT 1994]
(a) $18: 1$
(b) $9: 1$
(c) $6: 1$
(d) $2: 3$

Solution: (b) We know $J=\frac{i}{A} \quad$ when $i=$ constant $J \propto \frac{1}{A} \Rightarrow$ $\frac{J_{c}}{J_{i}}=\frac{A_{i}}{A_{c}}=\left(\frac{r_{i}}{r_{c}}\right)^{2}=\left(\frac{3}{1}\right)^{2}=\frac{9}{1}$

Example: 6 A conducting wire of cross-sectional area $1 \mathrm{~cm}^{2}$ has $3 \times 10^{23} \mathrm{~m}^{-3}$ charge carriers. If wire carries a current of 24 mA , the drift speed of the carrier is
(a) $5 \times 10^{-6} \mathrm{~m} / \mathrm{s}$
(b) $5 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
(c) $0.5 \mathrm{~m} / \mathrm{s}$
(d) $5 \times 10^{-2} \mathrm{~m} / \mathrm{s}$

Solution : (b) $\quad v_{d}=\frac{i}{n e A}=\frac{24 \times 10^{-3}}{3 \times 10^{23} \times 1.6 \times 10^{-19} \times 10^{-4}}=5 \times 10^{-3} \mathrm{~m} / \mathrm{s}$
Example: 7 A wire has a non-uniform cross-sectional area as shown in figure. A steady current i flows through it. Which one of the following statement is correct

(a) The drift speed of electron is constant
(b) The drift speed increases on moving from A to B
(c) The drift speed decreases on moving from A to B
(d) The drift speed varies randomly

Solution: (c) For a conductor of non-uniform cross-section $v_{d} \propto \frac{1}{\text { Area of cross-section }}$
Example: 8 In a wire of circular cross-section with radius r, free electrons travel with a drift velocity v, when a current i flows through the wire. What is the current in another wire of half the radius and of the some material when the drift velocity is $2 v$
(a) $2 i$
(b) i
(c) $i / 2$
(d) $i / 4$

Solution: (c) $\quad i=n e A v_{d}=n e \pi r^{2} v$ and $i^{\prime}=n e \pi\left(\frac{r}{2}\right)^{2} .2 v=\frac{n e \pi r^{2} v}{2}=\frac{i}{2}$
Example: 9 A potential difference of V is applied at the ends of a copper wire of length l and diameter d. On doubling only d, drift velocity
(a) Becomes two times
(b)
Becomes half
(c) Does not change (d)

Solution: (c) Drift velocity doesn't depends upon diameter.
Example: 10 A current flows in a wire of circular cross-section with the free electrons travelling with a mean drift velocity v. If an equal current flows in a wire of twice the radius new mean drift velocity is
(a) v
(b) $\frac{v}{2}$
(c) $\frac{v}{4}$
(d) None of these

Solution : (c) By using $v_{d}=\frac{i}{n e A} \Rightarrow v_{d} \propto \frac{1}{A} \Rightarrow v^{\prime}=\frac{v}{4}$
Example: 11 Two wires A and B of the same material, having radii in the ratio $1: 2$ and carry currents in the ratio $4: 1$. The ratio of drift speeds of electrons in A and B is
(a) $16: 1$
(b) $1: 16$
(c) $1: 4$
(d) $4: 1$

Solution : (a) As $i=n e A v_{d} \Rightarrow \frac{i_{1}}{i_{2}}=\frac{A_{1}}{A_{2}} \times \frac{v_{d_{1}}}{v_{d_{2}}}=\frac{r_{1}^{2}}{r_{2}^{2}} \cdot \frac{v_{d_{1}}}{v_{d_{2}}} \Rightarrow \frac{v_{d_{1}}}{v_{d_{2}}}=\frac{16}{1}$

Tricky example: 1

In a neon discharge tube $2.9 \times 10^{18} \mathrm{Ne}^{+}$ions move to the right each second while $1.2 \times$ 10^{18} electrons move to the left per second. Electron charge is $1.6 \times 10^{-19} \mathrm{C}$. The current in the discharge tube
[MP PET 1999]
(a) $1 A$ towards right
(b) $0.66 A$ towards right
(c)
0.66 A towards left(d) Zero

Solution: (b) Use following trick to solve such type of problem.

Trick : In a discharge tube positive ions carry q units of charge in t seconds from anode to cathode and negative carriers (electrons) carry the same amount of charge from cathode to anode in t^{\prime} second. The current in the tube is $\boldsymbol{i}=\frac{\boldsymbol{q}}{\boldsymbol{t}}+\frac{\boldsymbol{q}^{\prime}}{\boldsymbol{t}^{\prime}}$.

Hence in this question current $i=\frac{2.9 \times 10^{18} \times e}{1}+\frac{1.2 \times 10^{18} \times e}{1}=0.66 \mathrm{~A}$ towards right.

Tricky example: $\mathbf{2}$

If the current flowing through copper wire of 1 mm diameter is 1.1 amp . The drift velocity of electron is (Given density of $C u$ is $9 \mathrm{gm} / \mathrm{cm}^{3}$, atomic weight of Cu is 63 grams and one free electron is contributed by each atom)
(a) $0.1 \mathrm{~mm} / \mathrm{sec}$
(b) $0.2 \mathrm{~mm} / \mathrm{sec}$
(c) $0.3 \mathrm{~mm} / \mathrm{sec}$
(d) $0.5 \mathrm{~mm} / \mathrm{sec}$

Solution: (a) $\quad 6.023 \times 10^{23}$ atoms has mass $=63 \times 10^{-3} \mathrm{~kg}$
So no. of atoms per $m^{3}=n=\frac{6.023 \times 10^{23}}{63 \times 10^{-3}} \times 9 \times 10^{3}=8.5 \times 10^{28}$
$v_{d}=\frac{i}{n e A}=\frac{1.1}{8.5 \times 10^{28} \times 1.6 \times 10^{-19} \times \pi \times\left(0.5 \times 10^{-3}\right)^{2}}=0.1 \times 10^{-3} \mathrm{~m} / \mathrm{sec}=0.1 \mathrm{~mm} / \mathrm{sec}$

Ohm's Law

If the physical circumstances of the conductor (length, temperature, mechanical strain etc.) remains constant, then the current flowing through the conductor is directly proportional to the potential difference across it's two ends i.e. $i \propto V$
$\Rightarrow \boldsymbol{V}=\boldsymbol{i} \boldsymbol{R} \quad$ or $\frac{V}{i}=R$; where R is a proportionality constant, known as electric resistance.
(1) Ohm's law is not a universal law, the substance which obeys ohm's law are known as ohmic substance for such ohmic substances graph between V and i is a straight line as shown. At different temperat

Slope of the line $=$
$\tan \theta=\frac{V}{i}=R$
ent.

Here $\tan \theta_{1}>\tan \theta_{2}$ So $R_{1}>R_{2}$ i.e. $T_{1}>T_{2}$
(2) The device or substances which doesn't obey ohm's law e.g. gases, crystal rectifiers, thermoionic valve, transistors etc. are known as non-ohmic or non-linear conductors. For these $V-i$ curve is not linear. In these situation the ratio between voltage and current at a particular voltage is known as static resistance. While the rate of change of voltage to change in current is known as dynamic resistance.

$$
R_{s t}=\frac{V}{i}=\frac{1}{\tan \theta}
$$

while $R_{d y n}=\frac{\Delta V}{\Delta I}=\frac{1}{\tan \phi}$
(3) Some other non-ohmic graphs are as follows :

(B)

(C)

Resistance

(1) Definition : The property of substance by virtue of which it opposes the flow of current through it, is known as the resistance.
(2) Cause of resistance of a conductor : It is due to the collisions of free electrons with the ions or atoms of the conductor while drifting towards the positive end of the conductor.
(3) Formula of resistance : For a conductor if $l=$ length of a conductor $A=$ Area of cross-section of conductor, $n=$ No. of free electrons per unit volume in conductor, $\tau=$ relaxation time then resistance of conductor $\boldsymbol{R}=\boldsymbol{\rho} \frac{\boldsymbol{l}}{\boldsymbol{A}}=\frac{\boldsymbol{m}}{\boldsymbol{n} \boldsymbol{e}^{2} \tau} \cdot \frac{\boldsymbol{l}}{\boldsymbol{A}}$; where $\rho=$ resistivity of the material of conductor
(4) Unit and dimension : It's S.I. unit is Volt/Amp. or Ohm (Ω). Also 1 ohm $=\frac{1 \text { volt }}{1 \text { Amp }}=\frac{10^{8} \mathrm{emu} \text { of potenti al }}{10^{-1} \mathrm{emu} \text { of current }}=10^{9} \mathrm{emu}$ of resistance. It's dimension is $\left[M L^{2} T^{-3} A^{-2}\right]$.
(5) Conductance (C): Reciprocal of resistance is known as conductance. $C=\frac{1}{R}$ It's unit is $\frac{1}{\Omega}$ or Ω^{-1} or "Siemen".

$$
\text { Slope }=\tan \theta=\frac{i}{V}=\frac{1}{R}=C
$$

(6) Dependence of resistance : Resistance of a conductor depends on the following factors.
(i) Length of the conductor : Resistance of a conductor is directly proportional to it's length i.e. $\boldsymbol{R} \propto \boldsymbol{l}$ e.g. a conducting wire having resistance R is cut in n equal parts. So resistance of each part will be $\frac{R}{n}$.

10 Current Electricity

(ii) Area of cross-section of the conductor : Resistance of a conductor is inversely proportional to it's area of cross-section i.e. $R \propto \frac{1}{A}$

(iii) Material of the conductor : Resistance of conductor also depends upon the nature of material i.e. $R \propto \frac{1}{n}$, for different conductors n is different. Hence R is also different.
(iv) Temperature : We know that $R=\frac{m}{n e^{2} \tau} \cdot \frac{l}{A} \Rightarrow R \propto \frac{l}{\tau}$ when a metallic conductor is heated, the atom in the metal vibrate with greater amplitude and frequency about their mean positions. Consequently the number of collisions between free electrons and atoms increases. This reduces the relaxation time τ and increases the value of resistance R i.e. for a conductor Resistance \propto temperature.

If $\quad R_{\mathrm{O}}=$ resistance of conductor at $\mathrm{O}^{\circ} \mathrm{C}$

$R_{t}=$ resistance of conductor at $t^{\circ} \mathrm{C}$
and $\alpha, \beta=$ temperature co-efficient of resistance (unit $\rightarrow \operatorname{per}^{\circ} \mathrm{C}$)
then $R_{t}=R_{0}\left(1+\alpha t+\beta t^{2}\right)$ for $t>300^{\circ} \mathrm{C}$ and $\boldsymbol{R}_{t}=\boldsymbol{R}_{0}(\mathbf{1}+\alpha \boldsymbol{t})$ for $t \leq 300^{\circ} \mathrm{C}$ or $\alpha=\frac{R_{t}-R_{0}}{R_{0} \times t}$
Wote: If R_{1} and R_{2} are the resistances at $t_{1}{ }^{\circ} \mathrm{C}$ and $t_{2}{ }^{\circ} \mathrm{C}$ respectively then $\frac{R_{1}}{R_{2}}=\frac{1+\alpha t_{1}}{1+\alpha t_{2}}$.

- The value of α is different at different temperature. Temperature coefficient of resistance averaged over the temperature range $t_{1}{ }^{\circ} \mathrm{C}$ to $t_{2}{ }^{\circ} \mathrm{C}$ is given by $\alpha=\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)}$ which gives $R_{2}=R_{1}\left[1+\alpha\left(t_{2}-t_{1}\right)\right]$. This formula gives an approximate value.
(v) Resistance according to potential difference : Resistance of a conducting body is not unique but depends on it's length and area of cross-section i.e. how the potential difference is applied. See the following figures

Length $=b$

Length $=a$

Length $=c$

$$
\begin{array}{lll}
\text { Area of cross-section }=\boldsymbol{a} \times \mathrm{c} & \text { Area of cross-section }=\boldsymbol{b} \times \boldsymbol{c} & \text { Area of cross-section }=\boldsymbol{a} \times \boldsymbol{b} \\
\text { Resistance } R=\rho\left(\frac{b}{a \times c}\right) & \text { Resistance } R=\rho\left(\frac{a}{b \times c}\right) & \text { Resistance } R=\rho\left(\frac{c}{a \times b}\right)
\end{array}
$$

(7) Variation of resistance of some electrical material with temperature :
(i) Metals : For metals their temperature coefficient of resistance $\alpha>0$. So resistance increases with temperature.

Physical explanation : Collision frequency of free electrons with the immobile positive ions increases
(ii) Solid non-metals : For these $\alpha=0$. So resistance is independence of temperature.

Physical explanation : Complete absence of free electron.
(iii) Semi-conductors : For semi-conductor $\alpha<0$ i.e. resistance decreases with temperature rise.

Physical explanation : Covalent bonds breaks, liberating more free electron and conduction increases.
(iv) Electrolyte : For electrolyte $\alpha<0$ i.e. resistance decreases with temperature rise.

Physical explanation : The degree of ionisation increases and solution becomes less viscous.
(v) Ionised gases : For ionised gases $\alpha<0$ i.e. resistance decreases with temperature rise.

Physical explanation : Degree of ionisation increases.
(vi) Alloys : For alloys α has a small positive values. So with rise in temperature resistance of alloys is almost constant. Further alloy resistances are slightly higher than the pure metals resistance.

Alloys are used to made standard resistances, wires of resistance box, potentiometer wire, meter bridge wire etc.

Commonly used alloys are : Constantan, mangnin, Nichrome etc.
(vii) Super conductors : At low temperature, the resistance of certain substances becomes exactly zero. (e.g. Hg below 4.2 K or Pb below 7.2 K).

These substances are called super conductors and phenomenon super conductivity. The temperature at which resistance becomes zero is called critical temperature and depends upon the nature of substance.

Resistivity or Specific Resistance (ρ)

(1) Definition : From $R=\rho \frac{l}{A}$; If $l=1 m, A=1 m^{2}$ then $R=\rho$ i.e. resistivity is numerically equal to the resistance of a substance having unit area of cross-section and unit length.

12 Current Electricity

(2) Unit and dimension : It's S.I. unit is ohm $\times m$ and dimension is $\left[M L^{3} T^{-3} A^{-2}\right]$
(3) It's formula : $\rho=\frac{m}{n e^{2} \tau}$
(4) It's dependence : Resistivity is the intrinsic property of the substance. It is independent of shape and size of the body (i.e. l and A). It depends on the followings :
(i) Nature of the body : For different substances their resistivity also different e.g. $\rho_{\text {silver }}=$ minimum $=1.6 \times 10^{-8} \Omega-m$ and $\rho_{\text {fused quartz }}=$ maximum $\approx 10^{16} \Omega-m$
(ii) Temperature : Resistivity depends on the temperature. For metals $\rho_{t}=\rho_{0}(1+\alpha \Delta t)$ i.e. resitivity increases with temperature.

ρ increases with temperature

ρ decreases with temperature

ρ decreases with temperature and
becomes zero at a certain
temperature
(iii) Impurity and mechanical stress : Resistivity increases with impurity and mechanical stress.
(iv) Effect of magnetic field : Magnetic field increases the resistivity of all metals except iron, cobalt and nickel.
(v) Effect of light : Resistivity of certain substances like selenium, cadmium, sulphides is inversely proportional to intensity of light falling upon them.

Nate: Reciprocal of resistivity is called conductivity (σ) i.e. $\sigma=\frac{1}{\rho}$ with unit $\mathrm{mho} / \mathrm{m}$ and dimensions $\quad\left[M^{-1} L^{-3} T^{3} A^{2}\right]$.

Stretching of Wire

If a conducting wire stretches, it's length increases, area of cross-section decreases so resistance increases but volume remain constant.

Suppose for a conducting wire before stretching it's length $=l_{1}$, area of cross-section $=A_{1}$, radius $=r_{1}$, diameter $=d_{1}$, and resistance $R_{1}=\rho \frac{l_{1}}{A_{1}}$

Before stretching After stretching

After stretching length $=l_{2}$, area of cross-section $=A_{2}$, radius $=r_{2}$, diameter $=d_{2}$ and resistance $=R_{2}=\rho \frac{l_{2}}{A_{2}}$

Ratio of resistances $\frac{R_{1}}{R_{2}}=\frac{l_{1}}{l_{2}} \times \frac{A_{2}}{A_{1}}=\left(\frac{l_{1}}{l_{2}}\right)^{2}=\left(\frac{A_{2}}{A_{1}}\right)^{2}=\left(\frac{r_{2}}{r_{1}}\right)^{4}=\left(\frac{d_{2}}{d_{1}}\right)^{4}$
(1) If length is given then $R \propto l^{2} \Rightarrow \frac{R_{1}}{R_{2}}=\left(\frac{l_{1}}{l_{2}}\right)^{2}$
(2) If radius is given then $R \propto \frac{1}{r^{4}} \Rightarrow \frac{R_{1}}{R_{2}}=\left(\frac{r_{2}}{r_{1}}\right)^{4}$

Note: After stretching if length increases by n times then resistance will increase by n^{2} times i.e. $R_{2}=n^{2} R_{1}$. Similarly if radius be reduced to $\frac{1}{n}$ times then area of cross-section decreases $\frac{1}{n^{2}}$ times so the resistance becomes n^{4} times i.e. $R_{2}=n^{4} R_{1}$.
] After stretching if length of a conductor increases by $x \%$ then resistance will increases by $2 x \%$ (valid only if $x<10 \%$)

Various Electrical Conducting Material For Specific Use

(1) Filament of electric bulb : Is made up of tungsten which has high resistivity, high melting point.
(2) Element of heating devices (such as heater, geyser or press) : Is made up of nichrome which has high resistivity and high melting point.
(3) Resistances of resistance boxes (standard resistances) : Are made up of manganin, or constantan as these materials have moderate resistivity which is practically independent of temperature so that the specified value of resistance does not alter with minor changes in temperature.

14 Current Electricity

(4) Fuse-wire : Is made up of tin-lead alloy (63% tin $+37 \%$ lead). It should have low melting point and high resistivity. It is used in series as a safety device in an electric circuit and is designed so as to melt and thereby open the circuit if the current exceeds a predetermined value due to some fault. The function of a fuse is independent of its length.

Safe current of fuse wire relates with it's radius as $i \propto r^{3 / 2}$.
(5) Thermistors : A thermistor is a heat sensitive resistor usually prepared from oxides of various metals such as nickel, copper, cobalt, iron etc. These compounds are also semiconductor. For thermistors α is very high which may be positive or negative. The resistance of thermistors changes very rapidly with change of temperature.

Thermistors are used to detect small temperature change and to measure very low temperature.

Concepts

In the absence of radiation loss, the time in which a fuse will melt does not depends on it's length but varies with radius as $\boldsymbol{t} \propto \boldsymbol{r}^{4}$.

If length (l) and mass (m) of a conducting wire is given then $\boldsymbol{R} \propto \frac{l^{2}}{\boldsymbol{m}}$.
Macroscopic form of Ohm's law is $R=\frac{V}{i}$, while it's microscopic form is $J=\sigma E$.
Example

Example: 12
Two wires of resistance R_{1} and R_{2} have temperature co-efficient of resistance α_{1} and α_{2} respectively. These are joined in series. The effective temperature co-efficient of resistance is
[MP PET 2003]
(a) $\frac{\alpha_{1}+\alpha_{2}}{2}$
(b) $\sqrt{\alpha_{1} \alpha_{2}}$
(c) $\frac{\alpha_{1} R_{1}+\alpha_{2} R_{2}}{R_{1}+R_{2}}$
(d) $\frac{\sqrt{R_{1} R_{2} \alpha_{1} \alpha_{2}}}{\sqrt{R_{1}^{2}+R_{2}^{2}}}$

Solution: (c) Suppose at $t^{\circ} C$ resistances of the two wires becomes $R_{1 t}$ and $R_{2 t}$ respectively and equivalent resistance becomes R_{t}. In series grouping $R_{t}=R_{1 t}+R_{2 t}$, also $R_{1 t}=R_{1}\left(1+\alpha_{1} t\right)$ and $R_{2 t}=R_{2}\left(1+\alpha_{2} t\right)$
$R_{t}=R_{1}\left(1+\alpha_{1} t\right)+R_{2}\left(1+\alpha_{2} t\right)=\left(R_{1}+R_{2}\right)+\left(R_{1} \alpha_{1}+R_{2} \alpha_{2}\right) t=\left(R_{1}+R_{2}\right)\left[1+\frac{R_{1} \alpha_{1}+R_{2} \alpha_{2}}{R_{1}+R_{2}} t\right]$.

Hence effective temperature co-efficient is $\frac{R_{1} \alpha_{1}+R_{2} \alpha_{2}}{R_{1}+R_{2}}$.
Example: 13 From the graph between current i \& voltage V shown, identity the portion corresponding to negative resistance
(a) $D E$
(b) $C D$
(c) $B C$
(d) $A B$

[CBSE PMT 1997]
d
Solution : (b) $\quad R=\frac{\Delta V}{\Delta I}$, in the graph $C D$ has only negative slope. So in this portion R is negative.
Example: 14 A wire of length L and resistance R is streched to get the radius of cross-section halfed. What is new resistance
[NCERT 1974; CPMT 1994; AIIMS 1997; KCET 1999; Haryana PMT 2000; UPSEAT 2001]
(a) $5 R$
(b) $8 R$
(c) $4 R$
(d) $16 R$

Solution : (d) By using $\frac{R_{1}}{R_{2}}=\left(\frac{r_{2}}{r_{1}}\right)^{4} \Rightarrow \frac{R}{R^{\prime}}=\left(\frac{r / 2}{r}\right)^{4} \Rightarrow R^{\prime}=16 R$
Example: 15 The $V-i$ graph for a conductor at temperature T_{1} and T_{2} are as shown in the figure. ($T_{2}-T_{1}$) is proportional to
(a) $\cos 2 \theta$
(b) $\sin \theta$
(c) $\cot 2 \theta$
(d) $\tan \theta$

Solution: (c) As we know, for conductors resistance \propto Temperature.
From figure $R_{1} \propto T_{1} \Rightarrow \tan \theta \propto T_{1} \Rightarrow \tan \theta=k T_{1}$ (i) $\quad(k=$ constant $)$
and $R_{2} \propto T_{2} \Rightarrow \tan \left(90^{\circ}-\theta\right) \propto T_{2} \Rightarrow \cot \theta=k T_{2}$
From equation (i) and (ii) $k\left(T_{2}-T_{1}\right)=(\cot \theta-\tan \theta)$

$$
\left(T_{2}-T_{1}\right)=\left(\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}\right)=\frac{\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{\sin \theta \cos \theta}=\frac{\cos 2 \theta}{\sin \theta \cos \theta}=2 \cot 2 \theta \Rightarrow\left(T_{2}-T_{1}\right) \propto \cot 2 \theta
$$

Example: 16 The resistance of a wire at $20^{\circ} \mathrm{C}$ is 20Ω and at $500^{\circ} \mathrm{C}$ is 60Ω. At which temperature resistance will be 25Ω
[UPSEAT 1999]
(a) $50^{\circ} \mathrm{C}$
(b) $60^{\circ} \mathrm{C}$
(c) $70^{\circ} \mathrm{C}$
(d) $80^{\circ} \mathrm{C}$

Solution: (d) By using $\frac{R_{1}}{R_{2}}=\frac{\left(1+\alpha t_{1}\right)}{\left(1+\alpha t_{2}\right)} \Rightarrow \frac{20}{60}=\frac{1+20 \alpha}{1+500 \alpha} \Rightarrow \alpha=\frac{1}{220}$

16 Current Electricity

Again by using the same formula for 20Ω and $25 \Omega \Rightarrow \frac{20}{25}=\frac{\left(1+\frac{1}{220} \times 20\right)}{\left(1+\frac{1}{220} \times t\right)} \Rightarrow t=80^{\circ} \mathrm{C}$
Example: 17 The specific resistance of manganin is $50 \times 10^{-8} \Omega \mathrm{~m}$. The resistance of a manganin cube having length 50 cm is
(a) $10^{-6} \Omega$
(b) $2.5 \times 10^{-5} \Omega$
(c) $10^{-8} \Omega$
(d) $5 \times 10^{-4} \Omega$

Solution : (a) $\quad R=\rho \frac{l}{A}=\frac{50 \times 10^{-8} \times 50 \times 10^{-2}}{\left(50 \times 10^{-2}\right)^{2}}=10^{-6} \Omega$
Example: 18 A rod of certain metal is 1 m long and 0.6 cm in diameter. It's resistance is $3 \times 10^{-3} \Omega$. A disc of the same metal is 1 mm thick and 2 cm in diameter, what is the resistance between it's circular faces.
(a) $1.35 \times 10^{-6} \Omega$
(b) $2.7 \times 10^{-7} \Omega$
(c) $4.05 \times 10^{-6} \Omega$
(d) $8.1 \times 10^{-6} \Omega$

Solution: (b) By using $R=\rho \cdot \frac{l}{A} ; \frac{R_{\text {disc }}}{R_{\text {rod }}}=\frac{l_{\text {disc }}}{l_{\text {rod }}} \times \frac{A_{\text {rod }}}{A_{\text {disc }}} \Rightarrow \frac{R_{\text {disc }}}{3 \times 10^{-3}}=\frac{10^{-3}}{1} \times \frac{\pi\left(0.3 \times 10^{-2}\right)^{2}}{\pi\left(10^{-2}\right)^{2}} \Rightarrow R_{\mathrm{disc}}=2.7 \times 10^{-7} \Omega$.
Example: 19 An aluminium rod of length 3.14 m is of square cross-section $3.14 \times 3.14 \mathrm{~mm}^{2}$. What should be the radius of 1 m long another rod of same material to have equal resistance
(a) 2 mm
(b) 4 mm
(c) 1 mm
(d) 6 mm

Solution : (c) By using $R=\rho . \frac{l}{A} \Rightarrow l \propto A \Rightarrow \frac{3.14}{1}=\frac{3.14 \times 3.14 \times 10^{-6}}{\pi \times r^{2}} \Rightarrow r=10^{-3} \mathrm{~m}=1 \mathrm{~mm}$
Example: 20 Length of a hollow tube is 5 m , it's outer diameter is 10 cm and thickness of it's wall is 5 mm . If resistivity of the material of the tube is $1.7 \times 10^{-8} \Omega \times m$ then resistance of tube will be
(a) $5.6 \times 10^{-5} \Omega$
(b) $2 \times 10^{-5} \Omega$
(c) $4 \times 10^{-5} \Omega$
(d) None of these

Solution: (a) By using $R=\rho \cdot \frac{l}{A}$; here $A=\pi\left(r_{2}^{2}-r_{1}^{2}\right)$
Outer radius $r_{2}=5 \mathrm{~cm}$
Inner radius $r_{1}=5-0.5=4.5 \mathrm{~cm}$

So $R=1.7 \times 10^{-8} \times \frac{5}{\pi\left\{\left(5 \times 10^{-2}\right)^{2}-\left(4.5 \times 10^{-2}\right)^{2}\right\}}=5.6 \times 10^{-5} \Omega$
Example: 21 If a copper wire is stretched to make it 0.1% longer, the percentage increase in resistance will be
[MP PMT 1996, 2000; UPSEAT 1998; MNR 1990]
(a) 0.2
(b) 2
(c) 1
(d) 0.1

Solution: (a) In case of streching $R \propto l^{2}$
So $\frac{\Delta R}{R}=2 \frac{\Delta l}{l}=2 \times 0.1=0.2$

Example: 22

The temperature co-efficient of resistance of a wire is $0.00125 /{ }^{\circ} \mathrm{C}$. At 300 K . It's resistance is 1Ω. The resistance of the wire will be 2Ω at
[MP PMT 2001; IIT 1980]

Current Electricity 17

(a) 1154 K
(b) 1127 K
(c) 600 K
(d) 1400 K

Solution: (b) By using $R_{t}=R_{\mathrm{o}}(1+\alpha \Delta t) \Rightarrow \frac{R_{1}}{R_{2}}=\frac{1+\alpha t_{1}}{1+\alpha t_{2}}$ So $\frac{1}{2}=\frac{1+(300-273) \alpha}{1+\alpha t_{2}} \Rightarrow t_{2}=854^{\circ} \mathrm{C}=1127 \mathrm{~K}$
Example: 23 Equal potentials are applied on an iron and copper wire of same length. In order to have same current flow in the wire, the ratio $\left(\frac{r_{\text {iron }}}{r_{\text {copper }}}\right)$ of their radii must be [Given that specific resistance of iron $=1.0 \times 10^{-7} \Omega \mathrm{~m}$ and that of copper $\left.=1.7 \times 10^{-8} \Omega \mathrm{~m}\right]$
(a) About 1.2
(b) About 2.4
(c) About 3.6
(d) About 4.8

Solution: (b) $\quad V=$ constant., $i=$ constant.
So $R=$ constant

$$
\begin{aligned}
& \Rightarrow \frac{P_{i} l_{i}}{A_{i}}=\frac{\rho_{C u} l_{C u}}{A_{C u}} \Rightarrow \frac{\rho_{i} l_{i}}{r_{i}^{2}}=\frac{\rho_{C u} l_{C u}}{r_{C u}^{2}} \\
& \Rightarrow \frac{r_{i}}{r_{C u}}=\sqrt{\frac{\rho_{i}}{\rho_{C u}}}=\sqrt{\frac{1.0 \times 10^{-7}}{1.7 \times 10^{-8}}}=\sqrt{\frac{100}{17}} \approx 2.4
\end{aligned}
$$

Example: 24 Masses of three wires are in the ratio $1: 3: 5$ and their lengths are in the ratio $5: 3: 1$. The ratio of their electrical resistance is
(a) $1: 3: 5$
(b) $5: 3: 1$
(c) $1: 15: 125$
(d) $125: 15: 1$

Solution: (d)
$R=\rho \frac{l}{A}=\rho \frac{l^{2}}{V}=\rho \frac{l^{2}}{m} \sigma \quad\left(\because \sigma=\frac{m}{V}\right)$
$R_{1}: R_{2}: R_{3}=\frac{l_{1}^{2}}{m_{1}}: \frac{l_{2}^{2}}{m_{2}}: \frac{l_{3}^{2}}{m_{3}}=25: \frac{9}{3}: \frac{1}{5}=125: 15: 1$
Example: 25 Following figure shows cross-sections through three long conductors of the same length and material, with square cross-section of edge lengths as shown. Conductor B will fit snugly within conductor A, and conductor C will fit snugly within conductor B. Relationship between their end to end resistance is
(a) $R_{A}=R_{B}=R_{C}$
(b) $R_{A}>R_{B}>R_{C}$
(c) $R_{A}<R_{B}<R$

(d) Information is not sufficient

Solution : (a) All the conductors have equal lengths. Area of cross-section of A is $\left\{(\sqrt{3} a)^{2}-(\sqrt{2} a)^{2}\right\}=a^{2}$ Similarly area of cross-section of $B=$ Area of cross-section of $C=a^{2}$ Hence according to formula $R=\rho \frac{l}{A}$; resistances of all the conductors are equal i.e. $R_{A}=R_{B}$ $=R_{C}$

18 Current Electricity

Example: 26 Dimensions of a block are $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 100 \mathrm{~cm}$. If specific resistance of its material is 3×10^{-7} ohm-m, then the resistance between it's opposite rectangular faces is
(a) $3 \times 10^{-9} \mathrm{ohm}$
(b) $3 \times 10^{-7} \mathrm{ohm}$
(c) $3 \times 10^{-5} \mathrm{ohm}$
(d) $3 \times 10^{-3} \mathrm{ohm}$

Solution: (b) Length $l=1 \mathrm{~cm}=10^{-2} \mathrm{~m}$
Area of cross-section $A=1 \mathrm{~cm} \times 100 \mathrm{~cm}$

$$
=100 \mathrm{~cm}^{2}=10^{-2} \mathrm{~m}^{2}
$$

Resistance $R=3 \times 10^{-7} \times \frac{10^{-2}}{10^{-2}}=3 \times 10^{-7} \Omega$

Wate:-
In the above question for calculating equivalent resistance between two opposite square faces.

$$
l=100 \mathrm{~cm}=1 \mathrm{~m}, A=1 \mathrm{~cm}^{2}=10^{-4} \mathrm{~m}^{2}, \text { so resistance } R=3 \times 10^{-7} \times \frac{1}{10^{-4}}=3 \times 10^{-3} \Omega
$$

Tricky example: 3

Two rods A and B of same material and length have their electric resistances are in ratio $1: 2$. When both the rods are dipped in water, the correct statement will be
(a) A has more loss of weight
(b)
B has more loss of weight
(c) Both have same loss of weight
(d) Loss of weight will be in the ratio

1:2
Solution: (a) $\quad R=\rho \frac{L}{A} \Rightarrow \frac{R_{1}}{R_{2}}=\frac{A_{2}}{A_{1}}(\rho, L$ constant $) \Rightarrow \frac{A_{1}}{A_{2}}=\frac{R_{2}}{R_{1}}=2$
Now when a body dipped in water, loss of weight $=V \sigma_{L} g=A L \sigma_{L} g$
(Loss of weight) $\quad A_{1}$

Tricky example: 4

The V - i graph for a conductor makes an angle θ with V-axis. Here V denotes the voltage and i denotes current. The resistance of conductor is given by
(a) $\sin \theta$
(b)
$\cos \theta$
(c) $\tan \theta$
(d)

Solution: (d) At an instant approach the $\uparrow\left\{\begin{array}{l}\text { tudent will choose } \tan \theta \text { will be the right answer. But }\end{array}\right.$ it is to be seen here the curve makes/the angle θ with the V-axis. So it makes an angle $(90-\theta)$ with the i-axis. So resistance $=\operatorname{slope}=\tan (90-\theta)=\cot \theta$.

Colour Coding of Resistance

The resistance, having high values are used in different electrical and electronic circuits. They are generally made up of carbon, like $1 \mathrm{k} \Omega, 2 \mathrm{k} \Omega, 5 \mathrm{k} \Omega \mathrm{etc}$. To know the value of resistance colour code is used. These code are printed in form of set of rings or strips. By reading the values of colour bands, we can estimate the value of resistance.

The carbon resistance has normally four coloured rings or strips say A, B, C and D as shown in following figure.

Colour band A and B indicate the first two significant figures of resistance in ohm, while the C band gives the decimal multiplier i.e. the number of zeros that follows the two significant figures A and B.

20 Current Electricity

Last band (D band) indicates the tolerance in percent about the indicated value or in other ward it represents the percentage accuracy of the indicated value.

The tolerance in the case of gold is $\pm 5 \%$ and in silver is $\pm 10 \%$. If only three bands are marked on carbon resistance, then it indicate a tolerance of 20%.

The following table gives the colour code for carbon resistance.

Letters as an aid to memory	Colour	Figure $(\boldsymbol{A}, \boldsymbol{B})$	Multiplier $\mathbf{(C)}$
\boldsymbol{B}	Black	0	10^{0}
\boldsymbol{B}	Brown	1	10^{1}
\boldsymbol{R}	Red	2	10^{2}
\boldsymbol{O}	Orange	3	10^{3}
\boldsymbol{Y}	Yellow	4	10^{4}
\boldsymbol{G}	Green	5	10^{5}
\boldsymbol{B}	Blue	6	10^{6}
\boldsymbol{V}	Violet	7	10^{7}
\boldsymbol{G}	Grey	8	10^{8}
\boldsymbol{W}	White	9	10^{9}

Colour	Tolerance (D)
Gold	5%
Silver	10%
No-colour	20%

Wate: -To remember the sequence of colour code following sentence should kept in memory.

B B R O Y Great Britain Very Good Wife.

Grouping of Resistance

Series		Parallel	
(1)		(1)	

(2) Same current flows through each resistance but potential difference distributes in the ratio of resistance i.e. $V \propto R$

Power consumed are in the ratio of their
resistance
i.e.
$P \propto R \Rightarrow P_{1}: P_{2}: P_{3}=R_{1}: R_{2}: R_{3}$
(2) Same potential difference appeared across each resistance but current distributes in the reverse ratio of their resistance i.e. $i \propto \frac{1}{R}$

Power consumed are in the reverse ratio of resistance
i.e.

Nate: 1
In case of resistances in series, if one resistance gets open, the current in the whole circuit become zero and the circuit stops working. Which don't happen in case of parallel gouging.

Decoration of lightning in festivals is an example of series grouping whereas all household appliances connected in parallel grouping.

22 Current Electricity

- Using n conductors of equal resistance, the number of possible combinations is 2^{n-} ${ }^{1}$.

I If the resistance of n conductors are totally different, then the number of possible combinations will be 2^{n}.

Methods of Determining Equivalent Resistance For Some Difficult Networks

(1) Method of successive reduction : It is the most common technique to determine the equivalent resistance. So far, we have been using this method to find out the equivalent resistances. This method is applicable only when we are able to identify resistances in series or in parallel. The method is based on the simplification of the circuit by successive reduction of the series and parallel combinations. For example to calculate the equivalent resistance between the point A and B, the network shown below successively reduced.

(2) Method of equipotential points : This method is based on identifying the points of same potential and joining them. The basic rule to identify the points of same potential is the symmetry of the network.
(i) In a given network there may be two axes of symmetry.
(a) Parallel axis of symmetry, that is, along the direction of current flow.
(b) Perpendicular axis of symmetry, that is perpendicular to the direction of flow of current.

For example in the network shown below the axis $A A^{\prime}$ is the parallel axis of symmetry, and the axis $B B^{\prime}$ is the perpendicular a

(ii) Points lying on the perpendicular axis of symmetry may have same potential. In the given network, point 2 , 0 and 4 are at the same potential.

20 Current Electricity

(iii) Points lying on the parallel axis of symmetry can never have same potential.
(iv) The network can be folded about the parallel axis of symmetry, and the overlapping nodes have same potential. Thus as shown in figure, the following points have same potential
(a) 5 and 6
(b) 2, o and 4
(c) 7 and 8

Nate: Above network may be split up into two equal parts about the parallel axis of symmetry as shown in figure each part has a resistance R^{\prime}, then the equivalent resistance of the network will be $R=\frac{R^{\prime}}{2}$.

Some Standard Results for Equivalent Resistance

(1) Equivalent resistance between points A and B in an unbalanced Wheatstone's bridge as shown in the diagram.
(i)

$$
R_{A B}=\frac{P Q(R+S)+(P+Q) R S+G(P+Q)(R+S)}{G(P+Q+R+S)+(P+R)(Q+S)}
$$

(ii)

$$
R_{A B}=\frac{2 P Q+G(P+Q)}{2 G+P+Q}
$$

(2) A cube each side have resistance R then equivalent resistance in different situations
(i) Between E and C i.e. across the diagonal of the cube $R_{E C}=\frac{5}{6} R$
(ii) Between A and B i.e. across one side of the cube $R_{A B}=\frac{7}{12} R$

(iii)

Between A and C i.e. across the diagonal of one face of the cube $R_{A C}=\frac{3}{4} R$

Concepts

If n identical resistances are first connected in series and then in parallel, the ratio of the equivalent resistance is given by $\frac{R_{p}}{R_{s}}=\frac{n^{2}}{1}$.
If equivalent resistance of R_{1} and R_{2} in series and parallel be R_{s} and R_{p} respectively then $R_{1}=\frac{1}{2}\left[R_{s}+\sqrt{R_{s}^{2}-4 R_{s} R_{p}}\right]$ and $R_{2}=\frac{1}{2}\left[R_{s}-\sqrt{R_{s}^{2}-4 R_{s} R_{p}}\right]$.

If a wire of resistance R, cut in n equal parts and then these parts are collected to form a bundle then equivalent resistance of combination will be $\frac{R}{n^{2}}$.

Example

Example: 27
In the figure a carbon resistor has band of different colours on its body. The resistance of the following body is
(a) $2.2 \mathrm{k} \Omega$
(b) $3.3 \mathrm{k} \Omega$
(c) $5.6 \mathrm{k} \Omega$
(d) $9.1 \mathrm{k} \Omega$

[Kerala PET 2002]

Solution: (d) $\quad R=91 \times 10^{2} \pm 10 \% \approx 9.1 \mathrm{k} \Omega$
Example: 28 What is the resistance of a carbon resistance which has bands of colours brown, black and brown
[DCE 1999]
(a) 100Ω
(b) 1000Ω
(c) 10Ω
(d) 1Ω

Solution: (a) $\quad R=10 \times 10^{1} \pm 20 \% \approx 100 \Omega$
Example: 29 In the following circuit reading of voltmeter V is

22 Current Electricity

(a) 12 V
(b) 8 V
(c) 20 V
(d) 16 V

Solution: (a) P.d. between X and Y is $V_{X Y}=V_{X}-V_{Y}=1 \times 4=4 V$ and p.d. between X and Z is $V_{X Z}=V_{X}-V_{Z}=1 \times 16=16 \mathrm{~V}$

On solving equations (i) and (ii) we get potential difference between Y and Z i.e., reading of voltmeter is
 $V_{Y}-V_{Z}=12 \mathrm{~V}$

Example: 30 An electric cable contains a single copper wire of radius 9 mm . It's resistance is 5Ω. This cable is replaced by six insulated copper wires, each of radius 3 mm . The resultant resistance of cable will be
[CPMT 1988]
(a) 7.5Ω
(b) 45Ω
(c) 90Ω
(d) 270Ω

Solution: (a) Initially : Resistance of given cable

$$
\begin{equation*}
R=\rho \frac{l}{\pi \times\left(9 \times 10^{-3}\right)^{2}} \tag{i}
\end{equation*}
$$

Finally : Resistance of each insulated copper wire is

$$
R^{\prime}=\rho \frac{l}{\pi \times\left(3 \times 10^{-3}\right)^{2}}
$$

Hence equivalent resistance of cable

$$
\begin{equation*}
R_{e q}=\frac{R^{\prime}}{6}=\frac{1}{6} \times\left(\rho \frac{l}{\pi \times\left(3 \times 10^{-3}\right)^{2}}\right) \ldots . \tag{ii}
\end{equation*}
$$

On solving equation (i) and (ii) we get $R_{e q}=7.5 \Omega$
Example: 31 Two resistance R_{1} and R_{2} provides series to parallel equivalents as $\frac{n}{1}$ then the correct relationship is
(a) $\left(\frac{R_{1}}{R_{2}}\right)^{2}+\left(\frac{R_{2}}{R_{1}}\right)^{2}=n^{2}$
(b) $\left(\frac{R_{1}}{R_{2}}\right)^{3 / 2}+\left(\frac{R_{2}}{R_{1}}\right)^{3 / 2}=n^{3 / 2}$
(c) $\left(\frac{R_{1}}{R_{2}}\right)+\left(\frac{R_{2}}{R_{1}}\right)=n$
(d) $\left(\frac{R_{1}}{R_{2}}\right)^{1 / 2}+\left(\frac{R_{2}}{R_{1}}\right)^{1 / 2}=n^{1 / 2}$

Solution: (d) Series resistance $R_{S}=R_{1}+R_{2}$ and parallel resistance $R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \Rightarrow \frac{R_{S}}{R_{P}}=\frac{\left(R_{1}+R_{2}\right)^{2}}{R_{1} R_{2}}=n$

Current Electricity 23

$$
\Rightarrow \frac{R_{1}+R_{2}}{\sqrt{R_{1} R_{2}}}=\sqrt{n} \quad \Rightarrow \frac{\sqrt{R_{1}^{2}}}{\sqrt{R_{1} R_{2}}}+\frac{\sqrt{R_{2}^{2}}}{\sqrt{R_{1} R_{2}}}=\sqrt{n} \Rightarrow \sqrt{\frac{R_{1}}{R_{2}}}+\sqrt{\frac{R_{2}}{R_{1}}}=\sqrt{n}
$$

Example: 32 Five resistances are combined according to the figure. The equivalent resistance between the point X and Y will be
(a) 10Ω
(b) 22Ω
(c) 20Ω

(d) 50Ω

Example: 33 What will be the equivalent resistance of circuit shown in figure between points A and D [CBSE PM
(a) 10Ω
(b) 20Ω
(c) 30Ω
(d) 40Ω

Solution: (c) The equivalent circuit of above fig between A and D can be drawn as

So $R_{e q}=10+10+10=30 \Omega$
Example: 34 In the network shown in the figure each of resistance is equal to 2Ω. The resistance between A and B is
(a) 1Ω
(b) 2Ω
(c) 3Ω
(d) 4Ω

Solution : (b) Taking the portion $C O D$ is figure to outside the triangle (left), the above circuit will be now as resistance of each is 2Ω the circuit will behaves as a balanced wheatstone bridge and no current flows through $C D$. Hence $R_{A B}=2 \Omega C$

24 Current Electricity

Example: 35 Seven resistances are connected as shown in figure. The equivalent resistance between A and B is
[MP PET 2000]
(a) 3Ω
(b) 4Ω
(c) 4.5Ω
(d) 5Ω

Solution : (b)

So the circuit is a balanced wheatstone bridge.
So current through 8Ω is zero $R_{e q}=(5+3)\|(5+3)=8\| 8=4 \Omega$
Example: 36 The equivalent resistance between points A and B of an infinite network of resistance, each of 1Ω, connected as shown is
(a) Infinite
(b) 2Ω
(c) $\frac{1+\sqrt{5}}{2} \Omega$
(d) Zero

Solution: (c) Suppose the effective resistance between A and B is $R_{e q}$. Since the network consists of infinite cell. If we exclude one cell from the chain, remaining network have infinite cells i.e. effective resistance between C and D will also $R_{e q}$

So now $R_{e q}=R_{o}+\left(R \| R_{e q}\right)=R+\frac{R R_{e q}}{R+R_{e q}} \Rightarrow R_{e q}=\frac{1}{2}[1+\sqrt{5}]$

Example: 37 Four resistances $10 \Omega, 5 \Omega, 7 \Omega$ and 3Ω are connected so that they form the sides of a rectangle $A B, B C, C D$ and $D A$ respectively. Another resistance of 10Ω is connected across the diagonal $A C$. The equivalent resistance between $A \& B$ is
(a) 2Ω
(b) 5Ω
(c) 7Ω
(d) 10Ω

Solution : (b)
So

$$
R_{e q}=\frac{10 \times 10}{10+10}=5 \Omega \Leftarrow \overbrace{A}^{10 \Omega}
$$

Example: 38 The equivalent resistance between A and B in the circuit shown will be
(a) $\frac{5}{4} r$
(b) $\frac{6}{5} r$
(c) $\frac{7}{6} r$

(d) $\frac{8}{7} r$

Solution: (d) In the circuit, by means of symmetry the point C is at zero potential. So the equivalent circuit can be drawn as

Example: 39 In the given figure, equivalent resistance between A and B will be

26 Current Electricity

(a) $\frac{14}{3} \Omega$
(b) $\frac{3}{14} \Omega$
(c) $\frac{9}{14} \Omega$
(d) $\frac{14}{9} \Omega$

Solution: (a) Given Wheatstone bridge is balanced because $\frac{P}{Q}=\frac{R}{S}$. Hence the circuit can be redrawn as follows

Example: 40 In the combination of resistances shown in the figure the potential difference between B and D is zero, when unknown resistance (x) is
(a) 4Ω
(b) 2Ω
(c) 3Ω
(d) The emf of the cell is required

Solution: (b) The potential difference across B, D will be zero, when the circuit will act as a balanced wheatstone bridge and $\frac{P}{Q}=\frac{R}{S} \Rightarrow \frac{12+4}{x}=\frac{1+3}{1 / 2} \Rightarrow x=2 \Omega$
Example: 41 A current of $2 A$ flows in a system of conductors as shown. The potential difference ($V_{A}-$ V_{B}) will be
(a) $+2 V$
(b) $+1 V$
(c) $-1 V$
(d) $-2 V$
[CPMT 1975, 76]

Solution: (b) In the given circuit $2 A$ current divides equally at junction D along the paths $D A C$ and $D B C$ (each path carry $1 A$ current).

Potential difference between D and $A, \quad V_{D}-V_{A}=1 \times 2=2$ volt
Potential difference between D and $B, \quad V_{D}-V_{B}=1 \times 3=3$ volt

On solving (i) and (ii) $V_{A}-V_{B}=+1$ volt
Example: 42 Three resistances each of 4Ω are connected in the form of an equilateral triangle. The effective resistance between two corners is
(a) 8Ω
(b) 12Ω
(c) $\frac{3}{8} \Omega$
(d) $\frac{8}{3} \Omega$

Solution : (d)

Example: 43 If each resistance in the figure is of 9Ω then reading of ammeter is
[RPMT 2000]
(a) $5 A$
(b) $8 A$
(c) $2 A$
(d) 9 A

Solution: (a) Main current through the battery $i=\frac{9}{1}=9 A$. Current through each resistance will be $1 A$ and only 5 resistances on the right side of ammeter contributes for passing current through the ammeter. So reading of ammeter will be $5 A$.
Example: 44 A wire has resistance 12Ω. It is bent in the form of a circle. The effective resistance between the two points on any diameter is equal to
(a) 12Ω
(b) 6Ω
(c) 3Ω
(d) 24Ω

Solution: (c) Equivalent resistance of the following circuit will be

$$
R_{e q}=\frac{6}{2}=3 \Omega
$$

Example: 45 A wire of resistance $0.5 \Omega \mathrm{~m}^{-1}$ is bent into a circle of radius 1 m . The same wire is connected across a diameter $A B$ as shown in fig. The annivalont rocictanco ic
(a) $\pi \mathrm{ohm}$
(b) $\pi(\pi+2) \mathrm{ohm}$
(c) $\pi /(\pi+4) \mathrm{ohm}$
(d) $(\pi+1)$ ohm

Solution: (c) Resistance of upper semicircle $=$ Resistance of lower semicircle

	$=0.5 \times(\pi R)=0.5 \pi \Omega$
Resistance of wire $A B$	$=0.5 \times 2=1 \Omega$

Hence equivalent resistance between A and B

$$
\frac{1}{R_{A B}}=\frac{1}{0.5 \pi}+\frac{1}{1}+\frac{1}{0.5 \pi} \Rightarrow R_{A B}=\frac{\pi}{(\pi+4)} \Omega
$$

Example: 46 A wire of resistor R is bent into a circular ring of radius r. Equivalent resistance between two points X and Y on its circumference, when angle $X O Y$ is α, can be given by
(a) $\frac{R \alpha}{4 \pi^{2}}(2 \pi-\alpha)$
(b) $\frac{R}{2 \pi}(2 \pi-\alpha)$
(c) $R(2 \pi-\alpha)$
(d) $\frac{4 \pi}{R \alpha}(2 \pi-\alpha)$

Solution : (a) Here $R_{X W Y}=\frac{R}{2 \pi r} \times(r \alpha)=\frac{R \alpha}{2 \pi} \quad\left(\because \alpha=\frac{l}{r}\right) \quad$ and $\quad R_{X Z Y}=\frac{R}{2 \pi r} \times r(2 \pi-\alpha)=\frac{R}{2 \pi}(2 \pi-\alpha)$ $R_{e q}=\frac{R_{X W Y} R_{X Z Y}}{R_{X W Y}+R_{X Z Y}}=\frac{\frac{R \alpha}{2 \pi} \times \frac{R}{2 \pi}(2 \pi-\alpha)}{\frac{R \alpha}{2 \pi}+\frac{R(2 \pi-\alpha)}{2 \pi}}=\frac{R \alpha}{4 \pi^{2}}(2 \pi-\alpha)$
Example: 47 If in the given figure $i=0.25 \mathrm{amp}$, then the value R will be
(a) 48Ω
(b) 12Ω
(c) 120Ω
(d) 42Ω

Solution : (d) $i=0.25 \mathrm{amp} V=12 \mathrm{~V} \quad R_{e q}=\frac{V}{i}=\frac{12}{0.25}=48 \Omega$
Now from the circuit $R_{e q}=R+(60| | 20| | 10)$

$$
=R+6
$$

$\Rightarrow R=R_{e q}-6=48-6=42 \Omega$

Example: 48 Two uniform wires A and B are of the same metal and have equal masses. The radius of wire A is twice that of wire B. The total resistance of A and B when connected in parallel is (a) 4Ω when the resistance of wire A is 4.25Ω (b) 5Ω when the resistance of wire A is 4Ω (c) 4Ω when the resistance of wire B is 4.25Ω (d) 5Ω when the resistance of wire B is 4Ω

Solution: (a) Density and masses of wire are same so their volumes are same i.e. $A_{1} l_{1}=A_{2} l_{2}$
Ratio of resistances of wires A and $B \frac{R_{A}}{R_{B}}=\frac{l_{1}}{l_{2}} \times \frac{A_{2}}{A_{1}}=\left(\frac{A_{2}}{A_{1}}\right)^{2}=\left(\frac{r_{2}}{r_{1}}\right)^{4}$
Since $r_{1}=2 r_{2}$ so $\frac{R_{A}}{R_{B}}=\frac{1}{16} \Rightarrow R_{B}=16 R_{A}$
Resistance R_{A} and R_{B} are connected in parallel so equivalent resistance $R=\frac{R_{A} R_{B}}{R_{A}+R_{B}}=\frac{16 R_{A}}{17}$, By checking correctness of equivalent resistance from options, only option (a) is correct.

The effective resistance between point P and Q of the electrical circuit shown in the figure is
[IIT-JEE 1991]
(a) $\frac{2 R r}{R+r}$
(b) $\frac{8 R(R+r)}{3 R+r}$
(c) $2 r+4 R$
(d) $\frac{5 R}{2}+2 r$

Solution : (a) The points A, O, B are at same potential. So the figure can be redrawn as follows

(I)

(II
\Downarrow

Tricky Example: 6

In the following circuit if key K is pressed then the galvanometer reading becomes half. The resistance of galvanometer is

(a) 20Ω
(b) 30Ω
(c) 40Ω
(d) 50Ω

Solution: (c) Galvanometer reading becomes half means current distributes equally between galvanometer and resistance of 40Ω. Hence galvanometer resistance must be 40Ω.

Cell

The device which converts chemical energy into electrical energy is known as electric cell.

(1) A cell neither creates nor destroys charge but maintains the flow of charge present at various parts of the circuit by supplying energy needed for their organised motion.
(2) Cell is a source of constant emf but not constant current.
(3) Mainly cells are of two types :
(i) Primary cell : Cannot be recharged
(ii) Secondary cell : Can be recharged
(4) The direction of flow of current inside the cell is from negative to positive electrode while outside the cell is form positive to negative electrode.
(5) A cell is said to be ideal, if it has zero internal resistance.
(6) Emf of cell (E): The energy given by the cell in the flow of unit charge in the whole circuit (including the cell) is called it's electromotive force (emf) i.e. emf of cell $E=\frac{W}{q}$, It's unit is volt

or

The potential difference across the terminals of a cell when it is not given any current is called it's emf.
(7) Potential difference (V) : The energy given by the cell in the flow of unit charge in a specific part of electrical circuit (external part) is called potential difference. It's unit is also volt
or
The voltage across the terminals of a cell when it is supplying current to external resistance is called potential difference or terminal voltage. Potential difference is equal to the product of
 current and resistance of that given part i.e. $V=i R$.
(8) Internal resistance (r) : In case of a cell the opposition of electrolyte to the flow of current through it is called internal resistance of the cell. The internal resistance of a cell depends on the distance between electrodes ($r \propto d$), area of electrodes [$r \propto(1 / A)$] and nature, concentration ($r \propto C$) and temperature of electrolyte $[r \propto$ (1/temp.)]. Internal resistance is different for different types of cells and even for a given type of cell it varies from to cell.
(1) Closed circuit (when the cell is discharging)
(i) Current given by the cell $i=\frac{E}{R+r}$
(ii) Potential difference across the resistance $V=i R$
(iii) Potential drop inside the cell $=$ ir
(iv) Equation of cell $E=V+$ ir $\quad(E>V)$

(v) Internal resistance of the cell $r=\left(\frac{E}{V}-1\right) \cdot R$
(vi) Power dissipated in external resistance (load) $P=V i=i^{2} R=\frac{V^{2}}{R}=$

Power delivered will be maximum when $R=r$ so $P_{\max }=\frac{E^{2}}{4 r}$.

This statement in generalised from is called "maximum power transfer theorem".
(vii) Short trick to calculate \boldsymbol{E} and \boldsymbol{r} : In the closed circuit of a cell having emf E and internal resistance r. If external resistance changes from R_{1} to R_{2} then current changes from i_{1} to i_{2} and potential difference changes from V_{1} to V_{2}. By using following relations we can find the value of E and r.

$$
E=\frac{i_{1} i_{2}}{i_{2}-i_{1}}\left(R_{1}-R_{2}\right) \quad r=\left(\frac{i_{2} R_{2}-i_{1} R_{1}}{i_{1}-i_{2}}\right)=\frac{V_{2}-V_{1}}{i_{1}-i_{2}}
$$

Wote : aWhen the cell is charging i.e. current is given to the cell then $E=V-$ ir and $E<V$.

(2) Open circuit and short circuit

32 Current Electricity

$=E$		
(iii) \quad Potential difference between C and		
$D, V_{C D}=0$		

Wate : above information's can be summarized by the following graph

Concepts

It is a common misconception that "current in the circuit will be maximum when power consumed by the load is maximum."

Actually current $i=E /(R+r)$ is maximum $(=E / r)$ when $R=\min =O$ with $P_{L}=(E / r)^{2} \times 0=0 \mathrm{~min}$. while power consumed by the load $E^{2} R /(R+r)^{2}$ is maximum $\left(=E^{2} / 4 r\right)$ when $R=r$ and $i=(E / 2 r) \neq \max (=E / r)$.

Emf is independent of the resistance of the circuit and depends upon the nature of electrolyte of the cell while potential difference depends upon the resistance between the two points of the circuit and current flowing through the circuit.
Emf is a cause and potential difference is an effect.
(s) Whenever a cell or battery is present in a branch there must be some resistance (internal or external or both) present in that branch. In practical situation it always happen because we can never have an ideal cell or battery with zero resistance.

Example

Example: 49
A new flashlight cell of emf 1.5 volts gives a current of 15 amps , when connected directly to an ammeter of resistance 0.04Ω. The internal resistance of cell is
(a) 0.04Ω
(b) 0.06Ω
(c) 0.10Ω
(d) 10Ω

Solution : (b) \quad By using $i=\frac{E}{R+r} \Rightarrow 15=\frac{1.5}{0.04+r} \Rightarrow r=0.06 \Omega$
Example: 50 For a cell, the terminal potential difference is $2.2 V$ when the circuit is open and reduces to 1.8 V , when the cell is connected across a resistance, $R=5 \Omega$. The internal resistance of the cell is
(a) $\frac{10}{9} \Omega$
(b) $\frac{9}{10} \Omega$
$\begin{array}{ll}\text { (c) } \frac{11}{9} \Omega & \text { (d) } \frac{5}{9} \Omega\end{array}$
[CBSE PMT 2002]

In close circuit, $V=1.8 V, R=5 \Omega$
So internal resistance, $r=\left(\frac{E}{V}-1\right) R=\left(\frac{2.2}{1.8}-1\right) \times 5 \quad \Rightarrow \quad r=\frac{10}{9} \Omega$

Current Electricity 33

Example: 51 The internal resistance of a cell of emf $2 V$ is 0.1Ω. It's connected to a resistance of 3.9Ω. The voltage across the cell will be
(a) 0.5 volt
(b) 1.9 volt
(c) 1.95 volt
(d) 2 volt

Solution: (c)

$$
\text { By using } r=\left(\frac{E}{V}-1\right) R \Rightarrow 0.1=\left(\frac{2}{V}-1\right) \times 3.9 \Rightarrow V=1.95 \text { volt }
$$

Example: 52
When the resistance of 2Ω is connected across the terminal of the cell, the current is 0.5 amp . When the resistance is increased to 5Ω, the current is 0.25 amp . The emf of the cell is [MP PMT 2000]
(a) 1.0 volt
(b) 1.5 volt
(c) 2.0 volt
(d) 2.5 volt

Solution : (b) By using $E=\frac{i_{1} i_{2}}{\left(i_{2}-i_{1}\right)}\left(R_{1}-R_{2}\right)=\frac{0.5 \times 0.25}{(0.25-0.5)}(2-5)=1.5$ volt
Example: 53 A primary cell has an emf of 1.5 volts, when short-circuited it gives a current of 3 amperes. The internal resistance of the cell is
(a) 4.5 ohm
(b) 2 ohm
(c) 0.5 ohm
(d) $1 / 4.5 \mathrm{ohm}$

Solution: (c)

$$
i_{s c}=\frac{E}{r} \Rightarrow 3=\frac{1.5}{r} \Rightarrow r=0.5 \Omega
$$

Example: 54 A battery of internal resistance 4Ω is connected to the network of resistances as shown. In order to give the maximum power to the network, the value of R (in Ω) should be
(a) $4 / 9$
(b) $8 / 9$
(c) 2
(d) 18

Solution: (c)
The equivalent circuit becomes a balanced wheatstone bridge

For maximum power transfer, external resistance should be equal to internal resistance of source
$\Rightarrow \frac{(R+2 R)(2 R+4 R)}{(R+2 R)+(2 R+4 R)}=4$ i.e. $\frac{3 R \times 6 R}{3 R+6 R}=4$ or $R=2 \Omega$
Example: 55 A torch bulb rated as $4.5 \mathrm{~W}, 1.5 \mathrm{~V}$ is connected as shown in the figure. The emf of the cell needed to make the bulb glow at full intensity is
(a) 4.5 V
(b) 1.5 V
(c) 2.67 V

(d) 13.5 V

Solution: (d) When bulb glows with full intensity, potential difference across it is 1.5 V . So current through the bulb and resistance of 1Ω are $3 A$ and $1.5 A$ respectively. So main current from the cell $i=3+1.5=4.5$ A. By using $E=V+i R \Rightarrow E=1.5+4.5 \times 2.67=13.5 V$.

Tricky Example: 7

Potential difference across the terminals of the battery shown in figure is ($r=$ internal resistance of battery)
(a) 8 V
(b)
10 V
(c) 6 V
(d)

Solution: (d) Battery is short circuited so potential difference is zero.

Grouping of cell

Group of cell is called a battery.
(1) Series grouping : In series grouping anode of one cell is connected to cathode of other cell and so on.
(i) \boldsymbol{n} identical cells are connected in series
(a) Equivalent emf of the combination $E_{e q}=n E$
(b) Equivalent internal resistance $r_{e q}=n r$
(c) Main current $=$ Current from each cell $=i=\frac{n E}{R+n r}$
(d) Potential difference across external resistance $V=i i$
(e) Potential difference across each cell $V^{\prime}=\frac{V}{n}$

(f) Power dissipated in the circuit $P=\left(\frac{n E}{R+n r}\right)^{2} \cdot R$
(g) Condition for maximum power $R=n r$ and $P_{\max }=n\left(\frac{E^{2}}{4 r}\right)$
(h) This type of combination is used when $n r \ll R$.
(ii) If non-identical cell are connected in series

(a) Equivalent emf $E_{e q}=E_{1}+E_{2}$
(b) Current $i=\frac{E_{e q}}{R+r_{e q}}$
(c) Potential difference across each cell $V_{1}=E_{1}-i r_{1}$ and $V_{2}=E_{2}-i r_{2}$
(a) Equivalent emf $E_{e q}=E_{1}-E_{2}$
(b) Current $i=\frac{E_{1}-E_{2}}{R+r_{e q}}$
(c) in the above circuit cell 1 is discharging so it's equation is $E_{1}=V_{1}+i r_{1} \Rightarrow \boldsymbol{V}_{\mathbf{1}}=\boldsymbol{E}_{\mathbf{1}}-\boldsymbol{i} \boldsymbol{r}_{\mathbf{1}}$ and cell 2 is charging so it's equation

$$
E_{2}=V_{2}-i r_{2} \Rightarrow V_{2}=E_{2}+i r_{2}
$$

(2) Parallel grouping : In parallel grouping all anodes are connected at one point and all cathode are connected together at other point.
(i) If \boldsymbol{n} identical cells are connected in parallel
(a) Equivalent emf $E_{e q}=E$
(b) Equivalent internal resistance $R_{e q}=r / n$
(c) Main current $i=\frac{E}{R+r / n}$

(d) P.d. across external resistance $=$ p.d. across each cell $=V=i R$
(e) Current from each cell $i^{\prime}=\frac{i}{n}$
(f) Power dissipated in the circuit $P=\left(\frac{E}{R+r / n}\right)^{2} \cdot R$
(g) Condition for max power $R=r / n$ and $P_{\max }=n\left(\frac{E^{2}}{4 r}\right)$ (h) This type of combination is used when $n r \gg R$
(ii) If non-identical cells are connected in parallel : If cells are connected with right polarity as shown below then
(a) Equivalent emf $E_{e q}=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}}$
(b) Main current $i=\frac{E_{e q}}{r+R_{e q}}$
(c) Current from each cell $i_{1}=\frac{E_{1}-i R}{r_{1}}$ and $i_{2}=\frac{E_{2}-i R}{r_{2}}$

Wote: In this combination if cell's are connected with reversed polarity as shown in figure then :

Equivalent emf $\boldsymbol{E}_{e q}=\frac{\boldsymbol{E}_{1} r_{2}-\boldsymbol{E}_{2} r_{1}}{r_{1}+r_{2}}$

(3) Mixed Grouping : If n identical cell's are connected in a row and such m row's are connected in parallel as shown.
(i) Equivalent emf of the combination $E_{e q}=n E$
(ii) Equivalent internal resistance of the combination $r_{e q}=\frac{n}{m}$
(iii) Main current flowing through the load $i=\frac{n E}{R+\frac{n r}{m}}=\frac{m n E}{m R+n}$

(iv) Potential difference across load $V=i R$
(v) Potential difference across each cell $V^{\prime}=\frac{V}{n}$
(vi) Current from each cell $i^{\prime}=\frac{i}{n}$
(vii) Condition for maximum power $R=\frac{n r}{m}$ and $P_{\max }=(m n) \frac{E^{2}}{4 r}$
(viii) Total number of cell $=m n$

Concepts

In series grouping of cell's their emf's are additive or subtractive while their internal resistances are always additive. If dissimilar plates of cells are connected together their emf's are added to each other while if their similar plates are connected together their emf's are subtractive.

$$
E_{e q}=E_{1}+E_{2} \& r_{e q}=r_{1}+r_{2}
$$

$$
E_{e q}=E_{1}-E_{2}\left(E_{1}>E_{2}\right) \& r_{e q}=r_{1}+r_{2}
$$

In series grouping of identical cells. If one cell is wrongly connected then it will cancel out the effect of two cells e.g. If in the combination of n identical cells (each having emf E and internal resistance r) if x cell are wrongly connected then equivalent emf $E_{e q}=(n-2 x) E$ and equivalent internal resistance $r_{e q}=n r$.

In parallel grouping of two identical cell having no internal resistance

$$
E_{\text {eq }}=0
$$

When two cell's of different emf and no internal resistance are connected in parallel then equivalent emf is indeterminate, note that connecting a wire with a cell but with no resistance is equivalent to short circuiting. Therefore the total current that will pheflowing will be infinity.

Example

Example: 56 A group of N cells whose emf varies directly with the internal resistance as per the equation $E_{N}=1.5 r_{N}$ are connected as shown in the following figure. The current i in the circuit is
(a) 0.51 amp
(b) 5.1 amp
(c) 0.15 amp
(d) 1.5 amp

Solution : (d)

$$
i=\frac{E_{e q}}{r_{e q}}=\frac{1.5 r_{1}+1.5 r_{2}+1.5 r_{3}+\ldots \ldots . .}{r_{1}+r_{2}+r_{3}+\ldots \ldots}=1.5 \mathrm{amp}
$$

Example: 57 Two batteries A and B each of emf 2 volt are connected in series to external resistance $R=$ 1Ω. Internal resistance of A is 1.9Ω and that of B is 0.9Ω, what is the potential difference between the terminals of battery A
(a) 2 V
(b) 3.8 V
(c) 0
(d) None of these

Solution : (c) $i=\frac{E_{1}+E_{2}}{R+r_{1}+r_{2}}=\frac{2+2}{1+1.9+0.9}=\frac{4}{3.8}$. Hence $V_{A}=E_{A}-i r_{A} \quad=2-\frac{4}{3.8} 1.9=0$
Example: 58 In a mixed grouping of identical cells 5 rows are connected in parallel by each row contains 10 cell. This combination send a current i through an external resistance of 20Ω. If the emf and internal resistance of each cell is 1.5 volt and 1Ω respectively then the value of i is
(a) 0.14
(b) 0.25
(c) 0.75
(d) 0.68

Solution: (d)
No. of cells in a row $n=10 ; \quad$ No. of such rows $m=5$
$i=\frac{n E}{\left(R+\frac{n r}{m}\right)}=\frac{10 \times 1.5}{\left(20+\frac{10 \times 1}{5}\right)}=\frac{15}{22}=0.68 \mathrm{amp}$
Example: 59 To get maximum current in a resistance of 3Ω one can use n rows of m cells connected in parallel. If the total no. of cells is 24 and the internal resistance of a cell is 0.5 then
(a) $m=12, n=2$
(b) $m=8, n=4$
(c) $m=2, n=12$
(d) $m=6, n=4$

Solution: (a) In this question $R=3 \Omega, m n=24, r=0.5 \Omega$ and $R=\frac{m r}{n}$. On putting the values we get $n=2$ and $m=12$.

Example: 60

100 cells each of emf 5 V and internal resistance 1Ω are to be arranged so as to produce maximum current in a 25Ω resistance. Each row contains equal number of cells. The number of rows should be [MP PMT 1997]

38 Current Electricity

(a) 2
(b) 4
(c) 5
(d) 100

Solution : (a) Total no. of cells, $=m n=100$
Current will be maximum when $R=\frac{n r}{m} ; 25=\frac{n \times 1}{m} \Rightarrow n=25 \mathrm{~m}$
From equation (i) and (ii) $n=50$ and $m=2$

Example: 61 In the adjoining circuit, the battery E_{1} has as emf of 12 volt and zero internal resistance, while the battery E has an emf of 2 volt. If the galvanometer reads zero, then the value of resistance X ohm is [NCERT 1990]
(a) 10
(b) 100
(c) 500

(d) 200

Solution: (b) For zero deflection in galvanometer the potential different across X should be $E=2 V$ In this condition $\frac{12 X}{500+X}=2$
$\therefore X=100 \Omega$
Example: 62 In the circuit shown here $E_{1}=E_{2}=E_{3}=2 V$ and $R_{1}=R_{2}=4 \Omega$. The current flowing between point A and B through battery E_{2} is
(a) Zero
(b) $2 A$ from A to B
(c) $2 A$ from B to A
(d) None of these

Solution: (b) The equivalent circuit can be drawn as since $E_{1} \& E_{3}$ are parallely connected
So current $i=\frac{2+2}{2}=2 A m p$ from A to B.

Example: 63 The magnitude and direction of the current in the circuit shown will be
(a) $\frac{7}{3} A$ from a to b through e
(b) $\frac{7}{3} A$ from b and a through e
(c) 1.0 A from b to a through e
(d) 1.0 A from a to b through e

Solution: (d) Current $i=\frac{10-4}{3+2+1}=1 A$ from a to b via e
Example: 64 Figure represents a part of the closed circuit. The potential difference between points A and $B\left(V_{A}-V_{B}\right)$ is
(a) $+9 V$
(b) -9 V
(c) $+3 V$
(d) $+6 V$

Solution : (a) The given part of a closed circuit can be redrawn as follows. It should be remember that product of current and resistance can be treated as an imaginary cell having emf $=i R$.

$$
\Rightarrow 7 \text { Hence } V_{A}-V_{B}=+9 V
$$

Example: 65 In the circuit shown below the cells E_{1} and E_{2} have emf's $4 V$ and $8 V$ and internal resistance 0.5 ohm and 1 ohm respectively. Then the potential difference across cell E_{1} and E_{2} will be
(a) $3.75 \mathrm{~V}, 7.5 \mathrm{~V}$
(b) $4.25 \mathrm{~V}, 7.5 \mathrm{~V}$
(c) $3.75 \mathrm{~V}, 3.5 \mathrm{~V}$

(d) $4.25 \mathrm{~V}, 4.25 \mathrm{~V}$

Solution: (b) In the given circuit diagram external resistance $R=\frac{3 \times 6}{3+6}+4.5=6.5 \Omega$. Hence main current through the circuit $i=\frac{E_{2}-E_{1}}{R+r_{e q}}=\frac{8-4}{6.5+0.5+0.5}=\frac{1}{2} \mathrm{amp}$.
Cell 1 is charging so from it's emf equation $E_{1}=V_{1}-i r_{1} \Rightarrow 4=V_{1}-\frac{1}{2} \times 0.5 \Rightarrow V_{1}=4.25$ volt
Cell 2 is discharging so from it's emf equation $E_{2}=V_{2}+i r_{2} \Rightarrow 8=V_{2}+\frac{1}{2} \times 1 \Rightarrow V_{2}=7.5$ volt
Example: 66 A wire of length L and 3 identical cells of negligible internal resistances are connected in series. Due to this current, the temperature of the wire is raised by ΔT in time t. A number N of similar cells is now connected in series with a wire of the same material and crosssection but of length $2 L$. The temperature of wire is raised by same amount ΔT in the same time t. The value of N is
(a) 4
(b) 6
(c) 8
[IIT-JEE (Screening) 2001]
Heat $=m S \Delta T=i^{2} R t$
Case I : Length $(L) \Rightarrow$ Resistance $=R$ and mass $=m$
Case II : Length $(2 L) \Rightarrow$ Resistance $=2 R$ and mass $=2 \mathrm{~m}$
So $\frac{m_{1} S_{1} \Delta T_{1}}{m_{2} S_{2} \Delta T_{2}}=\frac{i_{1}^{2} R_{1} t_{1}}{i_{2}^{2} r_{2} t_{2}} \quad \Rightarrow \frac{m S \Delta T}{2 m S \Delta T}=\frac{i_{1}^{2} R t}{i_{2}^{2} 2 R t} \quad \Rightarrow i_{1}=i_{2} \Rightarrow \frac{(3 E)^{2}}{12}=\frac{(N E)^{2}}{2 R} \Rightarrow N=6$

Tricky Example: 8

n identical cells, each of emf E and internal resistance r, are joined in series to form a closed circuit. The potential difference across any one cell is
(a) Zero
(b) E
(c) $\frac{E}{n}$
(d) $\left(\frac{n-1}{n}\right) E$

Solution: (a) Current in the circuit $i=\frac{n E}{n r}=\frac{E}{r}$
The equivalent circuit of one cell is shown in the figure. Potential difference across the cell $=V_{A}-V_{B}=-E+i r=-E+\frac{E}{r} . r=0$

Kirchoff's Laws

(1) Kirchoff's first law : This law is also known as junction rule or current law (KCL). According to it the algebraic sum of currents meeting at a junction is zero i.e. $\sum \boldsymbol{i}=\mathbf{0}$.

In a circuit, at any junction the sum of the currents entering the junction must equal the sum of the currents leaving the junction. $i_{1}+i_{3}=i_{2}+i_{4}$

Here it is worthy to note that:
(i) If a current comes out to be negative, actual direction of current at the junction is opposite to that assumed, $i+i_{1}+i_{2}=0$ can be satisfied only if at least one current is negative, i.e. leaving the junction.
(ii) This law is simply a statement of "conservation of charge" as if current reaching a junction is not equal to the current leaving the junction, charge will not be conserved.

Note: This law is also applicable to a capacitor through the concept of displacement current treating the resistance of capacitor to be zero during charging or discharging and infinite in steady state as shown in figure.

(2) Kirchoff's second law : This law is also known as loop rule or voltage law (KVL) and according to it "the algebraic sum of the changes in potential in complete traversal of a mesh (closed loop) is zero", i.e. $\Sigma \boldsymbol{V}=\mathbf{0}$
e.g. In the following closed loop.
$-i_{1} R_{1}+i_{2} R_{2}-E_{1}-i_{3} R_{3}+E_{2}+E_{3}-i_{4} R_{4}=0$

Here it is worthy to note that :
(i) This law represents "conservation of energy" as if the sum of potential changes around a closed loop is not zero, unlimited energy could be gained by repeatedly carrying a charge around a loop.
(ii) If there are n meshes in a circuit, the number of independent equations in accordance with loop rule will be ($n-1$).
(3) Sign convention for the application of Kirchoff's law : For the application of Kirchoff's laws following sign convention are to be considered
(i) The change in potential in traversing a resistance in the direction of current is - $i R$ while in the opposite di

(ii) The change in potential in traversing an emf source from negative to positive terminal is $+E$ while in the opposite direction $-E$ irrespective of the direction of current in the circuit.

(iii) The change in potential in traversing a capacitor from the negative terminal to the positive terminal is $+\frac{q}{C}$ while in opposite direction $-\frac{q}{C}$.

(iv) The change in voltage in traversing an inductor in the direction of current is $-L \frac{d i}{d t}$ while in opposite direction it is $+L \frac{d i}{2}$.

(4) Guidelines to apply Kirchoff's law
(i) Starting from the positive terminal of the battery having highest emf, distribute current at various junctions in the circuit in accordance with 'junction rule'. It is not always easy to correctly guess the direction of current, no problem if one assumes the wrong direction.
(ii) After assuming current in each branch, we pick a point and begin to walk (mentally) around a closed loop. As we traverse each resistor, capacitor, inductor or battery we must write down, the voltage change for that element according to the above sign convention.
(iii) By applying KVL we get one equation but in order to solve the circuit we require as many equations as there are unknowns. So we select the required number of loops and apply Kirchhoff's voltage law across each such loop.
(iv) After solving the set of simultaneous equations, we obtain the numerical values of the assumed currents. If any of these values come out to be negative, it indicates that particular current is in the opposite direction from the assumed one.

Nate: The number of loops must be selected so that every element of the circuit must be included in at least one of the loops.
While traversing through a capacitor or battery we do not consider the direction of current.
While considering the voltage drop or gain across as inductor we always assume current to be in increasing function.
(5) Determination of equivalent resistance by Kirchoff's method : This method is useful when we are not able to identify any two resistances in series or in parallel. It is based on the two Kirchhoff's laws. The method may be described in the following guideline.
(i) Assume an imaginary battery of emf E connected between the two terminals across which we have to calculate the equivalent resistance.
(ii) Assume some value of current, say i, coming out of the battery and distribute it among each branch by applying Kirchhoff's current law.
(iii) Apply Kirchhoff's voltage law to formulate as many equations as there are unknowns. It should be noted that at least one of the equations must include the assumed battery.
(iv) Solve the equations to determine $\frac{E}{i}$ ratio which is the equivalent resistance of the network.
e.g. Suppose in the following network of 12 identical resistances, equivalent resistance between point A and C is to be calculater

According to the above guidelines we can solve this problem as follows

An imaginary battery of emf E is assumed across the terminals A and C

The current in each branch is distributed by assuming $4 i$ current

Step (3) Applying KVL along the loop including the nodes A, B, C and the battery E. Voltage equation is $-2 i R-i R-i R-2 i R+E=0$

Step (4) After solving the above equation, we get $6 i R=E \Rightarrow$ equivalent resistance between A and C is $R=\frac{E}{4 i}=\frac{6 i R}{4 i}=\frac{3}{2} R$

Concepts

Using Kirchoff's law while dividing the current having a junction through different arms of a network, it will be same through different arms of same resistance if the end points of these arms are equilocated w.r.t. exit point for current in network and will be different through different arms if the end point of these arms are not equilocated w.r.t. exit point for current of the network.
e.g. In the following figure the current going in arms $A B, A D$ and $A L$ will be same because the location of end points B, D and L of these arms are symmetricalfy located y. 9.4. exit point N of the network.

Example

Example: 67 In the following circuit $E_{1}=4 V, R_{1}=2 \Omega$
$E_{2}=6 V, R_{2}=2 \Omega$ and $R_{3}=4 \Omega$. The current i_{1} is
(a) 1.6 A
(b) 1.8 A
(c) 2.25 A

(d) 1 A

Solution : (b) For loop (1) $-2 i_{1}-2\left(i_{1}-i_{2}\right)+4=0 \Rightarrow 2 i_{1}-i_{2}=2$
For loop (2) $-4 i_{2}+2\left(i_{1}-i_{2}\right)+6=0 \Rightarrow 3 i_{2}-i_{1}=3$
\qquad

After solving equation (i) and (ii) we get $i_{1}=1.8 \mathrm{~A}$

Example: 68 Determine the current in the following circuit
(a) $1 A$
(b) 2.5 A
(c) 0.4 A
(d) $3 A$

Solution: (a) Applying KVL in the given circuit we get $-2 i+10-5-3 i=0 \Rightarrow i=1 A$ Second method : Similar plates of the two batteries are connected together, so the net emf $=10-5=5 \mathrm{~V}$

Total resistance in the circuit $=2+3=5 \Omega$
$\therefore \quad i=\frac{\Sigma V}{\Sigma R}=\frac{5}{5}=1 A$
Example: 69 In the circuit shown in figure, find the current through the branch $B D$
(a) $5 A$
(b) $\mathrm{O} A$
(c) $3 A$
(d) $4 A$

Solution: (a) The current in the circuit are assumed as shown in the fig ${ }_{6 \Omega}$
Applying KVL along the loop $A B D A$, we get $-6 i_{1}-3 i_{2}+15=0$ or $2 i_{1}+i_{2}=5$
Applying KVL along the loop $B C D B$, we get
$-3\left(i_{1}-i_{2}\right)-30+3 i_{2}=$ o or $-i_{1}+2 i_{2}=10$ \qquad (ii)

Solving equation (i) and (ii) for i_{2}, we get $i_{2}=5 \mathrm{~A}$

Example: 70 The figure shows a network of currents. The magnitude of current is shown here. The current i will be [MP PMT 1995]
(a) $3 A$
(b) $13 A$
(c) $23 A$
(d) $-3 A$

Solution: (c) $i=15+3+5=23 A$
Example: $\mathbf{7 1}$ Consider the circuit shown in the figure. The current i_{3} is equal to
[AMU 1995]
(a) 5 amp
(b) 3 amp
(c) $-3 a m p$
(d) $-5 / 6 a m p$

Solution : (d) Suppose current through different paths of the circuit is as follows. After applying $K V L$ for loop (1) and loop (2)

We get $28 i_{1}=-6-8 \quad \Rightarrow i_{1}=-\frac{1}{2} A$
and

$$
54 i_{2}=-6-12 \Rightarrow i_{2}=-\frac{1}{3} A
$$

Hence $i_{3}=i_{1}+i_{2}=-\frac{5}{6} \mathrm{~A}$
Example: 72 A part of a circuit in steady state along with the current flowing in the branches, with value of each resistance is shown in figure. What will be the energy stored in the capacitor C_{o}

44 Current Electricity

(a) $6 \times 10^{-4} \mathrm{~J}$
(b) $8 \times 10^{-4} \mathrm{~J}$
(c) $16 \times 10^{-4} \mathrm{~J}$
(d) Zero

Solution: (b) Applying Kirchhoff's first law at junctions A and B respectively we have $2+1-i_{1}=0$ i.e., i_{1} $=3 \mathrm{~A}$
and $i_{2}+1-2-\mathrm{o}=\mathrm{o}$ i.e., $i_{2}=1 \mathrm{~A}$
Now applying Kirchhoff's second law to the mesh $A D C B A$ treating capacitor as a seat of emf V in open circuit
$-3 \times 5-3 \times 1-1 \times 2+V=$ o i.e. $V\left(=V_{A}-V_{B}\right)=20 V$
So, energy stored in the capacitor $U=\frac{1}{2} C V^{2}=\frac{1}{2}\left(4 \times 10^{-6}\right) \times(20)^{2}=8 \times 10^{-4} J$
Example: 73 In the following circuit the potential difference between P and Q is
(a) 15 V
(b) 10 V
(c) 5 V
(d) 2.5 V

Solution : (c) By using KVL $-5 \times 2-V_{P Q}+15=0 \Rightarrow V_{P Q}=5 \mathrm{~V}$

Tricky Example: 9

As the switch S is closed in the circuit shown in figure, current passed through it is

(a) 4.5 A
(b) 6.0 A
(c) 3.0 A
(d) Zero

Solution: (a) Let V be the potential of the junction as shown in figure. Applying junction law, we have
or $\frac{20-V}{2}+\frac{5-V}{4}=\frac{V-0}{2}$ or $40-2 V+5-V=2 V$
or $5 V=45 \Rightarrow V=9 V$
$\therefore \quad i_{3}=\frac{V}{2}=4.5 \mathrm{~A}$

Different Measuring Instruments

(1) Galvanometer : It is an instrument used to detect small current passing through it by showing deflection. Galvanometers are of different types e.g. moving coil galvanometer, moving magnet galvanometer, hot wire galvanometer. In dc circuit usually moving coil galvanometer are used.
(i) It's symbol : ; where G is the total internal resistance of the galvanometer.
(ii) Principle : In case of moving coil galvanometer deflection is directly proportional to the current that passes through it i.e. $\boldsymbol{i} \propto \boldsymbol{\theta}$.
(iii) Full scale deflection current : The current required for full scale deflection in a galvanometer is called full scale deflection current and is represented by i_{g}.
(iv) Shunt : The small resistance connected in parallel to galvanometer coil, in order to control current flowing through the galvanometer is known as shunt.

Merits of shunt
(a) To protect the
galvanometer coil from
burning
Shunt resistance decreases the
sensitivity of galvanometer.
(b) It can be used to convert
any galvanometer into

(2) Ammeter : It is a device used to measure current and is always connected in series with the 'element' through which current is to be measured.
(i) The reading of an ammeter is always lesser than actual current in the circuit.
(ii) Smaller the resistance of an ammeter more accurate will be its reading. An ammeter is said to be ideal if its resistance r is
 zero.
(iii) Conversion of galvanometer into ammeter : A galvanometer may be converted into an ammeter by connecting a low resistance (called shunt S) in parallel to the galvanometer G as shown in figure.
(a) Equivalent resistance of the combination $=\frac{G S}{G+S}$
(b) G and S are parallel to each other hence both will have equal potential difference i.e. $i_{g} G=\left(i-i_{g}\right) S$; which gives

Required shunt $S=\frac{\boldsymbol{i}_{g}}{\left(\boldsymbol{i}-\boldsymbol{i}_{g}\right)} \boldsymbol{G}$

(c) To pass nth part of main current (i.e. $i_{g}=\frac{i}{n}$) through the galvanometer, required shunt $S=\frac{G}{(n-1)}$.
(3) Voltmeter : It is a device used to measure potential difference and is always put in parallel with the 'circuit element' across which potential difference is to be measured.
(i) The reading of a voltmeter is always lesser than true value.
(ii) Greater the resistance of voltmeter, more accurate will be
 its reading. A voltmeter is said to be ideal if its resistance is infinite, i.e., it draws no current from the circuit element for its operation.
(iii) Conversion of galvanometer into voltmeter : A galvanometer may be converted into a voltmeter by connecting a large resistance R in series with the galvanometer as shown in the figure.
(a) Equivalent resistance of the combination $=G+R$
(b) According to ohm's law $\quad V=i_{g}(G+R)$; which gives

Required series resistance $\boldsymbol{R}=\frac{\boldsymbol{V}}{\boldsymbol{i}_{\boldsymbol{g}}}-\boldsymbol{G}=\left(\frac{\boldsymbol{V}}{\boldsymbol{V}_{g}}-\mathbf{1}\right) \boldsymbol{G}$

(c) If $n^{\text {th }}$ part of applied voltage appeared across galvanometer (i.e. $V_{g}=\frac{V}{n}$) then required series resistance $\boldsymbol{R}=(\boldsymbol{n}-\mathbf{1}) \boldsymbol{G}$.
(4) Wheatstone bridge : Wheatstone bridge is an arrangement of four resistance which can be used to measure one of them in terms of rest. Here arms $A B$ and $B C$ are called ratio arm and arms $A C$ and $B D$ are called conjugate arms
(i) Balanced bridge : The bridge is said to be balanced when deflection in galvanometer is zero i.e. no current flows through the galvanometer or in other words $V_{B}=V_{D}$. In the balanced
 condition $\frac{\boldsymbol{P}}{\boldsymbol{Q}}=\frac{\boldsymbol{R}}{\boldsymbol{S}}$, on mutually changing the position of cell and galvanometer this condition will not change.
(ii) Unbalanced bridge : If the bridge is not balanced current will flow from D to B if $V_{D}>$ V_{B} i.e. $\left(V_{A}-V_{D}\right)<\left(V_{A}-V_{B}\right)$ which gives $P S>R Q$.
(iii) Applications of wheatstone bridge : Meter bridge, post office box and Carey Foster bridge are instruments based on the principle of wheatstone bridge and are used to measure unknown resistance.
(5) Meter bridge : In case of meter bridge, the resistance wire $A C$ is 100 cm long. Varying the position of tapping point B, bridge is balanced. If in balanced position of bridge $A B=l, B C$ (100 $-l$) so that $\frac{Q}{P}=\frac{(100-l)}{l}$. Also $\frac{P}{n}=\frac{R}{c} \Rightarrow S=\frac{(100-l)}{,} R$

Concepts

Wheatstone bridge is most sensitive if all the arms of bridge have equal resistances i.e. $P=Q=R=S$
If the temperature of the conductor placed in the right gap of metre bridge is increased, then the balancing length decreases and the jockey moves towards left.

In Wheatstone bridge to avoid inductive effects the battery key should be pressed first and the galvanometer key afterwards.
0
The measurement of resistance by Wheatstone bridge is not affected by the internal resistance of the cell.

Example

Example: 74
The scale of a galvanometer of resistance 100Ω contains 25 divisions. It gives a deflection of one division on passing a current of $4 \times 10^{-4} \mathrm{~A}$. The resistance in ohms to be added to it, so that it may become a voltmeter of range 2.5 volt is
(a) 100
(b) 150
(c) 250
(d) 300

Solution : (b) Current sensitivity of galvanometer $=4 \times 10^{-4} \mathrm{Amp} / \mathrm{div}$.
So full scale deflection current $\left(i_{g}\right)=$ Current sensitivity \times Total number of division $=4 \times$ $10^{-4} \times 25=10^{-2} \mathrm{~A}$
To convert galvanometer in to voltmeter, resistance to be put in series is $R=\frac{V}{i_{g}}-G=\frac{2.5}{10^{-2}}-100=150 \Omega$
Example: 75 A galvanometer, having a resistance of 50Ω gives a full scale deflection for a current of $0.05 A$. the length in meter of a resistance wire of area of cross-section $2.97 \times 10^{-2} \mathrm{~cm}^{2}$ that can be used to convert the galvanometer into an ammeter which can read a maximum of 5 A current is : (Specific resistance of the wire $=5 \times 10^{-7} \Omega \mathrm{~m}$)
(a) 9
(b) 6
(c) 3
(d) 1.5

Solution: (c) \quad Given $G=50 \Omega, \quad i_{g}=0.05$ Amp., $\quad i=5 A, \quad A=2.97 \times 10^{-2} \mathrm{~cm}^{2} \quad$ and $\quad \rho=5 \times 10^{-7} \Omega-m$ By using $\frac{i}{i_{g}}=1+\frac{G}{S} \Rightarrow S=\frac{G . i_{g}}{\left(i-i_{g}\right)} \Rightarrow \frac{\rho l}{A}=\frac{G i_{g}}{\left(i-i_{g}\right)} \Rightarrow l=\frac{G i_{g} A}{\left(i-i_{g}\right) \rho}$ on putting values $l=3 \mathrm{~m}$.

48 Current Electricity

Example: $76100 m A$ current gives a full scale deflection in a galvanometer of resistance 2Ω. The resistance connected with the galvanometer to convert it into a voltmeter of 5 V range is
[KCET 2002; UPSEAT 1998; MNR 1994 Similar to MP PMT 1999]
(a) 98Ω
(b) 52Ω
(c) 80Ω
(d) 48Ω

Solution: (d)

$$
R=\frac{V}{I_{g}}-G=\frac{5}{100 \times 10^{-3}}-2=50-2=48 \Omega .
$$

Example: 77 A milliammeter of range $10 m A$ has a coil of resistance 1Ω. To use it as voltmeter of range 10 volt, the resistance that must be connected in series with it will be
(a) 999Ω
(b) 99Ω
(c) 1000Ω
(d) None of these

Solution : (a) By using $R=\frac{V}{i g}-G \Rightarrow R=\frac{10}{10 \times 10^{-3}}-1=999 \Omega$
Example: 78 In the following figure ammeter and voltmeter reads 2 amp and 120 volt respectively. Resistance of voltmeter is
(a) 100Ω
(b) 200Ω
(c) 300Ω

(d) 400Ω

Solution : (c) Let resistance of voltmeter be R_{V}. Equivalent resistance between X and Y is $R_{X Y}=\frac{75 R_{V}}{75+R_{V}}$

Reading of voltmeter $=$ potential difference across X and $Y=120=i \times R_{X Y}=2 \times \frac{75 R_{V}}{75+R_{V}} \Rightarrow$ $R_{V}=300 \Omega$

Example: 79 In the circuit shown in figure, the voltmeter reading would be
(a) Zero
(b) 0.5 volt
(c) 1 volt
(d) 2 volt

Solution: (a) Ammeter has no resistance so there will be no potential difference across it, hence reading of voltmeter is zero.

Example: 80 Voltmeters V_{1} and V_{2} are connected in series across a d.c. line. V_{1} reads $80 V$ and has a per volt resistance of $200 \Omega, V_{2}$ has a total resistance of $32 \mathrm{k} \Omega$. The line voltage is
(a) 120 V
(b) 160 V
(c) 220 V
(d) 240 V

Solution: (d) Resistance of voltmeter V_{1} is $R_{1}=200 \times 80=16000 \Omega$ and resistance of voltmeter V_{2} is $R_{2}=32000 \Omega$

By using relation $V^{\prime}=\left(\frac{R^{\prime}}{R_{e q}}\right) V$; where $V^{\prime}=$ potential difference across any resistance R^{\prime} in a series grouping.
So for voltmeter V_{1} potential difference across it is

$$
80=\left(\frac{R_{1}}{R_{1}+R_{2}}\right) \cdot V \Rightarrow V=240 V
$$

Example: 81 The resistance of $1 A$ ammeter is 0.018Ω. To convert it into $10 A$ ammeter, the shunt resistance required will be
(a) 0.18Ω
(b) 0.0018Ω
(c) 0.002Ω
(d) 0.12Ω

Solution : (c)
By using $\frac{i}{i_{g}}=1+\frac{4}{S} \Rightarrow \frac{10}{1}=1+\frac{0.018}{S} \Rightarrow S=0.002 \Omega$
Example: 82 In meter bridge the balancing length from left and when standard resistance of 1Ω is in right gas is found to be 20 cm . The value of unknown resistance is
(a) 0.25Ω
(b) 0.4Ω
(c) 0.5Ω
(d) 4Ω

Solution: (a)
The condition of wheatstone bridge gives $\frac{X}{R}=\frac{20 r}{80 r}, r$ resistance of wire per cm, X unknown resistance

$$
\therefore \quad X=\frac{20}{80} \times R=\frac{1}{4} \times 1=0.25 \Omega
$$

Example: 83 A galvanometer having a resistance of 8Ω is shunted by a wire of resistance 2Ω. If the total current is 1 amp , the part of it passing through the shunt will be
(a) 0.25 amp
(b) 0.8 amp
(c) 0.2 amp
(d) 0.5 amp

Solution: (b) Fraction of current passing through the galvanometer

$$
\frac{i_{g}}{i}=\frac{S}{S+G} \text { or } \frac{i_{g}}{i}=\frac{2}{2+8}=0.2
$$

So fraction of current passing through the shunt

$$
\frac{i_{s}}{i}=1-\frac{i_{g}}{i}=1-0.2=0.8 \mathrm{amp}
$$

Example: 84 A moving coil galvanometer is converted into an ammeter reading upto $0.03 A$ by connecting a shunt of resistance $4 r$ across it and into an ammeter reading upto $0.06 A$ when a shunt of resistance r connected across it. What is the maximum current which can be through this galvanometer if no shunt is used
[MP PMT 1996]
(a) 0.01 A
(b) $0.02 A$
(c) 0.03 A
(d) $0.04 A$

Solution: (b) For ammeter, $S=\frac{i_{g}}{\left(i-i_{g}\right)} G$ So $i_{g} G=\left(0.03-i_{g}\right) 4 r$
and $\quad i_{g} G=\left(0.06-i_{g}\right) r$

50 Current Electricity

$$
\begin{aligned}
& \text { Dividing equation (i) by (ii) } \quad 1=\frac{\left(0.03-i_{g}\right) 4}{0.06-i_{g}} \Rightarrow 0.06-i_{g}=0.12-4 i_{g} \\
& \Rightarrow 3 i_{g}=0.06 \Rightarrow i_{g}=0.02 \mathrm{~A}
\end{aligned}
$$

Tricky Example: 10

The ammeter A reads $2 A$ and the voltmeter V reads $20 V$. The value of resistance R is
[JIPMER 1999]

(a) Exactly 10 ohm
(b) Less than 10 ohm
(c) More than 10 ohm
(d) We cannot definitely say

Solution: (c) If current goes through the resistance R is i then $i R=20$ volt $\Rightarrow R=\frac{20}{i}$. Since $i<$ $2 A$ so $R>10 \Omega$.

Potentiometer

Potentiometer is a device mainly used to measure emf of a given cell and to compare emf's of cells. It is also used to measure internal resistance of a given cell.
(1) Superiority of potentiometer over voltmeter : An ordinary voltmeter cannot measure the emf accurately because it does draw some current to show the deflection. As per definition of emf, it is the potential difference when a cell is in open circuit or no current through the cell. Therefore voltmeter can only measure terminal voltage of a give n cell.

Potentiometer is based on no deflection method. When the potentiometer gives zero deflection, it does not draw any current from the cell or the circuit i.e. potentiometer is effectively an ideal instrument of infinite resistance for measuring the potential difference.
(2) Circuit diagram : Potentiometer consists of a long resistive wire $A B$ of length L (about 6 m to 10 m long) made up of mangnine or constantan. A battery of known voltage e and internal resistance r called supplier battery or driver cell. Connection of these two forms primary circuit.

One terminal of another cell (whose emf E is to be measured) is connected at one end of the main circuit and the other terminal at any point on the resistive wire through a galvanometer G. This forms the secondary circuit. Other details are as follo
$J=$ Jockey
$K=$ Key
$R=$ Resistance of potentiometer wire,
$\rho=$ Specific resistance of potentiometer wire.

$R_{h}=$ Variable resistance which controls the current through the wire $A B$
(3) Points to be remember
(i) The specific resistance (ρ) of potentiometer wire must be high but its temperature coefficient of resistance (α) must be low.
(ii) All higher potential points (terminals) of primary and secondary circuits must be connected together at point A and all lower potential points must be connected to point B or jockey.
(iii) The value of known potential difference must be greater than the value of unknown potential difference to be measured.
(iv) The potential gradient must remain constant. For this the current in the primary circuit must remain constant and the jockey must not be slided in contact with the wire.
(v) The diameter of potentiometer wire must be uniform everywhere.
(4) Potential gradient (x) : Potential difference (or fall in potential) per unit length of wire is called potential gradient i.e. $\quad x=\frac{V}{L} \frac{v o l t}{m} \quad$ where $\quad V=i R=\left(\frac{e}{R+R_{h}+r}\right) \cdot R$. So $x=\frac{V}{L}=\frac{i R}{L}=\frac{i \rho}{A}=\frac{e}{\left(R+R_{h}+r\right)} \cdot \frac{R}{L}$
(i) Potential gradient directly depends upon
(a) The resistance per unit length (R / L) of potentiometer wire.
(b) The radius of potentiometer wire (i.e. Area of cross-section)
(c) The specific resistance of the material of potentiometer wire (i.e. ρ)
(d) The current flowing through potentiometer wire (i)
(ii) x indirectly depends upon
(a) The emf of battery in the primary circuit (i.e. e)
(b) The resistance of rheostat in the primary circuit (i.e. R_{h})

Nate: When potential difference V is constant then $\frac{x_{1}}{x_{2}}=\frac{L_{2}}{L_{1}}$
\square Two different wire are connected in series to form a potentiometer wire then $\frac{x_{1}}{x_{2}}=\frac{R_{1}}{R_{2}} \cdot \frac{L_{2}}{L_{1}}$
\square If the length of a potentiometer wire and potential difference across it's ends are kept constant and if it's diameter is changed from $d_{1} \rightarrow d_{2}$ then potential gradient remains unchanged.
\square The value of x does not change with any change effected in the secondary circuit.
(5) Working : Suppose jocky is made to touch a point J on wire then potential difference between A and J will be $V=x l$

At this length (l) two potential difference are obtained

(i) V due to battery e and
(ii) E due to unknown cell

If $V>E$ then current will flow in galvanometer circuit in direction
If $V<E$ then current will flow in galvanometer circuit in opp direction
If $V=E$ then no current will flow in galvanometer circuit this condition to known as null deflection position, length l is known as balancing length.

In balanced condition $E=x l$ or $E=x l=\frac{V}{L} l=\frac{i R}{L} l=\left(\frac{e}{R+R_{h}+r}\right) \cdot \frac{R}{L} \times l$
Nate: If V is constant then $L \propto l \Rightarrow \frac{L_{1}}{L_{2}}=\frac{l_{1}}{l_{2}}$
(6) Standardization of potentiometer : The process of determining potential gradient experimentally is known as standardization of potentiometer.

Let the balancing length for the standard emf E_{0} is l_{0} then by the principle of potentiometer $E_{\mathrm{O}}=x l_{\mathrm{O}} \Rightarrow x=\frac{E_{0}}{l_{0}}$
(7) Sensitivity of potentiometer : A potentiometer is said to be more sensitive, if it measures a small potential difference more accurately.

(i) The sensitivity of potentiometer is assessed by its potential gradient. The sensitivity is inversely proportional to the potential gradient.
(ii) In order to increase the sensitivity of potentiometer
(a) The resistance in primary circuit will have to be decreased.
(b) The length of potentiometer wire will have to be increased so that the length may be measured more accuracy.
(8) Difference between voltmeter and potentiometer

	Voltmeter	Potentiometer
(i)	It's resistance is high but finite	Its resistance is high but infinite
(ii)	It draws some current from source of emf	It does not draw any current from the source of known emf
(iii)	The potential difference measured by it is lesser than the actual potential difference	The potential difference measured by it is equal to actual potential difference
(iv)	Its sensitivity is low	Its sensitivity is high
(v)	It is a versatile instrument	It measures only emf or potential difference
(vi	It is based on deflection method	It is based on zero deflection method
)		

Application of Potentiometer

(1) To determine the internal resistance of a primary cell
(i) Initially in secondary circuit key K^{\prime} remains open and balancing length (l_{1}) is obtained. Since cell E is in open circuit so it's emf balances on length l_{1} i.e. $E=x l_{1}$ \qquad (i)
(ii) Now key K^{\prime} is closed so cell E comes in closed circuit. If the process is repeated again then potential difference V balances on length l_{2} i.e. $V=x l_{2}$
\qquad (ii)

(iii) By using formula internal resistance $r=\left(\frac{E}{V}-1\right) \cdot R^{\prime}$ $r=\left(\frac{l_{1}-l_{2}}{l_{2}}\right) \cdot R^{\prime}$
(2) Comparison of emf's of two cell : Let l_{1} and l_{2} be the balancing lengths with the cells E_{1} and E_{2} respectively then $E_{1}=x l_{1}$ and $E_{2}=x l_{2} \Rightarrow \frac{E_{1}}{E_{2}}=\frac{l_{1}}{l_{2}}$

Wate: Let $E_{1}>E_{2}$ and both are connected in series. If balancing length is l_{1} when cell assist each other and it is l_{2} when they oppose each other as shown then :

$$
\begin{array}{rlr}
& \cdot+E_{1}^{E_{1}}+E_{2} \\
& \left(E_{1}+E_{2}\right)=x l_{1} & \left(E_{1}-E_{2}\right)=x l_{2} \\
\Rightarrow \quad & \frac{E_{1}+E_{2}}{E_{1}-E_{2}}=\frac{l_{1}}{l_{2}} \quad \text { or } \quad \frac{E_{1}}{E_{2}}=\frac{l_{1}+l_{2}}{l_{1}-l_{2}}
\end{array}
$$

(3) Comparison of resistances : Let the balancing length for resistance R_{1} (when $X Y$ is connected) is l_{1} and let balancing length for resistance $R_{1}+R_{2}$ (when $Y Z$ is connected) is l_{2}.

$$
\text { Then } \quad i R_{1}=x l_{1} \text { and } i\left(R_{1}+R_{2}\right)=x l_{2}
$$

$$
\Rightarrow \quad \frac{R_{2}}{R_{1}}=\frac{l_{2}-l_{1}}{l_{1}}
$$

(4) To determine thermo emf

(i) The value of thermo-emf in a thermocouple for ordinary temperature difference is very low ($1 \mathrm{O}^{-6}$ volt). For this the potential gradient x must be also very low ($10^{-4} \mathrm{~V} / \mathrm{m}$). Hence a high resistance (R) is connected in series with the potentiometer wire in order to reduce current.
(ii) The potential difference across R must be equal to the emf of standard cell i.e. $i R=E_{0} \therefore i=\frac{E_{0}}{R}$

(iii) The small thermo emf produced in the thermocouple $e=x l$
(iv) $x=i \rho=\frac{i R}{L} \quad \therefore e=\frac{i R l}{L} \quad$ where $L=$ length of potentiometer wire, $\rho=$ resistance per unit length, $l=$ balancing length for e

(5) To calibrate ammeter and voltmeter

Calibration of ammeter

(i) If p.d. across 1Ω resistance is measured by potentiometer, then current through this (indirectly measured) is thus known or if R is known then $i=V / R$ can be found.
(ii) Circuit and method
(a) Standardisation is required and per formed as already described earlier. ($x=E_{0} / l_{0}$)
(b) The current through R or 1Ω coil is measured by the connected ammeter and same is calculated by potentiometer by finding a balancing length as described blow.

Let i^{\prime} current flows through 1Ω resistance giving p.d. as $V^{\prime}=i^{\prime}(1)=x l_{1}$ where l_{1} is the balancing length. So error can be found as [i(measured by ammeter) $\Delta i^{i}=i-i^{[}\left[=x l_{1}=\left(\frac{E_{0}}{l_{0}}\right) l_{1}\right]$

Calibration of voltmeter

(i) Practical voltmeters are not ideal, because these do not have infinite resistance. The error of such practical voltmeter can be found by comparing the voltmeter reading with calculated value of p.d. by potentiometer.
(ii) Circuit and procedure
(a) Standardisation : If l_{0} is balancing length for E_{0} the emf of standard cell by connecting 1 and 2 of bi-directional key, then $x=E_{o} / l_{0}$.
(b) The balancing length l_{1} for unknown potential difference V^{\prime} is given by (by closing 2 and 3) $V^{\prime}=x l_{1}=\left(E_{0} / l_{0}\right) l_{1}$.

If the voltmeter reading is V then the error will be ($V-V^{\prime}$) which may be $+v e,-v e$ or zero.

Concepts

In case of zero deflection in the galvanometer current flows in the primary circuit of the potentiometer, not in the galvanometer circuit.

A potentiometer can act as an ideal voltmeter.

Example

Example: 85 A battery with negligible internal resistance is connected with 10 m long wire. A standard cell gets balanced on 600 cm length of this wire. On increasing the length of potentiometer wire by $2 m$ then the null point will be displaced by
(a) 200 cm
(b) 120 cm
(c) 720 cm
(d) 600 cm

Solution : (b) By using $\frac{L_{1}}{L_{2}}=\frac{l_{1}}{l_{2}} \Rightarrow \frac{10}{12}=\frac{600}{l_{2}} \Rightarrow l_{2}=720 \mathrm{~cm}$.
Hence displacement $=720-600=120 \mathrm{~cm}$
Example: 86 In the following circuit a 10 m long potentiometer wire with resistance $1.2 \mathrm{ohm} / \mathrm{m}$, a resistance R_{1} and an accumulator of emf $2 V$ are connected in series. When the emf of thermocouple is 2.4 mV then the deflection in galvanometer is zero. The current supplied by the accumulator will be

(a) $4 \times 10^{-4} \mathrm{~A}$
(b) $8 \times 10^{-4} \mathrm{~A}$
(c) $4 \times 10^{-3} \mathrm{~A}$
(d) $8 \times 10^{-3} \mathrm{~A}$

$$
E=x l=i \rho l \quad \therefore \quad i=\frac{E}{\rho l}=\frac{E}{\rho l}=\frac{2.4 \times 10^{-3}}{1.2 \times 5}=4 \times 10^{-4} \mathrm{~A}
$$

Solution: (a)

Example: 87 The resistivity of a potentiometer wire is $40 \times 10^{-8} \Omega m$ and its area of cross section is 8 $\times 10^{-6} \mathrm{~m}^{2}$. If 0.2 amp . Current is flowing through the wire, the potential gradient will be
(a) $10^{-2} \mathrm{volt} / \mathrm{m}$
(b) 10^{-1} volt $/ \mathrm{m}$
(c) $3.2 \times 10^{-2} \mathrm{volt} / \mathrm{m}$
(d) 1 volt $/ \mathrm{m}$

Solution: (a) Potential gradient $=\frac{V}{L}=\frac{i R}{L}=\frac{i \rho L}{A L}=\frac{i \rho}{A}=\frac{0.2 \times 40 \times 10^{-8}}{8 \times 10^{-6}}=10^{-2} \mathrm{~V} / \mathrm{m}$
Example: 88 A deniel cell is balanced on 125 cm length of a potentiometer wire. When the cell is short circuited with a 2Ω resistance the balancing length obtained is 100 cm . Internal resistance of the cell will be
[RPMT 1998]
(a) 1.5Ω
(b) 0.5Ω
(c) 1.25Ω
(d) $4 / 5 \Omega$

Solution: (b) By using $r=\frac{l_{1}-l_{2}}{l_{2}} \times R^{\prime} \Rightarrow r=\frac{125-100}{100} \times 2=\frac{1}{2}=0.5 \Omega$
Example: 89 A potentiometer wire of length 10 m and a resistance 30Ω is connected in series with a battery of emf 2.5 V and internal resistance 5Ω and an external resistance R. If the fall of potential along the potentiometer wire is $50 \mu \mathrm{~V} / \mathrm{mm}$, the value of R is (in Ω)
(a) 115
(b) 80
(c) 50
(d) 100

Solution : (a)

$$
\begin{aligned}
& \text { By using } x=\frac{e}{\left(R+R_{h}+r\right)} \cdot \frac{R}{L} \\
\Rightarrow & \frac{50 \times 10^{-6}}{10^{-3}}=\frac{2.5}{(30+R+5)} \times \frac{30}{10} \Rightarrow R=115
\end{aligned}
$$

Example: 90

Solution: (a)

Example: 91

A 2 volt battery, a 15Ω resistor and a potentiometer of 100 cm length, all are connected in series. If the resistance of potentiometer wire is 5Ω, then the potential gradient of the potentiometer wire is [AIIMS 1982]
(a) $0.005 \mathrm{~V} / \mathrm{cm}$
(b) $0.05 \mathrm{~V} / \mathrm{cm}$
(c) $0.02 \mathrm{~V} / \mathrm{cm}$
(d) $0.2 \mathrm{~V} / \mathrm{cm}$

By using $x=\frac{e}{\left(R+R_{h}+r\right)} \cdot \frac{R}{L} \Rightarrow x=\frac{2}{(5+15+0)} \times \frac{5}{1}=0.5 \mathrm{~V} / \mathrm{m}=0.005 \mathrm{~V} / \mathrm{cm}$
In an experiment to measure the internal resistance of a cell by potentiometer, it is found that the balance point is at a length of 2 m when the cell is shunted by a 5Ω resistance; and is at a length of 3 m when the cell is shunted by a 10Ω resistance. The internal resistance of the cell is, then

[Haryana CEE 1996]

(a) 1.5Ω
(b) 10Ω
(c) 15Ω
(d) 1Ω

Solution : (b) By using $r=\left(\frac{l_{1}-l_{2}}{l_{2}}\right) R^{\prime} \Rightarrow r=\left(\frac{l_{1}-2}{2}\right) \times 5$
and

$$
\begin{equation*}
r=\left(\frac{l_{1}-3}{3}\right) \times 10 \tag{ii}
\end{equation*}
$$

On solving (i) and (ii) $r=10 \Omega$
Example: 92 A resistance of 4Ω and a wire of length 5 metres and resistance 5Ω are joined in series and connected to a cell of emf 10 V and internal resistance 1Ω. A parallel combination of two identical cells is balanced across 300 cm of the wire. The emf E of each cell is

(a) 1.5 V
(b) 3.0 V
(c) 0.67 V
(d) 1.33 V

Solution : (b)
By using $E_{\text {eq }}=\frac{e}{\left(R+R_{h}+r\right)} \cdot \frac{R}{L} \times l \Rightarrow E=\frac{10}{(5+4+1)} \times \frac{5}{5} \times 3 \Rightarrow E=3$ volt
Example: 93 A potentiometer has uniform potential gradient across it. Two cells connected in series (i) to support each other and (ii) to oppose each other are balanced over 6 m and 2 m respectively on the potentiometer wire. The emf's of the cells are in the ratio of
(a) $1: 2$
(b) $1: 1$
(c) $3: 1$
(d) $2: 1$

Solution: (d) If suppose emf's of the cells are E_{1} and E_{2} respectively then

$$
\begin{equation*}
E_{1}+E_{2}=x \times 6 \tag{i}
\end{equation*}
$$

\qquad [$x=$ potential gradient) $]$
and $\quad E_{1}-E_{2}=x \times 2$
$\Rightarrow \quad \frac{E_{1}+E_{2}}{E_{1}-E_{2}}=\frac{3}{1} \Rightarrow \frac{E_{1}}{E_{2}}=\frac{2}{1}$
Example: 94 In the following circuit the potential difference between the points B and C is balanced against 40 cm length of potentiometer wire. In order to balance the potential difference between the points C and

(a) 32 cm
(b) 16 cm
(c) 8 cm
(d) 4 cm

Solution : (a)

$$
\frac{1}{R}=\frac{1}{10}+\frac{1}{10}=\frac{2}{10}=\frac{1}{5} \text { or } R_{1}=5 \Omega
$$

$R_{2}=4 \Omega, l_{1}=40 \mathrm{~cm}, l_{2}=$?
$l_{2}=l_{1} \frac{R_{2}}{R_{1}}$ or $l_{2}=\frac{40 \times 4}{5}=32 \mathrm{~cm}$
Example: 95 In the following circuit diagram fig. the lengths of the wires $A B$ and $B C$ are same but the radius of $A B$ is three times that of $B C$. The ratio of potential gradients at $A B$ and $B C$ will be
(a) $1: 9$
(b) $9: 1$
(c) $3: 1$
(d) $1: 3$

Solution: (a)

$$
x \propto R_{p} \propto \frac{1}{r^{2}} \Rightarrow \frac{x_{1}}{x_{2}}=\frac{r_{2}^{2}}{r_{1}^{2}}=\left(\frac{r}{3 r}\right)^{2}=\frac{1}{9}
$$

Example: 96 With a certain cell the balance point is obtained at 0.60 m from one end of the potentiometer. With another cell whose emf differs from that of the first by 0.1 V , the balance point is obtained at 0.55 m . Then, the two emf's are
(a) $1.2 \mathrm{~V}, 1.1 \mathrm{~V}$
(b) $1.2 \mathrm{~V}, 1.3 \mathrm{~V}$
(c) -1.1 V , - 1.0 V
(d) None of the above

Solution : (a)
$E_{1}=x(0.6)$ and $E_{2}=E_{1}-0.1=x(0.55) \Rightarrow \frac{E_{1}}{E_{1}-0.1}=\frac{0.6}{0.55}$
or $55 E_{1}=60 E_{1}-6 \Rightarrow E_{1}=\frac{6}{5}=1.2 \mathrm{~V}$ thus $E_{2}=1.1 \mathrm{~V}$

Tricky Example: 11

A cell of internal resistance 1.5Ω and of emf 1.5 volt balances 500 cm on a potentiometer wire. If a wire of 15Ω is connected between the balance point and the cell, then the balance point will shift
[MP PMT 1985]
(a) To zero
(b) By 500 cm
(c) By 750 cm
(d) None of the above

Solution : (d) In balance condition no current flows in the galvanometer circuit. Hence there will be no shift in balance point after connecting a resistance between balance point and cell.

Assignment
(Basic \& Advance Level Questions)

\mathcal{A} ssignmen

Current and it's Conduction

Basic Level

1. A current of $1 m A$ is flowing through a copper wire. How many electrons will pass a given point in one second
[$e=1.6 \times 10^{-19}$ coulomb]
[MP PMT 2002; RPMT 2000]
(a) 6.25×10^{19}
(b) 6.25×10^{15}
(c) 6.25×10^{31}
(d) 6.25×10^{9}
2. The drift velocity of free electrons in a conductor is v when a current i is flowing in it. If both the radius and current are doubled, then drift velocity will be
(a) v
(b) $\frac{v}{2}$
(c) $\frac{v}{4}$
(d) $\frac{v}{8}$
3. Calculate the amount of charge flowing in 2 minutes in a wire of resistance 10Ω when a potential difference of $20 V$ is applied between its ends
(a) 120 C
(b) 240 C
(c) 20 C
(d) $4 C$
4. The drift velocity does not depend upon
[BHU 2001]
(a) Cross-section of the wire
(b)
Length of the wire
(c) Number
of free electrons
(d) Magnitude of the current
5. If an electric current is passed through nerve the man
[UPSEAT 2000, 1998; CPMT 1995; MNR 1985]
(a) Begins to laugh
(b) Begins to Weep
(c) Begins to excited
(d) Becomes insensitive to pain
6. For driving a current of $2 A$ for 6 minute in a circuit $1000 J$ of work is to be done. The emf of source in the circuit is
[CPMT 1999; AFMC 1999]
(a) 1.38 V
(b) 13.8 V
(c) 83.3 V
(d) 8.3 V
7. A solenoid is at potential difference 60 V and current flows through it is 15 ampere, then the resistance of coil will be
[AFMC 1995]
(a) 4Ω
(b) 8Ω
(c) 0.25Ω
(d) 2Ω
8. If a power of 100 watt is being supplied across a potential difference of 200 V , current flowing is
(a) $2 A$
(b) 0.5 A
(c) 1 A
(d) 20 A
9. In a conductor 4 coulombs of charge flows for 2 seconds. The value of electric current will be
(a) 4 volts
(b) 4 amperes
(c) 2 amperes
(d) 2 volts
10. 62.5×10^{18} electrons per second are flowing through a wire of area of cross-section $0.1 \mathrm{~m}^{2}$, the value of current flowing will be
[CPMT 1984]
(a) $1 A$
(b) $0.1 A$
(c) 10 A
(d) $0.11 A$
11. When there is an electric current through a wire along its length, then as electric field must exist
(a) Out side the wire but normal to it
(b) Outside the wire but parallel to it
(c) Inside the wire but parallel to it
Inside the wire but normal to it

Advance Level

12. A current i is passing through a wire having two sections P and Q of uniform diameters d and $d / 2$ respectively. If the mean drift velocity of electrons in sections P and Q is denoted by v_{P} and v_{Q} respectively, then
(a) $V_{P}-V_{Q}$
(b) $V_{P}=\frac{1}{2} V_{Q}$
(c) $V_{P}=\frac{1}{4} V_{Q}$
(d) $V_{P}=2 V_{Q}$
13. A steady current flows in a metallic conductor of non-uniform cross-section. The quantities/quantity constant along the length of the conductor is/are
(a) Current, electric field and drift velocity
(b) Drift speed only
(c) Current and drift speed
(d) Current only
14. We are able to obtain fairly large currents in a conductor because
(a) The electron drift speed is usually very large
(b) The number density of free electrons is very high and this can compensate for the low values of the electron drift speed and the very small magnitude of the electron charge
(c) The number density of free electrons as well as the electron drift speeds are very large and these compensate for the very small magnitude of the electron charge
(d) The very small magnitude of the electron charge has to be divided by the still smaller product of the number density and drift speed to get the electric current
15. The electric current passing through a metallic wire produces heat because of
[BHU 1994]
(a) Collisions of conduction electrons with each other
(b) Collisions of the atoms of the metal with each other
(c) The energy released in the ionization of the atoms of the metal
(d) Collisions of the conduction electrons with the atoms of the metallic wire
16. An ionization chamber with parallel conducting plates as anode and cathode has 5×10^{7} electrons and the same number of singly-charged positive ions per cm^{3}. The electrons are moving at $0.4 \mathrm{~m} / \mathrm{s}$. The current density from anode to cathode is $4 \mu A / m^{2}$. The velocity of positive ions moving towards cathode is
(a) $0.4 \mathrm{~m} / \mathrm{s}$
(b) $1.6 \mathrm{~m} / \mathrm{s}$
(c) Zero
(d) $0.1 \mathrm{~m} / \mathrm{s}$
17. A wire of resistance 5Ω is connected to a battery whose emf is $2 V$ and internal resistance 1Ω. In 2 minutes, the energy transferred from chemical to electric form is 80 J . Then
(a) Energy appearing as Joule heat in the wire is 80 J
(b) Energy appearing as Joule heat in the wire is 40 J
(c) 80 J are used to heat the wire and battery in equal proportio

(d) Due to internal resistance of battery, rate of Joule, heating in wire is about 67 J
18. A beam of electron is emitted from filament and accelerated by an electric field as shown in figure. The two stops at the left ensure that the electric beam has uniform cross
(a) The speed of the electron is more at B than at A
(b) The electric current is from left to right
(c) The magnitude of the current is larger at B than at A
(d) The current density is more at B than at A

19. Following figure shows four situations in which positive and negative charges moves horizontally through a region and gives the rate at which each charge moves. Rank the situations according to the effective current through the region greatest first

(a) $i=i i=i i i=i v$
(b) $i>i i>i i i>i v$
(c) $i=i i=i i i>i v$
(d) $i=i i=i i i<i v$
20. A straight conductor of uniform cross-section carries a current i. Let $s=$ specific charge of an electron. The momentum of all the free electrons per unit length of the conductor, due to their drift velocities only is
(a) is
(b) $\frac{i}{s}$
(c) $\sqrt{\frac{i}{s}}$
(d) $\left(\frac{i}{s}\right)^{2}$
21. The figure here shows a portion of a circuit. What are the magnitude and direction of the current in the lower right hand wire
(a) $8 A$, left ward
(b) $8 A$, right ward
(c) $9 A$ right ward
(d) $9 A$, left ward

Ohm's Law

Basic Level

22. The electric resistance of a certain wire of iron is R. If its length and radius are both doubled, then
(a) The resistance will be halved and the specific resistance will be doubled
(b) The resistance and the specific resistance, will both remain unchanged
(c) The resistance will be doubled and the specific resistance will be halved
(d) The resistance will be halved and the specific resistance will remain unchanged
23. The thermistor are usually made of
(a) Metal oxides with high temperature coefficient of resistivity

62 Current Electricity

(b) Metals with high temperature coefficient of resistivity
(c) Metals with low temperature coefficient of resistivity
(d) Semiconducting materials having low temperature coefficient of resistivity
24. A wire of length L is drawn such that it's diameter is reduced to half of it's original diameter. If the initial resistance of the wire were 10Ω. It's new resistance would be
(a) 40Ω
(b) 80Ω
(c) 120Ω
(d) 160Ω
25. Fuse wire is a wire of
[CBSE PMT 2003]
(a) High resistance and low melting point
(b) Low resistance and low melting point
(c) Low resistance and high melting point
(d) High resistance and high melting point
26. The length of a given cylindrical wire is increased by 100%. Due to the consequent decrease in diameter the change in the resistance of the wire will be
(a) 300%
(b) 200%
(c) 100%
(d) 50%
27. At ordinary temperatures, the electrical conductivity of semi-conductors in mho/meter is in the range
(a) 10^{3} to 10^{-4}
(b) 10^{6} to 10^{9}
(c) 10^{-6} to 10^{-10}
(d) 10^{-10} to 10^{-16}
28. The resistance of a wire of length l is R. the wire is starched to increase its length to $4 l$. The resistance of the wire will become
[MP PET 2003]
(a) $16 R$
(b) $\frac{R}{4}$
(c) $\frac{R}{16}$
(d) $4 R$
29. We have two wires A and B of same mass and same material. The diameter of the wire A is half of that B. If the resistance of wire A is 24 ohm then the resistance of wire B will be
(a) 12 ohm
(b) 3.0 ohm
(c) 1.5 ohm
(d) None of these
30. A fuse wire with radius 1 mm blows at 1.5 ampere. The radius of the fuse wire of the same material to blow at 3 A will be
[KCET 2003]
(a) $4^{1 / 3} \mathrm{~mm}$
(b) $3^{1 / 4} \mathrm{~mm}$
(c) $2^{1 / 3} \mathrm{~mm}$
(d) $3^{1 / 2} \mathrm{~mm}$
31. A strip of copper and another of germanium are cooled from room temperature to $80 K$. The resistance of
[AIEEE 2003; Similar to CBSE PMT 2001]
(a) Each of these increases
(b) Each of these decreases
(c) Copper strip increases and that of germanium decreases
(d) Copper strip decreases and that of germanium increases
32. A carbon resistance is having a following coding green, orange, black, gold. The resistance of resistor is
(a) $53 \times 10^{\circ} \pm 5 \%$
(b) $53 \times 10^{1} \pm 5 \%$
(b) $53 \times 10^{\circ} \pm 10 \%$
(d) $53 \times 10 \pm 10 \%$
33. A wire of radius r has resistance R. If it is stretched to a radius of $\frac{3 r}{4}$, its resistance becomes
(a) $\frac{9 R}{16}$
(b) $\frac{15 R}{9}$
(c) $\frac{81 R}{256}$
(d) $\frac{256 R}{81}$
34. The resistance of a conductor increases with
[CBSE PMT 2002]
(a) Increase in length
(b) Increase in temperature
(c) Decrease in cross-section
(d)
All of these

Current Electricity 63

35. A uniform resistance wire of length L and diameter d has a resistance R. Another wire of same material has length $4 L$ and diameter $2 d$, the resistance will be
(a) $2 R$
(b) R
(c) $\frac{R}{2}$
(d) $\frac{R}{4}$
36. By increasing the temperature, the specific resistance of a conductor and semiconductor
(a) Increases for both
(b) Decreases for both
(c) Increases, decreases
(d) Decreases for both
37. The resistance of an incandescent lamp is
[KCET 2002]
(a) Greater when switched off
(b)
Smaller when switched on
(c) The same whether it is switched off or switched on
(d) None of these
38. A wire of length 100 cm is connected to a cell of emf $2 V$ and negligible internal resistance. The resistance of the wire is 3Ω. The additional resistance required to produce a potential drop of 1 milli volt per cm is [Kerala PET 2002
(a) 60Ω
(b) 47Ω
(c) 57Ω
(d) 35Ω
39. Which of the following does not obey Ohm's law
[AFMC 2001]
(a) Copper
(b) Aluminium
(c) Diode-valve
(d) None of these
40. If a wire of resistance R is melted and recasted to half of its length, then the new resistance of the wire will be[KCET (
(a) $R / 4$
(b) $R / 2$
(c) R
(d) $2 R$
41. The resistance of a wire is R. If the length of the wire is doubled by stretching, then the new resistance will be
[MP PET 2001; UPSEAT 2000; Haryana CET 2000; CPMT 1999; CBSE 1999; AFMC 1995; KCET 1993; Roorkee 1992]
(a) $2 R$
(b) $4 R$
(c) R
(d) $\frac{R}{4}$
42. A uniform wire of resistance R is uniformly compressed along its length, until its radius becomes n times the original radius. New resistance of the wire becomes
(a) $\frac{R}{n^{4}}$
(b) $\frac{R}{n^{2}}$
(c) $\frac{R}{n}$
(d) $n R$
43. At what temperature will the resistance of a copper wire become three times its value at $0^{\circ} \mathrm{C}$? (Temperature coefficient of resistance for copper $=4 \times 10^{-3}$ per $^{\circ} \mathrm{C}$)
(a) $400^{\circ} \mathrm{C}$
(b) $450^{\circ} \mathrm{C}$
(c) $500^{\circ} \mathrm{C}$
(d) $550^{\circ} \mathrm{C}$
44. The resistance of a conductor is 5 ohm at $50^{\circ} \mathrm{C}$ and 6 ohm at $100^{\circ} \mathrm{C}$. Its resistance at $0^{\circ} \mathrm{C}$ is
(a) 1 ohm
(b) 2 ohm
(c) 3 ohm
(d) 4 ohm
45. The lead wires should have
(a) Larger diameter and low resistance
(b) Smaller diameter and high resistance
(c) Smaller diameter and low resistance
(d) Larger diameter and high resistance
46. Identify the set in which all the three materials are good conductor of electricity
[CPMT 2000]
(a) $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$
(b) Cu, Si, Diamond
(c) $\mathrm{Cu}, \mathrm{Hg}, \mathrm{NaCl}$
(d) $\mathrm{Cu}, \mathrm{Ge}, \mathrm{Hg}$
47. When a piece of aluminium wire finite length is drawn through a series of dies to reduce its diameter to half its original value, its resistance will become
(a) Two times
(b) Four times
(c) Eight times
(d) Sixteen times
48. The resistance of a coil is 4.2Ω at $100^{\circ} \mathrm{C}$ and the temperature coefficient of resistance of its material is $0.004 /{ }^{\circ} \mathrm{C}$. Its resistance at $0^{\circ} \mathrm{C}$ is
(a) 6.5 C
(b) 5Ω
(c) 3Ω
(d) 4Ω
49. The resistivity of a wire depends on its
(a) Length
(b) Area of cross-section
(c) Shape
(d) Material

64 Current Electricity

50. Two wires A and B of same material and same mass have radius $2 r$ and r. If resistance of wire A is 34Ω, then resistance of B will be
[RPET 1997]
(a) 544Ω
(b) 272Ω
(c) 68Ω
(d) 17Ω
51. When a potential difference is applied across the ends of a linear metallic conductor
(a) The free electrons are accelerated continuously from the lower potential end to higher potential end
(b) The free electrons are accelerated continuously from the higher potential end to lower potential end
(c) The free electrons acquire a constant drift velocity from the lower potential end to the higher potential end
(d) The free electrons are set in motion from their position of rest
52. For a metallic wire, the ratio $V / i(V=$ the applied potential difference, $i=$ current flowing $)$ is
(a) Independent of temperature
(b) Increases as the temperature rises
(c) Decreases as the temperature rises
(d) Increases or decreases as temperature rises, depending upon the metal
53. If the resistivity of a potentiometer wire be ρ and area of cross-section be A, then what will be potential gradient along the wire
[RPET 1996]
(a) $\frac{i \rho}{A}$
(b) $\frac{i}{A \rho}$
(c) $\frac{i A}{\rho}$
(d) $i A \rho$
54. A wire of 50 cm long and $1 \mathrm{~mm}^{2}$ in cross-sectional area carries a current $4 A$ when connected to a $2 V$ battery. The resistivity of the wire is
(a) $2 \times 10^{-7} \Omega \mathrm{~m}$
(b) $5 \times 10^{-7} \Omega \mathrm{~m}$
(c) $4 \times 10^{-6} \Omega m$
(d) $1 \times 10^{-6} \Omega m$
55. A metal wire of specific resistance $64 \times 10^{-6} \Omega \mathrm{~cm}$ and length 198 cm has resistance of 7Ω. The radius of the wire will be
[MP PET 1994]
(a) 2.4 cm
(b) 0.24 cm
(c) 0.024 cm
(d) 24 cm
56. Two wires of the same material are given. The first wire is twice as long as the second and has twice the diameter of the second. The resistance of the first will be
(a) Twice of the second
(b) Half of the second
(c) Equal to the second
(d) Four times of the second
57. There is a current of 1.344 amp in a copper wire whose area of cross-section normal to the length of the wire is $1 \mathrm{~mm}^{2}$. If the number of free electrons per cm^{3} is 8.4×10^{22}, then the drift velocity would be
(a) $1.0 \mathrm{~mm} / \mathrm{sec}$
(b) $1.0 \mathrm{~m} / \mathrm{sec}$
(c) $0.1 \mathrm{~mm} / \mathrm{sec}$
(d) $0.01 \mathrm{~mm} / \mathrm{sec}$
58. A battery of 6 volts is connected to the terminals of a three metre long wire of uniform thickness and resistance of the order 100Ω. The difference of potential between two points separated by 50 cm on the wire will be
(a) 1 V
(b) 1.5 V
(c) $2 V$
(d) 3 V
59. The resistance of 20 cm long wire is 5 ohm . The wire is stretched to a uniform wire of 40 cm length. The resistance now will be (in ohms)
(a) 5
(b) 10
(c) 20
(d) 200
60. A minimum resistance is to be prepared from a copper wire, its length and diameter should be

Current Electricity 65

(a) l and d
(b) $2 l$ and d
(c) $l / 2$ and $2 d$
(d) $2 l$ and $d / 2$
61. The specific resistance of a wire is ρ, its volume is $3 m^{3}$ and its resistance is 3 ohms, then its length will be
(a) $\sqrt{\frac{1}{\rho}}$
(b) $\frac{3}{\sqrt{\rho}}$
(c) $\frac{1}{\rho} \sqrt{3}$
(d) $\rho \sqrt{\frac{1}{3}}$
62. Value of resistance shown in the figure is
[CPMT 1983]
(a) 1500 mega ohms
(b) 150 mega ohms
(c) 15000 mega ohms
(d) 15 mega ohms

63. Read the following statements carefully
Y : The resistivity of a semiconductor decreases with increase of temperature
Z : In a conducting solid, rate of collisions between free electrons and ions increases with increases of temperature

Select the correct statements (s) from the following
(a) Y is true but Z is false
(b) Y is false but Z is true
(c) Both Y and Z are true
(d) Y is true and Z is the correct reason for Y
64. The figure shows three cylindrical copper conductors along with their face areas and lengths. Rank them according to the current through them greatest first. When the same potential difference V is applied across their length

(a) (i) $>$ (ii) $>$ (iii)
(b) (i) $<$ (ii) $<$ (iii)
(c) (ii) $>$ (iii) $>$ (i)
(d) (i) $>$ (iii) $>$ (ii)

Advance Level

65. Express which of the following setups can be used to verify Ohm's law
(a)

(b)

(c)

(d)

66. A rod of a certain metal is 1.0 m long and 0.6 cm in diameter. It's resistance is $3 \times 10^{-3} \Omega$. Another disc made of same metal is 2.0 cm in diameter and 1.00 mm in thick. What is the resistance between the round faces of the disc
[MP PET 2000]
(a) $1.35 \times 10^{-8} \Omega$
(b) $2.7 \times 10^{-7} \Omega$
(c) $4.05 \times 10^{-6} \Omega$
(d) $8.1 \times 10^{-5} \Omega$
67. Two wires of brass of diameter 1 mm and 2 mm have equal weight. Their electrical resistance will be in the ratio
(a) $16: 1$
(b) $1: 16$
(c) 14
(d) $4: 1$
68. The resistance of a wire of iron is 10 ohms and temperature coefficient of resistivity is $5 \times 10^{3} /{ }^{\circ} \mathrm{C}$. At $20^{\circ} \mathrm{C}$ it carries 30 millamperes of current. Keeping constant potential difference between its ends, the temperature of the wire is raised to $120^{\circ} \mathrm{C}$. The current in milliamperes that flows in the wire is
(a) 20
(b) 15
(c) 10
(d) 40
69. Resistances $A B$ and $C D$ are connected in a circuit in which current is flowing. The positions of A, B, C and D points are kept such that no current flows through the resistance $A B$ and $C D$. If $A B$ and $C D$ are connected with $E F$ then
(a) No current will flows in $E F$
(b) Current will flow from F to E
(c) Current will flow from E to F and the potential of E will be equal to that

(d) Current will flow from E to F and the potential of E is less than the potential of A or B
70. In an experiment, a graph was plotted of the potential difference V between the terminals of a cell against the circuit current i by varying load rheostat. Internal conductance of the cell is given by
(a) $x y$
(b) $\frac{y}{x}$
(c) $\frac{x}{y}$
(d) $(x-y)$

71. An aluminium rod and a copper rod are taken such that their lengths are same and their resistances are also same. The specific resistance of copper is half that of aluminium, but its density is three times that of aluminium. The ratio of the mass of aluminum rod and that of copper rod will be
(a) $\frac{1}{6}$
(b) $\frac{2}{3}$
(c) $\frac{1}{3}$
(d) 6
72. All the edges of a block with parallel faces are unequal. It's longest edge is twice its shortest edge. The ratio of the maximum to minimum resistance between parallel faces is
(a) 2
(b) 4
(c) 8
(d) Indeterminate unless the length of the third edge is
specified40
73. The resistivity of the materials used for making the block shown along with is $5 \times 10^{5} \mathrm{ohm}-\mathrm{m}$. The ratio of the resistances across faces $A B C D$ and $E F G H$ to that acroce faroc $\triangle F H n$ and $R E C R$ ic
(a) $1: 1$
(b) $10: 1$
(c) $1: 100$
(d) $100: 1$

74. A and B are two square plates of same metal and same thickness but length of B is twice that of A. Ratio of resistances of A and B is
(a) $4: 1$
(b) $1: 4$
(c) $1: 1$
(d) $1: 2$

Grouping of resistance

Basic Level

75. A wire has a resistance of 6Ω. It is cut into two parts and both half values are connected in parallel. The new resistance is
[KCET 2004]
(a) 6Ω
(b) 3Ω
(c) 1.5Ω
(d) 12Ω
76. An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii of the wires are in the ratio of $\frac{4}{3}$ and $\frac{2}{3}$, then the ratio of the currents passing through the wires will be
[AIEEE 2004]
(a) $8 / 9$
(b) $1 / 3$
(c) 3
(d) 2
77. The total current supplied to the circuit by the batterv is
(a) 4 A
(b) 2 A
(c) 1 A
(d) 6 A

78. Resistances n, each of r ohm, when connected in parallel give an equivalent resistance of R ohm. If these resistances were connected in series, the combination would have a resistance in ohms, equal to
(a) R / n
(b) $n R$
(c) $n^{2} R$
(d) R / n^{2}
79. A 3 volt battery with negligible internal resistance is connected in a circuit as shown in the figure. The current, i, in the circuit will be
(a) $1 / 3 A$

68 Current Electricity

(b) $1 A$
(c) 1.5 A
(d) 2 A
80. In a Wheatstone's bridge all the four arms have equal resistance R. If the resistance of the galvanometer arm is also R, the equivalent resistance of the combination as seen by the battery is
(a) $\frac{R}{2}$
(b) R
(c) 2 R
(d) $\frac{R}{4}$
81. The equivalent resistance of the following diagram between A and B is
(a) $\frac{2}{4} \Omega$
(b) 9Ω
(c) 6Ω
(d) None of these

82. Two wires of the same dimensions but resistivities ρ_{1} and ρ_{2} are connected in series. The equivalent resistivity of the combination is
[KCET 2003]
(a) $\rho_{1}+\rho_{2}$
(b) $\frac{\rho_{1}+\rho_{2}}{2}$
(c) $\sqrt{\rho_{1} \rho_{2}}$
(d) $2\left(\rho_{1}+\rho_{2}\right)$
83. The potential difference between point A and B is
[BHU 2003]
(a) $\frac{20}{7} \mathrm{~V}$
(b) $\frac{40}{7} \mathrm{~V}$
(c) $\frac{10}{7} \mathrm{~V}$

(d) 0
84. Three resistors are connected to form the sides of a triangle $A B C$, the resistance of the sides $A B, B C$ and $C A$ are 40 ohms; 60 ohms and 100 ohms respectively. The effective resistance between the points A and B in ohms will be
[JIPMER 2002]
(a) 32
(b) 64
(c) 50
(d) 200
85. In the circuit shown below, what is the value of unknown resistance R so that the total resistance between P and Q is also equal to R
(a) 3Ω
(b) $\sqrt{39} \Omega$
(c) $\sqrt{69} \Omega$
(d) 10Ω

[MP PET 2001]
86. A uniform wire of resistance 9Ω is cut into 3 equal parts. They are connected in the form of equilateral triangle $A B C$. A cell of emf $2 V$ and negligible internal resistance is connected across B and C. Potential difference across $A B$ is
[Kerala (Engg.) 2001]

Current Electricity 69

(a) 1 V
(b) 2 V
(c) 3 V
(d) 0.5 V
87. In the given circuit it is observed that the current i is independent of the value of the resistance R_{6}. Then the resistance values must satisfy
(a) $R_{1} R_{2} R_{5}=R_{3} R_{4} R_{6}$
(b) $\frac{1}{R_{5}}+\frac{1}{R_{6}}+\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}+R_{4}}$
(c) $R_{1} R_{4}=R_{2} R_{3}$
(d) $R_{1} R_{3}=R_{2} R_{4}$

88. Two resistance wires on joining in parallel, the resultant resistance is $\frac{6}{5} \Omega$. One of the wire breaks. The effective resistance is 2Ω. The resistance of the brokes wire was
(a) $\frac{3}{5} \Omega$
(b) 2Ω
(c) $\frac{6}{5} \Omega$
(d) 3Ω
89. $A B$ is a wire of uniform resistance. The galvanometer G shows no current when the length $A C=20 \mathrm{~cm}$ and $C B=80 \mathrm{~cm}$. The resistance R is equal to
(a) 2Ω
(b) 8Ω
(c) 20Ω
(d) 40Ω

90. In the following figure potential difference between
(a) 0
(b) 5 volt
(c) 10 volt
(d) 15 volt

91. In the circuit shown in figure, the current drawn from the battery is $4 A$. If 10Ω resistor is replaced by 20Ω resistor, the current further drawn from the circuit v
(a) 1 A
(b) $2 A$
(c) $3 A$
(d) $O A$

92. In the following figure current flowing through $B D$ is

[RPET 2000; DCE 2001]
(a) 0
(b) $0.033 A$
(c) 0.066 A
(d) None of these

70 Current Electricity

93. The resistors of resistances $2 \Omega, 4 \Omega$ and 8Ω are connected in parallel, then the equivalent resistance of the combination will be
[KCET (Engg./Med.) 2001]
(a) $\frac{8}{7} \Omega$
(b) $\frac{7}{8} \Omega$
(c) $\frac{7}{4} \Omega$
(d) $\frac{4}{9} \Omega$
94. Two resistance r_{1} and $r_{2}\left(r_{1}<r_{2}\right)$ are connected in parallel. Their equivalent resistance R is
(a) $R<r_{1}$
(b) $r_{1}<R<r_{2}$
(c) $r_{2}<R<\left(r_{1}+r_{2}\right)$
(d) $R>\left(r_{1}>r_{2}\right)$
95. Three resistances $R, 2 R$ and $3 R$ are connected in parallel to a battery. Then
[REE 2000]
(a) The current through each resistance is same
(b) The potential drop across resistance $2 R$ is maximum
(c) The heat developed in resistance $3 R$ is maximum
(d) The heat developed in resistance R is maximum
96. Two wires of equal diameters of resistivity ρ_{1}, ρ_{2} and length x_{1}, x_{2} respectively are joined in series. The equivalent resistivity is
[EAMCET 2000]
(a) $\frac{\rho_{1} x_{1}+\rho_{2} x_{2}}{x_{1}+x_{2}}$
(b) $\frac{\rho_{1} x_{1}-\rho_{2} x_{2}}{x_{1}-x_{2}}$
(c) $\frac{\rho_{1} x_{2}+\rho_{2} x_{2}}{x_{1}+x_{2}}$
(d) $\frac{\rho_{1} x_{1}-\rho_{2} x_{2}}{x_{1}-x_{2}}$
97. 10 wires (same length, same area, same material) are connected in parallel and each has 1Ω resistance, then the equivalent, resistance will be
(a) 10Ω
(b) 1Ω
(c) 0.1Ω
(d) 0.001Ω
98. A wire of resistance R is cut into ' n ' equal parts. These parts are then connected in parallel. The equivalent resistance of the combination will be
(a) $n R$
(b) $\frac{R}{n}$
(c) $\frac{n}{R}$
(d) $\frac{R}{n^{2}}$
99. What is the current (i) in the circuit as shown in figu
[AIIMS 1998]
(a) $2 A$
(b) 1.2 A
(c) 1 A
(d) 0.5 A

100. In the given figure, when galvanometer shows no deflection, the current (in ampere) flowing through 5Ω resistance will be
(a) 0.5
(b) 0.6
(c) 0.9
(d) 1.5

[SCRA 1996, 94]
101. There is no current in 2Ω resistance, then the equivalent resistance of the given circuit is
(a) 10Ω

(b) $\frac{30}{10} \Omega$
(c) $\frac{13}{7} \Omega$
(d) $\frac{7}{13} \Omega$
102. A copper wire of resistance R is cut into ten parts of equal length. Two pieces each are joined in series and then five such combinations are joined in parallel. The new combination will have a resistance
(a) R
(b) $\frac{R}{4}$
(c) $\frac{R}{5}$
(d) $\frac{R}{25}$
103. A student has 10 resistors of resistance ' r '. The minimum resistance made by him from given resistors is
(a) $10 r$
(b) $\frac{r}{10}$
(c) $\frac{r}{100}$
(d) $\frac{r}{5}$
104. In the figure give below, the current passing through 6Ω resistor is
(a) 0.40 amp
(b) 0.48 amp
(c) 0.72 amp
(d) 0.90 amp

105. A uniform wire of 16Ω resistance is made into the form of a square. Two opposite corners of the square are connected by a wire of resistance 16Ω. The effective resistance between the other two opposite corners is
(a) 32Ω
(b) 16Ω
(c) 8Ω
(d) 4Ω
106. A resistor of 0.5Ω is connected to another resistor in parallel combination to get an equivalent resistance of 0.1 Ω. The resistance of the second resistor is
(a) 8Ω
(b) $\frac{1}{8} \Omega$
(c) 0.6Ω
(d) 0.2Ω
107. Four wires $A B, B C, C D, D A$ of resistance 4 ohm each and a fifth wire $B D$ of resistance 8 ohm are joined to form a rectangle $A B C D$ of which $B D$ is a diagonal. The effective resistance between the points A and B is
(a) 24 ohm
(b) 16 ohm
(c) $\frac{4}{3} \mathrm{ohm}$
(d) $\frac{8}{3} \mathrm{ohm}$
108. n equal resistors are first connected in series and then connected in parallel. What is the ratio of the maximum to the minimum resistance
[KCET 1994]
(a) n
(b) $\frac{1}{n^{2}}$
(c) n^{2}
(d) $\frac{1}{n}$
109. Four resistances are connected in a circuit in the given figure. The electric current flowing through 4 ohm and 6 ohm resistance is respectively
(a) $2 a m p$ and $4 a m p$
(b) 1 amp and 2 amp
(c) 1 amp and 1 amp
(d) $2 a m p$ and $2 a m p$

110. The potential difference between points A and B of adjoining figure is

72 Current Electricity

(a) $\frac{2}{3} V$
(b) $\frac{8}{9} V$
(c) $\frac{4}{3} \mathrm{~V}$

(d) $2 V$
111. Resistances of 6 ohm each are connected in the manner shown in adjoining figure. With the current 0.5 ampere as shown in figure, the potential difference $V_{P}-V_{Q}$ is
(a) 3.6 V
(b) 6.0 V
(c) 3.0 V
(d) 7.2 V

112. The current from the battery in circuit diagram show… ${ }^{\text {in }}$
(a) 1 A
(b) 2 A
(c) 1.5 A

(d) $3 A$
113. In the given figure, when key k is opened, the reading of the ammeter A will be
[MP PMT 1985]
(a) 50 A
(b) $2 A$
(c) 0.5 A
(d) $\frac{10}{9} \mathrm{~A}$

114. Two resistors are connected (a) in series (b) in parallel. The equivalent resistance in the two cases are 9 ohm and 2 ohm respectively. Then the resistances of the component resistors are
(a) 2 ohm and 7 ohm
(b) 3 ohm and 6 ohm
(c) 3 ohm and 9 ohm
(d) 5 ohm and 4 ohm
115. If the equivalent resistance between the points A and B in the following circuit is 5Ω, then the value of R will
(a) 5Ω
(b) 7Ω
(c) 9Ω
(d) 11Ω

Advance Level

116. Six equal resistance are connected between point P, Q and R as shown in the figure. Then the net resistance will be maximum between
(a) P and Q
(b) Q and R
(c) P and R
(d) Any two points

IIT-JEE (Screening) 2004]
117. Five equal resistances each of resistance R are connected as shown in the figure. A battery of V volts is connected between A and B. The current flowing in $A F C E B$ will be
(a) $\frac{V}{2 R}$
(b) $\frac{2 V}{R}$
(c) $\frac{3 V}{R}$
(d) $\frac{V}{R}$

118. The resistance of the series combination of two resistances is S. When they are joined in parallel the total resistance is P. If $S=n P$ then the Minimum possible value of n is
(a) 2
(b) 3
(c) 4
(d) 1
119. The three resistance of equal value are arranged in the different combinations shown below. Arrange them in increasing order of power dissipation

$\stackrel{i}{\rightarrow-W W-W W-W W}$

(I)

(II)

(III

(IV)
(a) III $<$ II $<$ IV $<$ I
(b) II $<$ III $<$ IV $<$ I
(c) I $<$ IV $<$ III $<$ II
(d) I < III < II < IV
120. In a typical Wheatstone network the resistances in cyclic order are $A=10 \Omega, B=10 \Omega, C=4 \Omega$ and $D=4 \Omega$. For the bridge to be balanced
(a) 10Ω should be connected in parallel with A
(b) 10Ω should be connected in series with A
(c) 5Ω should be connected in series with B

[KCET (Engg.) 2000]

74 Current Electricity

(d) 5Ω should be connected in parallel with B
121. If in the circuit shown, the internal resistance of the battery is 1.5Ω and V_{P} and V_{Q} are the potentials at P \& Q respectively what is the potential difference betweer
(a) Zero
(b) 4 volts $\left(V_{P}>V_{Q}\right)$
(c) 4 volt $\left(V_{Q}>V_{P}\right)$
(d) $2.5 \operatorname{volt}\left(V_{Q}>V_{P}\right)$

122. A wire of resistance 10Ω is bent to form a circle, P and Q are points on the circumference of the circle dividing it into a quadrant and are connected to a battery of $3 V$ and internal resistance 1Ω as shown in the figure. The currents in the two parts of the circle are
[REE 1999]
(a) $\frac{6}{23} \mathrm{~A}$ and $\frac{18}{23} \mathrm{~A}$
(b) $\frac{5}{26} A$ and $\frac{15}{26} A$
(c) $\frac{4}{25} \mathrm{~A}$ and $\frac{12}{25} \mathrm{~A}$
(d) $\frac{3}{25} A$ and $\frac{9}{25} A$
123. If the current through 3Ω resistor is o.8 A then the potential drop through 4Ω resistor is
(a) 9.6 V
(b) 4.8 V
(c) 2.6 V
(d) 2.2 V

124. Potential difference between the points P and Q in the electric circuit shown is
[KCET (Engg./Med.) 1999]
(a) 4.5 V
(b) 1.1 V
(c) 2.4 V
(d) 2.88 V

125. Five equal resistance each of value R are connected in a form shown alongside. The equivalent resistance of the network
[REE 1999]
(a) Between the points B and D is R
(b) Between the points B and D is $\frac{R}{2}$

Current Electricity 75

(c) Between the points A and C is R
(d) Between the points A and C is $\frac{R}{2}$
126. In the Wheatstone's bridge shown $P=2 \Omega, Q=3 \Omega, R=6 \Omega$ and $S=8 \Omega$. In order to obtain balance, shunt resistance across S must be
(a) 2Ω
(b) 3Ω
(c) 6Ω
(d) 8Ω

127. In the circuit shown in the figure, the current through
[IIT-JEE 1998]
(a) The 3Ω resistor is $0.5 A$
(b) The 3Ω resistor is $0.25 A$
(c) The 4Ω resistor is $0.5 A$
(d) The 4Ω resistor is $0.25 A$

128. Two resistances R_{1} and R_{2} are made of different materials. The temperature coefficient of the material of R_{1} is α and of the materials of R_{2} is $-\beta$. The resistance of the series combination of R_{1} and R_{2} will not change with temperature, if R_{1} / R_{2} equals
[MP PMT 1997]
(a) $\frac{\alpha}{\beta}$
(b) $\frac{\alpha+\beta}{\alpha-\beta}$
(c) $\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$
(d) $\frac{\beta}{\alpha}$
129. The potential difference across 8 ohm resistance is 48 volt as shown in the figure. The value of potential difference across X and Y points will be
(a) 160 volt
(b) 128 volt
(c) 80 volt
(d) 62 volt

130. In the figure given the value of X resistance will be, when the p.d. between B and D is zero
(a) 4 ohm
(b) 6 ohm
(c) 8 ohm
(d) 9 ohm

131. In the adjoining circuit, the emf of the cell is 2 volt and the internal resistance is negligible. The resistance of the voltmeter is 80 ohm . The reading of the voltmete

76 Current Electricity

(a) 0.80 volt
(b) 1.60 volt
(c) 1.33 volt
(d) 2.00 volt
132. In the figure shown, the capacity of the condenser C is $2 \mu F$. The current in 2Ω resistor is
(a) $9 A$
(b) 0.9 A
(c) $\frac{1}{9} \mathrm{~A}$
(d) $\frac{1}{0.9} \mathrm{~A}$

133. In the figure given below find the resistance between points A and B. Both the circle and diameter are made of uniform wire of resistance 1×10^{-4} ohm-metre. The le
(a) $2 / 3 \times 10^{-4} \Omega$
(b) $2 \pi / 3 \times 10^{-4} \Omega$
(c) $14.56 \times 10^{-4} \Omega$
(d) $0.88 \times 10^{-4} \Omega$

134. You are given several identical resistance each of 10Ω and each capable of carrying maximum current of 1 ampere. It is required to make a suitable combination of these resistances to produce a resistance of 5Ω which can carry a current of 4 ampere. The minimum number of resistance of required of such type is
(a) 4
(b) 10
(c) 8
(d) 20
135. The value of i in the following circuit diagram will be
(a) $\frac{3}{2} \mathrm{~A}$
(b) $\frac{3}{4} \mathrm{~A}$
(c) $\frac{1}{2} \mathrm{~A}$

(d) 1 A
136. In the following circuit the value of currents i_{A} and i_{P} ara
(a) $4 A, 3 A$
(b) $3 A, 4 A$
(c) $4 A, 4 A$
(d) $3 A, 3 A$
137. The emf of the battery shown in figure is

(a) 12 V
(b) 16 V
(c) 18 V
(d) 15 V
138. When the switch 1 is closed, the current through the 8Ω resistance is $0.75 A$. When the switch 2 is closed (only), the current through the 2Ω resistance is $1 A$.
(a) 5 V
(b) $5 \sqrt{2} V$
(c) 10 V

(d) 15 V
139. An ideal ammeter (zero resistance) is connected as shown. The reading of the ammeter is
(a) 0
(b) $\frac{E}{3 R}$
(c) $\frac{E}{5 R}$
(d) $\frac{E}{7 R}$

140. In the following circuit, bulb rated as $1.5 \mathrm{~V}, \mathrm{o} .45 \mathrm{~W}$. If bulbs glows with full intensity then what will be the equivalent resistance between X and Y
(a) 0.45Ω
(b) 1Ω
(c) 3Ω

(d) 5Ω

Basic Level

141. A 6 volt battery is connected to the terminals of a three metre long wire of uniform thickness and resistance of 100 ohm . The difference of potential between two points on the wire separated by a distance of 50 cm will be
(a) 1 volt
(b) 1.5 volt
(c) 2 volt
(d) 3 volt
142. n cells each of emf E and internal resistance r send the same current through an external resistance R, whether the cells are connected in series or in parallel. The
(a) $R=n r$
(b) $R=r$
(c) $r=n R$
(d) $R=n / R$

78 Current Electricity

143. In the circuit, if the forward voltage drop for the diode is $0.5 V$, the current will be
[UPSEAT 2003]
(a) 3.4 mA
(b) 2 mA
(c) 2.5 mA
(d) 3 mA

144. The potential difference between the terminals of a cenl 111 opencircult 152.2 VOtLS. With resistance of 5 ohm across the terminals of a cell, the terminal potential difference is 1.8 volt. The internal resistance of the cell is
(a) $\frac{10}{9} \mathrm{ohm}$
(b) $\frac{9}{10} \mathrm{ohm}$
(c) $\frac{12}{7} \mathrm{ohm}$
(d) $\frac{7}{12} \mathrm{ohm}$
145. By a cell a current of o.9 A flows through 2 ohm resistor and $0.3 A$ through 7 ohm resistor. The internal resistance of the cell is
[KCET (Engg./Med.) 2002 Similar to EAMCET 2001]
(a) 0.5Ω
(b) 1.0Ω
(c) 1.2Ω
(d) 2.0Ω
146. In the circuit, the potential difference across $P Q$ will be
(a) 9.6 V
(b) 6.6 V
(c) 4.8 V
(d) 3.2 V

147. A cell of emf E is connected with an external resistance R, then p.d. across cell is V. The internal resistance of cell will be
[MP PMT 2002; Kerala PMT 2002; MNR 1987]
(a) $\frac{(E-V) R}{E}$
(b) $\frac{(E-V) R}{V}$
(c) $\frac{(V-E) R}{V}$
(d) $\frac{(V-E) R}{E}$
148. A battery of emf 10 V and internal resistance 0.5 ohm is connected across a variable resistance R. The value of R for which the power delivered in it is maximum is given by
(a) 0.5 ohm
(b) 1.0 ohm
(c) 2.0 ohm
(d) 0.25 ohm
149. Two identical cells send the same current in 2Ω resistance, whether connected in series or in parallel. The internal resistance of the cell should be
(a) 1Ω
(b) 2Ω
(c) $\frac{1}{2} \Omega$
(d) 2.5Ω
150. There are three voltmeters of the same range but of resistances $10000 \Omega, 8000 \Omega$ and 4000Ω respectively. The best voltmeter among these is the one whose resistance is
(a) 10000Ω
(b) 8000Ω
(c) 4000Ω
(d) None of these
151. If an ammeter is to be used in place of a voltmeter the we must connect with the ammeter a
(a) Low resistance in parallel
(b)
High resistance in parallel
(c) High resistance in series
(d)
Low resistance in series

Current Electricity 79

152. A battery has emf $4 V$ and internal resistance r. When this battery is connected to an external resistance of 2 ohms, a current of 1 amp , flows in the circuit. How much current will flow if the terminals of the battery are connected directly

[MP PET 2001]

(a) 1 amp
(b) 2 amp
(c) 4 amp
(d) Infinite
153. The current in the given circuit is
(a) 0.1 A
(b) 0.2 A
(c) 0.3 A
(d) 0.4 A

154. The internal resistance of a cell of emf $12 V$ is $5 \times 10^{-2} \Omega$. It is connected across an unknown resistance. Voltage across the cell, when a current of $60 A$ is drawn from it, is
(a) 15 V
(b) 12 V
(c) 9 V
(d) 6 V
155. The internal resistance of a cell is the resistance of
[AIIMS 2001; BHU 2000, 1999]
(a) Electrodes of the cell
(b) Vessel of the cell
(c) Electrolyte used in the cell
(d)
Material used in the cell
156. Two cells each of emf E and internal resistance r are connected parallel across a resistor R. The power dissipated in the resistor is maximum if
(a) $R=r$
(b) $R=2 r$
(c) $R=\frac{3 r}{2}$
(d) $R=\frac{r}{2}$
157. A current of 2.0 amp passes through a cell of emf 1.5 volts having internal resistance of 0.15 ohm . The potential difference measured in, volts across both the ends of cell will be
(a) 1.35
(b) 1.50
(c) 1.00
(d) 1.20
158. If six identical cells each having an emf of $6 V$ are connected in parallel, the emf of the combination is
[CPMT 2000; Pb PMT 1999; EAMCET (Engg.) 1995]
(a) 1 V
(b) 36 V
(c) $\frac{1}{6} V$
(d) 6 V
159. Two non-ideal batteries are connected in parallel. Consider the following sets :
[MP PMT 1999]
(i) The equivalent emf is smaller than either of the emf
(ii) The equivalent internal resistance is smaller than either of the two internal resistance
(a) Both (i) \& (ii) are correct
(b)
(i) is correct but (ii) is wrong
(c) (ii) is correct but (i) is wrong
(d) Both (i) and (ii) are wrong
160. A storage cell is charged by 5 amp d.c. for 18 hours. Its strength after charging will be
(a) 18 AH
(b) 5 AH
(c) 90 AH
(d) 15 AH
161. In the shown circuit if key K is closed then what is the potential difference across A and B
(a) 50 V

80 Current Electricity

(b) 45 V
(c) 30 V
(d) 20 V
162. Six identical cells of emf E and internal resistance r are connected in parallel, then the net emf and internal resistance of the combination will be
(a) $6 E: 6 r$
(b) $E, \frac{r}{6}$
(c) $E, 6 r$
(d) $\frac{E}{6}, \frac{r}{6}$
163. When cells are arranged in parallel
(a) The current capacity decreases
(b)
The current capacity increases
(c) The emf increases
(d) The emf decreases
164. The number of dry cells, each of emf 1.5 volt and internal resistance 0.5 ohm that must be joined in series with a resistance of 20 ohm so as to send a current of 0.6 ampere through the circuit is
(a) 2
(b) 8
(c) 10
(d) 12
165. The electromotive force of a primary cell is 2 volts. When it is short-circuited it gives a current of 4 amperes. Its internal resistance in ohms is
(a) 0.5
(b) 5.0
(c) 2.0
(d) 8.0
166. Emf of a cell is 1.25 V and its internal resistance is 2Ω. Number of such cells are connected in series with a resistance of 30Ω, so that current in the circuit is $0.5 A$ is
(a) 30
(b) 60
(c) 45
(d) 20
167. A torch battery consisting of two cells of 1.45 volts and an internal resistance 0.15Ω, each cell sending currents through the filament of the lamps having resistance 1.5 ohms . The value of current will be
(a) 16.11 amp
(b) 1.611 amp
(c) 0.1611 amp
(d) 2.6 amp
168. A cell of emf $1.5 V$ having a finite internal resistance is connected to a load resistance of 2Ω. For maximum power transfer the internal resistance of the cell should be
(a) 4 ohm
(b) 0.5 ohm
(c) 2 ohm
(d) None of these
169. Two cells of equal emf and of internal resistances r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ are connected in series. On connecting this combination to an external resistance R, it is observed that the $p . d$. across the first cell becomes zero. The value of R will be
[MP PET 1985]
(a) $r_{1}+r_{2}$
(b) $r_{1}-r_{2}$
(c) $\frac{r_{1}+r_{2}}{2}$
(d) $\frac{r_{1}-r_{2}}{2}$
170. It is easier to start a car engine on a hot day than a cold day. This is because internal resistance of the car battery
(a) Decreases with rise in temperature
(b) Increases with rise in temperature
(c) Decreases with fall in temperature
(d) Non of the above
171. 36 identical cell each having emf 1.5 volt and internal resistance 0.5Ω are connected in series with an external resistance of 12Ω. If 8 cells are wrongly connected then current through the circuit will be
(a) 0.5 A
(b) 1 A
(c) 2 A
(d) 4 A

Advance Level

Current Electricity $\mathbf{8 1}$

172. Eels are able to generate current with biological cells called electroplaques. The electroplaques in an eel are arranged in 100 rows, each row stretching horizontally along the body of the fish containing 5000 electroplaques. The arrangement is suggestively shown below. Each electroplaques has an emf of 0.15 V and internal resistance of 0.25Ω

The water surrounding the eel completes a circuit between the head and its tail. If the water surrounding it has a resistance of 500Ω, the current an eel can produce in water is about.
(a) 1.5 A
(b) 3.0 A
(c) 15 A
(d) 30 A
173. A battery is charged at a potential of $15 V$ for 8 hours when the current flowing is $10 A$. the battery on discharge supplies a current of $5 A$ for 15 hours. The mean terminal voltage during discharge is $14 V$. The "Watt-hour" efficiency of the battery is [CBSE PMT 2004]
(a) 90%
(b) 87.5%
(c) 82.5%
(d) 80%
174. Consider four circuits shown in the figure below. In which circuit power dissipated s greatest ? (Neglect the internal resistance of the power supply)
(a)

(b)

(c)

(d)

175. In the steady state what will be the power dissipation in following circuit
(a) 1.5 W
(b) 2 W
(c) 1 W
(d) None of these

176. In the figure shows, the potential difference across $A B$ is 8.5 V . If the internal resistance of the battery is 1Ω, it's emf is
[BHU (Med.) 1999]
(a) 18 V
(b) 15 V

82 Current Electricity

(c) 9 V
(d) 6 V
177. Two batteries of emf $4 V$ and $8 V$ with internal resistance of 1Ω and 2Ω are connected in a circuit with resistance of 9Ω. The current and potential difference between the points A, B are
(a) $\frac{1}{3} A$ and $3 V$
(b) $\frac{1}{6} \mathrm{~A}$ and 4 V
(c) $\frac{1}{9} \mathrm{~A}$ and 9 V

(d) $\frac{1}{12} \mathrm{~A}$ and 12 V
178. When connected across the terminals of a cell, a voltmeter measures $5 V$ and a connected ammeter measures 10 A of current. A resistance of 2 ohms is connected across the terminals of the cell. The current flowing through this resistance will be
[MP PET 1999]
(a) 2.5 A
(b) 2.0 A
(c) 5.0 A
(d) 7.5 A
179. Two resistances R_{1} and R_{2} are joined as shown in the figure to two batteries of emf E_{1} and E_{2}. If E_{2} is shortcircuited, the current through R_{1} is
(a) E_{1} / R_{1}
(b) E_{2} / R_{1}
(c) E_{2} / R_{2}
(d) $E_{1} /\left(R_{2}+R_{1}\right)$

180. A battery is first connected in parallel to resistor R_{1} and then R_{2}. The value of R_{0} of internal resistance of battery for which heat released in external circuit be same in both cases is
(a) $\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
(b) $\sqrt{R_{1} R_{2}}$
(c) $R_{1} R_{2}$
(d) $\frac{R_{1} R_{2}}{2}$
181. If $V_{A B}=4 V$ in the given figure, then resistance X wil
(a) 5Ω
(b) 10Ω
(c) 15Ω
(d) 20Ω

182. Two identical cells of emf 1.5 V an internal resistance 1Ω are in series. A third cell of similar parameters is connected in parallel to the combination. The termin
(a) $1,1,2 V$
(b) $1.5,1.5,1.5 \mathrm{~V}$
(c) $1.5, \mathrm{o}, \mathrm{o} V$
(d) $2,1,1 \mathrm{~V}$

183. The resistor in which maximum heat will be produce

(a) 6Ω
(b) 2Ω
(c) 5Ω
(d) 4Ω
184. In the circuit shown the total power developed in the 4Ω and 8Ω resistors is 18 W . The power in watts developed in the 6Ω resistor is
(a) 6
(b) 12
(c) 8
(d) 18

185. A battery consists of a variable number ' n ' of identical cells having internal resistances connected in series. The terminals of battery are short circuited and the current i is measured. Which of the graph below shows the
(a)

(b)

(c)

(d)

186. n identical cells, each of emf E and internal resistance r, are joined in series to form a closed circuit. One cell (A) is joined with reversed polarity. The potential difference across each cell, except A is
(a) $\frac{2 E}{n}$
(b) $\frac{n-1}{n} E$
(c) $\frac{n-2}{n} E$
(d) $\frac{2 n}{n-2} E$
187. N identical cell are connected to form a battery. When the terminals of the battery are joined directly (shortcircuited), current i flows in the circuit. To obtain the maximum value of i
(a) All the cells should be joined in series
(b) All the cells should be joined in parallel
(c) Two rows of $\frac{N}{2}$ cells each should be joined in parallel
(d) \sqrt{N} rows of \sqrt{N} cells each should be joined in parallel, given that \sqrt{N} is an integer
188. In the given circuit current through the cell is
(a) $1 / 3 \mathrm{~A}$
(b) $2 / 3 \mathrm{~A}$
(c) $4 / 3 \mathrm{~A}$
(d) $5 / 3 A$

Basic Level

84 Current Electricity

189. Kirchoff's first and second laws in the electricity are the laws respectively of [Haryana CET 2000 Similar to RPET 2003]
(a) Energy and Momentum conservation
(b) Momentum and charge conservation
(c) Mass and charge conservation
(d) Charge and
energy conservation
190. The value of current i, in a section of complicated network is
(a) 1.3 A
(b) $2 A$
(c) 1 A
(d) 1.7 A

191. In the circuit shown in figure
(a) Current passing through 2Ω resistance is zero
(b) Current passing through 4Ω resistance is $5 A$
(c) Current passing through 5Ω resistance is $4 A$
(d) All of the above

192. Four identical batteries, each of emf E and internal resistance r are connected in series to form a closed loop, as shown in figure. Current through each battery and potential difference across each battery are respectively
(a) $\frac{4 E}{r} A m p$ and o volt
(b) o Amp and E volt
(c) $\frac{2 E}{r} A m p$ and o volt
(d) $\frac{E}{r}$ Amp and o volt

193. In the following circuit in steady state. Potential difference across capacitor will be
(a) 2.5 V
(b) 1.5 V
(c) 1 V
(d) $o V$

Advance Level

194. In the following circuit current i_{1} is

Current Electricity 85

(a) 0.4 A
(b) -0.4 A
(c) 0.8 A
(d) -0.8 A
195. The reading of ammeter in the adjoining diagram will
(a) $\frac{2}{17} \mathrm{~A}$
(b) $\frac{3}{11} \mathrm{~A}$
(c) $\frac{1}{13} \mathrm{~A}$
(d) $\frac{4}{15} A$

196. In the circuit shown in figure potential difference between points A and B is 16 V . The current passing through 2Ω resistance will be
(a) 2.5 A
(b) 3.5 A
(c) 4.0 A
(d) Zero

197. Current through wire $X Y$ of circuit shown is
(a) 1 A
(b) $4 A$
(c) $2 A$

(d) $3 A$
198. In the following part of a circuit, what will be the potential difference between A and B i.e. $\left(V_{B}-V_{A}\right)$
(a) $3 V$
(b) 15 V
(c) -5.1 V
(d) +5.1 V

Different Measuring Instrument's

Basic Level

86 Current Electricity

199. In a metre bridge experiment null point is obtained at 20 cm . from one end of the wire when resistance X is balanced against another resistance Y. If $X<Y$, then where will be the new position of the null point from the same end, if one decides to balance a resistance of $4 X$ against Y
(a) 40 cm
(b) 80 cm
(c) 50 cm
(d) 70 cm
200. An unknown resistance R_{1} is connected in series with a resistance of 10Ω. This combination is connected to one gap of a metre bridge while a resistance R_{2} is connected in the other gap. The balance point is at 50 cm . Now, when the 10Ω resistance is removed the balance position shifts to 40 cm . The value of R_{1} is (in ohm)
(a) 10
(b) 20
(c) 40
(d) 60
201. A galvanometer acting as a voltmeter will have
[CBSE PMT 2004; MP PET 2003]
(a) A low resistance in parallel with its coil
(b) A low resistance in series with its coil
(c) A high resistance in parallel with its coil
(d) A high resistance in series with its coil
202. The maximum current that can be measured by a galvanometer of resistance 40Ω is 10 mA . It is converted into a voltmeter that can read upto 50 V . The resistance to be connected in series with the galvanometer is \qquad ohm)
[KCET 2004]
(a) 4050
(b) 2010
(c) 4960
(d) 5040
203. An ammeter reads upto 1 ampere. Its internal resistance is 0.81 ohm . To increase the range to $10 A$ the value of the required shunt is
[AIEEE 2003]
(a) 0.09Ω
(b) 0.03Ω
(c) 0.3Ω
(d) 0.9Ω
204. The length of a wire of a potentiometer is 100 cm , and the e.m.f. of its standard cell is E volt. It is employed to measure the e.m.f. of a battery whose internal resistance is 0.5Ω. If the balance point is obtained at $l=30 \mathrm{~cm}$ from the positive end, the e.m.f. of the battery is
(a) $\frac{30 E}{100}$
(b) $\frac{30 E}{100.5}$
(c) $\frac{30 E}{(100-0.5)}$
(d) $\frac{30(E-0.5 i)}{100}$, where i is the current in the potentiometer wire
205. A cell of internal resistance 3 ohm and emf 1 volt is connected to a uniform wire of length 500 cm and resistance 3 ohm . The potential gradient in the wire is
(a) $30 \mathrm{mV} / \mathrm{cm}$
(b) $1 \mathrm{mV} / \mathrm{cm}$
(c) $20 \mathrm{mV} / \mathrm{cm}$
(d) $4 \mathrm{mV} / \mathrm{cm}$
206. In a meter bridge with standard resistance of 5Ω in the left gap the ratio of balancing lengths of meter bridge wire is $2: 3$. The unknown resistance is
(a) 1Ω
(b) 15Ω
(c) 7.5Ω
(d) 3.3Ω
207. An ammeter of 100Ω resistance gives full deflection for the current of $10^{-5} \mathrm{amp}$. Now the shunt resistance required to convert it into ammeter of 1 amp . range, will be
(a) $10^{-4} \Omega$
(b) $10^{-5} \Omega$
(c) $10^{-3} \Omega$
(d) $10^{-1} \Omega$
208. A potentiometer has uniform potential gradient. The specific resistance of the material of the potentiometer wire is 10^{-7} ohm-meter and the current passing through it is 0.1 ampere; cross-section of the wire is $10^{-6} \mathrm{~m}^{2}$. The potential gradient along the potentiometer wire is
[KCET 2003]
(a) $10^{-4} \mathrm{~V} / \mathrm{m}$
(b) $10^{-6} \mathrm{~V} / \mathrm{m}$
(c) $10^{-2} \mathrm{~V} / \mathrm{m}$
(d) $10^{-8} \mathrm{~V} / \mathrm{m}$

Current Electricity 87

209. To send 10% of the main current through a moving coil galvanometer of resistance 99 ohm , the shunt required is [KCET 2003]
(a) 99 ohm
(b) 10 ohm
(c) 11 ohm
(d) 9 ohm
210. When a 12Ω resistor is connected with a moving coil galvanometer then its deflection reduces from 50 divisions to 10 divisions. The resistance of the galvanometer is
(a) 24Ω
(b) 36Ω
(c) 48Ω
(d) 60Ω
211. The balanced wheatstone bridge is shown in figure. If P is made 11Ω then which of the following condition will not balance the wheatstone bridge again
(a) R increases by 2Ω
(b) Q increases by 10Ω
(c) S increases by 20Ω
(d) None of these

212. An ammeter and a voltmeter of resistance R are connected in series to an electric cell of negligible internal resistance. Their readings are A and V respectively. If another resistance R is connected in parallel with the voltmeter
[KCET (Engg./Med) 2002; EAMCET (Engg.) 2000]
(a) Both A and V will increase
(b)
Both A and V will decrease
(c) A will decreases and V will increase
(d) A will increase and V will decrease
213. 100 mA current gives a full scale deflection in a galvanometer of 2Ω resistance. The resistance connected with the galvanometer to convert it into a voltmeter to measure 5 V is
(a) 98Ω
(b) 52Ω
(c) 50Ω
(d) 48Ω
214. A galvanometer of resistance 20Ω is to be converted into an ammeter of range $1 A$. If a current of 1 mA produces full scale deflection, the shunt required for the purpose is
(a) 0.01Ω
(b) 0.05Ω
(c) 0.02Ω
(d) 0.04Ω
215. A 100 ohm galvanometer gives full scale deflection at 10 mA . How much shunt is required to read 100 mA
(a) 11.11 ohm
(b) 9.9 ohm
(c) 1.1 ohm
(d) 4.4 ohm
216. To convert a 800 mV range millivolt meter of resistance 40Ω into a galvanometer of 100 mA range, the resistance to be connected as shunt is
(a) 10Ω
(b) 20Ω
(c) 30Ω
(d) 40Ω
217. A milliameter having resistance of 2000Ω shows maximum deflection for a current of $200 \mu \mathrm{~A}$. If it is to be converted into a voltmeter with maximum deflection of $2 V$, the circuit to be drawn is

(b)

218. In a circuit 5 percent of total current passes through a galvanometer. If resistance of the galvanometer is G then value of the shunt is

88 Current Electricity

(a) $19 G$
(b) 20 G
(c) $\frac{G}{20}$
(d) $\frac{G}{19}$
219. A voltmeter having resistance of $50 \times 10^{3} \mathrm{ohm}$ is used to measure the voltage in a circuit. To increase the range of measurement 3 times the additional series resistance required is
(a) $10^{5} \mathrm{ohm}$
(b) 150 kilo ohm
(c) 900 kilo ohm
(d) $9 \times 10^{6} \mathrm{ohm}$
220. An ammeter gives full deflection when a current of 2 amp . flows through it. The resistance of ammeter is 12 ohms. If the same ammeter is to be used for measuring a maximum current of 5 amp ., then the ammeter must be connected with a resistance of
[MP PET 2001]
(a) 8 ohms is series
(b) 18 ohms in series
(c) 8 ohms in parallel
(d) 18 ohms in parallel
221. $A B$ is a potentiometer wire of length 100 cm and its resistance is 10 ohms. It is connected in series with a resistance $R=40 \mathrm{ohms}$ and a battery of emf 2 V and negligible internal resistance. If a source of unknown emf E is balanced by 40 cm length of the potention
(a) 0.8 V
(b) 1.6 V
(c) 0.08 V
(d) 0.16 V

222. The resistance of an ideal ammeter is
(a) Infinite
(b) Very high
(c) Small
(d) Zero
223. In the figure battery E is balanced on 55 cm length of potentiometer wire, but when a resistance of 10Ω is connected in parallel with the battery then it balances on 50 cm of length of potentiometer wire. The internal resistance of the battery (r) is
(a) 1Ω
(b) 3Ω
(c) 10Ω
(d) 5Ω

[RPET 2000]
224. In order to convert a milliammeter of range 1.0 mA and resistance 1.0 ohm into a voltmeter of range 10 V , a resistance of how many ohms should be connected with it and in what manner[MP PET 2000 Similar to Pb PMT 2000; MI
(a) 999 ohms in series
(b) 999 ohms in parallel
(c) 9,999 ohms in series
(d) 9,999 ohms in parallel
225. If an ammeter is connected in parallel to a circuit, it is likely to be damaged due to excess
(a) Current
(b) Voltage
(c) resistance
(d) All of these
226. Potentiometer is better then voltmeter because
(a) It depends upon zero deflection
[CBSE PMT 2000; UPSEAT 2000]
efficient of potentiometer is high
(c) It measures potential in open circuit
(d) It measures potential in close circuit
227. The resistance of a voltmeter should be large to ensure that
(a) It doesn't get overheated
(b) It doesn't draw excessive current
(c) It can measure large potential difference
(d) It doesn't appreciably change the potential difference to be measured
228. A voltmeter has a resistance of G ohms and range V volts. The value of resistance used in series to convert it into a voltmeter of range $n V$ volt is
(a) $n G$
(b) $(n-1) G$
(c) $\frac{G}{n}$
(d) $\frac{G}{n-1}$
229. In a meter bridge, the balancing length from the left end (standard resistance of one ohm is in the right gap) is found to be 80 cm . The value of the unknown resistance is
(a) 0.8Ω
(b) 0.5Ω
(c) 0.4Ω
(d) 0.25Ω
230. In a balanced whetstone's network, the resistances in the arms Q and S are interchanged. As a result of this
[KCET 1999]
(a) The galvanometer shows zero deflection
(b) The galvanometer and the cell must be interchanged for balance
(c) The network is still balanced
(d) The network is not balanced
231. $\frac{P}{Q}=\frac{R}{G}$. Potential at A is same as at B. When key K is pressed, the deflection in galvanometer G
(a) Remain same
(b) Increases
(c) Decreases
(d) Becomes zero

232. A potentiometer consist of a wire of length 4 m and resistance 10Ω. It is connected to a cell of emf $2 V$. The potential difference per unit length of the wire will be
(a) $0.5 \mathrm{~V} / \mathrm{m}$
(b) $2 \mathrm{~V} / \mathrm{m}$
(c) $5 \mathrm{~V} / \mathrm{m}$
(d) $10 \mathrm{~V} / \mathrm{m}$
233. The resistance of a ideal voltmeter is
(a) Zero
(b) Very low
(c) Very large
[MP PMT 1998; EAMCET (Med.)1995]
234. In meter bridge or wheatstone bridge for measurement of resistance, the known and unknown resistances are interchanged. The error so removed is
(a) End correction
(b) Index error
(c) Due to temperature effect
(d) Random error
235. In a potentiometer circuit there is a cell of emf 2 volt, a resistance of 5 ohm and a wire of uniform thickness of length 1000 cm and resistance 15 ohm . The potential gradient in the wire is
(a) $\frac{1}{500} \mathrm{~V} / \mathrm{cm}$
(b) $\frac{3}{2000} \mathrm{~V} / \mathrm{cm}$
(c) $\frac{3}{5000} \mathrm{~V} / \mathrm{cm}$
(d) $\frac{1}{1000} \mathrm{~V} / \mathrm{cm}$
236. Sensitivity of a potentiometer can be increased by
[MP PET 1994]
(a) Increasing the emf of the cell the potentiometer
Increasing the length of
(c) Decreasing the length of the potentiometer wire
(d) None of the above

90 Current Electricity

237. In an experiment of Wheatstone bridge, a null point is obtained at the centre of the bridge wire. When a resistance of 10Ω is connected in one gap, the value of resistance in other gap is
(a) 10Ω
(b) 5Ω
(c) $1 / 5 \Omega$
(d) 500Ω
238. A potentiometer is used for the comparison of emf of two cells E_{1} and E_{2}. For cell E_{1} the no deflection point is obtained at 20 cm and for E_{2} the no deflection point is obtained at 30 cm . The ratio of their emf's will be
(a) $2 / 3$
(b) $1 / 2$
(c) 1
(d) 2
239. The length of a potentiometer wire is 10 m . The distance between the null points on its wire corresponding to two cell comes out to be 60 cm . If the difference of emf's of the cells is 0.4 volt then the potential gradient on potentiometer will be
(a) $0.67 \mathrm{~V} / \mathrm{m}$
(b) $0.5 \mathrm{~V} / \mathrm{m}$
(c) $2.5 \mathrm{~V} / \mathrm{m}$
(d) $\mathrm{O} \mathrm{V} / \mathrm{m}$
240. If the radius of a potentiometer wire is increased 4 time, keeping its length constant then the value of potential gradient will become
(a) Four times
(b) Two times
(c) Half
(d) Constant
241. The adjoining diagram shows a potentiometer circuit to determine an unknown emf E. When the jockey makes contact at point A, the deflection is towards left. On moving the jockey from A to B, the deflection always remains towards left but goes on decreasing. This means that
(a) The unknown emf E is wrongly connected
(b) The main potentiometer battery is wrongly
(c) The unknown emf is less than the battery emf
(d) The unknown emf is greater than the battery emf

242. In using a Wheatstone bridge to determine an unknown resistance the battery key is always pressed first and galvanometer key is pressed thereafter. If the order of pressing of the keys is reversed, it can cause
(a) A damage to the battery
A damage to the unknown resistance
A decrease in the sensitivity of the bridge
243. A potentiometer is to be calibrated with a standard cell using the circuit shown in the diagram. The balance point is found to be near L. To improve accuracy the balance point should b
(a) Replacing the galvanometer with one of lower resistance
(b) Replacing the potentiometer wire one of higher resistance per unit len§
(c) Putting a shunt resistance in parallel with the galvanometer
(d) Increasing the resistance R

Advance Level

Current Electricity 91

244. A galvanometer of 50 ohm resistance has 25 divisions. A current of 4×10^{-4} ampere gives a deflection of one division. To convert this galvanometer into a voltmeter having a range of 25 volts, it should be connected with a resistance of
[CBSE PMT 2004]
(a) 2550Ω in series
(b) 2450Ω in series
(c) 2500Ω as a shunt
(d) 245Ω as a shunt
245. A galvanometer of resistance 36Ω is changed into an ammeter by using a shunt of 4Ω. The fraction i_{0} of total current passing through the galvanometer is
(a) $\frac{1}{40}$
(b) $\frac{1}{4}$
(c) $\frac{1}{140}$
(d) $\frac{1}{10}$
246. Two resistances of 400Ω and 800Ω are connected in series with 6 volt battery of negligible internal resistance. A voltmeter of resistance $10,000 \Omega$ is used to measure the potential difference across 400Ω. The error in the measurement of potential difference in volts approximately is
(a) 0.01
(b) 0.02
(c) 0.03
(d) 0.05
247. In the shown arrangement of the experiment of the meter bridge if $A C$ corresponding to null deflection of galvanometer is x, what would be its value if the radius of the wire $A B$ is doubled
(a) x
(b) $x / 4$
(c) $4 x$
(d) $2 x$

248. In the circuit shown here, the readings of the ammeter and voltmeter are
(a) $6 \mathrm{~A}, 60 \mathrm{~V}$
(b) $0.6 \mathrm{~A}, 6 \mathrm{~V}$
(c) $6 \mathrm{~A}, 6 \mathrm{~V}$
(d) $6 / 11 \mathrm{~A}, 60 / 11 \mathrm{~V}$

249. A voltmeter has range $o-V_{1}$, volt with a series resistance R. When the series resistance is increased to $2 R$, the range becomes o- V_{2} volt. The correct relation between V_{1} and V_{2} is
(a) $V_{2}=2 V_{1}$
(b) $V_{2}>2 V_{1}$
(c) $V_{2}<2 V_{1}$
(d) $V_{2}=\frac{3}{2} V_{1}$ exactly
250. A microammeter has a resistance of 100Ω and full scale range of $50 \mu A$. It can be used as a voltmeter or as a higher range ammeter provided a resistance is added to it. Pick the correct range and resistance combination[REE 200
(a) 50 V range with $10 \mathrm{k} \Omega$ resistance in series
(b) 10 V range with $200 \mathrm{k} \Omega$ resistance in series
(c) 10 mA range with $1 \mathrm{k} \Omega$ resistance in parallel
(d) 10 mA range with $0.1 \mathrm{k} \Omega$ resistance in parallel
251. In the circuit shown $P \neq R$, the reading of galvanometer is same with switch S is open or closed. Then
(a) $i_{R}=i_{G}$

92 Current Electricity

(b) $i_{P}=i_{G}$
(c) $i_{Q}=i_{G}$
(d) $i_{Q}=i_{R}$
252. In the diagram shown, the reading of voltmeter is $20 V$ and that of ammeter is $4 A$. The value of R should be [RPMT 199'
(a) Equal to 5Ω
(b) Greater from 5Ω
(c) Less than 5Ω
(d) Greater or less than 5Ω depends on the material

253. A battery of emf E is connected in series with three resistances $R, 2 R$ and $3 R$. The voltage across $2 R$ is measured with a voltmeter whose resistance is $10 R$, what is the percentage error
(a) $+11.76 \%$
(b) -11.76%
(c) $+5.88 \%$
(d) -5.88%
254. A potential difference of 220 V is maintained across a 12000 ohms rheostat $A B$ as shown in figure. The voltmeter V has a resistance of 6000 ohms and point C is at one fourth of the distance from A to B. What is the reading in the voltmeter
[IIT 1977]
(a) 20 V
(b) 40 V
(c) 60 V
(d) $o V$

255. A, B and C are voltmeter of resistances $R, 1.5 R$ and $3 R$ respectively. When some potential difference is applied between X and Y, the voltmeter readings are V_{A}, V_{B} a
(a) $V_{A}=V_{B}=V_{C}$
(b) $V_{A} \neq V_{B}=V_{C}$
(c) $V_{A}=V_{B} \neq V_{C}$
(d) $V_{B} \neq V_{A}=V_{C}$

256. In the following circuit diagram (figure), $E=4 V, r=1 \Omega$ and $R=45 \Omega$, then reading of the ammeter A will be
(a) 1 A
(b) $\frac{1}{2} \mathrm{~A}$
(c) $\frac{1}{8} \mathrm{~A}$
(d) $\frac{1}{4} \mathrm{~A}$

257. Consider the circuits shown in the figure. Both the circuits are taking same current from battery but current through R in the second circuit is $\frac{1}{10}$ th of current through R in the first circuit. If R is 11Ω, the value of R_{1} and R_{2}

(a) 9.9Ω
(b) 11Ω
(c) 8.8Ω
(d) 7.7Ω
258. In the circuit shown in figure when switch S_{1} is closed and S_{2} is open, the ideal voltmeter shows a reading 18 V . When switch S_{2} is closed and S_{1} is open, the reading of the voltmeter is 24 V . When S_{1} and S_{2} both are closed the voltmeter reading will be
(a) 14.4 V
(b) 20.6 V
(c) 24.2 V
(d) 10.8 V

259. A galvanometer of resistance 20Ω gives a full scale deflection when a current of $0.04 A$ is passed through it. It is desired to convert it into an ammeter reading $20 A$ in full scale. The only shunt available is 0.05Ω resistance. The resistance that must be connected in series with the coil of the galvanometer is
(a) 4.95Ω
(b) 5.94Ω
(c) 9.45Ω
(d) 12.62Ω
260. The length of a potentiometer wire is l. A cell of emf E is balanced at a length $\frac{l}{3}$ from the positive end of the wire. If the length of the wire is increased by $\frac{l}{2}$. At what distance will the same coil give a balance point
(a) $\frac{2 l}{3}$
(b) $\frac{l}{2}$
(c) $\frac{l}{6}$
(d) $\frac{4 l}{3}$
261. A milliammeter of range 10 mA and resistance 9Ω is joined in a circuit as shown. The ammeter gives full scale deflection for current i when A and B are used as its terminals, i.e., current enters at A and leaves at $B(C$ is left isolated). The value of i is
(a) 100 mA
(b) 900 mA
(c) 1 A
(d) 1.1 A

262. A battery of emf E volt is connected to a resistance network as shown in the figure. If the deflections in the galvanometers G_{1} and G_{2} are zero, then the ratio of emfs of cell E_{1} and E_{2} is
(a) $1: 1$
(b) $3: 2$
(c) $2: 1$
(d) $1: 2$

94 Current Electricity

263. In the given circuit ammeter and voltmeter are ideal and battery of 6 V has internal resistance 1Ω. The reading of voltmeter and ammeter is
(a) Zero, $\frac{4}{3} \Omega$
(b) $\frac{4}{3} \mathrm{~V}$, zero
(c) $6 \mathrm{~A}, 0.1 \mathrm{~A}$
(d) $3.6 \mathrm{~V}, 0.6 \mathrm{~A}$

Practice Networks (Find equivalent resistance between A and B)

Basic Level

1. [Kerala PMT 2003]

(a) 21.6Ω
(b) $\frac{24}{3} \Omega$
(c) 26Ω
(d) 36Ω
2. [BHU 2003]

(a) 2Ω
(b) 4Ω
(c) 8Ω
(d) 16Ω
3. [MP PMT 2002; RPMT 2000 Similar to MP PMT 2000 and NCERT 1974]

(a) 10Ω
(b) 40Ω
(c) 20Ω
(d) $\frac{5}{2} \Omega$
4. [BHU 2001; KCET (Engg.) 2001; MP PMT 1999]

(a) $\frac{10}{3} \Omega$
(b) $\frac{20}{3} \Omega$
(c) 15Ω
(d) 6Ω
5. [JIPMER 1999]

(a) 2 ohm
(b) 4 ohm
(c) $1 \frac{2}{3} \mathrm{ohm}$
(d) $2 \frac{2}{3} \mathrm{ohm}$
6. [AIIMS 1999]

(a) 8Ω
(b) 6Ω
(c) 4Ω
(d) 2Ω
7. [CPMT 1999]

(a) 8Ω
(b) 6Ω
(c) 5Ω
(d) 4Ω

8. [CET 1998]

(a) 6Ω
(b) 7Ω
(c) 8Ω
(d) 9Ω

9. [CPMT 1981]

(a) 2 ohm
(b) 18 ohm
(c) 6 ohm
(d) 3.6 ohm
10. [NCERT 1973, 75]

(a) $2 r$
(b) $4 r$
(c) $10 r$
(d) $5 r / 2$

94 Current Electricity

11. [MP PET 1995]

(a) R
(b) $2 R$
(c) $\frac{R}{2}$
(d) $\frac{R}{3}$
12. [CPMT 1990]

(a) 6 ohm
(b) 8 ohm
(c) 16 ohm
(d) 24 ohm
13.

(a) 4Ω
(b) 8Ω
(c) 6Ω
(d) 2Ω
14.

(a) 0.25Ω
(b) $\frac{4}{7} \Omega$

(c) $\frac{7}{4} \Omega$
(d) 1Ω
15.

(a) 10.6Ω
(b) 20Ω
(c) 16Ω
(d) 8Ω
16.

(a) 1Ω
(b) 9Ω
(c) 2Ω
(d) 6Ω
17.

(a) r
(b) $2 r$
(c) $\frac{4}{3} r$
(d) $4 r$

Advance Level

18. [KCET 2003]

(a) $2 R \Omega$
(b) $\frac{4 R}{3} \Omega$
(c) $\frac{2 R}{3} \Omega$
(d) $R \Omega$
19. [MP PMT/PET 1998]

(a) $(\sqrt{3}-1)$
(b) $(1-\sqrt{3})$
(c) $(1+\sqrt{3})$
(d) $(2+\sqrt{3})$
20. [MP PMT 1997]

(a) 20Ω
(b) 30Ω
(c) 90Ω
(d) 110Ω

(a) 4Ω
(b) 2Ω
(c) 8Ω
(d) 16Ω
21.

(a) 1Ω
(b) 2Ω
(c) 3Ω
(d) 4Ω
28.

(a) 4Ω
(b) 6Ω
(c) 10.9Ω
(d) 12.6Ω
29.

(a) $\frac{13}{9} r$
(b) $\frac{11}{5} r$
(c) $\frac{5}{12} r$
(d) $\frac{21}{13} r$
30.

(a) $\frac{R}{2}$
(b) $\frac{2 R}{5}$
(c) $\frac{3 R}{5}$

98 Current Electricity
(d) $\frac{R}{3}$
31.

(a) $\frac{R}{2}$
(b) R
(c) $2 R$
(d) $4 R$
32.

(a) $2 R$
(b) $4 R$
(c) $7 R$
(d) 10 R
33.

(a) $\frac{3}{4} R$
(b) $\frac{5}{3} R$
(c) $\frac{7}{5} R$
(d) R
34.

(a) 2Ω
(b) $\frac{2}{3} \Omega$
(c) $\frac{3}{4} \Omega$
(d) $\frac{4}{3} \Omega$

Answer Sheet

Assignment (Basic \& Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	b	b	b	c	a	a	b	c	c	c	c	d	b	d	d	d	a	c	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	d	a	d	a	a	b	a	c	a	d	a	d	d	b	c	b	c	c	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	a	c	d	a	a	d	c	d	a	c	b	a	d	c	b	c	a	c	c
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	a	c	c	a	b	a	a	c	b	b	b	d	c	c	b	a	c	c	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	b	d	a	c	a	c	d	c	c	d	a	a	a	d	a	c	d	a	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
a	d	b	b	d	b	d	c	d	c	c	a	b	b	d	a	a	c	a	a
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
d	a	b	d	$\mathbf{b},$ c	d	d	d	a	c	c	b	d	c	d	c	a	d	d	b
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
a	b	a	a	a	d	b	a	b	a	c	b	a	c	c	d	d	d	c	c
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
d	b	b	c	a	b	b	c	b	a	b	a	b	a	c	c	a	b	a	b
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	a	d	c	d	a	b	b	d	d	d	d	d	b	c	b	c	b	c	b
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
c	c	a	a	b	c	c	c	c	c	c	d	d	c	a	a	a	d	a	c
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
d	d	a	c	a	c	d	b	d	d	a	a	d	a	b	b	a	a	a	d
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
d	c	d	b	d	d	a	d	c	b	a	c	b	b	a	d	a	a	a	b
261	262	263																	
c	b	d																	

Assignment (Practice Networks)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
c	b	a	a	d	b	c	c	d	d	d	b	d	b	a	c	d	c	c	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34						
c	a	d	a	b	b	b	c	d	a	a	a	a	b						

