Heating and Chemical Effect of Current

Joules Heating

When some potential difference V is applied across a resistance R then the work done by the electric field on charge q to flow through the circuit in time t will $=\frac{V^{2} t}{R}$ Joule .

This work appears as thermal energy in the resistor.
Heat produced by the resistance R is $H=\frac{W}{J}=\frac{V i t}{4 \cdot 2}=\frac{i^{2} R t}{4 \cdot 2}=\frac{V^{2} t}{4 \cdot 2 R}$ Cal. This relation is called joules heating.

Some important relations for solving objective questions are as follow :

Condition	Graph
If R and t are constant	
$H \propto i^{2}$ and $H \propto V^{2}$	
If i and t are constant (series	
grouping)	
$H \propto R$	

Electric Power

The rate at which electrical energy is dissipated into other forms of energy is called electrical power i.e. $\boldsymbol{P}=\frac{\boldsymbol{W}}{\boldsymbol{t}}=\boldsymbol{V} \boldsymbol{i}=\boldsymbol{i}^{2} \boldsymbol{R}=\frac{\boldsymbol{V}^{2}}{\boldsymbol{R}}$
(1) Units : It's S.I. unit is Joule/sec or Watt

Bigger S.I. units are $K W, M W$ and $H P$, remember $1 H P=746 \mathrm{~V}$

(2) Rated values : On electrical appliances (Bulbs, Heater \qquad etc.)

102 Heating and Chemical Effect of Current
Wattage, voltage, \qquad etc. are printed called rated values e.g. If suppose we have a bulb of $40 \mathrm{~W}, 220 \mathrm{~V}$ then rated power $\left(P_{R}\right)=40 \mathrm{~W}$ while rated voltage $\left(V_{R}\right)=220 \mathrm{~V}$. It means that on operating the bulb at 220 volt, the power dissipated will be 40 W or in other words 40 J of electrical energy will be converted into heat and light per second.
(3) Resistance of electrical appliance : If variation of resistance with temperature is neglected then resistance of any electrical appliance can be calculated by rated power and rated voltage i.e. by using $\boldsymbol{R}=\frac{\boldsymbol{V}_{\boldsymbol{R}}^{2}}{\boldsymbol{P}_{\boldsymbol{R}}}$ e.g. Resistance of $100 \mathrm{~W}, 220$ volt bulb is $R=\frac{220 \times 220}{100}=484 \Omega$
(4) Power consumed (illumination) : An electrical appliance (Bulb, heater, etc.) consume rated power $\left(P_{R}\right)$ only if applied voltage $\left(V_{A}\right)$ is equal to rated voltage $\left(V_{R}\right)$ i.e. If $V_{A}=$ V_{R} so $P_{\text {consumed }}=P_{R}$. If $V_{A}<V_{R}$ then $P_{\text {consumed }}=\frac{V_{A}^{2}}{R}$ also we have $R=\frac{V_{R}^{2}}{P_{R}}$ so $P_{\text {consumed }}($ Brightness $)=\left(\frac{V_{A}^{2}}{V_{R}^{2}}\right) \cdot P_{R}$
e.g. If $100 \mathrm{~W}, 220 \mathrm{~V}$ bulb operates on 110 volt supply then $P_{\text {consumed }}=\left(\frac{110}{220}\right)^{2} \times 100=25 \mathrm{~W}$

Wate: \square If $V_{A}<V_{R}$ then \% drop in output power $=\frac{\left(P_{R}-P_{\text {consumed }}\right)}{P_{R}} \times 100$
\square For the series combination of bulbs, current through them will be same so they will consume power in the ratio of resistance i.e., $P \propto R\left\{B y P=i^{2} R\right.$) while if they are connected in parallel i.e. V is constant so power consumed by them is in the reverse ratio of their resistance i.e. $P \propto \frac{1}{R}$.
(5) Thickness of filament of bulb: We know that resistance of filament of bulb is given by $R=\frac{V_{R}^{2}}{P_{R}}$, also $R=\rho \frac{l}{A}$, hence we can say that $\underset{\text { (Thickness) }}{\boldsymbol{A}} \propto \boldsymbol{P}_{\boldsymbol{R}} \propto \frac{\boldsymbol{1}}{\boldsymbol{R}}$ i.e. If rated power of a bulb is more, thickness of it's filament is also more and it's resistance will be less.

If applied voltage is constant then $P_{\text {(consumed) }} \propto \frac{1}{R}$ (By $P=\frac{V_{A}^{2}}{R}$). Hence if different bulbs (electrical appliance) operated at same voltage supply then $\boldsymbol{P}_{\text {consumed }} \propto \boldsymbol{P}_{\boldsymbol{R}} \propto$ thickness $\propto \frac{\boldsymbol{1}}{\boldsymbol{R}}$

Wate: \square Different bulbs

(6) Long distance power transmission : When power is transmitted through a power line of resistance R, power-loss will be $i^{2} R$

Now if the power P is transmitted at voltage $V \quad P=V i \quad$ i.e. $\quad i=(P / V) \quad$ So, Power loss $=\frac{P^{2}}{V^{2}} \times R$

Now as for a given power and line, P and R are constant so Power loss $\propto\left(1 / V^{2}\right)$
So if power is transmitted at high voltage, power loss will be small and vice-versa. e.g., power loss at 22 kV is 10^{-4} times than at 220 V . This is why long distance power transmission is carried out at high voltage.
(7) Time taken by heater to boil the water : We know that heat required to raise the temperature $\Delta \theta$ of any substance of mass m and specific heat S is $\quad H=m . S . \Delta \theta$

Here heat produced by the heater $=$ Heat required to raise the temp. $\Delta \theta$ of water.
i.e. $\quad p \times t=J \times m . S . \Delta \theta \Rightarrow t=\frac{J(m . S . \Delta \theta)}{p} \quad\{J=4.18$ or $4.2 \mathrm{~J} / \mathrm{cal})$
for $m \mathrm{~kg}$ water

$$
t=\frac{4180(\text { or } 4200) m \Delta \theta}{p} \quad\left\{S=1000 \mathrm{cal} / \mathrm{kg}^{\circ} \mathrm{C}\right)
$$

Wate: \square If quantity of water is given n litre then $t=\frac{4180(4200) n \Delta \theta}{p}$

Electricity Consumption

(1) The price of electricity consumed is calculated on the basis of electrical energy and not on the basis of electrical power.
(2) The unit Joule for energy is very small hence a big practical unit is considered known as kilowatt hour ($K W H$) or board of trade unit (B.T.U.) or simple unit.
(3) $1 K W H$ or 1 unit is the quantity of electrical energy which dissipates in one hour in an electrical circuit when the electrical power in the circuit is 1 KW thus $1 \mathrm{KW}=1000 \mathrm{~W} \times 3600$ $s e c=3.6 \times 10^{6} \mathrm{~J}$.
(4) Important formulae to calculate the no. of consumed units is $n=\frac{\text { Total watt } \times \text { Total hours }}{1000}$

Concepts

When some potential difference applied across the conductor then collision of free electrons with ions of the lattice result's in conversion of electrical energy into heat energy

If a heating coil of resistance R, (length l) consumed power P, when voltage V is applied to it then by keeping V is constant if it is cut in n equal parts then resistance of each part will be $\frac{R}{n}$ and from $P_{\text {consumed }} \propto \frac{1}{R}$,
power consumed by each part $P^{\prime}=n P$.
Joule's heating effect of current is common to both ac and dc.

Example

Example: 1 The approximate value of heat produced in 5 min . by a bulb of 210 watt is $U=4.2$ joule/calorie)
[MP PET 2000; MNR 1985]
(a) 15,000
(b) 1,050
(c) 63,000
(d) 80,000

Solution: (a) By using $H=\frac{P \times t}{4.2}=\frac{210 \times 5 \times 60}{4.2}=15000 \mathrm{Cal}$
Example: 2 A heater coil is cut into two parts of equal length and one of them is used in the heater. The ratio of the heat produced by this half coil to that by the original coil is
(a) $2: 1$
(b) $1: 2$
(c) $1: 4$
(d) $4: 1$

Solution : (a) If suppose resistance of the coil is R so resistance of it's half will be $\frac{R}{2}$. Hence by using
$H=\frac{V^{2} t}{R} \Rightarrow H \propto \frac{1}{R}$
$\Rightarrow \frac{H_{\text {Half }}}{H_{\text {Full }}}=\frac{R_{\text {Full }}}{R_{\text {Half }}}=\frac{R}{R / 2}=\frac{2}{1}$
Wate: In general if coil is divided in n equal parts then heat produced by each part will be n times of the heat produced by coil it self i.e. $H^{\prime}=n H$

Example: 3 If current in an electric bulb changes by 1%, then the power will change by
(a) 1%
(b) 2%
(c) 4%
(d) $\frac{1}{2} \%$

Solution : (b) By using $P=i^{2} R \Rightarrow P \propto i^{2} \Rightarrow \frac{\Delta P}{P}=2 \frac{\Delta i}{i} \Rightarrow$ change in power $=2 \%$
Example: 4 A constant voltage is applied on a uniform wire, then the heat is produced. The heat so produced will be doubled, if
(a) The length and the radius of wire are halved are doubled
(c) Only the length is doubled
(b) Both length and radius doubled

Solution: (b) By using $H=\frac{V^{2} t}{R}$ and $R=\rho \frac{l}{A}=\frac{\rho l}{\pi r^{2}} \Rightarrow H=\frac{V^{2} t \pi r^{2}}{\rho l} \Rightarrow H \propto \frac{r^{2}}{l}$; on doubling both r and l heat will be doubled.

Example: 5 An electric heater of resistance 6 ohm is run for 10 minutes on a 120 volt line. The energy liberated in this period of time is
(a) $7.2 \times 10^{3} \mathrm{~J}$
(b) $14.4 \times 10^{5} \mathrm{~J}$
(c) $43.2 \times 10^{4} \mathrm{~J}$
(d) $28.8 \times 10^{4} \mathrm{~J}$

Solution: (b) By using $H=\frac{V^{2} t}{R} \Rightarrow H=\frac{(120)^{2} \times 10 \times 60}{6}=14.4 \times 10^{5} \mathrm{~J}$
Example: 6 An electric bulb of 100 W is designed to operate on 220 V . Resistance of the filament is
[EAMCET 1981, 82; MP PMT 1993, 97]
(a) 484Ω
(b) 100Ω
(c) 22000Ω
(d) 242Ω

Solution : (a) By using $P=\frac{V^{2}}{R} \Rightarrow R=\frac{V^{2}}{P}=\frac{(220)^{2}}{100}=484 \Omega$
Example: $7 \quad$ An electric bulb is rated 220 V and 100 W . Power consumed by it when operated on 110 volt is
[AFMC 2000; MP PMT 1986, 94; CPMT 1986]
(a) 50 W
(b) 75 W
(c) 90 W
(d) 25 W

Solution: (d) By using $P_{\text {consumed }}=\left(\frac{V_{A}}{V_{R}}\right)^{2} \times P_{R} \Rightarrow P_{\text {Consumed }}=\left(\frac{110}{220}\right)^{2} \times 100=25 \mathrm{~W}$
Example: 8 A 500 watt heating unit is designed to operate from a 115 Volt line. If the line voltage drops to 110 volt, the percentage drop in heat output will be
(a) 10.20%
(b) 8.1%
(c) 8.6%
(d) 7.6%

Solution: (c) By using $P_{\text {consumed }}=\left(\frac{V_{A}}{V_{R}}\right)^{2} \times P_{R} \Rightarrow P_{\text {Consumed }}=\left(\frac{110}{115}\right)^{2} \times 500=456.6 \mathrm{Watt}$
So \% drop in heat output $=\frac{P_{\text {Actual }}-P_{\text {Consumed }}}{P_{\text {Actual }}} \times 100=\frac{(500-456.6)}{500} \times 100=8.6 \%$
Example: 9 An electric lamp is marked $60 \mathrm{~W}, 230 \mathrm{~V}$. The cost of 1 kilowatt hour of power is Rs. 1.25. The cost of using this lamp for 8 hours is
(a) Rs. 1.20
(b) Rs. 4.00
(c) Rs. 0.25
(d) Rs. 0.60

Solution: (d) By using consumed unit (n) or $K W H=\frac{\text { Total Watt } \times \text { Total tim e }}{1000} \Rightarrow n=\frac{60 \times 8}{1000}=\frac{12}{25}$
So cost $=\frac{12}{25} \times 1.25=0.60 R s$
Example: 10 How much energy in Kilowatt hour is consumed in operating ten 50 watt bulbs for 10 hours per day in a month (30 days)
(a) 1500
(b) 15.000
(c) 15
(d) 150

Solution : (d) By using $n=\frac{\text { Total Watt } \times \text { Total tim e }}{1000} \Rightarrow n=\frac{(50 \times 10) \times(10 \times 30)}{1000}=150$
Example: 11 An immersion heater is rated 836 watt. It should heat 1 litre of water from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ in about
(a) 200 sec
(b) 100 sec
(c) 836 sec
(d) 418 sec

Solution : (b) By using $t=\frac{4180 \times n \times \Delta \theta}{P} \Rightarrow t=\frac{4180 \times 1 \times(40-20)}{836}=100 \mathrm{sec}$
Example: 12 The power of a heater is 500 watt at $800^{\circ} \mathrm{C}$. What will be its power at $200^{\circ} \mathrm{C}$ if $\alpha=4 \times 10^{-4}$ per ${ }^{\circ} \mathrm{C}$
(a) 484 W
(b) 672 W
(c) 526 W
(d) 611 W

Solution : (d) By using $P=i^{2} R=\frac{V^{2}}{R} \Rightarrow P \propto \frac{1}{R} \Rightarrow \frac{P_{1}}{P_{2}}=\frac{R_{2}}{R_{1}}=\frac{\left(1+\alpha t_{2}\right)}{\left(1+\alpha t_{1}\right)} \Rightarrow \frac{500}{P_{2}}=\frac{\left(1+4 \times 10^{-4} \times 200\right)}{\left(1+4 \times 10^{-4} \times 800\right)}$
$\Rightarrow \frac{500}{P_{2}}=\frac{1.08}{1.32} \Rightarrow 611 \mathrm{~W}$
Example: 13 A heater of $220 V$ heats a volume of water in 5 minute time. A heater of $110 V$ heats the same volume of water in
(a) 5 minutes
(b) 8 minutes
(c) 10 minutes
(d) 20 minutes

Solution: (d) By using $H=\frac{V^{2} t}{R}$. Here volume of water is same. So same heat is required in both cases. Resistance is also constant so $V^{2} t=$ constant $\Rightarrow t \propto \frac{1}{V^{2}}$
$\frac{t_{1}}{t_{2}}=\left(\frac{V_{2}}{V_{1}}\right)^{2} \Rightarrow \frac{5}{t_{2}}=\left(\frac{110}{220}\right)^{2}=\frac{1}{4} \Rightarrow t_{2}=20 \mathrm{~min}$
Example: 14 Water boils in an electric kettle in 15 minutes after switching on. If the length of the heating wire is decreased to $2 / 3$ of its initial value, then the same amount of water will boil with the same supply voltage in [MP PMT 1994]
(a) 15 minutes
(b) 12 minutes
(c) 10 minutes
(d) 8 minutes

Solution : (c) By using $H=\frac{V^{2} t}{R}$ where $R=\rho \frac{l}{A} \Rightarrow H=\frac{V^{2} t A}{\rho l}$. Since volume is constant so H is also constant so $t \propto l$ which gives $\frac{t_{2}}{t_{1}}=\frac{l_{2}}{l_{1}} \Rightarrow \frac{t_{2}}{15}=\frac{\frac{2}{3} l_{1}}{l_{1}} \Rightarrow t_{2}=10 \mathrm{~min}$

Tricky Example: 1

If resistance of the filament increase with temperature, what will be power dissipated in a 220 V - 100 W lamp when connected to 110 V power supply
(a) 25 W
(b) < 25 W
(c) $>25 W$
(d) None
of
these
Solution : (b) If resistance do not varies with temperature $P_{\text {Consumed }}=\left(\frac{V_{A}}{V_{R}}\right)^{2} . P_{R}=\left(\frac{110}{220}\right)^{2} \times 100=25 \mathrm{~W}$. But actually resistance is increasing with temperature so consumed power will be lesser then 25 W .

(2) If ' n ' bulbs are identical, $P_{\text {total }}=\frac{P}{N}$
(3) $\quad P_{\text {consumed }}$ (Brightness) $\propto V \propto R \propto \frac{1}{P_{\text {rated }}} \quad$ i.e. in series combination bulb of lesser wattage will give more bright light and p.d. appeared across it will be more.

Bulbs (Heater etc.) are in parallel
(1) Total power consumed

$$
P_{\text {total }}=P_{1}+P_{2}+P_{3} \ldots \ldots+P_{n}
$$

(2) If ' n ' identical bulbs are in parallel. $P_{\text {total }}=n P$
(3) $P_{\text {consumed }}$ (Brightness) $\propto P_{R} \propto i \propto \frac{1}{R}$ i.e. in parallel combination bulb of greater wattage will give more bright light and more current will pass through it.

Some Standard Cases for Series and Parallel Combination
(1) If n identical bulbs first connected in series so $P_{S}=\frac{P}{n}$ and then connected in parallel. So $P_{P}=$ $n P$ hence $\frac{\boldsymbol{P}_{\boldsymbol{P}}}{\boldsymbol{P}_{S}}=\boldsymbol{n}^{\mathbf{2}}$.
(2) To operate a bulb on voltage which is more then it's rated voltage, a proper resistance is connected in series with it. e.g. to glow a bulb of $30 \mathrm{~W}, 6 \mathrm{~V}$ with full intensity on 126 volt required series resistance calculated as follows

Bulb will glow with it's full intensity if applied voltage on it is 6 V i.e. 120 V appears across the series resistance R current flows through bulb = current flows thr

$$
i=\frac{30}{6}=5 \mathrm{amp}
$$

Hence for resistance $V=i R$ i.e. $120=5 \times R \Rightarrow 5 \times R \Rightarrow R=24 \Omega$

Wate: If you want to learn Short Trick then remember Series resistance $=\left(\frac{V_{\text {operating }}-V_{R}}{P_{R}}\right) \times V_{R}$
(3) An electric kettle has two coils when one coil is switched on it takes time t_{1} to boil water and when the second coil is switched on it takes time t_{2} to boil the same water.

If they are connected in series	If they are connected in parallel
$\frac{1}{P_{S}}=\frac{1}{P_{1}}+\frac{1}{P_{2}}$	$P_{P}=P_{1}+P_{2}$
$\Rightarrow \frac{1}{H_{S} / t_{S}}=\frac{1}{H_{1} / t_{1}}+\frac{1}{H_{2} / t_{2}}$	$\Rightarrow \frac{H_{P}}{t_{p}}=\frac{H_{1}}{t_{1}}+\frac{H_{2}}{t_{2}}$

$\because \quad H_{S}=H_{1}=H_{2}$ so $t_{s}=t_{1}+t_{2}$
i.e. time taken by combination to boil the same quantity of water $\boldsymbol{t}_{S}=\boldsymbol{t}_{\mathbf{1}}+\boldsymbol{t}_{\mathbf{2}}$
$\because \quad H_{p}=H_{1}=H_{2}$ so $\frac{1}{t_{p}}=\frac{1}{t_{1}}+\frac{1}{t_{2}}$
i.e. time taken by parallel combination to boil the same quantity of water $t_{p}=\frac{t_{1} t_{2}}{t_{1}+t_{2}}$
(4) If three identical bulbs are connected in series as shown in figure then on closing the switch S. Bulb C short circuited and hence illumination of bulbs A and B increases

Reason : Voltage on A and B increased.
(5) If three bulbs A, B and C are connected in mixed combination as shown, then illumination of bulb A decreases if either B or C gets fused

Reason : Voltage on A decreases.
(6) If two identical bulb A and B are connected in parallel with ammeter A and key K as shown in figure.

It should be remembered that on pressing key reading of ammeter becomes twice.

Reason : Total resistance becomes half.

Concepts

When a heavy current appliance such us motor, heater or geyser is switched on, it will draw a heavy current from the source so that terminal voltage of source decreases. Hence power consumed by the bulb decreases, so the light of bulb becomes less.

If the source is ideal i.e. $r=0$, there will be no change in the brightness of the bulb.

Example

Example: 15 An electric kettle has two heating coils. When one of the coils is connected to ac source the water in the kettle boils in 10 minutes. When the other coil is used the water boils in 40 minutes. If both the coils are connected in parallel, the time taken by the same quantity of water to boil will be
[CBSE PMT 2003]
(a) 4 min
(b) 25 min
(c) 15 min
(d) 8 min

Solution : (d) By using the formula $t_{p}=\frac{t_{1} t_{2}}{t_{1}+t_{2}}$ (as we discussed in theory) $\Rightarrow t_{p}=\frac{10 \times 40}{(10+40)}=8 \mathrm{~min}$
Wote : In this question if coils are connected in series then the time taken by the same quantity of water to boil will be $t_{s}=t_{1}+t_{2}=10+40=50 \mathrm{~min}$
Example: 16 If a 30 V , 90 W bulb is to be worked on a 120 V line, a resistance of how many ohms should be connected in series with the bulb
(a) 10 ohm
(b) 20 ohm
(c) 30 ohm
(d) 40 ohm

Solution: (c) By using Series resistance $R=\left(\frac{V_{\text {operating }}-V_{R}}{P_{R}}\right) \times V_{R}$ (As we discussed in theory) \Rightarrow
$R=\frac{(120-30)}{90} \times 30=30 \Omega$
Example: 17 In the circuit shown in figure, the heat produced in 5 ohm resistance is 10 calories per second. The heat produced in 4 ohm resistance is
(a) $1 \mathrm{cal} / \mathrm{sec}$
(b) $2 \mathrm{cal} / \mathrm{sec}$
(c) $3 \mathrm{cal} / \mathrm{sec}$
(d) $4 \mathrm{cal} / \mathrm{sec}$

Solution : (b) Ratio of currents $\frac{i_{1}}{i_{2}}=\frac{10}{5}=\frac{2}{1}$ by using $H=i^{2} R t$ $\Rightarrow \frac{H_{1}}{H_{2}}=\left(\frac{i_{1}}{i_{2}}\right)^{2} \times \frac{R_{1}}{R_{2}} \Rightarrow \frac{10}{H_{2}}=\left(\frac{2}{1}\right)^{2} \times \frac{5}{4} \Rightarrow H_{2}=2 \mathrm{cal} / \mathrm{sec}$

110 Heating and Chemical Effect of Current

Example: 18 Two heater wires of equal length are first connected in series and then in parallel. The ratio of heat produced in the two cases is
[MP PET 2002, 1999; MP PMT 2001, 2000, 1996; AIIMS 2000; MNR 1987; DCE 1997, 94]
(a) $2: 1$
(b) $1: 2$
(c) $4: 1$
(d) $1: 4$

Solution: (d) Both the wires are of equal length so they will have same resistance and by using $H=\frac{V^{2} t}{R} \Rightarrow H \propto \frac{1}{R}$
$\Rightarrow \frac{H_{s}}{H_{P}}=\frac{R_{P}}{R_{s}} ; \Rightarrow \frac{H_{s}}{H_{P}}=\frac{R / 2}{2 R}=\frac{1}{4}$
Example: 19 If two bulbs of wattage 25 and 100 respectively each rated at 220 volt are connected in series with the supply of 440 volt, then which bulb will fuse
(a) 100 watt bulb
(b) 25 watt bulb
(c) None of them
(d) Both of them

Solution : (b) In series $V_{A} \propto \frac{1}{P_{R}}$ i.e. voltage appear on 25 W bulb will be more then the voltage appears on $100 W$ bulb. So bulb of $25 W$ will gets fused.

Example: 20 Three equal resistors connected in series across a source of e.m.f. together dissipate 10 watt. If the same resistors are connected in parallel across the same e.m.f., then the power dissipated will be
[KCET 1999; DCE 1998; CBSE 1998; MP PAT 1996]
(a) 10 W
(b) 30 W
(c) $10 / 3 \mathrm{~W}$
(d) 90 W

Solution: (d) In series consumed power $P_{s}=\frac{P}{n}$ while in parallel consumed power $P_{p}=n P \Rightarrow P_{P}=n^{2} . P_{s}$

$$
\Rightarrow P_{P}=(3)^{2} \times 10=90 \mathrm{~W}
$$

Example: $\mathbf{2 1}$ Forty electric bulbs are connected in series across a 220 V supply. After one bulb is fused, the remaining 39 are connected again in series across the same supply. The illumination will be [Haryana CEE 1996; NCERT 1972]
(a) More with 40 bulbs than with 39
(b) More with 39 bulbs than with 40
(c) Equal in both the cases
In the ratio of 40^{2} :
39^{2}

Solution: (b) Illumination $=P_{\text {consumed }}=\frac{V^{2}}{R}$. Initially there were 40 bulbs in series so equivalent resistance was $40 R$, finally 39 bulbs are in series so equivalent resistance becomes $39 R$. Since resistance decreases so illumination increases with 39 bulbs.

Example: 22 Two bulbs of 100 watt and 200 watt, rated at 220 volts are connected in series. On supplying 220 volts, the consumption of power will be
(a) 33 watt
(b) 66 watt
(c) 100 watt
(d) 300 watt

Solution: (b) In series $P_{\text {Consumed }}=\frac{P_{1} P_{2}}{P_{1}+P_{2}} \Rightarrow P_{\text {Consumed }}=\frac{100 \times 200}{300}=66 \mathrm{~W}$
Example: 23 Two wires ' A ' and ' B ' of the same material have their lengths in the ratio $1: 2$ and radii in the ratio $2: 1$. The two wires are connected in parallel across a battery. The ratio of the heat produced in ' A ' to the heat produced in ' B ' for the same time is
(a) $1: 2$
(b) $2: 1$
(c) $1: 8$
(d) $8: 1$

Solution: (d) Resistance $R=\rho \frac{l}{\pi r^{2}} \Rightarrow R \propto \frac{l}{r^{2}} \Rightarrow \frac{R_{A}}{R_{B}}=\frac{l_{A}}{l_{B}} \times\left(\frac{r_{B}}{r_{A}}\right)^{2} \Rightarrow \frac{R_{A}}{R_{B}}=\frac{1}{2} \times\left(\frac{1}{2}\right)^{2}=\frac{1}{8}$
By using $H=\frac{V^{2} t}{R} \Rightarrow \frac{H_{A}}{H_{B}}=\frac{R_{B}}{R_{A}}=\frac{8}{1}$
Example: 24 A heating coil is labelled $100 \mathrm{~W}, 220 \mathrm{~V}$. The coil is cut in half and the two pieces are joined in parallel to the same source. The energy now liberated per second is
(a) 200 J
(b) 400 J
(c) 25 J
(d) 50 J

Solution : (b) Let resistance of the heating coil be R, when coil cut in two equal parts, resistance of each part will be $\frac{R}{2}$. When these two parts are corrected in parallel, $R_{e q}=\frac{R}{4}$ i.e. resistance becomes, so according to $P \propto \frac{1}{R}$; Power becomes 4 times i.e. $P^{\prime}=4 P=400 \mathrm{~J} / \mathrm{sec}$
Example: 25 Two identical electric lamps marked $500 \mathrm{~W}, 220 \mathrm{~V}$ are connected in series and then joined to a 110 V line. The power consumed by each lamp is
(a) $\frac{125}{4} W$
(b) $\frac{25}{4} \mathrm{~W}$
(c) $\frac{225}{4} \mathrm{~W}$
(d) 125 W

Solution : (a) Both bulbs are identical so voltage across each bulb will be 55 V .

(ㄱ) 500 W 220 V Hence power consumed by each bulb is $\left(\frac{V_{A}}{V_{R}}\right)^{2} \times P_{R}=\left(\frac{55}{220}\right)^{2} \times 500=\frac{125}{4} \mathrm{~V} 5 \mathrm{~V} \longrightarrow \longleftarrow 55 \mathrm{~V} \longrightarrow$

Tricky Example: 2

Electric bulb $50 W-100 V$ glowing at full power are to be used in parallel with battery $120 V, 10 \Omega$. Maximum number of bulbs that can be connected so that they glow in full power is
[CPMT 2002]
(a) 2
(b) 8
(c) 4
(d) 6

Solution: (c) When bulb glowing at full power, current flows through it $\frac{i}{n}=\frac{P}{V}=\frac{50}{100}=\frac{1}{2} \mathrm{amp} \Rightarrow i=\frac{n}{2}$ and voltage across the bulb is 100 V . If suppose n bulbs are connected in parallel with cell as shown in figure then according to the cell equation $E=V+i r \Rightarrow 120=100+\frac{n}{2} \times 10 \Rightarrow n \neq i A$

112 Heating and Chemical Effect of Current

Thermo Electric Effect of Current

If two wires of different metals are joined at their ends so as to form two junctions, then the resulting arrangement is called a "Thermo couple".

Seebeck Effect

(1) Definition : When the two junctions of a thermo couple are maintained at different temperatures, then a current starts flowing through the loop known as thermo electric current. The potential difference between the junctions is called thermo electric emf which is of the order of a few micro-volts per degree

$\left.1 /{ }^{\circ} \mathrm{C}\right)$.
(2) Origin of thermo emf : The density of free electrons in a metal is generally different from the density of free electrons in another metal. When a metal is brought into intimate contact (say by soldering) with other metal, the electrons tend to diffuse from one metal to another, so as to equalise the electron densities. As an illustration, when copper is brought into intimate contact with iron, the electrons diffuse from iron to copper. But this diffusion cannot go on continuously because due to diffusion, the potential of copper decreases and the potential of iron increases. In other words, iron becomes positive with respect to copper. This is what stops further diffusion. In the case of thermocouple whose junctions are at the same temperature, the emf's at the junctions will be equal in magnitude but opposite in direction. So, the net emf for the whole of thermocouple will be zero.

Let us now consider the case when the temperature of one junction of the thermocouple is raised. Raising the temperature of one junction will affect the electron density in the two metals differently. Moreover, the transfer of electrons at the junction will be easier than the transfer of electrons at the cold junction. Due to both these reasons, the emf's at the two junctions will be different. This produces a net emf in the thermocouple. This emf is known as Seebeck emf.
(3) Seebeck series: The magnitude and direction of thermo emf in a thermocouple depends not only on the temperature difference between the hot and cold junctions but also on the nature of metals constituting the thermo couple.

Seebeck arranged different metals in the decreasing order of their electron density. Some of the metals forming the series are as below.

$$
S b, F e, A g, A u, S n, P b, C u, P t, N i, B i
$$

(i) About magnitude thermo emf : Thermo electric emf is directly proportional to the distance between the two metals in series. Farther the metals in the series forming the thermo couple greater is the thermo emf. Thus maximum thermo emf is obtained for $\boldsymbol{S b} \boldsymbol{b} \boldsymbol{B i}$ thermo couple.
(ii) Direction of thermo electric current : If a metal occurring earlier in the series is termed as A and the metal occurring later in the series is termed as B, then the rule for the direction of conventional current in thermocouple made of elements A and B is $A B C$. That is, at the cold junction current will flow from A to B. e.g. in $\mathrm{Fe}-\mathrm{Cu}$ thermocouple, at the cold junction current flows from A to B that is from Fe to Cu . At the hot junction, the current flows from Cu to $F e$. This may be remembered easily by the hot coffee.
(4) Law of thermoelectricity
(i) Law of successive temperature : If initially temperature limits of the cold and the hot junction are t_{1} and t_{2}, say the thermo emf is $E_{t_{1}}^{t_{2}}$. When the temperature limits are t_{2} and t_{3}, then say the thermo emf is $E_{t_{2}}^{t_{3}}$ then $E_{t_{1}}^{t_{2}}+E_{t_{2}}^{t_{3}}=E_{t_{1}}^{t_{3}}$ where $E_{t_{1}}^{t_{3}}$ is the thermo emf when the temperature limits are $E_{t_{1}}^{t_{3}}$
(ii) Law of intermediate metals : Let A, B and C be the three metals of Seebeck series, where B lies between A and C. According to this law, $E_{A}^{B}+E_{B}^{C}=E_{A}^{C}$

When tin is used as a soldering metal in $\mathrm{Fe}-\mathrm{Cu}$ thermocouple then at the junction, two different thermo couples are being formed. One is between iron and tin and the other is between tin and copper, as shown in figure (i)

Now iron is thermoelectrically more positive as compared to tin and tin is more positive with respect to copper (the element which occurs earlier in the seebeck series gets positively charged on losing the electrons at the junction), so as clear from the figure below, the thermo emf's of both the thermocouples shown in the figure (ii) are additive

(i)

(ii

114 Heating and Chemical Effect of Current
\therefore If soldering metal in a thermocouple is an intermediate metal in the series then thermo emf will not be affected.

It is also clear from the above discussions that if the soldering metal does not lie between two metals (in Seebeck series) of thermocouple then the resultant emf will be subtractive.
(5) Effect of temperature on thermo emf : In a thermocouple as the temperature of the hot junction increases keeping the cold junction at constant temperature (say $0^{\circ} \mathrm{C}$). The thermo emf increases till it becomes maximum at a certain temperature.
(i) Thermo electric emf is given by the equation $E=\alpha t+\frac{1}{2} \beta t^{2}$
where α and β are thermo electric constant having units are volt $/{ }^{\circ} \mathrm{C}$ and volt $/{ }^{\circ} \mathrm{C}^{2}$ respectively ($t=$ temperature of hot junction).
(ii) The temperature of hot junction at which thermo emf becomes maximum is called neutral temperature $\left(t_{n}\right)$. Neutral temperature is constant for a thermo couple (e.g. for $\mathrm{Cu}-\mathrm{Fe}, t_{n}$ $=270^{\circ} \mathrm{C}$)
(iii) Neutral temperature is independent of the temperature of cold junction.
(iv) If temperature of hot junction increases beyond neutral temperature, thermo emf start decreasing and at a particular temperature it becomes zero, on heating slightly further, the direction of emf is reversed. This temperature of hot junction is called temperature of inversion (t_{i}).
(v) Graphical representation of thermo emf
(a) $t_{n}=\frac{t_{i}+t_{c}}{2}$
(b) Graph is parabolic
(c) For E to be maximum (at $t=t_{n}$)

$$
\frac{d E}{d t}=0 \quad \text { i.e. } \alpha+\beta t_{n}=0 \Rightarrow t_{\eta}=-\frac{\alpha}{\beta}
$$

(6) Thermo electric power : The rate of change of thermo emf with the change in the temperature of the hot junction is called thermoelectric power.

It is also given by the slope of parabolic curve representing the variation of thermo emf with temperature of the hot junction, as discussed in previous section.

It is observed from the above graph that as temperature of hot junction increases from that of the cold junction to the neutral junction, though the thermo emf is increasing but the slope of the graph, that is the rate of change of thermo emf with temperature of hot junction is
decreasing. Note that, at the neutral temperature, the thermo emf is maximum but the slope i.e. the thermoelectric power is zero.

The thermo electric power $\left(\frac{d E}{d t}\right)$ is also called Seebeck coefficient. Differentiating both sides of the equation of thermo emf with respect to t, we have $P=\frac{d E}{d t}=\frac{d}{d t}\left(\alpha t+\frac{1}{2} \beta t^{2}\right) \Rightarrow$ $P=\alpha+\beta t$

The equation of the thermo electric power is of the type $y=m x+c$, so the graph of thermo electric power is as shown below.

Peltier Effect

(1) If a current is passed through a junction of two different metals, the heat is either evolved or absorbed at the junction. This effect is known as Peltier effect. It is the reverse of Seebeck effect. Before going into the detailed explanation, we will first revise an important concept about absorption and evolution of energy when electric charge is made to pass through two points having some potential difference.

When a positive charge flows from high potential to low potential, it releases energy and when positive charge flows from low potential to high potential it absorbs energy.
(2) Explanation of Peltier effect : In the light of above statement it can be seen that if current is made to flow in $\mathrm{Fe}-\mathrm{Cu}$ thermocouple by connecting it to a battery then the junction at which current goes from Fe to Cu becomes hot because here positive charge is flowing from high potential to low potential, so energy is released. Remember that, in iron-copper thermocouple, the polarity of the contact potential at each junction is such iron is at higher potential. Similarly the junction where current flows from Cu to Fe becomes colder because at this junction current is flowing from negative to positive potential, so energy is absorbed. Thus it is observed that on application of potential difference in a thermocouple temperature difference is automatically created. The amount of heat absorbed at cold junction is equal to the heat released at hot junction.

116 Heating and Chemical Effect of Current
(3) Peltier co-efficient (π) : Heat absorbed or liberated at the junction is directly proportional to the charge passing through the junction i.e. $H \propto Q \Rightarrow H=\pi Q$; where π is called Peltier co-efficient. It's unit is J / C or volt.
(i) If $Q=1$ then $H=\pi$ i.e. Peltier co-efficient of a junction is defined as heat absorbed or liberated at the junction when a unit quantity of electric charge flows across the junction (H is also known as Peltier emf).
(ii) Relation between π and absolute temperature : Suppose the temperature of the cold junction is T and that of the hot junction is $T+d T$ and let $d E$ be the thermo emf produced, then it is found that $\pi=T \frac{d E}{d T}=T \times S$; where T is in Kelvin and $\frac{d E}{d T}=P=$ Seebeck coefficient S
(iii) π-depends on : (a) Temperature of junction (b) Difference in electron density of the two metal used in thermocouple.
(iv) Comparison between Joule and Peltier effect

Joules effect	Peltier's Effect
(a) In joule's effect energy is only released.	(a) In peltier's effect energy is released at one junction and absorbed at the other junction.
(b) Heat produced depends upon i^{2}, so, heat is always released, whether i is positive or negative.	(b) Heat produced depends upon $i^{1}, ~ \therefore$ junction at which the heat is released or absorbed changes when the direction of current changes.
(c) It is identically produced by ac or dc	(c) In Peltier's effect if ac is passed, at the same junction heat is released when current flows in one direction and absorbed when the direction of current reverses. The net amount of heat released or absorbed at a junction is therefore zero. Thus, Peltier's effect cannot be observed with ac.
(d) Joules effect is irreversible.	(d) Peltier effect is reversible, complimentary is Seebeck effect.
(e) In Joule's effect heat is released throughout	(e) In this effect heat is released or absorbed only at the junctions.
the length of wire.	

Thomson's Effect

(1) Definition : In Thomson's effect we deal with only metallic rod and not with thermocouple as in Peltiers effect and Seebeck's effect. (That's why sometimes it is known as homogeneous thermo electric effect. When a current flows thorough an unequally heated metal, there is an absorption or evolution of heat in the body of the metal. This is Thomson's effect.
(2) Types of Thomson's effect
(i) Positive Thomson's effect

In positive Thomson's effect it is found that hot end is at high potential and cold end is at low potential. e.g. $\mathrm{Cu}, \mathrm{Sn}, \mathrm{Ag}, \mathrm{Sb}$

Element's occurring before lead in Seebeck series are called thermoelectrically negative but this does not mean that their Thompson effect is negative.
(ii) Negative Thomson's effect

In the elements which show negative Thomson's effect, it is found that the hot end is at low potential and the cold end is at higher potential e.g. Fe, Co, Bi
(3) Thomson's co-efficient : In Thomson's effect it is found that heat released or absorbed is proportional to $Q \Delta \theta$ i.e. $H \propto Q \Delta \theta \Rightarrow \boldsymbol{H}=\boldsymbol{\sigma} \boldsymbol{Q} \boldsymbol{\Delta} \boldsymbol{\theta}$ where $\sigma=$ Thomson's coefficient. It's unit is Joule/coulomb ${ }^{\circ} \mathrm{C}$ or volt/ ${ }^{\circ} \mathrm{C}$ and $\Delta \theta=$ temperature difference.
(i) If $Q=1$ and $\Delta \theta=1$ then $\boldsymbol{\sigma}=\boldsymbol{H}$ so the amount of heat energy absorbed or evolved per second between two points of a conductor having a unit temperature difference, when a unit current is passed is known as Thomson's co-efficient for the material of a conductor.
(ii) It can be proved that Thomson co-efficient of the material of conductor $\sigma=-T \frac{d^{2} E}{d T^{2}}$ also Seebeck co-efficient $S=\frac{d E}{d T}$ so $\frac{d S}{d T}=\frac{d^{2} E}{d T^{2}}$ hence $\sigma=-T\left(\frac{d S}{d T}\right)=T \times \beta$; where $\beta=$ Thermo electric constant $=\frac{d S}{d t}$

Application of Thermo Electric Effect

(1) To measure temperature : A thermocouple is used to measure very high ($2000^{\circ} \mathrm{C}$) as well as very low $\left(-200^{\circ} \mathrm{C}\right)$ temperature in industries and laboratories. The thermocouple used to measure very high temperature is called pyrometer.
(2) To detect heat radiation : A thermopile is a sensitive instrument used for detection of heat radiation and measurement of their intensity. It is based upon Seebeck effect.

A thermopile consists of a number of thermocouples of $S b-B i$, all connected in series.

This instrument is so sensitive that it can detect heat radiations from a match stick lighted at a distance of 50 metres from the thermopile.

118 Heating and Chemical Effect of Current

(3) Thermoelectric refrigerator : The working of thermo-electric refrigerator is based on Peltier effect. According to Peltier effect, if current is passed through a thermocouple, heat is absorbed at one junction and is evolved at the other junction of the thermocouple. If on the whole, the heat is absorbed, then the thermocouple acts as thermoelectric refrigerator. It's efficiency is small in comparison to conventional refrigerator.
(4) Thermoelectric generator : Thermocouple can be used to generate electric power using Seebeck effect in remote areas. It can be achieved by heating one junction in a flame of kerosene oil lamp and keeping the other junction at room or atmospheric temperature. The thermo emf so developed is used to operate radio receivers or even radio transmitters.

Concepts

The emf developed in a thermo couple is rather small i.e. of the order of a few $\mu V /{ }^{\circ} \mathrm{C}$.
A current is passed in a thermocouple formed with dissimilar metals whose one junction is heated and other is cooled. If π_{1} and π_{2} are the Peltier co-efficient of cold and hot junction respectively then the net emf across the junction is proportional to ($\pi_{2}-\pi_{1}$)

Example

Example: 26 The smallest temperature difference that can be measured with a combination of a thermocouple of thermo e.m.f. $30 \mu V$ per degree and a galvanometer of 50 ohm resistance capable of measuring a minimum current of 3×10^{-7} ampere is
(a) 0.5 degree
(b) 1.0 degree
(c) 1.5 degree
(d) 2.0 degree

Solution: (a) By using $E=\mathrm{a} \theta \Rightarrow i R=\mathrm{a} \theta \Rightarrow 3 \times 10^{-7} \times 50=30 \times 10^{-6} \times \theta \Rightarrow \theta=0.5$ degree
Example: 27 The expression for thermo e.m.f. in a thermocouple is given by the relation $E=40 \theta-\frac{\theta^{2}}{20}$, where θ is the temperature difference of two junctions. For this, the neutral temperature will be
[AMU (Engg.) 2000]
(a) $100^{\circ} \mathrm{C}$
(b) $200^{\circ} \mathrm{C}$
(C) $300^{\circ} \mathrm{C}$
(d) $400^{\circ} \mathrm{C}$

Solution: (d) Comparing the given equation of thermo e.m.f. with $E=\alpha t+\frac{1}{2} \beta t^{2}$ we get $\alpha=40$ and $\beta=-\frac{1}{10}$. By using $t_{n}=-\frac{\alpha}{\beta} \Rightarrow t_{n}=400^{\circ} \mathrm{C}$.

Example: 28 One junction of a certain thermoelectric couple is at a fixed temperature T_{r} and the other junction is at temperature T. The thermo electromotive force for this is expressed by $E=K\left(T-T_{r}\right)\left[T_{0}-\frac{1}{2}\left(T+T_{r}\right)\right]$ at temperature $T=\frac{1}{2} T_{0}$, the thermo electric power will be
(a) $\frac{1}{2} K T_{0}$
(b) $K T_{0}$
(c) $\frac{1}{2} K T_{0}^{2}$
(d) $\frac{1}{2} K\left(T_{0}-T_{r}\right)^{2}$

Solution : (a) As we know thermo electric power $S=\frac{d E}{d T}$. Hence by differentiating the given equation and putting $T=\frac{1}{2} T_{0}$ we get $S=\frac{1}{2} K T_{0}$.

Example: 29 The cold junction of a thermocouple is maintained at $10^{\circ} \mathrm{C}$. No thermo e.m.f. is developed when the hot junction is maintained at $530^{\circ} \mathrm{C}$. The neutral temperature is
(a) $260^{\circ} \mathrm{C}$
(b) $270^{\circ} \mathrm{C}$
(c) $265^{\circ} \mathrm{C}$
(d) $520^{\circ} \mathrm{C}$

Solution: (b) Given $t_{c}=10^{\circ} \mathrm{C}$ and $t_{i}=530^{\circ} \mathrm{C}$ hence by using $t_{n}=\frac{t_{i}+t_{c}}{2} \Rightarrow t_{n}=270^{\circ} \mathrm{C}$
Example: 30 The thermo emf develops in a $\mathrm{Cu}-\mathrm{Fe}$ thermocouple is $8.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. It temperature of cold junction is $0^{\circ} \mathrm{C}$ and temperature of hot junction is $40^{\circ} \mathrm{C}$ then the emf obtained shall be
(a) 0.344 mV
(b) $3.44 \mu \mathrm{~V}$
(c) 3.44 V
(d) 3.44 mV

Solution : (a) By using thermo emf $e=a \theta$ where $a=8.6 \frac{\mu V}{{ }^{\circ} C}$ and $\theta=$ temperature difference $=40^{\circ} \mathrm{C}$ So $e=8.6 \times 10^{-6} \times 40=344 \mu V=0.344 \mathrm{mV}$.
Example: 31 A thermo couple develops $200 \mu V$ between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. If it develops $64 \mu V$ and $76 \mu V$ respectively between $\left(0^{\circ} \mathrm{C}-32^{\circ} \mathrm{C}\right)$ and $\left(32^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right)$ then what will be the thermo emf it develops between $70^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$
(a) $65 \mu \mathrm{~V}$
(b) $60 \mu V$
(c) $55 \mu V$
(d) $50 \mu \mathrm{~V}$

Solution : (b) By using $e_{0}^{100}=e_{0}^{32}+e_{32}^{70}+e_{70}^{100} \Rightarrow 200=64+76+e_{70}^{100} \Rightarrow e_{70}^{100}=60 \mu \mathrm{~V}$
Example: 32 A thermo couple is formed by two metals X and Y metal X comes earlier to Y in Seebeck series. If temperature of hot junction increases beyond the temperature of inversion. Then direction of current in thermocouple will so
(a) X to Y through cold junction
(b) X to Y through hot junction
(c) Y to X through cold junction
(d) Both (b) and (c)

Solution: (d) In the normal condition current flows from X to Y through cold. While after increasing the temperature of hot junction beyond temperature of inversion. The current is reversed i.e. X to Y through hot junction or Y to X through cold junction.
Example: 33 Peltier co-efficient of a thermo couple is 2 nano volts. How much heat is developed at a junction if 2.5 amp current flows for 2 minute
(a) 6 ergs
(b) $6 \times 10^{-7} \operatorname{ergs}$
(c) 16 ergs
(d) $6 \times 10^{-3} \mathrm{erg}$

Solution : (a) $H=\pi i t=\left(2 \times 10^{-9}\right) \times 2.5 \times(2 \times 60)=6 \times 10^{-7} \mathrm{~J}=6 \mathrm{erg}$
Example: 34 A thermo couple develops $40 \mu \mathrm{~V} /$ kelvin. If hot and cold junctions be at $40^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ respectively then the emf develops by a thermopile using such 150 thermo couples in series shall be
(a) 150 mV
(b) 80 mV
(c) 144 mV
(d) 120 mV

Solution: (d) The temperature difference is $20^{\circ} \mathrm{C}=20 \mathrm{~K}$. So that thermo emf developed $E=a \theta$ $=40 \frac{\mu \mathrm{~V}}{K} \times 20 K=800 \mu \mathrm{~V}$.

Hence total emf $=150 \times 800=12 \times 10^{4} \mu V=120 \mathrm{mV}$

Chemical Effect of Current

Current can produce or speed up chemical change, this ability of current is called chemical effect (shown by dc not by ac).

When current is passed through an electrolyte, it dissociates into positive and negative ions. This is called chemical effect of current.

Important Terms Related to Chemical Effect

(1) Electrolytes : The liquids which allows the current to pass through them and also dissociates into ions on passing current through them are called electrolytes e.g. solutions of salts, acids and bases in water, etc.

Nate: These liquids which do not allow current to pass through them are called insulators (e.g. vegetable oils, distilled water etc.) while the liquids which allows the current to pass through them but do not dissociates into ions are called good conductors (e.g. Hg etc.)

- Solutions of cane sugar, glycerin, alcohol etc. are examples of non-electrolytes.
(2) Electrolysis : The process of decomposition of electrolyte solution into ions on passing the current through it is called electrolysis.

Wote: Practical applications of electrolysis are Electrotyping, extraction of metals from the ores, Purification of metals, Manufacture of chemicals, Production of O_{2} and H_{2}, Medical applications and electroplating.

- Electroplating : It is a process of depositing a thin layer of one metal over another metal by the method of electrolysis. The articles of cheap metals are coated with precious metals like silver and gold to make their look more attractive. The article to be electroplated is made the cathode and the metal to be deposited in made the anode. A soluble salt of the precious metal is taken as the electrolyte. (If gold is to be coated then auric chloride is used as electrolyte).
(3) Electrodes : Two metal plates which are partially dipped in the electrolyte for passing the current through the electrolyte.

Anode : Connected to positive terminal of battery
Cathode: Connected to negative terminal of battery
(4) Voltameter : The vessel in which the electrolysis is carried out is called a voltameter. It contains two electrodes and electrolyte. It is also known as electrolytic cell.

(5) Equivalent weight : The ratio of the atomic weight of an element to its valency is defined as it's equivalent weight.
(6) Types of voltameter : Voltameter is divided mainly in following types

Cu-voltameter	$\boldsymbol{A g}$ voltameter	Water voltameter
In copper voltameter, electrolyte is solution of copper e.g. $\mathrm{CuSO}_{4}, \mathrm{CuCl}_{2}$, $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ etc. Cathode may be of any material, but anode must be of copper. CuSO_{4} in water dissociates as follows $\mathrm{CuSO}_{4} \rightarrow \mathrm{Cu}^{++}+\mathrm{SO}_{4}^{--}$ $C u^{++}$moves towards cathode and takes 2 electron to become neutral and deposited on cathode $C u^{++}+2 e \rightarrow C u$ $\mathrm{SO}_{4}{ }^{-}$- moves towards anode and looses 2 electrons their. Copper is deposited on the cathode and an equivalent amount of copper is lost by the anode, but the concentration of cdpper subphate solution remains the same In this plocess, ${ }_{A}$ two ${ }_{C}$ electrons per reactic plat and valence of copper atom is ar\& \& flution cu lost	In silver voltameter electrolyte is a solution of silver, e.g. AgNO_{3}. Cathode may be of any metal but anode must be of silver. The dissociation reaction is as follows $\mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}$ The silver dissolves from the anode gets deposited on the cathode. During this process, the concentration of the electrolyte remains unchanged. In this process one electron per reaction is active and valence of $A g$ atom is also one.	In water voltameter the electrolyte used is acidic water, because it is much more conducting than that of pure water. So acid $\mathrm{CH}_{2} \mathrm{SO}_{4}$ increases the concentration of free ions in the solution. The electrodes are made of platinum, because it does not dissolve into electrolyte and does not react with the products of electrolysis. When current flows through the electrolyte, hydrogen gas is collected in the tube placed over the cathode (- ve electrode) and oxygen is collected in the tube placed

122 Heating and Chemical Effect of Current

Faraday's Law of Electrolysis

(1) First law : It states that the mass of substance deposited at the cathode during electrolysis is directly proportional to the quantity of electricity (total charge) passed through the electrolyte.

Let m be the mass of the substance liberated, when a charge q is passed through the electrolyte. Then, according to the Faraday's first law of electrolysis $m \propto q$ or $m=z q$, where the constant of proportionality z is called electrochemical equivalent (E.C.E.) of the substance. If a constant current i is passed through the electrolyte for time t, then the total charge passing through the electrolyte is given by $q=i t$

Therefore we have $m=z i t$. If $q=1$ coulomb, then we have $m=z \times 1$ or $z=m$
Hence, the electrochemical equivalent of substance may be defined as the mass of its substance deposited at the cathode, when one coulomb of charge passes through the electrolyte.
S.I. unit of electrochemical equivalent of a substance is kilogram coulomb ${ }^{-1}\left(\mathrm{~kg}-\mathrm{C}^{-1}\right)$.
(2) Second law : If same quantity of electricity is passed through different electrolytes, masses of the substance deposited at the respective cathodes are directly proportional to their chemical equivalents.

Let m be the mass of the ions of a substance liberated, whose chemical equivalent is E. Then, according to Faraday's of electrolysis, $m \propto E$ or $m=$ constant $\times E$ or $\frac{m}{E}=$ constant

Wote : Chemical equivalent E also known as equivalent weight in gm i.e. $E=\frac{\text { Atomic mass }(A)}{\text { Valance }(V)}$
(3) Relation between chemical equivalent and electrochemical equivalent : Suppose that on passing same amount of electricity q through two different electrolytes, masses of the two substances liberated are m_{1} and m_{2}. If E_{1} and E_{2} are their chemical equivalents, then from Faraday's second law, we have $\frac{m_{1}}{m_{2}}=\frac{E_{1}}{E_{2}}$

Further, if z_{1} and z_{2} are the respective electrochemical equivalents of the two substances, then from Faraday's first law, we have $m_{1}=z_{1} q$ and $m_{2}=z_{2} q \Rightarrow \frac{m_{1}}{m_{2}}=\frac{z_{1}}{z_{2}}$

So from above equation $\frac{z_{1}}{z_{2}}=\frac{E_{1}}{E_{2}} \quad \Rightarrow \quad z \propto E \quad \Rightarrow z_{2}=z_{1} \times \frac{E_{2}}{E_{1}}$
(4) Faraday constant : As we discussed above $E \propto z \Rightarrow E=F z \quad \Rightarrow z=\frac{E}{F}=\frac{A}{V F}$
' F ' is proportionality constant called Faraday's constant.
As $z=\frac{E}{F}$ and $z=\frac{m}{Q} \quad$ (from I law) so $\frac{E}{F}=\frac{m}{Q}$ hence if $Q=1$ Faraday then $E=m$ i.e. If electricity supplied to a voltameter is 1 Faraday then amount of substance liberated or deposited is (in gm) equal to the chemical equivalent. e.g. to deposit $16 \mathrm{gm} \mathrm{O}_{2} ; 2$ Faraday electricity is required.

Wate: $\square \quad$ Remember Number of $g m$ equivalent $=\frac{\text { given mass }}{\text { atomic mass }} \times$ valency

$$
\begin{aligned}
& 1 \text { Faraday }=96500 C \\
& \text { Also } F=N e \quad\{\text { where } N=\text { Avogrado number }
\end{aligned}
$$

Electro Chemical Cell

It is an arrangement in which the chemical energy is converted into electrical energy due to chemical action taking place in it. The total amount of energy that can be provided by this cell is limited and depends upon the amount of reactants. Electro chemical cells are of two types.
(1) Primary cell : Is that cell in which electrical energy is produced due to chemical energy. In the primary cell, chemical reaction is irreversible. This cell can not be recharged but the chemicals have to be replaced after a long use examples of primary cells; Voltaic cell, Daniel cell, Leclanche cell and Dry cell etc.

124 Heating and Chemical Effect of Current

	Main chemical reactions $\begin{aligned} & \mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+2 \mathrm{H}^{+}+2 e^{-} \\ & 2 \mathrm{H}^{+}+\mathrm{CuSO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Cu}^{++} \end{aligned}$
(iii) Lechlanche cell	
(iv) Dry cell	

(2) Secondary cell : A secondary cell is that cell in which the electrical energy is first stored up as a chemical energy and when the current is taken from the cell, the chemical energy is reconverted into electrical energy. In the secondary cell chemical reaction are reversible. The secondary cells are also called storage cell or accumulator. The commonly used secondary cells are

In charged	Lead accumulator	Alkali accumulator
Positive electrode	Perforated lead plates coated with PbO_{2}	Perforated steel plate coated with $\mathrm{Ni}(\mathrm{OH})_{4}$

Heating and Chemical Effect of Current 125

Negative electrode	Perforated lead plates coated with pure lead	Perforated steel plate coated with Fe
During charging	Chemical reaction At cathode : $\mathrm{PbSO}_{4}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}+$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ At anode : $\begin{aligned} & \mathrm{PbSO}_{4}+\mathrm{SO}_{4}^{--}+2 \mathrm{H}_{2} \mathrm{O}-2 e^{-} \rightarrow \mathrm{PbO}_{2}+ \\ & 2 \mathrm{H}_{2} \mathrm{SO}_{4} \end{aligned}$ Specific gravity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ increases and when specific gravity becomes 1.25 the cell is fully charged. Emf of cell : When cell is full charged them E $=2.2$ volt	Chemical reaction At cathode : $\mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{OH}^{+}-2 e^{-} \rightarrow \mathrm{Ni}(\mathrm{OH})_{4}$ At anode : $\mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{~K}^{+}+2 e^{-} \rightarrow \mathrm{Fe}+2 \mathrm{KOH}$ Emf of cell : When cell is fully charge then $E=1.36$ volt
During discharging	Chemical reaction At cathode : $\mathrm{Pb}+\mathrm{SO}_{4}^{--}-2 e^{-} \rightarrow \mathrm{PbSO}_{4}$ At anode : $\mathrm{PbO}_{4}+2 \mathrm{H}^{+}-2 e^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{PbSO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Specific gravity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ decreases and when specific gravity falls below 1.18 the cell requires recharging. Emf of cell : When emf of cell falls below 1.9 volt the cell requires recharging.	Chemical reaction At cathode : $\mathrm{Fe}+2 \mathrm{OH}^{-}-2 e^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2}$ At anode : $\begin{aligned} & \mathrm{Ni}(\mathrm{OH})_{4}+2 \mathrm{~K}^{+}+2 e^{-} \rightarrow \mathrm{Ni}(\mathrm{OH})_{2}+ \\ & 2 \mathrm{KOH} \end{aligned}$ Emf of cell : When emf of cell falls below 1.1 V it requires charging.
Efficiency	80\%	60\%

(3) Defects In a primary cell : In voltaic cell there are two main defects arises.

Local action : It arises due to the presence of impurities of iron, carbon etc. on the surface of commercial $Z n$ rod used as an electrode. The particles of these impurities and $Z n$ in contact with sulphuric acid form minute voltaic cell in which small local electric currents are set up resulting in the wastage of $Z n$ even when the cell is not sending the external current.

Removal : By amalgamating $Z n$ rod with mercury (i.e. the surface of $Z n$ is coated with $H g$).
Polarisation : It arises when the positive H_{2} ions which are formed by the action of Zn on sulphuric acid, travel towards the Cu rod and after transferring, the positive charge converted into H_{2} gas atoms and get deposited in the form of neutral layer of a gas on the surface of Cu rod. This weakens the action of cell in two ways.

Removal : Either by brushing the anode the remove the layer or by using a depolariser (i.e. some oxidising agent $\mathrm{MnO}_{2}, \mathrm{CuSO}_{4}$ etc which may oxidise H_{2} into water).

Wate: The end point voltage of dry cell is 0.8 V .

Concepts

Electrolysis takes place for dc and low frequency ac, as at high frequency, due to inertia (i.e. mass) ions cannot follow the frequency of ac.
Electrolytes are less conducting then the metallic conductors because ions are heavier than electrons.
If ρ is the density of the material deposited and A is the area of deposition then the thickness (d) of the layer of

126 Heating and Chemical Effect of Current

the material deposited in electroplating process is $d=\frac{m}{\rho A}=\frac{Z i t}{\rho A}$; where $m=$ deposited mass, $Z=$ electro chemical equivalent, $i=$ electric current.

Example

Example: 35 In an electroplating experiment, $m \mathrm{gm}$ of silver is deposited when 4 ampere of current flows for 2 minute. The amount (in $g m$) of silver deposited by 6 ampere of current for 40 second will be [MNR 1991; MP PET 2002]
(a) 4 m
(b) $m / 2$
(c) $m / 4$
(d) 2 m

Solution: (b) By using $m=z i t \Rightarrow \frac{m_{1}}{m_{2}}=\frac{i_{1} t_{1}}{i_{2} t_{2}} \Rightarrow \frac{m}{m_{2}}=\frac{4 \times 2 \times 60}{6 \times 40} \Rightarrow m_{2}=m / 2$
Example: 36 A current of 16 ampere flows through molten NaCl for 10 minute. The amount of metallic sodium that appears at the negative electrode would be
(a) 0.23 gm
(b) 1.15 gm
(c) 2.3 gm
(d) 11.5 gm

Solution : (c) By using $m=z i t=\frac{A}{V F}$ it $\Rightarrow m=\frac{23}{1 \times 96500} \times 16 \times 10 \times 60=2.3 \mathrm{gm}$
Example: 37 For depositing of 1 gm of Cu in copper voltameter on passing 2 amperes of current, the time required will be (For copper $Z=0.00033 \mathrm{gm} / \mathrm{C}$)
(a) Approx. 20 minutes(b) Approx. 25 minutes
(c) Approx. 30 minutes
(d)Approx. 35 minutes

Solution : (b) By using $m=z i t \Rightarrow 1=0.00033 \times 2 \times t \Rightarrow t=1515.15 \mathrm{sec} \approx 25 \mathrm{~min}$.
Example: 38 Two electrolytic cells containing CuSO_{4} and AgNO_{3} respectively are connected in series and a current is passed through them until 1 mg of copper is deposited in the first cell. The amount of silver deposited in the second cell during this time is approximately (Atomic weights of copper and Silver are respectively 63.57 and 107.88)
(a) 1.7 mg
(b) 3.4 mg
(c) 5.1 mg
(d) 6.8 mg

Solution: (b) By using $\frac{m_{1}}{m_{2}}=\frac{E_{1}}{E_{2}} \Rightarrow \frac{1}{m_{2}}=\frac{63.57 / 2}{107.88 / 1}=\frac{31.7}{107.88} \Rightarrow m_{2}=3.4 \mathrm{mg}$
Example: 39 When a copper voltameter is connected with a battery of emf 12 volts, 2 gms of copper is deposited in 30 minutes. If the same voltameter is connected across a 6 volt battery, then the mass of copper deposited in 45 minutes would be
(a) 1 gm
(b) 1.5 gm
(c) 2 gm
(d) 2.5 gm

Solution: (b) By using $m=z i t=\frac{z V t}{R} \Rightarrow \frac{m_{1}}{m_{2}}=\frac{V_{1} t_{1}}{V_{2} t_{2}} \Rightarrow \frac{2}{m_{2}}=\frac{12 \times 30}{6 \times 45} \Rightarrow m_{2}=1.5 \mathrm{gm}$
Example: 40 Silver and copper voltameter are connected in parallel with a battery of e.m.f. 12 V . In 30 minutes, 1 gm of silver and 1.8 gm of copper are liberated. The energy supplied by the battery is ($Z_{C u}=6.6 \times 10^{-4} \mathrm{gm} / \mathrm{C}$ and $Z_{A g}=11.2 \times 10^{-4} \mathrm{gm} / \mathrm{C}$)
(a) 24.13 J
(b) 2.413 J
(c) 0.2413 J
(d) 2413 J

Solution : (a)
By using $m=z i t$, for $A g$ voltameter $1=11.2 \times 10^{-4} \times i_{1} \times 30 \times 60 \Rightarrow$
For $C u$ voltameter $1.8=6.6 \times 10^{-4} \times i_{2} \times 30 \times 60 \Rightarrow i_{2}=1.5 \mathrm{amp}$
Main current $i=i_{1}+i_{2}=1.5+0.5=2 A$.
So energy supplied $=V i=12 \times 2=24 \mathrm{~J}$

Example: 41
Amount of electricity required to pass through the $\mathrm{H}_{2} \mathrm{O}$ voltameter so as to liberate 11.2 litre of hydrogen will be
(a) 1 Faraday
(b) $\frac{1}{2}$ Faraday
(c) 2 Faraday
(d) 3 Faraday

Solution : (a) Mass of hydrogen in 11.2 litres of hydrogen $=\left(\frac{11.2}{22.4}\right) \times M=\left(\frac{11.2}{22.4}\right) \times 2=1 \mathrm{gm}$
We know that 1 gm of hydrogen is equal to 1 gm equivalent $w t$. of hydrogen. It means that 11.2 litre of hydrogen at NTP represents 1 gm equivalent of hydrogen, so for liberation it requires 1 Faraday electricity.
Example: 42 Amount of electricity required to liberate 16 gm of oxygen is
(a) 1 Faraday
(b) 2 Faraday
(c) $\frac{1}{2}$ Faraday
(d) 3 Faraday

Solution : (b) Number of gm equivalent $=\frac{\text { Given mass }}{\text { gm equivalent weight }}=\frac{16}{16 / 2}=2$. Hence 2 Faraday electricity is needed.
Example: 43 Total surface area of a cathode is $0.05 \mathrm{~m}^{2}$ and $1 A$ current passes through it for 1 hour. Thickness of nickel deposited on the cathode is (Given that density of nickel $=9 \mathrm{gm} / \mathrm{cc}$ and it's $\mathrm{ECE}=3.04 \times 10^{-4} \mathrm{gm} / \mathrm{C}$)
(a) 2.4 m
(b) 2.4 cm
(c) $2.4 \mu \mathrm{~m}$
(d) None of these

Solution: (c)
Mass deposited $=$ density \times volume of the metal

$$
\begin{equation*}
m=\rho \times A \times x \tag{i}
\end{equation*}
$$

Hence from Faraday first law $\quad m=Z i t$
So from equation (i) and (ii) Zit $=\rho \times A x \Rightarrow$
$x=\frac{\text { Zit }}{\rho A}=\frac{3.04 \times 10^{-4} \times 10^{-3} \times 1 \times 36 \times \ldots . .}{9000 \times 0.05}=2.4 \times 10^{-6} \mathrm{~m}=2.4 \mu \mathrm{~m}$
Example: 44 Resistance of a voltameter is 2Ω, it is connected in series to a battery of $10 V$ through a resistance of 3Ω. In a certain time mass deposited on cathode is 1 gm . Now the voltameter and the 3Ω resistance are connected in parallel with the battery. Increase in the deposited mass on cathode in the same time will be
(a) 0
(b) 1.5 gm
(c) 2.5 gm
(d) 2 gm

Solution: (b) Remember mass of the metal deposited on cathode depends on the current through the voltameter and not on the current supplied by the battery. Hence by using $m=Z i t$, we can say $\frac{m_{\text {Parallel }}}{m_{\text {Series }}}=\frac{i_{\text {Parallel }}}{i_{\text {Series }}} \Rightarrow m_{\text {Parallel }}=\frac{5}{2} \times 1=2.5 \mathrm{gm}$.
Hence increase in mass $=2,5-1=1.5 \mathrm{gm}$

Tricky Example: 3

In a copper voltameter, the mass deposited in $30 s$ is m gram. If the current time graph is as shown in the figure, the e.c.e. of copper, in $\mathrm{gm} / \mathrm{coulomb}$, will be
(a) m
(b) $\frac{m}{2}$
(c) 0.6 m

128 Heating and Chemical Effect of Current
(d) 0.1 m

Solution : (b) Area of the given curve on x-axis $=i t=\frac{1}{2}(10+30) \times 100 \times 10^{-3}=2$ Coulomb
From Faraday's first law $m=z i t \Rightarrow z=\frac{m}{i t}=\frac{m}{2}$.

Assignment
 (Basic \& Advance Level Questions)

Assignmen

Joule's Heating

Basic Level

1. A $220 \mathrm{~V}, 1000 \mathrm{~W}$ bulb is connected across a 110 V mains supply. The power consumed will be
(a) 1000 W
(b) 750 W
(c) 500 W
(d) 250 W
2. An electric bulb is rated $60 \mathrm{~W}, 220 \mathrm{~V}$. The resistance of its filament is
(a) 708Ω
(b) 870Ω
(c) 807Ω
(d) 780Ω
3. An electric bulb marked 40 W and 200 V , is used in a circuit of supply voltage 100 V . Now its power is
(a) 100 W
(b) 40 W
(c) 20 W
(d) 10 W
4. An electric bulb is designed to draw power P_{o} at voltage V_{o}. If the voltage is V it draws a power P. Then
(a) $P=\left(\frac{V_{0}}{V}\right)^{2} P_{0}$
(b) $P=\left(\frac{V}{V_{0}}\right)^{2} P_{0}$
(c) $P=\left(\frac{V}{V_{0}}\right) P_{0}$
(d) $P=\left(\frac{V_{0}}{V}\right) P_{0}$
5. Two wires have resistance of 2Ω and 4Ω connected to same voltage, ratio of heat dissipated at resistance is [UPSEAT 21
(a) $1: 2$
(b) $4: 3$
(c) $2: 1$
(d) $5: 2$
6. Three bulbs of $40 \mathrm{~W}, 60 \mathrm{~W}$ and 100 W are arranged in series with 220 V . Which bulb has minimum resistance[AFMC 2001
(a) 40 W
(b) 60 W
(c) 100 W
(d) Equal in all bulbs
7. If two electric bulbs have 40 W and 60 W rating at 220 V , then the ratio of their resistances will be
[BHU 1999; KCET (Engg./Med.) 2001]
(a) $3: 2$
(b) $2: 3$
(c) $3: 4$
(d) $4: 3$
8. Two wires A and B of same material and mass have their lengths in the ratio $1: 2$. On connecting them to the same source, the rate of heat dissipation in B is found to be $5 W$. The rate of heat dissipation in A is
(a) 10 W
(b) 5 W
(c) 20 W
(d) None of these
9. A current i passes through a wire of length l, radius of cross-section r and density ρ. The rate of heat generation is [AMU (Med.) 1999]
(a) $\frac{i^{2} l \rho}{\pi r^{2}}$
(b) $i^{2}\left(\frac{l \rho}{\pi r^{2}}\right)^{2}$
(c) $i^{2} l \rho / r$
(d) $i l \rho / r$
10. If 2.2 KW power is transmitted through a 10 ohm line at 22000 V , the power lost in the form of heat will be [MP PET/P
(a) 0.1 W
(b) 1 W
(c) 10 W
(d) 100 W
11. The rated powers of two instruments working at 220 V is 200 W and 100 W respectively. If their resistances are R_{1} and R_{2} respectively, then
[NCERT 1980; CPMT 1991, 97]
(a) $R_{1}=4 R_{2}$
(b) $R_{1}=2 R_{2}$
(c) $R_{2}=2 R_{1}$
(d) $R_{2}=4 R_{1}$
12. The heating element of an electric toaster has a resistance of 22Ω and is connected to an ordinary house lighting circuit of 110 V . If $\mathrm{J}=4.2 \mathrm{~J} / \mathrm{cal}$, the heat generated in 1 minute is
(a) 26.19 cal
(b) 130.95 cal
(c) 7857 cal
(d) 2310 cal

128 Heating and Chemical Effect of Current

13. Electric power is transmitted over long distances through conducting wires at high voltage because
(a) High voltage travels faster
(b)
Power loss is large
(c) Power loss is less
(d) Generator produces electrical energy at a very high voltage
14. The ratio of diameters of two similar copper wires of equal length is $1: 2$. A constant current is passed through them when connected in series. The ratio of heat produced in the two will be
(a) $1: 2$
(b) $1: 3$
(c) $4: 1$
(d) $1: 5$
15. Two identical batteries, each of e.m.f. 2 V and internal resistance 1.0 ohm are available to produce heat in an external resistance $R=0.5 \mathrm{ohm}$ by passing a current through it. The maximum Joulean power that can be developed across R using these batteries is
(a) 1.28 W
(b) 2.0 W
(c) $\frac{8}{9} W$
(d) 3.2 W
16. A constant voltage is applied between the two ends of a uniform metallic wire. Some heat is developed in it. If both length and radius of the wire are halved then the heat developed in the same duration will become
(a) Half
(b) Twice
(c) One-fourth
(d) Same

Advance Level

17. Time taken by a 836 W heater to heat one litre of water from $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is
[AIEEE 2004]
(a) 150 sec
(b) 100 sec
(c) 50 sec
(d) 200 sec
18. An electric lamp is marked $60 W, 230 V$. The cost of a $K W \times$ hour of power is Rs. 1.25. The cost of using this lamp 8 hrs a day for 30 days is
(a) Rs. 10
(b) Rs. 16
(c) Rs. 18
(d) Rs. 24
19. A steel wire has a resistance twice that of an aluminium wire. Both of them are connected with a constant voltage supply. More heat will be dissipated in
(a) Steel wire when both are connected in series
(b) Steel wire when both are connected in parallel
(c) Aluminium wire when both are connected in series
(d) Aluminium wire when both are connected in parallel
20. Which of the following plots may represent the thermal energy produced in a resistor in a given time as a function of the electric current
(a) a
(b) b
(c) c
(d) d

21. An electric kettle takes $4 A$ current at 220 V . How much time will it take to boil 1 kg of water from room temperature $20^{\circ} \mathrm{C}$? The temperature of boiling water is $100^{\circ} \mathrm{C}$
(a) 6.4 minutes
(b) 6.3 minutes
(c) 12.6 minutes
(d) 12.8 minutes
22. The resistance of the filament of an electric bulb changes with temperature. If an electric bulb rated $220 V$ and $100 W$ is connected $(220 \times 0.8) V$ source, then the actual power would be
(a) $100 \times 0.8 \mathrm{~W}$
(b) $100 \times(0.8)^{2} W$
(c) Between $100 \times 0.8 \mathrm{~W}$ and 100 W
(d) Between $100 \times(0.8)^{2} W$ and $100 \times 0.8 W$
23. According to Joule's law, if the potential difference across a conductor having a material of specific resistance remains constant, then the heat produced in the conductor is directly proportional to
(a) ρ
(b) ρ^{2}
(c) $\frac{1}{\sqrt{\rho}}$
(d) $\frac{1}{\rho}$
24. A $100 W$ bulb and a $25 W$ bulb are designed for the same voltage. They have filaments of the same length and material. The ratio of the diameter of the 100 W bulb to that of the 25 W bulb is
(a) $4: 1$
(b) $2: 1$
(c) $\sqrt{2}: 1$
(d) $1: 2$
25. A heating coil of $2000 W$ is immersed in an electric kettle. The time taken in raising the temperature of 1 litre of water from $4^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ will be - (Only 80% part of the thermal energy produced is used in raising the temperature of water
(a) 252 s
(b) 250 s
(c) 245 s
(d) 247 s
26. A house is fitted with 10 lamps of 60 W each, 10 fans consuming $0.5 A$ each and an electric kettle of resistance 110Ω. If the energy is supplied at 220 V and costs 50 paise per $K W h$. The electric bill for 10 days, if all appliances are used for 6 hours daily will be approx. Rs.
(a) 60
(b) 64
(c) 68
(d) 70
27. A constant current i is passed through a resistor. Taking the temperature coefficient of resistance into account, indicate which of the plots shown in figure best represents the rate of production of thermal energy in the resistor
(a) a
(b) b
(c) c

(d) d
28. A dwelling house is installed with 15 lamps, each of resistance $10^{3} \Omega$ and 4 ceiling fans each driven by $1 / 8$ th horse-power motor. If the lamps and fans are run on an average for 6 hours daily, then the number of B.O.T. units consumed by lamps in a month of 31 days will be (Given supply voltage -220 V)
(a) 135
(b) 150
(c) 165
(d) 180
29. A person decides to use his bath-tub water to generate electric power to run a $40 W$ bulb. The bath-tub is located at a height of 10 m from the ground and it holds 20 litres of water. He installs a water driven wheel generator on the ground. The rate at which he should drain the water from the bath tub to light the bulb and the time he keeps the bulb on will be respectively - (The efficiency of the generator is 90%) $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) $0.345 \mathrm{~kg} / \mathrm{s}, 441 \mathrm{~s}$
(b) $40 \mathrm{~kg} / \mathrm{s}, 100 \mathrm{~s}$
(c) $0.454 \mathrm{~kg} / \mathrm{s}, 441 \mathrm{~s}$
(d) None of these
30. A current enters at a point in a solid metallic sphere and leaves from exactly opposite point. Heat produced in it will be
(a) Uniform throughout
(b) Maximum at the point of entrance and exist
(c) Maximum in the perpendicular diameter plane

(d) Minimum at the point of entry and exist
31. When three identical bulbs of 60 W , 200 V rating are connected in series at a 200 V supply, the power drawn by them will be
[CBSE PMT 2004; MP PET 2003]
(a) 10 W
(b) 20 W
(c) 60 W
(d) 180 W
32. In India electricity is supplied for domestic use at 220 V . It is supplied at 110 V in USA. If the resistance of a 60 W bulb for use in India is R, the resistance of a $60 W$ bulb for use in USA will be
(a) $R / 4$
(b) $R / 2$
(c) R
(d) $2 R$
33. Two $220 V$, 100 W bulbs are connected first in series and then in parallel. Each time the combination is connected to 220 V ac supply line. The power drawn by the combination in each case respectively will be
(a) $100 \mathrm{~W}, 50 \mathrm{~W}$
(b) $200 \mathrm{~W}, 150 \mathrm{~W}$
(c) $50 \mathrm{~W}, 200 \mathrm{~W}$
(d) $50 \mathrm{~W}, 100 \mathrm{~W}$
34. A wire when connected to 220 V mains supply has power dissipation P_{1}. Now the wire is cut into two equal pieces which are connected in parallel to the same supply. Power dissipation in this case is P_{2}. Then $P_{2}: P_{1}$ is
(a) 1
(b) 4
(c) 2
(d) 3
35. n identical bulbs, each designed to draw a power p from a certain voltage supply, are joined in series across that supply. The total power which they will draw is
(a) p / n^{2}
(b) p / n
(c) p
(d) $n p$
36. Two electric bulbs rated P_{1} watt V volts and P_{2} watt V volts are connected in parallel and V volts are applied to it. The total power will be
[MP PMT 2001; MP PET 2002]
(a) $P_{1}+P_{2}$ watt
(b) $\sqrt{P_{1} P_{2}} W$
(c) $\frac{P_{1} P_{2}}{P_{1}+P_{2}}$ watt
(d) $\frac{P_{1}+P_{2}}{P_{1} P_{2}}$ watt
37. An electric kettle has two heating coils. When one coil is used, water in the kettle boils in 5 minutes, while when second coil is used, same water boils in 10 minutes. If the two coils, connected in parallel are used simultaneously, the same water will boil in time
[MP PET 2001]
(a) 3 min 20 sec
(b) 5 min
(c) 7 min 30 sec
(d) 2 min 30 sec
38. Two bulbs of $500 W$ and $200 W$ are manufactured to operate on $220 V$ line. The ratio of heat produced in 500 W and 200 W , in two cases, when firstly they are joined in parallel and secondly in series will be
(a) $\frac{5}{2}, \frac{2}{5}$
(b) $\frac{5}{2}, \frac{5}{2}$
(c) $\frac{2}{5}, \frac{5}{2}$
(d) $\frac{2}{5}, \frac{2}{5}$
39. Two resistances are connected in series across a battery and consume a power P. If these are connected in parallel the power consumed will be
(a) P
(b) $4 P$
(c) $2 P$
(d) $P / 4$
40. A uniform wire connected across a supply produces heat H per second. If the wire is cut into n equal parts and all the parts are connected in parallel across the same supply, the heat produced per second will be
(a) $\frac{H}{n^{2}}$
(b) $n^{2} H$
(c) $n H$
(d) $\frac{H}{n}$
41. In a house having 220 V line, following appliances are operating (i) 60 W bulb (ii) 1000 W heater and (iii) a 40 W radio set. The current passing through fuse for this line will be
(a) $\frac{3}{11} \mathrm{~A}$
(b) $\frac{2}{11} \mathrm{~A}$

(c) 5 A
(d) $6 A$

Advance Level

42. A $100 W$ bulb B_{1} and two $60 W$ bulbs B_{2} and B_{3} are connected to a $250 V$ source, as shown in the figure. Now W_{1}, W_{2} and W_{3} are the output powers of the bulbs B_{1}, B_{2} and B_{3}, respectively. Then
(a) $W_{1}>W_{2}=W_{3}$
(b) $W_{1}>W_{2}>W_{3}$
(c) $W_{1}<W_{2}=W_{3}$

(d) $W_{1}<W_{2}<W_{3}$
43. Four identical electrical lamps are labelled 1.5 V , 0.5 A which describes the condition necessary for them to operate at normal brightness. A 12 V battery of negligible internal resistance is connected to lamps as shown, then
[UPSEAT 2001]
(a) The value of R for normal brightness of each lamp is $\frac{3}{4} \Omega$
(b) The value of R for normal brightness of each lamp is $\frac{21}{4} \Omega$
(c) Total power dissipated in circuit when all lamps are normally b

(d) Power dissipated in R is 21 W when all lamps are normally bright
44. In the circuit shown below, the power developed in the 6Ω resistor is 6 watt. The power (in watts) developed in the 4Ω resistor is
[AMU (Med.) 2000]
(a) 16
(b) 9
(c) 6
(d) 4

45. If A, B and C are identical lamps, which of the following changes to the brightness of the lamps occur when switch S is closed
(a) A stays the same, B decreases
(b) A increases, B decreases
(c) A increases, B stays the same
(d) A decreases, B increases

[AMU 1988]
46. The three resistances A, B and C have values $3 R, 6 R$ and R respectively. When some potential difference is applied across the network, the thermal powers dissipated by A, B

(a) $2: 3: 4$
(b) $2: 4: 3$
(c) $4: 2: 3$
(d) $3: 2: 4$
47. A house is served by 220 V supply line in a circuit protected by a 9 ampere fuse. The maximum number of 60 W lamps in parallel that can be turned on, is
(a) 44
(b) 20
(c) 22
(d) 33
48. A heater is designed to operate with a power of 1000 W in a 100 V line. It is connected to two resistance of 10Ω and $R \Omega$ as shown in fig. If the heater is now giving a power of 62.5 W . The value of resistance R will be
(a) 5Ω
(b) 10Ω
(c) 2.5Ω
(d) 1.25Ω

Thermo electricity

Basic Level

49. The thermo emf of a thermocouple varies with the temperature θ of the hot junction as $E=a \theta+b \theta^{2}$ in volts. where the ratio $\frac{a}{b}$ is $700^{\circ} \mathrm{C}$. If the cold junction is kept at $0^{\circ} \mathrm{C}$, then the neutral temperature is
(a) $1400^{\circ} \mathrm{C}$
(b) $350^{\circ} \mathrm{C}$
(c) $700^{\circ} \mathrm{C}$
(d) No neutral temperature is possible for this thermocouple
50. If the cold junction of thermocouple is lowered, then the neutral temperature
[JIPMER 2002]
(a) Increases
(b) Approaches inversion temperature
(c) Decreases
(d) Remains the same
51. A thermoelectric refrigerator works on
(a) Joule effect
(b) Seebeck effect
(c) Peltier effect
(d) Thermionic emission
52. The neutral temperature of a thermocouple is $350^{\circ} \mathrm{C}$ when the cold junction is at $0^{\circ} \mathrm{C}$. When the cold junction is immersed in a bath of $30^{\circ} \mathrm{C}$, the inversion temperature is
(a) $700^{\circ} \mathrm{C}$
(b) $600^{\circ} \mathrm{C}$
(c) $350^{\circ} \mathrm{C}$
(d) $670^{\circ} \mathrm{C}$
53. Two ends of a conductor are at different temperatures the electromotive force generated between two ends is
[MP PMT 2001; MP PET 2002]
(a) Seebeck electro motive force (emf)
(b) Peltier electro motive force (emf)
(c) Thomson electro motive force (emf)
(d) None of these
54. $e=\alpha t-\frac{1}{2} \beta t^{2}$, If temperature of cold junction is $0^{\circ} \mathrm{C}$ then temperature of inversion is (if $\alpha=500.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}, \beta=5.0 \mu \mathrm{~V} /$ Square ${ }^{\circ} \mathrm{C}$)
[DCE 2001]
(a) $100^{\circ} \mathrm{C}$
(b) $200^{\circ} \mathrm{C}$
(c) $300^{\circ} \mathrm{C}$
(d) $400^{\circ} \mathrm{C}$
55. For a thermocouple the neutral temperature is $270^{\circ} \mathrm{C}$ when its cold junction is at $20^{\circ} \mathrm{C}$. What will be the neutral temperature and the temperature of inversion when the temperature of cold junction is increased to $40^{\circ} \mathrm{C}$

[Kerala PET 2001]

(a) $290^{\circ} \mathrm{C}, 580^{\circ} \mathrm{C}$
(b) $270^{\circ} \mathrm{C}, 580^{\circ} \mathrm{C}$
(c) $270^{\circ} \mathrm{C}, 500^{\circ} \mathrm{C}$
(d) $290^{\circ} \mathrm{C}, 540^{\circ} \mathrm{C}$
56. In the Seebeck series $B i$ occurs first followed by $C u$ and $F e$ among other. The $S b$ is the last in the series. If E_{1} be the thermo emf at the given temperature difference for $B i-S b$ thermocouple and E_{2} be that for $C u-F e$ thermocouple, which of the following is true
[J \& K CEET 2000]
(a) $E_{1}=E_{2}$
(b) $E_{1}<E_{2}$
(c) $E_{1}>E_{2}$
(d) Data is not sufficient to predict it
57. In a given thermocouple the temperature of the cold junction is $20^{\circ} \mathrm{C}$ while the neutral temperature is $270^{\circ} \mathrm{C}$. What will be the temperature of inversion
(a) $540^{\circ} \mathrm{C}$
(b) $520^{\circ} \mathrm{C}$
(c) $500^{\circ} \mathrm{C}$
(d) $420^{\circ} \mathrm{C}$
58. Consider the following two statements A and B, and identify the correct choice of given answers. [EAMCET (Med.) 2000]
A. Thermo e.m.f. is minimum at neutral temperature of a thermocouple
B. When two junctions made of two different metallic wires are maintained at different temperatures, an electric current is generated in the circuit.
(a) A is false and B is true
(b) A is true and B is false
(c) Both A and B are false
(d) Both A and B are true
59. Two different metals are joined end to end. One end is kept at constant temperature and the other end is heated to a very high temperature. The graph depicting the thermo e.m.f. is
(a)

(b)

(c)

(d)

60. For a thermocouple if the cold junction is maintained at $0^{\circ} \mathrm{C}$ the inversion temperature is $680^{\circ} \mathrm{C}$. Its Neutral temperature is
[EAMCET (Med.) 1999]
(a) $1360^{\circ} \mathrm{C}$
(b) $650^{\circ} \mathrm{C}$
(c) $340^{\circ} \mathrm{C}$
(d) $170^{\circ} \mathrm{C}$
61. The temperature of the cold junction of thermocouple is $0^{\circ} \mathrm{C}$ and the temperature of hot junction is $T^{\circ} \mathrm{C}$. The emf is $E=$ $16 T-0.04 T^{2} \mu V$. The temperature of inversion is
(a) $200^{\circ} \mathrm{C}$
(b) $400^{\circ} \mathrm{C}$
(c) $100^{\circ} \mathrm{C}$
(d) $300^{\circ} \mathrm{C}$
62. In a $\mathrm{Cu}-\mathrm{Fe}$ thermo couple the battery current is driven from $\mathrm{Cu}-\mathrm{Fe}$ through J_{2}. Then
(a) J_{2} should heat's up
(b) J_{2} should cool down
(c) J_{1} should cool down

134 Heating and Chemical Effect of Current

(d) Both J_{1} and J_{2} either heat's up or cool down depending upon the direction of current

Advance Level

63. The thermo e.m.f. of a thermocouple is $25 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ at room temperature. A galvanometer of 40 ohm resistance capable of detecting current as low as $10^{-5} A$ is connected with the thermocouple. The smallest temperature difference that can be detected by this system is
(a) $20^{\circ} \mathrm{C}$
(b) $16^{\circ} \mathrm{C}$
(c) $12^{\circ} \mathrm{C}$
(d) $8^{\circ} \mathrm{C}$
64. Thomson coefficient of a conductor is $10 \mu V / K$. The two ends of it are kept at $50^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Amount of heat absorbed by the conductor when a charge of $10 C$ flows through it is
(a) 1000 J
(b) 100 J
(c) 100 mJ
(d) 1 mJ
65. A thermo couple of resistance 2.6Ω is in series with a meter of resistance 7.4Ω. It can produce $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ difference between junctions. The meter reads 10 mV when a junction is at $0^{\circ} \mathrm{C}$ and the other junction is in molten metal. Temperature of molten metal is
(a) $1350^{\circ} \mathrm{C}$
(b) $1500^{\circ} \mathrm{C}$
(c) $1000^{\circ} \mathrm{C}$
(d) $1850^{\circ} \mathrm{C}$

Chemical Effect of Current

Basic Level

66. The electrochemical equivalent of a metal is $3.3 \times 10^{-7} \mathrm{~kg} /$ Coulomb . The mass of the metal liberated at the cathode when a $3 A$ current is passed for 2 seconds will be
(a) $6.6 \times 10^{-7} \mathrm{~kg}$
(b) $9.9 \times 10^{-7} \mathrm{~kg}$
(c) $19.8 \times 10^{-7} \mathrm{~kg}$
(d) $1.1 \times 10^{-7} \mathrm{~kg}$
67. The negative $Z n$ pole of a Daniell cell sending a constant current through the circuit, decreases in mass by 0.13 g in 30 minutes. If the electrochemical equivalent of $Z n$ and $C u$ are 32.5 and 31.5 respectively, the increase in the mass of the positive Cu pole in this time is
[AIEEE 2003]
(a) 0.242 g
(b) 0.180 g
(c) 0.141 g
(d) 0.126 g
68. If 96500 coulombs of electricity liberates one gram equivalent of any substance, the time taken for a current of 0.15 amperes to deposit 20 mg of copper from a solution of copper sulphate is (Chemical equivalent of copper = 32)
[Kerala (Engg.) 2002]
(a) 5 min 20 sec
(b) $6 \min 42 \mathrm{sec}$
(c) 4 min 40 sec
(d) 5 min 50 sec
69. On passing 96500 coulomb of charge through a solution CuSO_{4} the amount of copper liberated is
(a) 64 gm
(b) 32 gm
(c) 32 kg
(d) 64 kg
70. The electrochemical equivalent of a material in an electrolyte depends on
(a) The nature of the material
(b)
The current through the electrolyte
(c) The amount of charge passed through electrolyte
(d) The amount of material present in electrolyte
71. Two electrolytic cells containing CuSO_{4} and AgNO_{3} respectively are connected in series and a current is passed through them until 1 mg of copper is deposited in the first cell. The amount of silver deposited in the second cell during this time is approximately [Atomic weights of copper and silver are respectively 63.57 and 107.88]
(a) 1.7 mg
(b) 3.4 mg
(c) 5.1 mg
(d) 6.8 mg
72. If nearly 10^{+5} coulomb liberate 1 gm equivalent of aluminium, then the amount of aluminium (equivalent weight 9) deposited through electrolysis in 20 minutes by a current of 50 ampere will be
(a) 0.6 g
(b) 0.09 g
(c) 5.4 g
(d) 10.8 g
73. The electro-chemical equivalent of magnesium is $0.126 \mathrm{mg} / C$. A current of $5 A$ is passed in a suitable solution for 1 hour. The mass of magnesium deposited will be
(a) 0.0378 g
(b) 0.227 g
(c) 0.378 g
(d) 2.27 g
74. A steady current of 5 amps is maintained for 45 minutes. During this time it deposits 4.572 gms of zinc at the cathode of a voltameter. E.C.E. of zinc is
(a) $3.387 \times 10^{-4} \mathrm{gm} / \mathrm{C}$
(b) $3.387 \times 10^{-4} \mathrm{C} / \mathrm{gm}$
(c) $3.384 \times 10^{-3} \mathrm{gm} / \mathrm{C}$
(d) $3.394 \times 10^{-3} \mathrm{C} / \mathrm{gm}$
75. 965 C charge deposits 1.08 gm of silver when passed through silver nitrate solution. What is the equivalent weight of silver
(a) 108
(b) 10.8
(c) 1.08
(d) None of these
76. If in a voltaic cell 5 gm of zinc is consumed, then we get how many ampere hours. (Given that e.c.e. of $Z n$ is 3.387 $\times 10^{-7} \mathrm{~kg} / \mathrm{C}$)
(a) 2.05
(b) 8.2
(c) 4.1
(d) $5 \times 3.387 \times 10^{-7}$
77. During the electrolysis, it is the
(a) Electronic conduction every where
(b) Ionic conduction every where
(c) Ionic conduction inside and electronic conduction outside the voltmeter
(d) Electronic conduction inside and ionic conduction outside the voltameter
78. During electrolysis of acidulated water, volumes of H_{2} and O_{2} are in the ratio of
(a) $1: 1$
(b) $1: 2$
(c) $2: 1$
(d) $8: 1$

Advance Level

79. A silver voltameter of resistance 2 ohm and a 3 ohm resistor are connected in series across a cell. If a resistance of 2 ohm is connected in parallel with the voltameter, then the rate of deposition of silver
(a) Decreases by 25%
(b) Increases by 25%
(c) Increases by 37.5%
(d) Decreases by 37.5%
80. If 100 KWh of energy is consumed at 33 V in a copper voltameter, the mass of copper liberated is (Given e.c.e. of copper $=3.3 \times 10^{-7} \mathrm{~kg} / . C$)
(a) 1.65 kg
(b) 1.8 kg
(c) 3.3 kg
(d) 3.6 kg

136 Heating and Chemical Effect of Current

81. A current of 1.5 A flows through a copper voltameter. The thickness of copper deposited on the electrode surface of area $50 \mathrm{~cm}^{2}$ in 20 minutes will be (Density of copper $=9000 \mathrm{~kg} / \mathrm{m}^{3}$ and e.c.e. of copper $=0.00033$ g / C)
(a) $2.6 \times 10^{-5} \mathrm{~m}$
(b) $2.6 \times 10^{-4} \mathrm{~m}$
(c) $1.3 \times 10^{-5} \mathrm{~m}$
(d) $1.3 \times 10^{-4} \mathrm{~m}$
82. An ammeter, suspected to give inaccurate reading, is connected in series with a silver voltameter. The ammeter indicates 0.54 A. A steady current passed for one hour deposits 2.0124 gm of silver. If the e.c.e. of silver is $1.118 \times 10^{-3} \mathrm{gmC}^{-1}$, then the error in ammeter reading is
(a) $+0.04 A$
(b) +0.02 A
(c) $-0.03 A$
(d) -0.01 A
83. A silver and a copper voltmeters are connected across a 6 V battery of negligible resistance. In half an hour, 1 gm of copper and 2 gm of silver are deposited. The rate at which energy is supplied by the battery will approximately be (Given E.C.E. of copper $=3.294 \times 10^{-4} \mathrm{~g} / C$ and E.C.E. of silver $=1.118 \times 10^{-3} \mathrm{~g} / C$)
(a) 64 W
(b) 32 W
(c) 96 W
(d) 16 W
84. Area of a electrode is $32 \mathrm{~cm}^{2}$. It is to be coated with Cu . Density of Cu is $9000 \mathrm{~kg} / \mathrm{m}^{2}$, thickness of Cu deposited on each side of the rectangular cathode is 0.01 mm . Energy spent by a battery of emf 10 V is (ECE of Cu is $3.2 \times$ $1 \mathrm{O}^{-4} \mathrm{gm} / \mathrm{C}$)
(a) 18 J
(b) 1800 J
(c) 18 kJ
(d) 180 kJ
85. A charged capacitor of $5 \times 10^{-2} F$ capacity is discharged through a resistor R of 20Ω and a Cu voltmeter of internal resistance 30Ω connected in series. If $4.62 \times 10^{-6} \mathrm{~kg} \mathrm{Cu}$ is deposited, the heat generated in the resistor R will be (E.C.E. of $\mathrm{Cu}=3.3 \times 10^{-7} \mathrm{~kg} / \mathrm{C}$)
(a) 200 J
(b) 784 J
(c) 830 J
(d) 2000 J

Answer Sheet

Assignment (Basic \& Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	c	d	b	c	c	a	a	a	a	c	c	c	c	b	a	a	c	$\begin{aligned} & \mathbf{a}, \\ & \mathbf{d} \end{aligned}$	a
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	c	d	b	a	b	d	a	c	b	b	a	C	b	b	a	a	a	b	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
c	d	b	b	b	c	d	a	b	d	c	d	c	b	c	c	b	a	d	c
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	b	b	d	a	c	d	b	b	a	b	c	d	a	a	c	c	c	d	d
81	82	83	84	85															
c	a	d	c	b															

