4. Triangles

Exercise 4.1

1. Question

Fill in the blanks using the correct word given in brackets :
(i) All circles are........(congruent, similar).
(ii) All squares are.........(similar, congruent).
(iii) All......triangles are similar (isosceles, equilaterals).
(iv) Two triangles are similar, if heir corresponding angles are.........(proportional, equal)
(v) Two triangles are similar, if their corresponding sides are.........(proportional, equal)
(vi) Two polygons of the same number of sides are similar, if (a) their corresponding angles ae and
(b) heir corresponding sides are \qquad (equal, proportional)

Answer

(i) similar (ii) similar
(iii) equilateral (iv) equal
(v) proportional (vi) equal, proportional

2. Question

Write the truth value (T/F) of each of the following statements:
(i) Any two similar figures are congruent.
(ii) Any two congruent figures are similar.
(iii) Two polygons are similar, if their corresponding sides are proportional.
(iv) Two polygons are similar if their corresponding angles are proportional.
(v) Two triangles are similar if their corresponding sides are proportional.
(vi) Two triangles are similar if their corresponding angles are proportional.

Answer

(i) False (ii) True
(iii) False (iv) False
(v) True (vi) True

Exercise 4.2

1. Question

In a $\triangle A B C, D$ and E are points on the sides $A B$ and $A C$ respectively such that $D E \| B C$
(i) If $A D=6 \mathrm{~cm}, D B=9 \mathrm{~cm}$ and $A E=8 \mathrm{~cm}$, find $A C$.
(ii) If $\frac{A D}{D B}=\frac{3}{4}$ and $A C=15 \mathrm{~cm}$, find $A E$.
(iii) If $\frac{A D}{D B}=\frac{2}{3}$ and $A C=18 \mathrm{~cm}$, find $A E$.
(iv) If $A D=4, A E=8, D B=x-4$, and $E C=3 x-19$, find x.
(v) If $A D=8 \mathrm{~cm}, A B=12 \mathrm{~cm}$ and $A E=12 \mathrm{~cm}$, find $C E$.
(vi) If $A D=4 \mathrm{~cm}, D B=4.5 \mathrm{~cm}$ and $A E=8 \mathrm{~cm}$, find $A C$.
(vii) If $A D=2 \mathrm{~cm}, A B=6 \mathrm{~cm}$ and $A C=9 \mathrm{~cm}$, find $A E$.
(viii) If $\frac{A D}{B D}=\frac{4}{5}$ and $E C=2.5 \mathrm{~cm}$, find $A E$.
(ix) If $A D=x, D B=x-2, A E=x+2$ and $E C=x-1$, find the value of x.
(x) If $A D=8 x-7, D B=5 x-3, A E=4 x-3$ and $E C=(3 x-1)$, find the value of x.
(xi) If $A D=4 x-3, A E=8 x-7, B D=3 x-1$ and $C E=5 x-3$, find the volume x.
(xii) If $A D=2.5 \mathrm{~cm}, \mathrm{BD}=3.0 \mathrm{~cm}$ and $\mathrm{AE}=3.75 \mathrm{~cm}$, find the length of $A C$.

Answer

(i)

we have
DE\|BC
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
6/9=8/EC
$2 / 3=8 / E C$
$\mathrm{EC}=3 \times 8 / 2$
$\mathrm{EC}=3 \times 4$
$\mathrm{EC}=12 \mathrm{~cm}$
(ii)

we have
$D E \| B C$
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
Adding 1 both side
$A D / D B+1=A E / E C+1$
$3 / 4+1=A E+B C / B C$
$3+4 / 4=A C / E C[A E+E C=A C]$
$7 / 4=15 / E C$
$\mathrm{EC}=15 \times 4 / 7$
$E C=60 / 7$
Now AE+EC=AC
$A E+60 / 7=15$
$A E=15-60 / 7$
$A E=105-60 / 7$
$A E=45 / 7$
$A E=6.43 \mathrm{~cm}$
(iii)

we have

$D E \| B C$

Therefore by basic proportionally theorem
$A D / D B=A E / E C$
Adding 1 both side
$A D / D B+1=A E / E C+1$
$\frac{3}{2}+1=\frac{\mathrm{EC}}{\mathrm{AE}}+1$
$\frac{3+2}{2}=\frac{E C+A E}{A E}$
$\frac{5}{2}=A C / A E[A E+E C=A C]$
$5 / 2=18 / \mathrm{AE}$
$\mathrm{AE}=\frac{18 x 2}{5}$
$A E=36 / 5$
$A E=7.2 \mathrm{~cm}$
(iv)

we have
DE\|BC
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
$\frac{4}{x-4}=\frac{8}{3 x-19}$
$4(3 x-19)=8(x-4)$
$12 x-76=8 x-32$
$12 x-8 x=76-32$
$4 \mathrm{x}=44$
$x=44 / 4$
$\mathrm{x}=11 \mathrm{~cm}$
(v)

$A D=8 \mathrm{~cm}, A B=12 \mathrm{~cm}$
since $B D=A B-A C$
$B D=12-8$
$B D=4 \mathrm{~cm}$
$D E \| B C$
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
$8 / 4=12 / E C$
$\mathrm{EC}=\frac{12 \mathrm{x} 4}{8}$
$E C=6 \mathrm{~cm}$
(vi)

we have
DE\|BC
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
$4 / 4.5=8 / E C$
$\mathrm{EC}=\frac{8 \times 4.5}{4}$
$\mathrm{EC}=9 \mathrm{~cm}$
Now AE+EC=AC
$A C=8+9$
$\mathrm{AC}=17 \mathrm{~cm}$
(vii)

$A D=2 \mathrm{~cm}, A B=6 \mathrm{~cm}$
Since $B D=A B-A C$
$B D=6-2$
$B D=4 \mathrm{~cm}$
$D E \| B C$
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
Taking reciprocal on both side
$D B / A D=E C / A E$
$4 / 2=E C / A E$
Adding 1 both side
$A D / D B+1=A E / E C+1$
$\frac{4}{2}+1=\frac{\mathrm{EC}}{\mathrm{AE}}+1$
$\frac{4+2}{2}=\frac{E C+A E}{A E}$
$\frac{6}{2}=A C / A E[A E+E C=A C]$
$3=9 / \mathrm{AE}$
$A E=\frac{9}{3}$
$A E=3 \mathrm{~cm}$
(viii) we have

DE\|BC
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
4/5=AE/2.5
$A E=4 \times 2.5 / 5$
$A E=10 / 5$
$A E=2 \mathrm{~cm}$
(ix) we have

DE\|BC
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
$\frac{x}{x-2}=\frac{x+2}{x-1}$
$x(x-1)=(x+2)(x-2)$
$x^{2}-x=x^{2}-2^{2}$
$-x=-4$
$x=4 \mathrm{~cm}$
(x) we have

DE\|BC
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
$\frac{8 x-7}{5 x-3}=\frac{4 x-3}{3 x-1}$
$(8 x-7)(3 x-1)=(4 x-3)(5 x-3)$
$8 x(3 x-1)-7(3 x-1)=4 x(5 x-3)-3(5 x-3)$
$24 x^{2}-8 x-21 x+7=20 x^{2}-12 x-15 x+9$
$24 x^{2}-20 x^{2}-29 x+27 x+7-9=0$
$4 x^{2}-2 x-2=0$
$2\left[2 x^{2}-x-1\right]=0$
$2 x^{2}-x-1=0$
$2 x^{2}-2 x-x-1=0$
$2 x(x-1)+1(x-1)=0$
$(x-1)(2 x+1)=0$
$x-1=0$
$\mathrm{x}=1$
or $2 x+1=0$
or $x=-1 / 2$
$-1 / 2$ is not possible.
So $x=1$
(xi) we have

DE\|BC
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
$\frac{4 x-3}{3 x-1}=\frac{8 x-7}{5 x-3}$
$(8 x-7)(3 x-1)=(4 x-3)(5 x-3)$
$24 x^{2}-8 x-21 x+7=20 x^{2}-12 x-15 x+9$
$24 x^{2}-20 x^{2}-29 x+27 x+7-9=0$
$4 x^{2}-2 x-2=0$
$2\left[2 x^{2}-x-1\right]=0$
$2 x^{2}-x-1=0$
$2 x^{2}-2 x-x-1=0$
$2 x(x-1)+1(x-1)=0$
$(x-1)(2 x+1)=0$
$x-1=0$
$\mathrm{x}=1$
or $2 x+1=0$
or $x=-1 / 2$
$-1 / 2$ is not possible.
So $x=1$
(xii) we have

DE\|BC
Therefore by basic proportionally theorem
$A D / D B=A E / E C$
$2.5 / 3=3.75 / E C$
$\mathrm{EC}=3.75 \times 3 / 2.5$
$\mathrm{EC}=375 \times 3 / 250$
$\mathrm{EC}=15 \times 3 / 10$
$\mathrm{EC}=9 / 2$
$\mathrm{EC}=4.5 \mathrm{~cm}$
Now AC=AE+EC
$A C=3.75+4.5$
$A C=8.25 \mathrm{~cm}$

2. Question

In a $\triangle A B C, D$ and E are points on the sides $A B$ and $A C$ respectively. For each of the following cases show that $D E \| B C$:
(i) $A B=12 \mathrm{~cm}, A D=8 \mathrm{~cm}, A E=12 \mathrm{~cm}$ and $A C=18 \mathrm{~cm}$.
(ii) $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AD}=1.4 \mathrm{~cm}, \mathrm{AE}=7.2 \mathrm{~cm}$ and $\mathrm{AC}=1.8 \mathrm{~cm}$.
(iii) $\mathrm{AB}=10.8 \mathrm{~cm}, \mathrm{BD}=4.5 \mathrm{~cm}, \mathrm{AC}=4.8 \mathrm{~cm}$ and $\mathrm{AE}=2.8 \mathrm{~cm}$.
(iv) $\mathrm{AD}=5.7 \mathrm{~cm}, \mathrm{BD}=9.5 \mathrm{~cm}, \mathrm{AE}=3.3 \mathrm{~cm}$ and $\mathrm{EC}=5.5 \mathrm{~cm}$.

Answer

(i) $A B=12 \mathrm{~cm}, A D=8 \mathrm{~cm}$, and $A C=18 \mathrm{~cm}$.
$\therefore \mathrm{DB}=\mathrm{AB}-\mathrm{AD}$
$=12-8$
$=4 \mathrm{~cm}$
$E C=A C-A E$
$=18-12$
$=6 \mathrm{~cm}$
Now AD/DB=8/4=2
$A E / E C=12 / 6=2$
Thus DE divides side $A B$ and $A C$ of $\triangle A B C$ in same ratio
Then by the converse of basic proportionality theorem.
(ii)

$A B=5.6 \mathrm{~cm}, A D=1.4 \mathrm{~cm}, A E=1.8 \mathrm{~cm}$ and $A C=7.2 \mathrm{~cm}$
$\therefore \mathrm{DB}=\mathrm{AB}-\mathrm{AD}$
DB=5.6-1.4
$\mathrm{DB}=4.2 \mathrm{~cm}$
And EC=AC-AE
$\mathrm{EC}=7.2-1.8$
$\mathrm{EC}=5.4$

Now $A D / D B=1 \cdot 4 / 4 \cdot 2=1 / 3$
$A E / E C=1.8 / 5.4=1 / 3$
Thus DE divides side $A B$ and $A C$ of $\triangle A B C$ in same ratio
Then by the converse of basic proportionality theorem.
(iii)

we have
$A B=10.8 \mathrm{~cm}, B D=4.5 \mathrm{~cm}, A C=4.8 \mathrm{~cm}$ and $A E=2.8 \mathrm{~cm}$
$\therefore A D=A B-D B$
$A D=10.8-4.5$
$A D=6.3 \mathrm{~cm}$
And EC=AC-AE
$\mathrm{EC}=4.8-2.8$
$\mathrm{EC}=2 \mathrm{~cm}$
Now AD/DB=6.3/4.5=7/5
$\mathrm{AE} / \mathrm{EC}=2.8 / 2=28 / 20=7 / 5$
Thus $D E$ divides side $A B$ and $A C$ of $\triangle A B C$ in same ratio
Then by the converse of basic proportionality theorem.
(iv)

DE\|BC

We have,
$A D=5.7 \mathrm{~cm}, \mathrm{BD}=9.5 \mathrm{~cm}, \mathrm{AE}=3.3 \mathrm{~cm}$ and $\mathrm{EC}=5.5 \mathrm{~cm}$
Now AD/DB=5.7/9.5=57/95 =3/5

$A E / E C=3 \cdot 3 / 5 \cdot 5=33 / 55=3 / 5$

Thus $D E$ divides side $A B$ and $A C$ of $\triangle A B C$ in same ratio
Then by the converse of basic proportionality theorem.

3. Question

In a $\triangle A B C, P$ and Q are points on sides $A B$ and $A C$ respectively, such that $P Q \| B C$. If $A P=2.4 \mathrm{~cm}, A Q$ $=2 \mathrm{~cm}, Q C=3 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find $A B$ and $P Q$.

Answer

WE have,
$P Q \| B C$
We have $A P / P B=A Q / Q C$
$2.4 / P B=2 / 3$
$\mathrm{PB}=3 \times 2.4 / 2$
$\mathrm{PB}=3 \times 1.2$
$\mathrm{PB}=3.6 \mathrm{~cm}$
Now $A B=A P+P B$
$A B=2.4+3.6$
$A B=6 \mathrm{~cm}$
Now IN $\Delta \mathrm{APQ}$ and $\Delta \mathrm{ABC}$
$\angle A=\angle A$ [Common]
$\angle A P Q=\angle A B C[P Q \| B C]$
$\triangle \mathrm{APQ} \sim \triangle \mathrm{ABC}$ [By AA criteria]
$A B / A P=B C / P Q$
$P Q=6 \times 2.4 / 6$
$\mathrm{PQ}=2.4 \mathrm{~cm}$

4. Question

In a $\triangle A B C, D$ and E are points on $A B$ and $A C$ respectively such that $D E \| B C$. If $A D=2.4 \mathrm{~cm}, A E=3.2$ $\mathrm{cm}, \mathrm{DE}=2 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$, find $B D$ and $C E$.

Answer

In the figure given below,

Given: $\mathrm{AD}=2.4 \mathrm{~cm}, \mathrm{AE}=3.2 \mathrm{~cm}, \mathrm{DE}=2 \mathrm{~cm}$ and $\mathrm{BC}=5 \mathrm{~cm}$
Let $B D$ be $x \mathrm{~cm}$ and CE be ycm ,
Then, from, $\triangle A D E$ and $\triangle A B C, D E \| B C$, so by basic proportionality theorem we can write,
$\frac{A D}{A B}=\frac{D E}{B C}$
Or $\frac{A D}{A D+B D}=\frac{D E}{B C}$
or $\frac{2.4}{2.4+x}=\frac{2}{5}$
or $12=4.8+2 x$
or $x=7.2 / 2$
or $x=D B=3.6 \mathrm{~cm}$
Similarly, from $\triangle A D E$ and $\triangle A B C$, we can write,
$\frac{A E}{A C}=\frac{D E}{B C}$
Or $\frac{A E}{A E+E C}=\frac{D E}{B C}$
or $\frac{3.2}{3.2+y}=\frac{2}{5}$
or $16=6.4+2 y$
or $y=9.6 / 2$
or $\mathrm{y}=\mathrm{CE}=4.8 \mathrm{~cm}$
Thus, the lengths of BD and CE are 3.6 cm and 4.8 cm respectively.

5. Question

In Fig. 4.35, state if $P Q \| E F$.

Fig. 4.35

Answer

$D P / P E=3 \cdot 9 / 3=1 \cdot 3 / 1=13 / 10$
$D Q / Q F=3 \cdot 6 / 2 \cdot 4=36 / 24=3 / 2$
DP/PE=DQ/QF
So $P Q$ is not parallel to $E F$

6. Question

M and N are points on the sides $P Q$ and $P R$ respectively of a $\triangle P Q R$. For each of the following cases, state whether $M N \| Q R$:
(i) $\mathrm{PM}=4 \mathrm{~cm}, \mathrm{QM}=4.5 \mathrm{~cm}, \mathrm{PN}=4 \mathrm{~cm}, \mathrm{NR}=4.5 \mathrm{~cm}$
(ii) $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PM}=0.16 \mathrm{~cm}, \mathrm{PN}=0.32 \mathrm{~cm}$

Answer

(i) we have $\mathrm{PM}=4 \mathrm{~cm}, \mathrm{QM}=4.5 \mathrm{~cm}, \mathrm{PN}=4 \mathrm{~cm}$ and $\mathrm{NR}=4.5 \mathrm{~cm}$

Hence $P M / Q M=4 / 4 \cdot 5=40 / 45=8 / 9$
$P N / N R=4 / 4 \cdot 5=40 / 45=8 / 9$
$P M / Q M=P N / N R$
by the converse of proportionality theorem
MN\| ${ }^{\text {QR }}$
(ii) we have $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PM}=0.16 \mathrm{~cm}$ and $\mathrm{PN}=0.32 \mathrm{~cm}$

Hence $P Q / P R=1.28 / 2.56=128 / 256=1 / 2$
$P M / P N=0 \cdot 16 / 0 \cdot 32=16 / 32=1 / 2$
$P Q / P R=P M / P N$
by the converse of proportionality theorem
MN||QR

7. Question

In three line segments $O A, O B$, and $O C$, points L, M, N respectively are so chosen that $L M \| A B$ and $M N \| B C$ but neither of L, M, N nor of A, B, C are collinear. Show that $L N \| A C$.

Answer

Given: In three line segments $O A, O B$, and $O C$, points L, M, N respectively are so chosen that $L M \| A B$ and $M N \| B C$ but neither of L, M, N nor of A, B, C are collinear.

To show : $L N \| A C$

Solution:

We have $L M \| A B$ and $M N \| B C$
by the basic proportionality theorem
OL/AL=OM/MB \qquad
ON/NC=OM/MB \qquad
Comparing equ.(i) and(ii)
$\mathrm{OL} / \mathrm{AL}=\mathrm{ON} / \mathrm{NC}$
Thus LN divides side OA and OC of $\Delta \mathrm{OAC}$ in same ratio
Then by the converse of basic proportionality theorem
$L N \| A C$

8. Question

If D and E are points on sides $A B$ and $A C$ respectively of a $\triangle A B C$ such that $D E \| B C$ and $B D=C E$. Prove that $\triangle A B C$ is isosceles.

Answer

by the converse of proportionality theorem
$A D / D B=A E / E C$
$A D / D B=A E / D B[B D=C E]$
$A D=A E$
Adding D both sides
$A D+B D=A E+D B$
$A D+B D=A E+E C[B D=C E]$
$A B=A C$
$\triangle A B C$ is isosceles

Exercise 4.3

1. Question

In a $\triangle A B C, A D$ is the bisector of $\angle A$, meeting side $B C$ at D.
(i) If $B D=2.5 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $A V=4.2 \mathrm{~cm}$, find $D C$.
(ii) If $B D=2 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$, find $A C$.
(iii) If $A B=3.5 \mathrm{~cm}, A C=4.2 \mathrm{~cm}$ and $D C=2.8 \mathrm{~cm}$, find $B D$.
(iv) If $A B=10 \mathrm{~cm}, A C=14 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find $B D$ and $D C$.
(v) If $A C=4.2 \mathrm{~cm}, D C=6 \mathrm{~cm}$ and $B C=10 \mathrm{~cm}$, find $A B$.
(vi) If $A B=5.6 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and $D C=6 \mathrm{~cm}$, find $B C$.
(vii) If $A D=5.6 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $B D=3.2 \mathrm{~cm}$, find $A C$.
(viii) If $A B=10 \mathrm{~cm}, A C=6 \mathrm{~cm}$ and $B C=12 \mathrm{~cm}$, find $B D$ and $D C$.

Answer

(i) we have

Angle $B A D=C A D$
Here AD bisects $\angle A$
$B D / D C=A B / A C$
2.5/DC=5/4.2

DC=2.5*4.2/5
$D C=2.1 \mathrm{~cm}$
(ii) Here $A D$ bisects $\angle A$
$A B / D C=A B / A C$
$2 / 3=5 / A C$
$A C=15 / 2$
$\mathrm{AC}=7.5 \mathrm{~cm}$
(iii) in $\triangle A B C A$ bisects $\angle A$
$B D / D C=A B / B C$
$B D / 2.8=3.5 / 4.2$
$\mathrm{BD}=3.5 * 2.8 / 4.2$
$B D=7 / 3$
$B D=2.33 \mathrm{~cm}$
(iv) In $\triangle A B C, A D$ bisects $\angle A$
$B D / D C=A B / A C$
$X / 6-x=10 / 14$
$14 \mathrm{x}=60-10 \mathrm{x}$
$14 x+10 x=60$
$24 \mathrm{x}=60$
$x=60 / 24$
$x=5 / 2$
$x=2.5$
$B D=2.5$
DC=6-2.5
DC=3.5
(v) $A B / A C=B D / D C$
$A B / 4.2=B C-D C / D C$
$A B / 4.2=10-6 / 6$
$A B / 4.2=4 / 6$
$A B=4 * 4.2 / 6$
$A B=2.8 \mathrm{~cm}$
(vi) $B D / D C=A B / A C$
$B D / 6=5.6 / 6$
$B D=5.6$
$B C=B D+D C$
$B C=5.6+6$
$B C=11.6 \mathrm{~cm}$
(viii) In $\triangle A B C, A D$ bisects $\angle A$
$A B / A C=B D / D C$
5.6/AC=3.2/BC-BD
5.6/AC=3.2/6-3.2
5.6/AC=3.2/2.8
$A C * 3.2=2.8 * 5.6$
$\mathrm{AC}=2.8 * 5.6 / 3.2$
$\mathrm{AC}=7 * 0.7$
$\mathrm{AC}=4.9 \mathrm{~cm}$
(ix) let $B D=x$, then $D C=12-X$
$B D / D C=A B / B C$
$x / 12-x=10 / 6$
$6 x=120-10 x$
$6 x+10 x=120$
$16 \mathrm{x}=120$
$\mathrm{x}=120 / 16$
$x=7.5$
$B D=7.5 \mathrm{~cm}$
$D C=12-x$
$D C=12-7.5$
DC=4.5 cm

2. Question

In Fig. 4.57, $A E$ is the bisector of the exterior $\angle C A D$ meeting $B C$ produced in E. If $A B=10 \mathrm{~cm}, A C=6$ cm and $B C=12 \mathrm{~cm}$, find $C E$.

Fig. 4.57

Answer

Fig. 4.57
$A E$ is the bisector of $\angle A$
We know that external bisector of an angle of a triangle divides the opposite side externally in the ratio of the sides containing the angles.

$$
\begin{aligned}
& \frac{B E}{C E}=\frac{A B}{A C} \\
& \Rightarrow \frac{12+x}{x}=\frac{10}{6} \\
& \Rightarrow 10 X=6(12+x) \\
& \Rightarrow 10 X=72+6 x \\
& \Rightarrow 10 X-6 X=72 \\
& \Rightarrow 4 X=72 \\
& \Rightarrow x=72 / 4 \\
& \Rightarrow x=18
\end{aligned}
$$

3. Question

In Fig. 4.58, $\triangle A B C$ is a triangle such that $\frac{A B}{A C}=\frac{B D}{D C}, \angle B=700, \angle C=50^{\circ}$. Find $\angle B A D$.

Fig. 4.58

Answer

We have
$A B / A C=B D / D C$
$\therefore \angle 1=\angle 2$
IN $\triangle \mathrm{ABC}$
$\angle A+\angle B+\angle C=180$
$\angle A+70+50=180$
$\angle A+120=180$
$\angle A=180-120$
$\angle A=60$
$\angle 1+\angle 2=60(\angle 1+\angle 2=\angle A)$
$\angle 1+\angle 1=60(\angle 1=\angle 2)$
$2 \angle 1=60$
$\angle 1=60 / 2$
$\angle 1=30$
$\angle B A D=30$

4. Question

In $\triangle A B C$ (fig. 4.59), if $\angle 1=\angle 2$, prove that $\frac{A B}{A C}=\frac{B D}{D C}$.

Fig. 4.59

Answer

$\angle 1=\angle 2$ (Given)
Draw a line EC||AD
AC bisects them
$\therefore \angle 2=\angle 3$ (by alternate angle)
$\angle 1=\angle 4$ (corresponding angle) \qquad
$\angle 1=\angle 2$ (given)
From equ (i) and equ (ii)
$\angle 3=\angle 4$
or $A E=A C$
Now, \triangle BCE
BD/DC=BA/AE (BY PROPORTIONALITY THEORAM)
$B D / D C=A B / A C(\because B A=A B$ AND $A E=A C$ from equ (iii))
Hence $A B / A C=B A / D C$ Proved

5. Question

D, E and F are the points on sides $B C, C A$ and $A B$ respectively of $\triangle A B C$ such that $A D$ bisects $\angle A, B E$ bisects $\angle B$ and $C F$ bisects $\angle C$. If $A B=5 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $C A=4 \mathrm{~cm}$, determine $A F, C E$ and $B D$.

Answer

in $\triangle A B C$
CF bisects $\angle A$
$\therefore A F / F B=A E / A C$
$A F / 5-A F=4 / 8$
$2 A F=5-A F$
$2 A F+A F=5$
$A F=5 / 3 \mathrm{~cm}$
$\triangle A B C, B E$ bisects $\angle B$
$\therefore A E / A C=A B / B C$
$4-C E / C E=5 / 8$
$5 C E=32-8 C E$
$5 C E+8 C E=32$
$13 C E=32$
$C E=32 / 13 \mathrm{~cm}$
Similarly
$B D / D C=A B / A C$
$B D / 8-B D=5 / 4$
$4 B D=40-5 B D$
$4 B D+5 B D=40$
$9 B D=40$
$B D=40 / 9 \mathrm{~cm}$

6. Question

In Fig. 4.60, check whether $A D$ is the bisector of $\angle A$ of $\triangle A B C$ in each of the following:
(i) $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}, \mathrm{BD}=1.5 \mathrm{~cm}$ and $\mathrm{CD}=3.5 \mathrm{~cm}$
(ii) $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{BD}=1.6 \mathrm{~cm}$ and $\mathrm{CD}=2.4 \mathrm{~cm}$
(iii) $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{AC}=24 \mathrm{~cm}, \mathrm{BD}=6 \mathrm{~cm}$ and $\mathrm{BC}=24 \mathrm{~cm}$
(iv) $A B=6 \mathrm{~cm}, A C=8 \mathrm{~cm}, B D=1.5 \mathrm{~cm}$ and $C D=2 \mathrm{~cm}$
(v) $A B=5 \mathrm{~cm}, \mathrm{AC}=12 \mathrm{~cm}, \mathrm{BD}=2.5 \mathrm{~cm}$ and $\mathrm{BC}=9 \mathrm{~cm}$

Fig. 4.60

Answer

(i) $B D / D C=A B / A C$
$1.5 / 3.5=5 / 10$
$15 / 35 * 10 / 10=1 / 2$
$3 / 7=1 / 2$
Not bisects
(ii) $1.6 / 2.4=4 / 6$
$16 / 24=2 / 3$
$2 / 3=2 / 3$
bisects
(iii) $B D / C D=A B / A C$
$B D / B C-B D=A B / A C$
$B D / 24-6=8 / 24$
$6 / 18=1 / 3$
$1 / 3=1 / 3$
bisects
(iv) $1.5 / 2=6 / 8$
$3 / 4=3 / 4$
bisects
(v) $B D / C D=A B / A C$
$B D / B C-B D=A B / A C$
BD/9-2.5=5/12
$2.5 / 6.5=5 / 12$
$5 / 13=5 / 12$
Not bisects

7. Question

In Fig. 4.60, $A D$ bisects $\angle A, A B=12 \mathrm{~cm}, A C=20 \mathrm{~cm}$ and $B D=5 \mathrm{~cm}$, determine $C D$.

Fig. 4.60

Answer

AD bisects $\angle A$
$\therefore A B / A C=B D / C D$
12/20=5/CD
$C D=100 / 12$
$C D=8.33 \mathrm{~cm}$

Exercise 4.4

1 A. Question

(i) In fig. 4.70, if $A B \| C D$, find the value of x.

Answer
Diagonal of trapezium divide each other proportiona
$A O / O C=B O / O D$
$4 / 4 X-2=x+1 / 2 x+4$
$4 x^{2}-2 x+4 x-2=8 x+16$
$4 x^{2}+2 x-2-8 x-16=0$
$4 x^{2}-6 x-18=0$
$2\left(2 x^{2}-3 x-9\right)=0$
$2 x^{2}-3 x-9=0$
$2 x^{2}-6 x+3 x-9=0$
$2 x(x-3)+3(x-3)=0$
$(x-3)(2 x+3)=0$
$x-3=0$
$\mathrm{x}=3$
or, $2 x+3=0$
$2 x=-3$
$x=-3 / 2$
$x=-3 / 2$ is not possible
So $x=3$
1 B. Question
In Fig. 4.71, if $A B \| C D$, find the value of x.

Answer

$A O / O C=B O / O D$
$3 x-1 / 5 x-3=2 x+1 / 6 x-5$
$(3 x-1)(6 x-5)=(2 x+1)(5 x-3)$
$18 x^{2}-15 x-6 x+5=10 x^{2}-6 x+5 x-3$
$18 x^{2}-21 x+5=10 x^{2}-x-3$
$18 x^{2}-21 x+5-10 x^{2}+x+3=0$
$8 x^{2}-20 x+8=0$
$4\left(2 x^{2}-5 x+2\right)=0$
$2 x^{2}-5 x+2=0$
$2 x^{2}-4 x-x+2=0$
$2 x(x-2)-1(x-2)=0$
$(x-2)(2 x-1)=0$
$x-2=0$
$\mathrm{x}=2$
Or, $2 x-1=0$
$2 x=1$
$x=1 / 2$
But $x=1 / 2$ is not possible
So $x=2$

1 C. Question

In Fig. 4.72, $A B \| C D$. If $O A=3 x-19, O B=x-4, O C=x-3$ and $O D=4$, find x.

Answer
$A O / O C=B O / O D$
$3 X-19 / X-3=X-4 / 4$
$(x-3)(x-4)=4(3 x-19)$
$x^{2}-4 x-3 x+12=12 x-76$
$x^{2}-7 x+12-12 x+76=0$
$x^{2}-19 x+88=0$
$x^{2}-11 x-8 x+88=0$
$X(x-11)-8(x-11)=0$
$(x-11)(x-8)=0$
$x-11=0$
$\mathrm{x}=11$
or $x-8=0$
$x=8$
$x=11$ or 8

Exercise 4.5

1. Question

In Fig. 4.136, $\triangle A B C \sim \triangle A P Q$. If $B C=8 \mathrm{~cm}, P Q=4 \mathrm{~cm}, B A=6.5 \mathrm{~cm}$ and $A P=2.8 \mathrm{~cm}$, find $C A$ and AQ

Fig. 4.136

Answer

Given $\triangle \mathrm{ACB} \sim \triangle \mathrm{APQ}$
Then, $A C / A P=B C / P Q=A B / A Q$
Or $\mathrm{AC} / 2.8=8 / 4=6.5 / \mathrm{AQ}$
Or $A C / 2.8=8 / 4$ and $8 / 4=6.5 / A Q$
Or $\mathrm{AC}=8 / 4 \times 2.8$ and $\mathrm{AQ}=6.5 \times 4 / 8$
Or $A C=5.6 \mathrm{~cm}$ and $A Q=3.25 \mathrm{~cm}$

2. Question

A vertical stick 10 cm long casts a shadow 8 cm long. At the same time a tower casts a shadow 30 m long. Determine the height of the tower.

Answer

Length of stick $=10 \mathrm{~cm}$
Length of shadow stick $=8 \mathrm{~cm}$
Length of shadow of tower $=\mathrm{hcm}$
In $\triangle A B C$ and $\triangle P Q R$
$\angle \mathrm{B}=\angle \mathrm{C}=90^{\circ}$ And $\angle \mathrm{C}=<\mathrm{R}$ (Angular elevation of sum)
Then $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ (By AA similarty)
So, $\frac{A B}{P Q}=\frac{B C}{Q R}$
Or $\frac{10 \mathrm{~cm}}{8 \mathrm{~cm}}=\frac{H}{3000}$

Or $h=\frac{10}{8} \times 3000$
Or 3750 cm
Or 37.5m

3. Question

In Fig. 4.137, $A B \| Q R$. Find the length of $P B$.

Fig. 4.137

Answer

We have $\triangle P A B$ and $\triangle P Q R$
$<\mathrm{P}=<\mathrm{P}$ (Common)
$<\mathrm{PAB}=<\mathrm{PQR}$ (Corresponding angles)
Then, $\triangle \mathrm{PAB} \sim \triangle \mathrm{PQR}$ (BY AA similarity)
So, $\frac{P B}{P R}=\frac{A B}{Q R}$ (Corresponding parts of similar triangle area proportion)
Or , $\frac{P B}{6}=\frac{3}{9}$
Or $\mathrm{PB}=\frac{3}{9} \times 6$
Or $\mathrm{PB}=2 \mathrm{~cm}$
4. Question

In Fig. 4.138, $X Y \| B C$. Find the length of $X Y$.

Fig. 4.138

Answer

We have , XY||BC
In $\triangle A X Y$ and $\triangle A B C$
$<\mathrm{A}=<\mathrm{A}$ (Common)
$<A X Y=<A B C$ (Corresponding angles)
Then, $\triangle A X Y \sim \triangle A B C$ (By AA Similarity)
So, $\frac{A X}{B Y}=\frac{X Y}{B C}$ (Corresponding parts of similar triangle area proportion)
Or $\frac{1}{4}=\frac{X Y}{6}$
Or $X Y=6 / 4$
Or $X Y=1.5 \mathrm{~cm}$

5. Question

In a right angled triangle with sides a and b and hypotenuse c, the altitude drawn on the hypotenuse is x. Prove that $a b=c x$

Answer

Given: In a right angled triangle with sides a and b and hypotenuse c, the altitude drawn on the hypotenuse is x.

To prove: $\mathrm{ab}=\mathrm{cx}$
Proof:Let in a right-angled triangle $A B C$ at B, a perpendicular from C to $A B$ is drawn such that $B C=$ $a A C=b B A=c B D=x$

In $\triangle A B C$ and $\triangle C D B$
$\angle \mathrm{B}=\angle \mathrm{B}$ (Common)
$\angle A B C=\angle C D B\left(\right.$ Both $\left.90^{\circ}\right)$
Then, $\triangle \mathrm{ABC} \sim \triangle \mathrm{CDB}$ (By AA Similarity)
So, $\frac{A C}{C D}=\frac{A B}{C B}$ (Corresponding parts of similar triangle area proportion)
Or $\frac{b}{x}=\frac{c}{a}$
Or $a b=c x$

6. Question

In Fig. 4.139, $\angle A B C=90^{\circ}$ and $B D \perp A C$. If $B D=8 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$, find $C D$.

Fig. 4.139

Answer

We have, $\angle \mathrm{ABC}=90^{\circ}$ and BD perpendicular AC
Now, $\angle A B D+\angle D B C-90^{\circ} \ldots(I)\left(\angle A B C-90^{\circ}\right)$
And $<\mathrm{C}+\angle \mathrm{DBC}-90^{\circ}$ \qquad (II) (By angle sum Prop. in $\triangle \mathrm{BCD}$) Compare equation I \&II $<A B D=<C$ \qquad (III)

In $\triangle A B D$ and $\triangle B C D$
$<A B D=<C$ (From equation I)
<ADB $=<$ BDC $\left(\right.$ Each $\left.90^{\circ}\right)$
Then, $\triangle A B D \sim \triangle B C D$ (By AA similarity)
So, $\frac{B D}{C D}=\frac{A D}{B D}$ (Corresponding parts of similar triangle area proportion)
Or, $\frac{8}{C D}=\frac{4}{8}$
Or CD $=\frac{8 x 9}{4}$
Or CD $=16 \mathrm{~cm}$

7. Question

In Fig. 4.140, $\angle A B C=90^{\circ}$ and $B D \perp A C$. If $A B=5.7 \mathrm{~cm}, B D=3.8 \mathrm{~cm}$ and $C D=5.4 \mathrm{~cm}$, find $B C$.

Fig. 4.140

Answer

We have , $\angle A B C=90^{\circ}$ and BD Perpendicular AC
In $\triangle A B Y$ and $\triangle B D C$
$<\mathrm{C}=<\mathrm{C}$ (Common)
$\angle \mathrm{ABC}=\angle \mathrm{BDC}$ (Each 90° angles)
Then, $\triangle \mathrm{ABC} \sim \Delta \mathrm{BDC}$ (By AA Similarity)
So, $\frac{A B}{B D}=\frac{B C}{D C}$ (Corresponding parts of similar triangle area proportion)
Or $\frac{5.7}{3.8}=\frac{B C}{5.4}$
Or $B C=5.7 / 3.8 \times 8.1$
Or BC $=12.15 \mathrm{~cm}$

8. Question

In Fig. 4.141 $D E \| B C$ such that $A E=(1 / 4) A C$. If $A B=6 \mathrm{~cm}$, find $A D$.

Fig. 4.141

Answer

We have, $D E \| B C, A B=6 \mathrm{~cm}$ and $A E=1 / 4 A C$
In $\triangle A D E$ and $\triangle A B C$
$<\mathrm{A}=<\mathrm{A}$ (Common)
$\angle A D E=\angle A B C$ (Corresponding angles)
Then, $\triangle A D E \sim \triangle A B C$ (By AA similarity)
So, $\frac{A D}{A B}=\frac{A E}{A C}$ (Corresponding parts of similar triangle area proportion)
Or $\frac{A D}{6}=\frac{\frac{1}{4} A C}{A C}(A E=1 / 4 \mathrm{AC}$ Given $)$
Or , $\frac{A D}{6}=\frac{1}{4}$
Or, $A D=6 / 4$
Or, $A D=1.5 \mathrm{~cm}$

9. Question

In Fig. 4.142, PA, QB and RC are each perpendicular to AC . Prove that $\frac{1}{x}+\frac{1}{z}=\frac{1}{y}$.

Fig. 4.142

Answer

We have, $\mathrm{PA} \perp \mathrm{AC}$, and $\mathrm{RC} \perp \mathrm{AC}$
Let $A B=a$ and $B C=b$

In $\triangle C Q B$ and $\triangle C P A$
$<\mathrm{QCB}=<\mathrm{PCA}$ (Common)
$\angle \mathrm{QBC}=\angle \mathrm{PAC}\left(\right.$ Each $\left.90^{\circ}\right)$
Then, $\triangle C Q B \sim \triangle C P A$ (By AA similarity)
So, $\frac{Q B}{P A}=\frac{C B}{C A}$ (Corresponding parts of similar triangle area proportion)
Or, $\frac{y}{z}=\frac{b}{a+b}$
In $\triangle A Q B$ and $\triangle A R C$
$<\mathrm{QAB}=<$ RAC (Common)
$<\mathrm{ABQ}=<\mathrm{ACR}\left(\right.$ Each $\left.90^{\circ}\right)$
Then, $\triangle A Q B \sim \triangle A R C$ (By AA similarity)
So, $\frac{Q B}{R C}=\frac{A B}{C A}$ (Corresponding parts of similar triangle area proportion)
$\operatorname{Or}, \frac{y}{x}=\frac{a}{a+b}-\cdots-\cdots-\cdots$----(ii)
Adding equation i \& ii
$\frac{y}{x}+\frac{y}{z}=\frac{b}{a+b}=\frac{a}{a+b}$
Or, y $\left(\frac{1}{x}+\frac{1}{z}\right)=\frac{b+a}{a+b}$
Or, y $\left(\frac{1}{x}+\frac{1}{z}\right)=1$
Or, $\frac{1}{x}+\frac{1}{z}=\frac{1}{y}$

10. Question

In Fig. 4.143, $\angle A=\angle C E D$, prove that $\triangle C A B \sim \triangle C E D$. Also, find the value of x .

Fig.4.143

Answer

We have, $<A=<C E D$

In $\triangle C A B$ and $\triangle C E D$
$<\mathrm{C}=<\mathrm{C}$ (Common)
$<A=<C E D$ (Given)
Then, $\triangle C A B \sim \triangle C E D$ (By AA similarity)
So, $\frac{C A}{C E}=\frac{A B}{E D}$ (Corresponding parts of similar triangle area proportion)
Or,15/9 = 9/x
Or, $15 x=90$
Or, $x=90 / 6$
Or, $x=6 \mathrm{~cm}$.

11. Question

The perimeters of two similar triangles are 25 cm and 15 cm respectively. If one side of first triangle is 9 cm , what is the corresponding side of the other triangle?

Answer

Assume $A B C$ and $P Q R$ to be 2 triangle.
We, have
$\triangle A B C \sim \triangle P Q R$
Perimeter of $\triangle A B C=25 \mathrm{~cm}$
Perimeter of $\triangle P Q R=15 \mathrm{~cm}$
$A B=9 \mathrm{~cm}$
$P Q=$?
Since, $\triangle A B C \sim \triangle P Q R$
Then, ratio of perimeter of triangles = ratio of corresponding sides
So, $\frac{25}{15}=\frac{A B}{P Q}$ (Corresponding parts of similar triangle area proportion)
Or $\frac{25}{15}=\frac{9}{P Q}$
Or PQ = 135/25
Or PQ $=5.4 \mathrm{~cm}$

12. Question

In $\triangle A B C$ and $\triangle D E F$, it is being given that: $A B=5 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $C A=4.2 \mathrm{~cm} ; D E=10 \mathrm{~cm}, \mathrm{EF}=$ 8 cm and $\mathrm{FD}=8.4 \mathrm{~cm}$. If $A L \perp B C$ and $D M \perp E F$, find $A L: D M$.

Since $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=\frac{1}{2}$
Then, $\triangle A B C \sim \triangle D E F$ (By SS similarity)
Now, In $\triangle A B L \sim \triangle D E M$
$<B=<E(\Delta A B C \sim \Delta D E F)$
<ALB $=<$ DME (Each 90°)
Then, $\triangle \mathrm{ABL} \sim \Delta \mathrm{DEM}$ (By SS similarity)
So, $\frac{A B}{D E}=\frac{A L}{D M}$ (Corresponding parts of similar triangle area proportion)
Or $\frac{5}{10}=\frac{A L}{D M}$
Or, $\frac{1}{2}=\frac{A L}{D M}$

13. Question

D and E are the points on the sides $A B$ and $A C$ respectively of a $\triangle A B C$ such that $A D=8 \mathrm{~cm}, D B=12$ $\mathrm{cm}, A E=6 \mathrm{~cm}$ and $C E=9 \mathrm{~cm}$. Prove that $B C=5 / 2 D E$.

Answer

We have,
$\frac{A D}{D B}=\frac{8}{12}=\frac{2}{3}$
And, $\frac{A D}{E C}=\frac{6}{9}=\frac{2}{3}$
Since, $\frac{A D}{D B}=\frac{A D}{E C}$
Then, by converse of basic proportionality theorem.
DE\|BC
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$
$<\mathrm{A}=<\mathrm{A}$ (Common)
$\angle A D E=\angle B$ (Corresponding angles)
Then, $\triangle A D E \sim \triangle A B C$ (By AA similarity)
$\frac{A D}{A B}=\frac{D E}{B C}$ (Corresponding parts of similar triangle are proportion)
$\frac{8}{20}=\frac{D E}{B C}$
$\frac{2}{5}=\frac{D E}{B C}$
$B C=5 / 2 D E$

14. Question

D is the mid-point of side $B C$ of a $\triangle A B C$. AD is bisected at the point E and $B E$ produced cuts $A C$ at the point X. Prove that $B E: E X=3: 1$.

Answer

Given:- In $\triangle A B C, D$ is the midpoint of $B C$ and E is the midpoint of $A D$.
To prove:- BE: EX = 3: 1
Proof:Const:- Through D, Draw DF||BX

In $\triangle E A X$ and \triangle ADF
$\angle E A X=\angle D A F$ (Common)
$\angle A X E=\angle D F A$ (Corresponding angles)
By AA similarity,
$\Delta E A X \sim \Delta$ ADF
So, $\frac{E X}{D F}=\frac{A E}{A D}$ (Corresponding parts of similar triangle are proportion)
As E is mid point of $A D$
$\Rightarrow \frac{E X}{D F}=\frac{A E}{2 A E}$
Or, DF = 2EX.
In $\triangle D C F$ and $\triangle B C X \angle D C Y=\angle B C X$ (common) $\angle C F D=\angle C X B$ (Corresponding angles) $B y A A$ similarity, $\triangle D C F \sim \triangle B C X$

SO, $\frac{C D}{C B}=\frac{D F}{B X}$ (Corresponding parts of similar triangle area proportion)
As D is mid point of $B C$ and E is mid point of $A D$.
$\Rightarrow \frac{C D}{2 C D}=\frac{D F}{B E+E X}$
Or $\frac{1}{2}=\frac{D F}{B E+E X}$
Or $B E+E X=2 D F F r o m(i)$

$$
B E+E X=4 E X
$$

$\Rightarrow B E=4 E X-E X$
$\Rightarrow B E=4 E X-E X$
$\Rightarrow \mathrm{BE}=3 \mathrm{EX}$
$\Rightarrow B E / E X=3 / 1$
$\Rightarrow B E: E x=3: 1$

15. Question

$A B C D$ is a parallelogram and $A P Q$ is a straight line meeting $B C$ at P and $D C$ produced at Q. Prove that the rectangle obtained by $B P$ and $D Q$ is equal to the rectangle contained by $A B$ and $B C$.

Answer

Given :- $A B C D$ is a parallelogram
To prove :- $B P \times D Q=A B \times B C$

Proof:-

In $\triangle A B P$ and $\triangle Q D A$
$<B=<D$ (Opposite angles of parallelogram)
$\angle B A P=\angle A Q D$ (Alternative interior angle)
Then, $\triangle A B P \sim \triangle Q D A$

SO, $\frac{A B}{Q D}=\frac{B P}{D A}$ (Corresponding parts of similar triangle area proportion) But, $\mathrm{DA}=\mathrm{BC}$ (Opposite side of parallelogram)But DA $=B C$ (opposite sides of parallelogram)

Then, $\frac{A B}{Q D}=\frac{B P}{B C}$
Or, $A B \times B C=Q D \times B P H e n c e$ proved

16. Question

In $\triangle A B C, A L$ and $C M$ are the perpendiculars from the vertices A and C to $B C$ and $A B$ respectively. If $A L$ and $C M$ intersect at O, prove that :
(i) $\triangle O M A \sim \triangle O L C$
(ii) $\frac{O A}{O C}=\frac{O M}{O L}$

Answer

We have
$\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{CM} \perp \mathrm{AB}$

IN \triangle OMA and \triangle OLC
<MOA = <LOC (Vertically opposite angles)
<AMO $=<$ LOC (Each 90°)

Then, $\triangle \mathrm{OMA} \sim \Delta \mathrm{OLC}$ (BY AA Similarity)
SO, $\frac{O A}{O C}=\frac{O M}{O L}$ (Corresponding parts of similar triangle area proportion)

17. Question

In fig. 4.144, we have $A B\|C D\| E F$. If $A B=6 \mathrm{~cm}, C D=x \mathrm{~cm}, E F=10 \mathrm{~cm}, B D=4 \mathrm{~cm}$ and $D E=y$ cm , calculate the values of x and y.

Fig. 4.144

Answer

We have $A B \| C D$. If $A B=6 \mathrm{~cm}, C D=x c m, E F=10 \mathrm{~cm}, B D=4 \mathrm{~cm}$ and $D E=y \mathrm{~cm}$
In $\triangle E C D$ and $\triangle E A B$
$<\mathrm{ECD}=<\mathrm{EAB}$ (Corresponding angles)
Then, $\triangle \mathrm{ECD} \sim \triangle \mathrm{EAB}$ \qquad (i) (By AA similarity)

SO, $\frac{E C}{E A}=\frac{C D}{A B}$ (Corresponding parts of similar triangle are proportion)
Or $\frac{E C}{E A}=\frac{x}{6}$.
In $\triangle A C D$ and $\triangle A E F$
$<\mathrm{CAD}=<\mathrm{EAF}$ (Common)
$<\mathrm{ACD}=<\mathrm{AEF}$ (Corresponding angles)
Then, $\triangle A C D \sim \triangle A E F$ (By AA similarity)
SO, $\frac{A C}{A E}=\frac{C D}{E F}$
Or, $\frac{A C}{A E}=\frac{x}{10}$.
Adding equation iii \& ii
So, $\frac{A C}{A E}+\frac{E C}{E A}=\frac{x}{6}+\frac{x}{10}$
Or, $\frac{A E}{A E}=\frac{5 x+3 x}{30}$
Or, $1=\frac{8 x}{30}$
Or, $x=\frac{30}{8}$
Or, $x=3.75 \mathrm{~cm}$
From (i) $\frac{D C}{A B}=\frac{C D}{B E}$
Or, $\frac{3.75}{6}=\frac{y}{y+4}$
Or, $6 y=3.75 y+15$
Or, 2.25y = 15
Or, $y=\frac{15}{2.25}$
Or, $y=6.67 \mathrm{~cm}$

18. Question

$A B C D$ is a quadrilateral in which $A D=B C$. If P, Q, R, S be the mid-points of $A B, A C, C D$ and $B D$ respectively, show that PQRS is a rhombus.

Given: $A B C D$ is a quadrilateral in which $A D=B C . P, Q, R, S$ be the mid-points of $A B, A C, C D$ and $B D$ respectively.

To show: PQRS is a rhombus.
Solution:So, we have, a quadrilateral $A B C D$ where $A D=B C$
And P, Q, R and S are the mid-point of the sides $A B, A C$, and $B D$.

We need to prove that PQRS is a rhombus.
In $\triangle B A D, P$ and S are the mid points of the sides $A B$ and $B D$ respectively,By midpoint theorem which states that the line joining mid-points of a triangle is parallel to third side we get,
$P S|\mid A D$ and $P S=1 / 2 A D$.
In $\triangle C A D, Q$ and R are the mid points of the sides $C A$ and $C D$ respectively,by midpoint theorem we get,
$Q R|\mid A D$ and $Q R=1 / 2 A D$
Compare (i) and (ii)
$P S \| Q R$ and $P S=Q R$
Since one pair of opposite sides is equal and parallel,
Then, we can say that PQRS is a parallelogram
Now, In $\triangle A B C, P$ and Q are the mid points of the sides $A B$ and $A C$ respectively, by midpoint theorem,
$P Q|\mid B C$ and $P Q=1 / 2 B C$ \qquad
And $A D=B C$ \qquad (v) (given)

Compare equations (i) (iv) and (v), we get,
$P S=P Q$
From (iii) and (vi), we get,
$P S=Q R=P Q$ Therefore, $P Q R S$ is a rhombus.

19. Question

In Fig. 4.145, If $A B \perp B C, D C \perp B C$ and $D E \perp A C$, prove that $\triangle C E D \sim \triangle A B C$.

Fig. 4.145

Answer

Given $A B \perp B C, D C \perp B C$ and $D E \perp A C$
To prove:- \triangle CED $\sim \triangle A B C$
Proof:-
$\angle B A C+\angle B C A=90^{\circ}$ \qquad (i) (By angle sum property)

And, $\angle B C A+\angle E C D=90^{\circ}$......(ii) ($D C \perp B C$ given)
Compare equation (i) and (ii)
$\angle B A C=\angle E C D$
In $\triangle C E D$ and $\triangle A B C$
$<\mathrm{CED}=\angle \mathrm{ABC}\left(\right.$ Each $\left.90^{\circ}\right)$
$<E C D=<B A C$ (From equation iii)
Then, $\triangle C E D \sim \triangle A B C$.

20. Question

In an isosceles $\triangle A B C$, the base $A B$ is produced both the ways to P and Q such that $A P \times B Q=A C 2$.
Prove that $\triangle A P C \sim \triangle B C Q$.

Answer

Given: In $\triangle A B C, C A-C B$ and $A P \times B Q=A C^{2}$
To prove :- $\triangle \mathrm{APC} \sim \mathrm{BCQ}$
Proof:-
$A P \times B Q=A C^{2}$ (Given)
Or, $A P \times B C=A C \times A C$
Or, $A P \times B C=A C \times B C(A C=B C$ given $)$
Or, $A P / B C=A C / P Q$
Since, CA $=C B$ (Given)
Then, $<\mathrm{CAB}=<\mathrm{CBA}$
(ii) (Opposite angle to equal sides)

NOW, $\angle C A B+\angle C A P=180^{\circ}$............(iii) (Linear pair of angle)
And $\angle \mathrm{CBA}+\angle \mathrm{CBQ}=180^{\circ}$ \qquad (iv) (Linear pair of angle)

Compare equation (ii) (iii) \& (iv)
$<\mathrm{CAP}=<\mathrm{CBQ}$.
In $\triangle \mathrm{APC}$ and $\triangle \mathrm{BCQ}$
<CAP $=<\mathrm{CBQ}$ (From equation v)
$A P / B C=A C / P Q$ (From equation i)
Then , $\triangle \mathrm{APC} \sim \triangle \mathrm{BCQ}$ (By SAS similarity)

21. Question

A girl of height 90 cm is walking away from the base of a lamp-post at a speed of $1.2 \mathrm{~m} / \mathrm{sec}$. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.

Answer

We have,

Let P be a lamb at a height of 3.6 m above that ground i.e. $\mathrm{PQ}=3.6 \mathrm{~m}$
Let $B C$ be a girl, such that $C Q$ is distance she covered and Let $A C$ be her shadow, Height of girl = $A B$ $=90 \mathrm{~cm}=0.9 \mathrm{~m}$

Height of lamp post $=P Q=3.6 \mathrm{~m}$
Speed of girl $=1.2 \mathrm{~m} / \mathrm{sec}$
So, Distance moved by the $\operatorname{girl}(C Q)=$ Speed x time
$=1.2 \times 4=4.8 \mathrm{~m}$
Let length of shadow $(A C)=$ ' x ' cm
Then, $\mathrm{AQ}=\mathrm{AC}+\mathrm{CQ}=\mathrm{x}+4.8$
In $\triangle A B C$ and $\triangle A P Q$
$\angle A C B=\angle A Q P\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{BAC}=\angle \mathrm{PAQ}$ (Common)
Then , $\triangle A B C \sim \triangle A P Q$ (By AA similarity)
So, $A C / A Q=B C / P Q$ (Corresponding parts of similar triangle are proportional)

Or, $x / x+4.8=0.9 / 3.6$
Or, $x / x+4.8=1 / 4$
Or, $4 \mathrm{x}=\mathrm{x}+4.8$
Or, $4 x-x=4.8$
Or, $3 x=4.8$
Or $x=4.8 / 3$
Or $x=1.6 \mathrm{mi} . \mathrm{e}$. length of shadow is 1.6 m .

22. Question

Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B \| D C$ intersect each other at the point O. Using similarity criterion for two triangles, show that $\frac{O A}{O C}=\frac{O B}{O D}$.

Answer

We have,
$A B C D$ is a trapezium with $A B \| D C$
In $\triangle A O B$ and $\triangle C O D<A O B=<C O D$ (Vertically opposite angle)
$\angle \mathrm{OAB}=\angle \mathrm{OCD}$ (Alternate interior angle)
Then, $\triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$ (By AA similarity)
So, $\mathrm{OA} / \mathrm{OC}=\mathrm{OB} / \mathrm{OD}$ (Corresponding parts of similar triangle are proportional)

23. Question

If $\triangle A B C$ and $\triangle A M P$ are two right triangles, right angled at B and M respectively such that $\angle M A P=\angle B A C$. Prove that
(i) $\triangle A B C \sim \triangle A M P$
(ii) $\frac{C A}{P A}=\frac{B C}{M P}$

Answer

We have,
$\angle B=\angle M=90^{\circ}$
And, $\angle B A C=\angle M A P$
In $\triangle A B C$ and $\triangle A M P$
$\angle B=<M\left(\right.$ each $\left.90^{\circ}\right)$
$<\mathrm{BAC}=<$ MAP (Given)
Then, $\triangle A B C \sim \triangle A M P$ (By AA similarity)

So, $\mathrm{CA} / \mathrm{PM}=\mathrm{BC} / \mathrm{MP}$ (Corresponding parts of similar triangle are proportional)

24. Question

A vertical stick of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

Answer

Let $A B$ be a tower
$C D$ be a stick, $C D=6 \mathrm{~m}$
Shadow of $A B$ is $B E=28 \mathrm{~cm}$
Shadow of CD is DF $=4 \mathrm{~m}$
At same time light rays from sun will fail on tower and stick at the same angle
So, $\angle D C F=<B A E$
And $\angle \mathrm{DFC}=\angle$ BEA
$<\mathrm{CDF}=<\mathrm{ABE}$ (Tower and stick are vertically to ground)
Therefore $\triangle A B E \sim \triangle C D F$ (By AAA similarity)
So, $A B / C D=B E / D F$
$A B / 6=28 / 4$
$A B / 6=7$
$A B=7 \times 6$
$A B=42 \mathrm{~m}$
So, height of tower will be 42 meter.

25. Question

In Fig. 4.145 (a) $\triangle A B C$ is right angled at C and $D E \perp A B$. Prove that $\triangle A B C \sim \triangle A D E$ and hence find the lengths of $A E$ and $D E$.

Fig. 4.145 (a)

Answer

In $\triangle A B C$, by Pythagoras theorem
$A B^{2}=A C^{2}+B C^{2}$
Or, $A B^{2}=5^{2}+12^{2}$
Or, $A B^{2}=25+144$
Or, $\mathrm{AB}^{2}==169$
Or $A B=13$ (Square root both side)
In $\triangle \mathrm{AED}$ and $\triangle \mathrm{ACB}$
$<\mathrm{A}=<\mathrm{A}$ (Common)
$\angle A E D=\angle A C B\left(\right.$ Each $\left.90^{\circ}\right)$
Then, $\triangle \mathrm{AED} \sim \triangle \mathrm{ACB}$ (Corresponding parts of similar triangle are proportional)
So, $A E / A C=D E / C B=A D / A B$
Or, $\mathrm{AE} / 5=\mathrm{DE} / 12=3 / 13$
Or, $A E / 5=3 / 13$ and $D E / 12=3 / 13$
Or, $A E=15 / 13 \mathrm{~cm}$ and $D E=36 / 13 \mathrm{~cm}$

Exercise 4.6

1. Question

Triangles ABC and DEF are similar.
(i) If area $(\triangle A B C)=16 \mathrm{~cm}^{2}$, area $(\triangle D E F)=25 \mathrm{~cm}^{2}$ and $B C=2.3 \mathrm{~cm}$, find $E F$.
(ii) If area $(\triangle A B C)=9 \mathrm{~cm}^{2}$, area $(\triangle D E F)=64 \mathrm{~cm}^{2}$ and $D E=5.1 \mathrm{~cm}$, find $A B$.
(iii) If $A C=19 \mathrm{~cm}$ and $D F=8 \mathrm{~cm}$, find the ratio of the area of two triangles.
(iv) If area $(\triangle A B C)=36 \mathrm{~cm}^{2}$, area $(\triangle D E F)=64 \mathrm{~cm}^{2}$ and $D E=6.2 \mathrm{~cm}$, find $A B$.
(v) If $A B=1.2 \mathrm{~cm}$ and $D E=1.4 \mathrm{~cm}$, find the ratio of the areas of $\triangle A B C$ and $\triangle D E F$.

Answer

(i) We have
$\triangle A B C \sim \triangle D E F$
Area $(\triangle A B C)=16 \mathrm{~cm}^{2}$
Area $(\triangle D E F)=25 \mathrm{~cm}^{2}$
And $B C=2.3 \mathrm{~cm}$
Since, $\triangle A B C \sim \triangle D E F$
Then, Area ($\triangle A B C$)/Area ($\triangle D E F$)
$=B C^{2} / E F^{2}$ (By are of similar triangle theorem)
Or, $16 / 25=(23)^{2} / E F^{2}$
Or, $4 / 5=2.3 / E F$ (By taking square root)
Or, EF = 11.5/4
Or, EF $=2.875 \mathrm{~cm}$
(ii) We have
$\triangle A B C \sim \triangle D E F$
Area $(\triangle A B C)=9 \mathrm{~cm}^{2}$
Area $(\triangle D E F)=64 \mathrm{~cm}^{2}$
And $B C=5.1 \mathrm{~cm}$
Since, $\triangle A B C \sim \triangle D E F$
Then, Area ($\triangle A B C$)/Area ($\triangle D E F$)
$=A B^{2} / D E^{2}$ (By are of similar triangle theorem)
Or, $9 / 64=A B^{2} /(5.1)^{2}$
Or, $A B=3 \times 5.1 / 8$ (By taking square root)
Or, $A B=1.9125 \mathrm{~cm}$
(iii) We have,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$A C=19 \mathrm{~cm}$ and $D F=8 \mathrm{~cm}$
By area of similar triangle theorem
Then, Area of $\triangle A B C /$ Area of $\triangle D E F=A C^{2} / D E^{2}(B r$ area of similar triangle theorem $)$
$(19)^{2} /(8)^{2}=364 / 64$
(iv) We have

Area $\triangle A B C=36 \mathrm{~cm}^{2}$
Area $\triangle D E F=64 \mathrm{~cm}^{2}$
$D E=6.2 \mathrm{~cm}$
And, $\triangle A B C \sim \triangle D E F$
By area of similar triangle theorem
Area of $\triangle A B C /$ Area of $\triangle D E F=A B^{2} / D E^{2}$
Or, $36 / 64=6 \times 6.2 / 8$ (By taking square root)

Or, $A B=4.65 \mathrm{~cm}$
(V) We have
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$A B=12 \mathrm{~cm}$ and $D F=1.4 \mathrm{~cm}$
By area of similar triangle theorem
Area of $\triangle A B C /$ Area of $\triangle D E F=A B^{2} / D E^{2}$
Or, $(1.2)^{2} /(1.4)^{2}=1.44 x / 1.96$

2. Question

In Fig. 4.177, $\triangle A C B \sim \triangle A P Q$. If $B C=10 \mathrm{~cm}, P Q=5 \mathrm{~cm}, B A=6.5 \mathrm{~cm}$ and $A P=2.8 \mathrm{~cm}$, find $C A$ and AQ. Also, find the area ($\triangle A C B$) : area ($\triangle A P Q$).

Fig. 4.177

Answer

We have,
$\triangle \mathrm{ACB} \sim \triangle \mathrm{APQ}$
Then, $\mathrm{AC} / \mathrm{AP}=\mathrm{CB} / \mathrm{PQ}=\mathrm{AB} / \mathrm{AQ}[$ Corresponding parts of similar Δ are proportional]
Or, $\mathrm{AC} / 2.8=10 / 5=6.5 / \mathrm{AQ}$
Or, $\mathrm{AC} / 2.8=10 / 5$ and $10 / 5=6.5 / \mathrm{AQ}$
Or, $A C=5.6 \mathrm{~cm}$ and $\mathrm{AQ}=3.25 \mathrm{~cm}$
By area of similar triangle theorem
Area of $\triangle A C B /$ Area of $\triangle A P Q=B C^{2} / P Q^{2}$
$=(10)^{2} /(5)^{2}$
$=100 / 25$
$=4 \mathrm{~cm}$

3. Question

The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. Find the ratio of their corresponding heights. What is the ratio of their corresponding medians?

Answer

Given : $\triangle A B C \sim \Delta P Q R$

Area $(\triangle A B C)=81 \mathrm{~cm}^{2}$
Area $(\triangle P Q R)=49 \mathrm{~cm}^{2}$
Figure:

And AD and PS are the altitudes
By area of similar triangle theorem: The ratio of the areas of two similar triangles equal to the ratio of squares of the corresponding sides of triangles.

$$
\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle P Q R}=\frac{A B^{2}}{P Q^{2}}
$$

$$
\frac{A B^{2}}{P Q^{2}}=\frac{81}{49}
$$

$$
\frac{A B}{P Q}=\sqrt{\frac{81}{49}}
$$

$$
\frac{A B}{P Q}=\frac{9}{7}
$$

We also know that:

$$
\frac{A D}{P S}=\frac{A B}{P Q}
$$

Therefore, $\frac{A D}{P S}=\frac{9}{7}$
So, Ratio of altitudes $=9 / 7$
Hence, ratio of altitudes $=$ Ratio of medians $=9: 7$

4. Question

The areas of two similar triangles are $169 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ respectively. If the longest side of the larger triangle is 26 cm , find the longest side of the smaller triangle.

Answer

We have,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
Area $(\triangle A B C)=169 \mathrm{~cm}^{2}$
Area $(\mathrm{PQR})=121 \mathrm{~cm}^{2}$
And $A B=26 \mathrm{~cm}$
By area of similar triangle theorem
Area of $\triangle A B C /$ Area of $\triangle P Q R=A B^{2} / P Q^{2}$
Or, $169 / 125=26^{2} / P Q^{2}$
Or, 13/11 = 26/PQ (Taking square root)
Or, PQ = 11/13 x 26
Or, $\mathrm{PQ}=22 \mathrm{~cm}$

5. Question

Two isosceles triangles have equal vertical angles and their areas are in the ratio $36: 25$.. Find the ratio of their corresponding heights.

Answer

Given : $-A B=A C, P Q=P R$ and $\angle A=\angle P$
And AD and PS are altitudes
And, Area $(\triangle A B C) /$ Area of $(\triangle P Q R)=36 / 25$
To find: AD/PS
Proof:- Since, $A B=A C$ and $P Q=P R$
Then, $A B / A C=1$ and $P Q / P R=1$
So, $A B / A C=P Q / P R$
Or, $A B / P Q=A C / P R$.
In $\triangle A B C$ and $\triangle P Q R$
$<\mathrm{A}=<\mathrm{P}$ (Given)
$A B / P Q=A C / P R($ From equation ii$)$
Then, $\triangle A B C \sim \triangle P Q R$ (BY AA similarity)
So, Area of $\triangle A B C /$ Area of $\triangle P Q R=A B^{2} / P Q^{2} \ldots$. (iii) (By area of similar triangle)
Compare equation I and II
$A B^{2} / P Q^{2}=36 / 25$
Or, $A B / P Q=6 / 5$
In $\triangle A B D$ and $\triangle P Q S$
$<B=\angle Q(\triangle A B C \sim \triangle P Q R)$
$<\mathrm{ADB}=<$ PSO $\left(\right.$ Each $\left.90^{\circ}\right)$
Then , $\triangle A B D \sim \triangle P Q S$ (By AA similarity)
So, $A B / P Q=A D / P S$
6/5 = AD/ PS (From iv)

6. Question

The areas of two similar triangles are $25 \mathrm{~cm}^{2}$ and $36 \mathrm{~cm}^{2}$ respectively. If the altitude of the first triangle is 2.4 cm , find the corresponding altitude of the other.

Answer

We have,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
Area $(\triangle A B C)=25 \mathrm{~cm}^{2}$
Area $(P Q R)=36 \mathrm{~cm}^{2}$
And $A D=2.4 \mathrm{~cm}$
And AD and PS are the altitudes
To find: PS
Proof: Since, $\triangle A B C \sim \triangle P Q R$
Then, by area of similar triangle theorem
Area of $\triangle A B C /$ Area of $\triangle P Q R=A B^{2} / P Q^{2}$
$25 / 36=A B^{2} / P Q^{2}$
$5 / 6=A B / P Q$.
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQS}$
$<B=\angle Q(\triangle A B C \sim \triangle P Q R)$
$\angle A D B=\angle P S Q\left(\right.$ Each $\left.90^{\circ}\right)$
Then, $\triangle A B D \sim \triangle P Q S$ (By AA similarity)
So, AB/PS = AD/PS.
(ii) (Corresponding parts of similar Δ are proportional)

Compare (i) and (ii)

AD/PS = 5/6
$2.4 / \mathrm{PS}=5 / 6$
$\mathrm{PS}=2.4 \times 6 / 5$
$P S=2.88 \mathrm{~cm}$

7. Question

The corresponding altitudes of two similar triangles are 6 cm and 9 cm respectively. Find the ratio of their areas.

Answer

We have,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$A D=6 \mathrm{~cm}$
PS $=9 \mathrm{~cm}$
By area of similar triangle theorem
Area of $\triangle A B C /$ Area of $\triangle P Q R=A B^{2} / P Q^{2}$.
In $\triangle A B D$ and $\triangle P Q S$
$<B=\angle Q(\triangle A B C \sim \triangle P Q S)$
<ADB $=<$ PSQ $\left(\right.$ Each $\left.90^{\circ}\right)$
Then, $\triangle \mathrm{ABD} \sim \triangle \mathrm{PQS}$ (By AA Similarity)
So, $A B / P Q=A D / P S$ (Corresponding parts of similar Δ are proportional)
Or, $A B / P Q=6 / 9$
Or, $A B / P Q=2 / 3$
Compare equation (i) and (ii)
Area of $\triangle \mathrm{ABC} /$ Area of $\triangle \mathrm{PQR}=(2 / 3)^{2}=4 / 9$

8. Question

$A B C$ is a triangle in which $\angle A=90^{\circ}, A N \perp B C, B C=12 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$. Find the ratio of the areas of $\triangle A N C$ and $\triangle A B C$.

Answer

In $\triangle \mathrm{ANC}$ and $\triangle \mathrm{ABC}$
$<\mathrm{C}=<\mathrm{C}$ (Common)
<ANC $=<$ BAC $\left(\right.$ Each $\left.90^{\circ}\right)$
Then, \triangle ANC $\sim \triangle A B C$ (By AA similarity)

By area of similarity triangle theorem.
Area of $\triangle A B C /$ Area of $\triangle P Q R=A C^{2} / B C^{2}$
Or, $5^{2} / 12^{2}$
Or, 25/144

9. Question

In Fig. 4.178, $D E \| B C$
(i) If $D E=4 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and area $(\triangle A D E)=16 \mathrm{~cm}^{2}$, find the area of $\triangle A B C$.
(ii) If $D E=4 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and area $(\triangle A D E)=25 \mathrm{~cm}^{2}$, find the area of $\triangle A B C$.
(iii) If $D E: B C=3: 5$. Calculate the ratio of the areas of $\triangle A D E$ and the trapezium BCED.

Fig. 4.178

Answer

(i) We have, $D E \| B C, D E=4 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and area $(\triangle A D E)=16 \mathrm{~cm}^{2}$

In $\triangle A D E$ and $\triangle A B C$
$<\mathrm{A}=<\mathrm{A}$ (Common)
$\angle A D E=\angle A B C$ (Corresponding angles)
Then, $\triangle A D E \sim \triangle A B C$ (BY AA similarity)
So, By area of similar triangle theorem
Area of $\triangle A D E /$ Area of $\triangle A B C=D E^{2} / B C^{2}$
$16 /$ Area of $\triangle A B C=4^{2} / 6^{2}$
Or, Area $(\triangle A B C)=16 \times 36 / 16$
$=36 \mathrm{~cm}^{2}$
(ii) We have, $D E \| B C, D E=4 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and area $(\triangle A D E)=25 \mathrm{~cm}^{2}$

In $\triangle A D E$ and $\triangle A B C$
$<\mathrm{A}=<\mathrm{A}$ (Common)
<ADE $=\angle A B C$ (Corresponding angles)
Then, $\triangle A D E \sim \triangle A B C$ (BY AA similarity)
So, By area of similar triangle theorem
Area of $\triangle A D E /$ Area of $\triangle A B C=D E^{2} / B C^{2}$
$25 /$ Area of $\triangle A B C=4^{2} / 8^{2}$
Or, Area $(\triangle A B C)=25 \times 64 / 16$
$=100 \mathrm{~cm}^{2}$
(iii) We have $D E \| B C$, And $D E / B C=3 / 5$

In $\triangle A D E$ and $\triangle A B C$
$<A=<A$ (Common)
$\angle \mathrm{ADE}=\angle \mathrm{ABC}$ (Corresponding angles)
Then, $\triangle A D E \sim \triangle A B C$ (BY AA similarity)
So, By area of similar triangle theorem
Area of $\triangle A D E /$ Area of $\triangle A B C=D E^{2} / B C^{2}$
Area of $\triangle \mathrm{ADE} /$ Area of $\triangle \mathrm{ADE}+$ Area of trap. $\mathrm{DECB}=3^{2} / 5^{2}$
Or, 25 area $\triangle A D E=9$ Area of $\triangle A D E+9$ Area of trap. DECB
Or 25 area $\triangle \mathrm{ADE}-9$ Area of $\triangle \mathrm{ADE}=9$ Area of trap. DECB
Or, 16 area $\triangle A D E=9$ Area of trap. DECB
Or, area $\triangle A D E /$ Area of trap. $\operatorname{DECB}=9 / 16$

10. Question

In $\triangle A B C, D$ and E are the mid-points of $A B$ and $A C$ respectively. Find the ratio of the areas of $\triangle A D E$ and $\triangle A B C$.

Answer

We have, D and E as the midpoint of $A B$ and $A C$
So, according to the midpoint therom
$D E \| B C$ and $D E=1 / 2 B C$.
In $\triangle A D E$ and $\triangle A B C$
$<\mathrm{A}=<\mathrm{A}$ (Common)
$<\mathrm{ADE}=<\mathrm{B}$ (Corresponding angles)
Then, $\triangle A D E \sim \triangle A B C$ (By AA similarity)

By area of similar triangle theorem
Area $\triangle A D E /$ Area $\triangle A B C=D E^{2} / B C^{2}$
Or, $(1 / 2 B C)^{2} /(B C)^{2}$
Or, 1/4

11. Question

In Fig. 4.179, $\triangle A B C$ and $\triangle D B C$ are on the same base $B C$. If $A D$ and $B C$ intersect at O. Prove that
$\frac{\operatorname{Area}(\triangle A B C)}{\text { Area }(\triangle D B C)}=\frac{A O}{D O}$

Fig. 4.179

Answer

Fig. 4.179
We know that area of a triangle $=1 / 2 \times$ base \times height
Since, $\triangle A B C$ and $\triangle D B C$ are one same base.
Therefore ratio between their areas will be as ratio of their heights.
Let us draw two perpendiculars AP and DM on line BC
In $\triangle \mathrm{ALO}$ and $\triangle \mathrm{DMO}$,
$\angle \mathrm{ALO}=\angle \mathrm{DMO}\left(\right.$ Each is $\left.90^{\circ}\right)$
$\angle \mathrm{AOL}=\angle \mathrm{DOM}$ (Vertically opposite angle)
$\angle O A L=\angle O D M$ (remaining angle)
Therefore $\triangle \mathrm{ALO} \sim \triangle \mathrm{DMO}$ (By AAA rule)
Therefore AL/DM = AO/DO

Therefore, $\frac{\operatorname{Area}(\triangle A B C)}{\text { Area }(\triangle D B C)}=\frac{A O}{D O}$

12. Question

$A B C D$ is a trapezium in which $A B \| C D$. The diagonals $A C$ and $B D$ intersect at O. Prove that : (i) $\triangle A O B \sim \triangle C O D$
(ii) If $O A=6 \mathrm{~cm}, O C=8 \mathrm{~cm}$, Find:
(a) $\frac{\operatorname{Area}(\triangle A O B)}{\text { Area }(\triangle C O D)}$ (b) $\frac{\operatorname{Area}(\triangle A O D)}{\text { Area }(\triangle C O D)}$

Answer

We have,

$A B \| D C$
In $\triangle A O B$ and $\triangle C O D \angle A O B=\angle C O D$ (Vertically opposite angles)
$\angle O A B=\angle O C D$ (Alternate interior angle)
Then , $\triangle A O B \sim \triangle C O D$ (By AA similarity)
(a) By area of similar triangle theorem.

$$
\frac{\text { Area of } \triangle A O B}{\text { Area of } \triangle C O D}=\frac{O A^{2}}{O C^{2}}
$$

$$
\Rightarrow \frac{\text { Area of } \triangle A O B}{\text { Area of } \triangle C O D}=\frac{6^{2}}{8^{2}}
$$

$$
\Rightarrow \frac{\text { Area of } \triangle A O B}{\text { Area of } \triangle C O D}=\frac{36}{64}=\frac{9}{16}
$$

b) Draw $D P \perp A C$

$$
\begin{aligned}
& \Rightarrow \frac{\text { Area of } \triangle A O D}{\text { Area of } \triangle C O D}=\frac{\frac{1}{2} \times O A \times D P}{\frac{1}{2} \times O C \times D P} \\
& \Rightarrow \frac{\text { Area of } \triangle A O D}{\text { Area of } \triangle C O D}=\frac{6}{8}=\frac{3}{4}
\end{aligned}
$$

13. Question

In $\triangle A B C, P$ divides the side $A B$ such that $A P: P B=1: 2 . Q$ is a point in $A C$ such that $P Q \| B C$. Find the ratio of the areas of $\triangle A P Q$ and trapezium BPQC.

Answer

We know
$P Q \| B C$
$1=A P$
2 PB
In $\triangle A P Q$ and $\triangle A B C$
$\angle A=\angle A$ [Common]
$\angle \mathrm{APQ}=\angle \mathrm{B}$ [Corresponding angle]
$\triangle \mathrm{ABC} \sim \triangle \mathrm{APQ}$
Area $(\triangle A P Q)=A P^{2}$
Area $(\triangle A B C) \mathrm{AB}^{2}$
$\operatorname{ar}(\triangle A P Q)$ \qquad $=1^{2 / 3^{2}}$
$\operatorname{ar}(\triangle A P Q)+\operatorname{ar}(\operatorname{trap} B P Q C)$
$9 \operatorname{ar}(\triangle A P Q)=\operatorname{ar}(\triangle A P Q)+\operatorname{ar}(\operatorname{trap} B P Q C)$
$9 \operatorname{ar}(\triangle A P Q)-\operatorname{ar}(\triangle A P Q)=\operatorname{ar}(\operatorname{trapBPQC})$
$8 \operatorname{ar}(\triangle A P Q)=\operatorname{ar}(\operatorname{trapBPQC})$
$\operatorname{ar}(\triangle \mathrm{APQ})=\frac{1}{8}$
$\operatorname{ar}(\operatorname{trapBPQC})$

14. Question

The areas of two similar triangles are $100 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the bigger triangle is 5 cm , find the corresponding altitude of the other.

Answer

We have,
$\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$
Area $(\triangle A B C)=100 \mathrm{~cm}^{2}$
Area $(\triangle P Q R)=49 \mathrm{~cm}^{2}$
$A D=5 \mathrm{~cm}$
$A D$ and PS are the altitudes
by area of similar triangle theorem
Area $(\triangle A B C)=\mathrm{AB}^{2}$
Area $(\triangle P Q R) \mathrm{PQ}^{2}$
$A B^{2}=100 / 49$
$P Q^{2}$
$A B / P Q=10 / 7$ \qquad
In $\triangle A B D$ and $\triangle P Q S$
$\angle \mathrm{B}=\angle \mathrm{Q}[\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}]$
$\angle \mathrm{ADB}=\angle \mathrm{PQS}=90^{\circ}$
$\Delta \mathrm{ABD} \sim \Delta \mathrm{PQS}$ [By AA similarity]
$A B / P Q=A D / P S$ \qquad
Compare equ. (i)and(ii)
AD/PS=10/7
$5 / \mathrm{PS}=10 / 7$
$\mathrm{PS}=35 / 10$
$\mathrm{PS}=3.5 \mathrm{~cm}$

15. Question

The areas of two similar triangles are $121 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If the median of the first triangle is 12.1 cm , find the corresponding median of the other.

Answer

We have,
$\Delta \mathrm{ABC} \sim \triangle \mathrm{PQR}$
Area $(\triangle A B C)=121 \mathrm{~cm}^{2}$
Area $(\triangle P Q R)=64 \mathrm{~cm}^{2}$
$A D=12.1 \mathrm{~cm}$
AD and PS are the medians
By area of similar triangle theorem
$\operatorname{Area}(\triangle A B C)=\mathrm{AB}^{2}$
Area $(\triangle P Q R) \mathrm{PQ}^{2}$
$A B^{2}=121$
$P Q^{2} 64$
$A B=11$
PQ 8
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
$A B / P Q=B C / Q R$ [Corresponding parts of similar triangles are proportional] $A B / P Q=2 B D / 2 Q S$ [$A D$ and $B D$ are medians]
$A B / P Q=B D / Q S$ \qquad
In $\triangle A B D$ and $\triangle P Q S$
$\angle \mathrm{B}=\angle \mathrm{Q}[\triangle \mathrm{ABC} \sim \Delta \mathrm{PQS}]$
$A B / P Q=B D / Q S$ [from (ii)]
$\Delta \mathrm{ABD} \sim \Delta \mathrm{PQS}$ [By AA similarity]
$A B / P Q=A D / P S$ Compare equ. (i)and(ii)
$A D / P S=11 / 8$
$12.1 / \mathrm{PS}=11 / 8$
$\mathrm{PS}=12.1 \times 8 / 8$
$\mathrm{PS}=8.8 \mathrm{~cm}$

16. Question

If $\triangle A B C \sim \triangle D E F$ such that $A B=5 \mathrm{~cm}$, area $(\triangle A B C)=20 \mathrm{~cm}^{2}$ and area $(\triangle D E F)=45 \mathrm{~cm}^{2}$, determine DE.

Answer

We have
$\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
Where $A B=5 \mathrm{~cm}$
Area $(\triangle A B C)=20 \mathrm{~cm}^{2}$
Area $(\triangle D E F)=45 \mathrm{~cm}^{2}$
By area of similar triangle theorem
Area $(\triangle A B C)=\mathrm{AB}^{2}$
Area ($\triangle D E F$) DE^{2}
$5^{2} / D^{2}=20 / 25$
$25 / D E^{2}=4 / 9$
$5 / D E=2 / 3$
$D E=3 \times 5 / 2$
$D E=7.5 \mathrm{~cm}$

17. Question

In $\triangle A B C, P Q$ is a line segment intersecting $A B$ at P and $A C$ at Q such that $P Q \| B C$ and $P Q$ divides $\triangle A B C$ into two parts equal in area. Find $\frac{B P}{A B}$.

Answer

We know
$P Q \| B C$
Area $(\triangle A P Q)=$ Area $(\operatorname{trapPQCB})$
Area $(\triangle A P Q)=$ Area $(\triangle A B C)$ - Area $(\triangle A P Q)$
2Area $(\triangle A P Q)=$ Area $(\triangle A B C)$
In $\triangle A P Q$ and $\triangle A B C$
$\angle A=\angle A$ [Common]
$\angle A P Q=\angle B$ [Corresponding angle]
$\triangle \mathrm{ABC} \sim \triangle \mathrm{APQ}$
$\operatorname{Area}(\triangle A P Q)=A P^{2}$
Area $(\triangle A B C) \mathrm{AB}^{2}$
$\operatorname{Area}(\triangle A P Q)=A P^{2}$
Area ($\triangle A P Q$) AB^{2} [By using (I)]
$1=A P^{2}$
$2 A B^{2}$
$\frac{1}{\sqrt{2}}=A P / A B$
$\frac{1}{\sqrt{2}}=\frac{A B-B P}{\mathrm{AB}}$
$\frac{1}{\sqrt{2}}=\frac{A B}{A B}-\frac{B P}{A B}$
$\frac{1}{\sqrt{2}}=1-B P / A B$
$B P / A B=1-\frac{1}{\sqrt{2}}$
$B P / A B=\frac{\sqrt{2}-1}{\sqrt{2}}$

18. Question

The areas of two similar triangles $A B C$ and $P Q R$ are in the ratio $9: 16$. If $B C=4.5 \mathrm{~cm}$, find the length of QR.

Answer

We have,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
Area $(\triangle A B C)=\mathrm{BC}^{2}$
Area ($\triangle P Q R$) QR^{2}
$(4.5)^{2} / Q R^{2}=9 / 16$
$4.5 / Q R=3 / 4$
$\mathrm{QR}=4 \times 4.5 / 3$
$\mathrm{QR}=6 \mathrm{~cm}$

19. Question

$A B C$ is a triangle and $P Q$ is a straight line meeting $A B$ in P and $A C$ in Q. If $A P=1 \mathrm{~cm}, P B=3 \mathrm{~cm}, A Q$ $=1.5 \mathrm{~cm}, Q C=4.5 \mathrm{~m}$, prove that area of $\triangle A P Q$ is one-sixteenth of the area of $\triangle A B C$.

Answer

$\mathrm{AP}=1 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}, \mathrm{AQ}=1.5 \mathrm{~cm}$, and $\mathrm{QC}=4.5 \mathrm{~m}$
In $\triangle A P Q$ and $\triangle A B C$
$\angle A=\angle A$ [Common]
$A P / A B=A Q / A C$ [Each equal to 1/4]

By area of similar triangle theorem

$$
\frac{\text { Area of } \triangle A P Q}{\text { Area of } \triangle A B C}=\left(\frac{A P}{A B}\right)^{2}
$$

$\frac{\text { Area of } \triangle A P Q}{\text { Area of } \triangle A B C}=\left(\frac{1}{4}\right)^{2}$
$\frac{\text { Area of } \triangle A P Q}{\text { Area of } \triangle A B C}=\frac{1}{16}$

Area $(\triangle A B C)=16 \times \operatorname{ar}(\triangle A B C)$

20. Question

If D is a point on the side $A B$ of $\triangle A B C$ such that $A D: D B=3.2$ and E is a point on $B C$ such that $D E \| A C$. Find the ratio of areas of $\triangle A B C$ and $\triangle B D E$.

Answer

We have
$A D / D B=3 / 2$
In $\triangle B D E$ and $\triangle B A C$
$\angle B=\angle B$ [Common]
$\angle \mathrm{BDE}=\angle \mathrm{A}$ [Corresponding]
$\triangle \mathrm{BDE} \sim \triangle \mathrm{BAC}$
$\operatorname{Area}(\triangle A B C)=\mathrm{AB}^{2}$
Area $(\triangle B D E) \mathrm{BD}^{2}$
$=5^{2} / 2^{2}[\mathrm{AD} / \mathrm{DB}=3 / 2]$
$=25 / 4$

Area $(\triangle B D E)=25: 4$

21. Question

If $\triangle A B C$ and $\triangle B D E$ are equilateral triangles, where D is the mid point of $B C$, find the ratio of areas of $\triangle A B C$ and $\triangle B D E$.

Answer

$\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDE}$ is an equilateral triangles
$\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$ [By SAS]
By area of similar triangle theorem
$\operatorname{Area}(\triangle A B C)=\mathrm{AB}^{2}[\mathrm{D}$ is the midpoint of BC$]$
Area $(\triangle B D E) \mathrm{BD}^{2}$
$=4 B D^{2} / B D^{2}$
$=4 / 1$
Area $(\triangle A B C)=4: 1$ Area $(\triangle B D E)$

22. Question

$A D$ is an altitude of an equilateral triangle $A B C$. On AD as base, another equilateral triangle ADE is constructed. Prove that Area $(\triangle A D E)$: Area $(\triangle A B C)=3: 4$.

Answer

Given: $A D$ is an altitude of an equilateral triangle $A B C$. On $A D$ as base, another equilateral triangle ADE is constructed

To prove: Area $(\triangle A D E):$ Area $(\triangle A B C)=3: 4$.

Proof:

Construct the figure according to the conditions given.

We have,
$\triangle A B C$ is an equilateral triangle
Let one side $A B$ be 2XSince in equilateral triangle all the sides are of equal length.
$\Rightarrow A B=B C=A C=2 X$
$\because A D \perp B C S i n c e$ perpendicular bisects the given side into two equal parts, then $B D=D C=x$
Now, In $\triangle A D B$
By Pythagoras theorem, $A B^{2}=A D^{2}+B D^{2}$
$A D^{2}=A B^{2}-B D^{2} A D^{2}=(2 x)^{2}-(x)^{2} A D^{2}=3 x^{2}$
$\mathrm{AD}=\sqrt{3 x} \mathrm{~cm}$
$\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$ both are equilateral triangles
Since, all the angles of the equilateral triangle are of 60°.
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$ [By AA similarity]
By the theorem which states that the areas of two similar triangles are in the ratioof the squares of the any two corresponding sides.

$$
\begin{aligned}
& \frac{\operatorname{Area}(\triangle A D E)}{\text { Area }(\triangle A B C)}=\frac{A D^{2}}{A B^{2}} \\
& \frac{\operatorname{Area}(\triangle A D E)}{\text { Area }(\triangle A B C)}=\frac{(\sqrt{3 x})^{2}}{(2 x)^{2}}
\end{aligned}
$$

$$
\frac{\operatorname{Area}(\triangle A D E)}{\text { Area }(\triangle A B C)}=\frac{3 x^{2}}{4 x^{2}}
$$

$\frac{\operatorname{Area}(\triangle A D E)}{\operatorname{Area}(\triangle A B C)}=\frac{3}{4}$
Hence,Area $(\triangle A D E):$ Area $(\triangle A B C)=3: 4$

Exercise 4.7

1. Question

If the sides of a triangle are $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 6 cm long, determine whether the triangle is a rightangled triangle.

Answer

We have,
$A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}, A C=6 \mathrm{~cm}$
$\therefore \mathrm{AB}^{2}=3^{2}=9$
$B C^{2}=4^{2}=16$
$A C^{2}=6^{2}=36$
Since $A B^{2}+B C^{2} \neq A C^{2}$
SO Triangle is not a right angle.

2. Question

The sides of certain triangles are given below. Determine which of them are right triangles.
(i) $\mathrm{a}=7 \mathrm{~cm}, \mathrm{~b}=24 \mathrm{~cm}$ and $\mathrm{c}=25 \mathrm{~cm}$
(ii) $\mathrm{a}=9 \mathrm{~cm}, \mathrm{~b}=16 \mathrm{~cm}$ and $\mathrm{c}=18 \mathrm{~cm}$
(iii) $\mathrm{a}=1.6 \mathrm{~cm}, \mathrm{~b}=3.8 \mathrm{~cm}$ and $\mathrm{c}=4 \mathrm{~cm}$
(iv) $\mathrm{a}=8 \mathrm{~cm}, \mathrm{~b}=10 \mathrm{~cm}$ and $\mathrm{c}=6 \mathrm{~cm}$

Answer

(i) $a=7, b=24, c=25$

Here $a^{2}=49, b^{2}=576, c^{2}=625$
$=a^{2}+b^{2}$
$=49+576$
$=625=c^{2}$
\therefore So given triangle is a right angle.
(ii) $a=9, b=16, c=18$

Here $a^{2}=81, b^{2}=256, c^{2}=324$
$=a^{2}+b^{2}$
$=81+256$
$=337 \neq c^{2}$
So given Triangle is not a right angle.
(iii) $a=1.6, b=3.8, c=4$

Here $a^{2}=2.56, b^{2}=14.44, c^{2}=16$
$=a^{2}+b^{2}$
$=2.56+14.44$
$=17 \neq c^{2}$
So given Triangle is not a right angle.
(iv) $a=8, b=10, c=6$

Here $a^{2}=64, b^{2}=100, c^{2}=36$
$=a^{2}+c^{2}$
$=64+36$
$=100=b^{2}$
So given Triangle is a right angle.

3. Question

A man goes 15 metres due west and then 8 metres due north. How far is he from the starting point?

Answer

Let the man starts walk from point A and finished at

Point C.
\therefore In $\triangle \mathrm{ABC}$
SO $A C^{2}=A B^{2}+B C^{2}$
$A C^{2}=8^{2}+15^{2}$
$A C^{2}=64+225$
$\mathrm{AC}^{2}=289$
$A C=\sqrt{289}$
$A C=17 \mathrm{~m}$
The man is 17 m far from the starting point.

4. Question

A ladder 17 m long reaches a window of a building 15 m above the ground. Find the distance of the foot of the ladder from the building.

Answer

In $\triangle \mathrm{ABC}$
$A C^{2}=A B^{2}+B C^{2}$
$17^{2}=15^{2}+B C^{2}$
$289=225+B C^{2}$
$B C^{2}=289-225$
$B C^{2}=64$
$B C=\sqrt{64}$
$B C=8 \mathrm{~m}$
Distance of the foot of ladder is 8 m from the building.

5. Question

Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.

Answer

Let $A B$ and $C D$ be the poles.

$A B=P D=6 m, C D=11 m$
$B D=A P=12 m$
$C P=C D-P D$
$C P=11-6$
$\mathrm{CP}=5$
In $\triangle \mathrm{APC}$
$A C^{2}=C P^{2}+A P^{2}$
$A C^{2}=12^{2}+5^{2}$
$A C^{2}=144+25$
$A C^{2}=169$
$\mathrm{AC}=\sqrt{169}$
$A C=13 m$

6. Question

In an isosceles triangle $A B C, A B=A C=25 \mathrm{~cm}, B C=14 \mathrm{~cm}$. Calculate the altitude from A on $B C$.

Answer

We have,
$A B=A C=25 \mathrm{~cm}$
$B C=14 \mathrm{~cm}$
In $\triangle \mathrm{ACD}$ and $\triangle \mathrm{ABD}$
$\angle A D B=\angle A D B=90$
$A B=A C=25 \mathrm{~cm}$
$A D=A D$ (Common)
$\triangle \mathrm{ABD} \cong \angle A C D$
$\therefore \mathrm{BD}=\mathrm{CD}=7 \mathrm{~cm}$ (By c.p.c.t)
In $\triangle \mathrm{ACD}$
$A B^{2}=A D^{2}+B D^{2}$
$25^{2}=A D^{2}+72$
$625=A D^{2}+49$
$A D^{2}=625-49$
$A D^{2}=576$
$A D=\sqrt{576}$

7. Question

The foot of a ladder is 6 m away from a wall and its top reaches a window 8 m above the ground. If the ladder is shifted in such a way that its foot is 8 m away from the wall, to what height does its tip reach?

Answer

Let length of ladder be $A D=B E=1 \mathrm{~m}$
In $\triangle A C D$
$A D^{2}=A C^{2}+C D^{2}$
$\mathrm{t}^{2}=8^{2}+6^{2}$
In $\triangle B C E$
$B E^{2}=B C^{2}+E C^{2}$
$\mathrm{t}^{2}=\mathrm{BC}^{2}+8^{2}$
From (i) and (ii)
$B C^{2}+8^{2}=8^{2}+6^{2}$
$B C^{2}=6^{2}$
$B C=6 m$

8. Question

Two poles of height 9 m and 14 m stand on a plane ground. If the distance between their feet is 12 m , find the distance between their tops.

Answer

We have,
$A C=14 m, D C=12 m, E D=B C=9 m$

Draw EB $\perp \mathrm{AC}$
$\therefore \mathrm{AB}=\mathrm{AC}-\mathrm{BC}$
$A B=14-9=5 m$
$E B=D C=12 m$
In $\triangle \mathrm{ABE}$
$A E^{2}=A B^{2}+B E^{2}$
$A E^{2}=5^{2}+12^{2}$
$A E^{2}=25+144$
$A E^{2}=169$
$A E=\sqrt{169}$
$A E=13 m$

9. Question

Using Pythagoras theorem determine the length of $A D$ in terms of b and c shown in Fig 4.219.

Fig. 4.219

Answer

In $\triangle A B C$
$B C^{2}=A B^{2}+A C^{2}$
$\mathrm{BC}^{2}=\mathrm{c}^{2}+\mathrm{b}^{2}$
$\mathrm{BC}=\sqrt{\mathrm{c} 2+\mathrm{b} 2}$
In $\triangle \mathrm{ABC}$ and In $\triangle \mathrm{CBA}$
$\angle B=\angle B$ (Common)
$\angle A D B=\angle B A C=90^{\circ}$
$\therefore \triangle \mathrm{ABD} \sim \Delta \mathrm{CBA}$
$\therefore A B / C B=A D / C A$
$c / \sqrt{c 2+b 2}=A D / b$
$A D=b c / \sqrt{c 2+b 2}$

10. Question

A triangle has sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm . Find the length to one decimal place, of the perpendicular from the opposite vertex to the side whose length is 13 cm .

Answer

Here $A B=5 \mathrm{~cm}, B C=12 \mathrm{~cm}, A C=13 \mathrm{~cm}$.
$A C 2=A B^{2}+B C^{2}$
$\triangle A B C$ is a right angled triangle at $\angle B$.
Area $\triangle A B C=1 / 2(B C x B A)$
$=1 / 2(12 \times 5)$
$=1 / 2 \times 60$
$=30 \mathrm{~cm}^{2}$
Also Area of $\triangle \mathrm{ABC}=1 / 2 \times A C \times B D$
$=1 / 2(13 \times B D)$
$30=1 / 2(13 \times B D)$
$13 \times B D=30 \times 2$
$B D=60 / 13$
$B D=4.6 \mathrm{~cm}$

11. Question

$A B C D$ is a square. F is the mid-point of $A B$. $B E$ is one third of $B C$. If the area of $\triangle F B E=108 \mathrm{~cm}^{2}$, find the length of $A C$.

Answer

According to the question, the figure is:

$\because A B C D$ is a square. Hence, $A B=B C=C D=D A$
$\because F$ is the midpoint of $A B$.
\therefore Length of $B F=A B / 2=B C / 2(\because A B=B C)$
Given that, $B E=B C / 3$
In $\triangle \mathrm{FBE}, \angle \mathrm{B}=90^{\circ}$ and Area of $\triangle \mathrm{FBE}=108 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \therefore \frac{1}{2} \times B E \times B F=108 \\
& \Rightarrow \frac{1}{2} \times \frac{B C}{3} \times \frac{B C}{2}=108 \\
\Rightarrow & B C^{2}=108 \times 12 \\
\Rightarrow & B C^{2}=36 \times 36 \\
\Rightarrow & B C=36 \mathrm{~cm}^{2}
\end{aligned}
$$

$A C$ is the diagonal of the $A B C D$.
\therefore Length of $\mathrm{AC}=\sqrt{\mathrm{BC}^{2}+\mathrm{AB}^{2}}$
$\Rightarrow \mathrm{AC}=\sqrt{36^{2}+36^{2}}$
$\Rightarrow \mathrm{AC}=\sqrt{36^{2}+36^{2}}$
$\Rightarrow A C=36 \sqrt{ } 2=50.904 \mathrm{~cm}$

12. Question

In an isosceles triangle $A B C$, if $A B=A C=13 \mathrm{~cm}$ and the altitude from A on $B C$ is 5 cm , find $B C$.

Answer

Given: isosceles triangle $A B C$, where $A B=A C=13 \mathrm{~cm}$ and the altitude from A on $B C$ is 5 cm .
To find: The value of $B C$.

Solution:

In $\triangle \mathrm{ADB}$
$A D^{2}+B D^{2}=A B^{2}$
$5^{2}+B D^{2}=13^{2}$
$25+B D^{2}=169$
$B D^{2}=169-25$
$B D^{2}=144$
$\mathrm{BD}=\sqrt{144}$
$B D=12 \mathrm{~cm}$
In $\triangle A D B$ and $\triangle A D C$
$\angle A D B=\angle A D C=90^{\circ}$
$A B=A C=13 \mathrm{~cm}$
$A D=A D$ (Common)
$\Delta A D B \cong \triangle A D C$ (By RHS condition)
$B D=C D=12 \mathrm{~cm}$ (c.p.c.t)
As $B C=B D+D C$
$B C=12+12$
$B C=24 \mathrm{~cm}$

13. Question

In a $\triangle A B C, A B=B C=C A=2$ a and $A D \perp B C$. Prove that
(i) $A D=a \sqrt{3}$ (ii) Area $(\triangle A B C)=\sqrt{3} a^{2}$

Answer

(i) In $\triangle A B D$ and $\triangle A C D$
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
$A B=A C$ (given)
$A D=A D$ (common)
$\Delta \mathrm{ADB} \cong \triangle \mathrm{ACD}$
$B D=C D=a$ (By c.p.c.t)
In $\triangle \mathrm{ADB}$
$A D^{2}+B D^{2}=A B^{2}$
$A D^{2}+a^{2}=(2 a)^{2}$
$A D^{2}=4 a^{2}-a^{2}$
$A D^{2}=3 a^{2}$
$A D=a \sqrt{3}$
(ii) Area of $\triangle A B C=1 / 2 \times B C \times A D$
$=1 / 2 \times 2 \mathrm{axa} \sqrt{3}$
$=\sqrt{3} \mathrm{a}^{2}$

14. Question

The lengths of the diagonals of a rhombus are 24 cm and 10 cm . Find each side of the rhombus.
Answer

We have,
$A B C D$ is a rhombus
$A C$ and $B D$ are the diagonals with length 10 cm and 24 cm respectively.
We know that rhombus of diagonal bisects each other at 90°
$\therefore \mathrm{AO}=\mathrm{OC}=5 \mathrm{~cm}$ and $\mathrm{BO}=\mathrm{OD}=12 \mathrm{~cm}$
In $\triangle \mathrm{AOB}$
$A B^{2}=A O^{2}+B O^{2}$
$A B^{2}=5^{2}+12^{2}$
$A B^{2}=25+144$
$A B^{2}=169$
$A B=\sqrt{169}$
$A B=13 \mathrm{~cm}$

15. Question

Each side of a rhombus is 10 cm . If one of its diagonals is 16 cm find the length of the other diagonal.

Answer

We have,
$A B C D$ is a rhombus with side 10 cm and diagonal $B D=16 C M$
We know that rhombus of diagonal bisects each other at 90°
$B O=O D=8 \mathrm{~cm}$
In $\triangle \mathrm{AOB}$
$A B^{2}=A O^{2}+B O^{2}$
$10^{2}=A O^{2}+8^{2}$
$100=A O^{2}+64$
$A O^{2}=100-64$
$A O^{2}=36$
$A O=\sqrt{36}$
$\mathrm{AO}=6 \mathrm{~cm}$
$\therefore A C=A O+O C$
$A C=6+6$
$\mathrm{AC}=12 \mathrm{~cm}$

16. Question

In an acute-angled triangle, express a median in terms of its sides.

Answer

We have
In $\triangle A B C, A D$ is median
$A E \perp B C$
In $\triangle \mathrm{AEB}$
$A B^{2}=A E^{2}+B E^{2}$
$A B^{2}=A D^{2}-D E^{2}+(B D-D E)^{2}$
$A B^{2}=A D^{2}-D E^{2}+B D^{2}-2 x B D x D E+D E^{2}$
$A B^{2}=A D^{2}+B D^{2}-2 x B D x D E$
$A B^{2}=A D^{2}+B C^{2} / 4-B C x D E$............. (I) [GIVEN $\left.B C=2 B D\right]$
In $\triangle \mathrm{AEC}$
$A C^{2}=A E^{2}+E C^{2}$
$A C^{2}=A D^{2}-D E^{2}+(D E+C D)^{2}$
$A C^{2}=A D^{2}-D E^{2}+2 C D x D E$
$A C^{2}=A D^{2}+B C^{2} / 4+B C x D E$ \qquad (II) $[B C=2 C D]$

By adding equ. (i) and (ii) we get
$A B^{2}+A C^{2}=2 A D^{2}+B C^{2} / 2$
$2 A B^{2}+2 A C^{2}=4 A D^{2}+B C^{2}[M U L T I P L Y$ BY 2]
$4 A D^{2}=2 A B^{2}+2 A C^{2}-B C^{2}$
$A D^{2}=2 A B^{2}+2 A C^{2}-B C^{2}$

17. Question

Calculate the height of an equilateral triangle each of whose sides measures 12 cm .

Answer

$\Delta \mathrm{ABC}$ is an equilateral triangle with side 12 cm
AE」BC
In $\triangle A B D$ and $\triangle A C D$
$\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
$A B=A C=12 \mathrm{~cm}$
$A D=A D(C O M M O N)$
$\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
$A D^{2}+B D^{2}=A B^{2}$
$A D^{2}+6^{2}=12^{2}$
$A D^{2}+36=144$
$A D^{2}=144-36$
$A D^{2}=108$
$A D=\sqrt{108}$
$A D=10.39 \mathrm{~cm}$

18. Question

In right-angled triangle $A B C$ in which $\angle C=90^{\circ}$, if D is the mid-point of $B C$, prove that $A B^{2}=4 A D^{2}-3 A C^{2}$

Answer

Given: In right-angled triangle $A B C$ in which $\angle C=90^{\circ}$, if D is the mid-point of $B C$.
To prove: $A B^{2}=4 A D^{2}-3 A C^{2}$

We have
$\angle C=90^{\circ}$ and D is the midpoint of $B C$
In $\triangle A B C$
$A B^{2}=A C^{2}+B C^{2}$
As $B C=C D+B D D$ is the mid point of $B C \Rightarrow C D=B D S o, A B^{2}=A C^{2}+(C D+C D)^{2}$
$\Rightarrow A B^{2}=A C^{2}+(2 C D)^{2}$
$\Rightarrow A B^{2}=A C^{2}+4 C D^{2}$
Also In $\triangle A C D A D^{2}=A C^{2}+C D^{2} \Rightarrow C D^{2}=A D^{2}-A C^{2}$ So,
$\Rightarrow A B^{2}=A C^{2}+4\left(A D^{2}-A C^{2}\right)$
$A B^{2}=A C^{2}+4 A D^{2}-4 A C^{2}$
$A B^{2}=4 A D^{2}-3 A C^{2}$

19. Question

In Fig. 4.220, D is the mid-point of side $B C$ and $A E \perp B C$. If $B C=a, A C=b, A B=c, E D=x, A D=p$ and $A E=h$, prove that:
(i) $b^{2}=p^{2}+a+\frac{a^{2}}{4}$ (ii) $c^{2}=p^{2}-a x+\frac{a^{2}}{4}$
(iii) $b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2}$

Fig. 4.220

Answer

We have
D is the midpoint of $B C$
(i) In $\triangle \mathrm{AEC}$
$A C^{2}=A E^{2}+E C^{2}$
$b^{2}=A E^{2}+(E D+D C)^{2}$
$\mathrm{b}^{2}=A D^{2}+D C^{2}+2 x E D \times D C$ (Given $\left.B C=2 C D\right)$
$b^{2}=p^{2}+(a / 2)^{2}+2(a / 2) x$
$b^{2}=p^{2}+a^{2} / 4+a x$
$\mathrm{b}^{2}=\mathrm{p}^{2}+\mathrm{ax}+\mathrm{a}^{2} / 4$
(ii) In $\triangle A E B$
$A B^{2}=A E^{2}+B E^{2}$
$c^{2}=A D^{2}-E D^{2}+(B D-E D)^{2}$
$c^{2}=p^{2}-E D^{2}+B D^{2}+E D^{2}-2 B D x E D$
$c^{2}=P^{2}+(a / 2)^{2}-2(a / 2)^{2} x$
$c^{2}=p^{2}-a x+a^{2} / 4$
(iii) Adding equ. (i)and(ii) we get
$b^{2}+c^{2}=2 p^{2}+a^{2} / 2$

20. Question

In Fig. 4.221, $\angle B<90^{\circ}$ and segment $A D \perp B C$, show that
(i) $b^{2}=h^{2}+a^{2}+x^{2}-2 a x$
(ii) $b^{2}=a^{2}+c^{2}-2 a x$

Fig. 4.221

Answer

In $\triangle \mathrm{ADC}$
$A C^{2}=A D^{2}+D C^{2}$
$b^{2}=h^{2}+(a-x)^{2}$
$b^{2}=h^{2}+a^{2}-2 a x+x^{2}$
$b^{2}=h^{2}+x^{2}-2 a x$
$b^{2}=a^{2}+\left(h^{2}+x 2\right)-2 a x$ (from equ.i)
$\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-2 \mathrm{ax}\left[\mathrm{h}^{2}+\mathrm{x}^{2}=\mathrm{c}^{2}\right]$

21. Question

In $\triangle A B C, \angle A$ is obtuse, $P B \perp A C$ and $Q C \perp A B$. Prove that:
(i) $A B \times A Q=A C \times A P$
(ii) $B C^{2}=(A C \times C P+A B \times B Q)$

Answer

Draw the diagram according to given questions.

(I)In $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQC} \angle \mathrm{A}=\angle \mathrm{A}$
$($ common $) \angle \mathrm{P}=\angle \mathrm{Q}\left(\right.$ both $\left.90^{\circ}\right): \therefore \mathrm{APB} \sim \triangle \mathrm{AQC}$ [By AA similarity]
$\Rightarrow \frac{A P}{A Q}=\frac{A B}{A C} \quad$ \{Corresponding part of similar triangle are proportional\}
$A P \times A C=A Q \times A B$
(II)

In $\triangle \mathrm{BPCBy}$ pythagoras theoram,
$B C^{2}=B P^{2}+\mathrm{PC}^{2}$ Also in $\triangle \mathrm{BPA}$
$B P^{2}=A B^{2}-A P^{2}$ Also $P C=P A+A C$
$\Rightarrow B C^{2}=A B^{2}-A P^{2}+(A P+A C)^{2}$
Apply the theorem $(a+b)^{2}=a^{2}+b^{2}+2 a b$ in $(A P+A C)^{2}$
$\Rightarrow B C^{2}=A B^{2}-A P^{2}+A P^{2}+A C^{2}+2 A P \times A C$
$B C^{2}=A B^{2}+A C^{2}+2 A P \times A C$
In $\triangle \mathrm{BQC}$
$\mathrm{BC}^{2}=\mathrm{CQ}^{2}+B Q^{2}$
$B C^{2}=A C^{2}-A Q^{2}+(A B+A Q)^{2}$
$B C^{2}=A C^{2}-A Q^{2}+A B^{2}+2 A B \times A Q$
$B C^{2}=A C^{2}+A B^{2}+A Q^{2}+2 A B \times A Q$

Adding equ. (ii)and(iii)
$B C^{2}+B C^{2}=A B^{2}+A C^{2}+2 A P \times A C+A C^{2}+A B^{2}+A Q^{2}+2 A B \times A Q$
$\Rightarrow 2 B C^{2}=2 A C^{2}+2 A B^{2}+2 A P \times A C+2 A B \times A Q$
$\Rightarrow 2 B C^{2}=2 A C[A C+A P]+A B[A B+A Q]$
$\Rightarrow 2 B^{2}=2 A C \times P C+2 A B \times B Q$
$\Rightarrow B C^{2}=A C \times P C+A B \times B Q H e n c e$ proved.

22. Question

In a right $\triangle A B C$ right-angled at C, if D is the mid-point of $B C$, prove that $B C^{2}=4\left(A D^{2}-A C^{2}\right)$.

Answer

We have
$\angle C=90^{\circ}$ and D is the midpoint of $B C$
LHS $=B C^{2}$
$=(2 C D)^{2}$
$=4 C D^{2}$
$=4\left(A D^{2}-A C^{2}\right)=R H S$

23. Question

In a quadrilateral $A B C D, \angle B<90^{\circ}, A D^{2}=A B^{2}+B C^{2}+C D^{2}$, prove that $\angle A C D=90^{\circ}$.

Answer

We have
$\angle B=90^{\circ}$ and
$A D^{2}=A B^{2}+B C^{2}+C D^{2}$ (Given)
But $A B^{2}+B C^{2}=A C^{2}$
$A D^{2}=A C^{2}+C D^{2}$
By converse of by Pythagoras
$\angle A C D=90^{\circ}$

24. Question

In an equilateral $\triangle A B C, A D \perp B C$, prove that $A D^{2}=3 B D^{2}$.

Answer

We have $\Delta A B C$ is an equilateral triangle and $A D \perp B C$

In $\triangle \mathrm{ADB} \triangle \mathrm{ADC}$
$\angle A D B=\angle A D C=90^{\circ} A B=A C$ (Given)
$A D=A D$ (Common)
$\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$ (By RHS condition)
$\therefore B D=C D=B C / 2$

In $\triangle \mathrm{ABD}$
$B C^{2}=A D^{2}+B D^{2}$
$B C^{2}=A D^{2}+B D^{2}[$ Given $A B=B C$]
$(2 B D)^{2}=A D^{2}+B D^{2}[$ From (i)]
$4 B D^{2}-B D^{2}=A D^{2}$
$A D^{2}=3 B D^{2}$

25. Question

$\triangle A B C$ is a right triangle right-angled at A and $A C \perp B D$. Show that
(i) $A B^{2}=B C \cdot B D$ (ii) $A C^{2}=B C \cdot D C$
(iii) $A D^{2}=B D \cdot C D$ (iv) $\frac{A B^{2}}{A C^{2}}=\frac{B D}{D C}$

Answer
(i) In $\triangle A B D$ and In $\triangle C A B$
$\angle \mathrm{DAB}=\angle \mathrm{ACB}=90^{\circ}$
$\angle \mathrm{ABD}=\angle \mathrm{CBA}$ [Common]
$\angle A D B=\angle C A B$ [remaining angle]

So, $\triangle \mathrm{ADB} \cong \triangle \mathrm{CAB}$ [By AAA Similarity]
$\therefore A B / C B=B D / A B$
$A B^{2}=B C x B D$
(ii)

Let $\angle C A B=x$
In $\triangle C B A=180-90^{\circ}-x$
$\angle \mathrm{CBA}=90^{\circ}-\mathrm{x}$
Similarly in \triangle CAD
$\angle \mathrm{CAD}=90^{\circ}-\angle \mathrm{CAD}=90^{\circ}-\mathrm{x}$
$<\mathrm{CDA}=90^{\circ}-<\mathrm{CAB}$
$=90^{\circ}-x$
$<C D A=180^{\circ}-90^{\circ}-\left(90^{\circ}-x\right)$
$<C D A=x$
Now in $\triangle C B A$ and $\triangle C A D$ we may observe that
$<\mathrm{CBA}=<$ CAD
$<\mathrm{CAB}=<\mathrm{CDA}$
$\angle \mathrm{ACB}=\angle \mathrm{DCA}=90^{\circ}$
Therefore $\triangle C B A \sim \triangle C A D$ (by AAA rule)
Therefore $A C / D C=B C / A C$
$A C^{2}=D C x B C$
(iii) In DCA and $\triangle D A B$
$<$ DCA $=<$ DAB (both angles are equal to 90°)
$<C D A=. ~ \angle A D B$ (common)
$<$ DAC $=<$ DBA
$\triangle D C A=\triangle D A B$ (AAA condition)
Therefore DC/DA=DA/DB
$A D^{2}=B D x C D$
(iv) From part (I) $A B^{2}=C B x B D$

From part (II) $\mathrm{AC}^{2}=\mathrm{DCxBC}$
Hence $A B^{2} / A C^{2}=C B x B D / D C \times B C$
$A B^{2} / A C^{2}=B D / D C$
Hence proved

26. Question

A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?

Answer

Let $O B$ be the pole and $A B$ be the wire.
$A B^{2}=O B^{2}+O A^{2}$
$24^{2}=18^{2}+O A^{2}$
$O A^{2}=576-324$
$O A^{2}=252$
$\mathrm{AO}=\sqrt{252}$
$A O=6 \sqrt{ } 7 \mathrm{~m}$.
Distance from base $=6 \sqrt{ } 7 \mathrm{~m}$

27. Question

An aeroplane leaves an airport and files due north at a speed of $1000 \mathrm{~km} / \mathrm{hr}$. At the same time, another aeroplane leaves the same airport and files due west at a speed of $1200 \mathrm{~km} / \mathrm{hr}$. How far apart will be the two planes after $1 \frac{1}{2}$ hours?

Answer

Distance traveled by the plane flying towards north in $11 / 2 \mathrm{hrs}$
$=1000 \times 1 \frac{1}{2}=1500 \mathrm{~km}$
Similarly Distance traveled by the plane flying towards west in $11 / 2 \mathrm{hrs}$
$=1200 \times 1 \frac{1}{2}=1800 \mathrm{~km}$
Let this distance is represented by $O A$ and $O B$
Distance between these place after $11 / 2 \mathrm{hrs} \mathrm{AB}=\sqrt{O A^{2}+O B^{2}}$
$=\sqrt{\{1500\} 2+(1000) 2}=\sqrt{2250000+3240000}$
$=\sqrt{5490000}=\sqrt{9 \times 610000}=300 \sqrt{61}$
$=300 \times 7.8102$
$=2343.07 \mathrm{~km}$
So, distance between these places will be 2343 km (Approx) km, after 1 1/2 hrs

28. Question

Determine whether the triangle having sides $(a-1) \mathrm{cm}, 2 \sqrt{a} \mathrm{~cm}$ and $(a+1) \mathrm{cm}$ is a right angled triangle.

Answer

Let $A B C$ be the triangle
Where $A B=(a-1)^{2} c m$
$B C=2 \sqrt{ } \mathrm{acm}$
$C A=(a+1) \mathrm{cm}$
$A B^{2}=(a-1)^{2}=a^{2}+1-2 a$
$B C^{2}=(2 \sqrt{ } a)^{2}=4 a^{2}$
$C A^{2}=(a+1)^{2}=a^{2}+1+2 a$
Hence $A B^{2}+B C^{2}=A C^{2}$
SO $\triangle A B C$ is a right angles triangle at B

CCE - Formative Assessment

1. Question

State basic proportionality theorem and its converse.

Answer

Basic Proportionality Theorem: If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

Converse of Basic Proportionality Theorem: If a line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.

2. Question

In the adjoining figure, find $A C$.

Answer

From the given figure $\triangle A B C, D E \| B C$.
Let $E C=x \mathrm{~cm}$.
We know that basic proportionality theorem states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the
same ratio.
Then $\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{6}{9}=\frac{8}{x}$
$\Rightarrow x=\frac{8(9)}{6}$
$\Rightarrow \mathrm{x}=12 \mathrm{~cm}=\mathrm{EC}$
Here, $A C=A E+E C$
$\Rightarrow A C=8+12=20 \mathrm{~cm}$
$\therefore A C=20 \mathrm{~cm}$

3. Question

In the adjoining figure, if $A D$ is the bisector of $\angle A$, what is $A C$?

Fig. 4.235

Answer

Given $A D$ is the bisector of $\angle A$ in $\triangle A B C$. Let $A C$ be $x c m$.
We know that the angle bisector theorem states that the internal bisector of an angle of a triangle divides the opposite side in two segments that are proportional to the other two sides of the triangle.
$\Rightarrow \frac{A B}{A C}=\frac{D B}{D C}$
$\Rightarrow \frac{6}{x}=\frac{3}{2}$
$\Rightarrow x=\frac{6(2)}{3}$
$\Rightarrow \mathrm{x}=4 \mathrm{~cm}$
$\therefore A C=4 \mathrm{~cm}$

4. Question

Answer

AAA similarity criterion: In two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.

5. Question

State SSS similarity criterion.

Answer

SSS similarity criterion: If in two triangles, sides of one triangle are proportional to the sides of the other triangle, then their corresponding angles are equal and hence the two triangles are similar.

6. Question

State SAS similarity criterion.

Answer

SAS similarity criterion: If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

7. Question

In the adjoining figure, $D E$ is parallel to $B C$ and $A D=1 \mathrm{~cm}, B D=2 \mathrm{~cm}$. What is the ratio of the area of $A A B C$ to the area of A ADE?

Answer

Given $D E \| B C, A D=1 \mathrm{~cm}$ and $D B=2 \mathrm{~cm}$.
So, $A B=3 \mathrm{~cm}$.
In $\triangle A B C$ and $\triangle A D E$,
$\angle A B C=\angle A D E$ [corresponding angles]
$\angle A C B=\angle A E D$ [corresponding angles]
$\angle A=\angle A$ [common angle]
We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle A D E)}=\frac{(A B)^{2}}{(A D)^{2}}=\frac{3^{2}}{1^{2}}=\frac{9}{1}$
\therefore ar $(\triangle A B C): \operatorname{ar}(\triangle A D E)=9: 1$

8. Question

In the figure given below $D E \| B C$. If $A D=2.4 \mathrm{~cm}, \mathrm{DB}=3.6 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$. Find $A E$.

Answer

Given $D E \| B C, A D=2.4 \mathrm{~cm}, D B=3.6 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$.
We have to find $A E$.
We know that basic proportionality theorem states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.
$\Rightarrow \frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{A D}{D B}=\frac{A E}{A C-A E}$
$\Rightarrow \frac{2.4}{3.6}=\frac{A E}{5-A E}$
$\Rightarrow 2.4(5-\mathrm{AE})=3.6 \mathrm{AE}$
$\Rightarrow 12-2.4 \mathrm{AE}=3.6 \mathrm{AE}$
$\Rightarrow 12=3.6 \mathrm{AE}+2.4 \mathrm{AE}$
$\Rightarrow 12=6 \mathrm{AE}$
$\Rightarrow A E=12 / 6$
$\therefore \mathrm{AE}=2 \mathrm{~cm}$

9. Question

If the areas of two similar triangles $A B C$ and $P Q R$ are in the ratio $9: 16$ and $B C=4.5 \mathrm{~cm}$, what is the length of QR?

Answer

Given $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}, \operatorname{ar}(\triangle \mathrm{ABC}): \operatorname{ar}(\triangle \mathrm{PQR})=9: 16$ and $\mathrm{BC}=4.5 \mathrm{~cm}$
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{(B C)^{2}}{(Q R)^{2}}$
$\Rightarrow \frac{9}{16}=\frac{(4.5)^{2}}{(Q R)^{2}}$
$\Rightarrow Q R^{2}=\frac{20.25(16)}{9}$
$\Rightarrow Q R^{2}=2.25$ (16)
$\Rightarrow Q R^{2}=36$
$\Rightarrow Q R=6$
\therefore The length of QR is 6 cm .

10. Question

The areas of two similar triangles are $169 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ respectively. If the longest side of the larger triangle is 26 cm , what is the length of the longest side of the smaller triangle?

Answer

Given $\triangle A B C \sim \triangle P Q R$, ar $(\triangle A B C):$ ar $(\triangle P Q R)=169: 121$ and $B C=26 \mathrm{~cm}$
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{(B C)^{2}}{(Q R)^{2}}$
$\Rightarrow \frac{169}{121}=\frac{(26)^{2}}{(Q R)^{2}}$
$\Rightarrow Q R^{2}=\frac{26(26)(121)}{169}$
$\Rightarrow Q R^{2}=4(121)$
$\Rightarrow Q R^{2}=484$
$\Rightarrow \mathrm{QR}=22$
\therefore The length of QR is 22 cm .

11. Question

If ABC and DEF are similar triangles such that $\angle A=57^{\circ}$ and $\angle E=73^{\circ}$, what is the measure of $\angle C$?

Answer

Given $A B C$ and DEF are two similar triangles, $\angle A=57^{\circ}$ and $\angle E=73^{\circ}$
We know that SAS similarity criterion states that if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

In $\triangle A B C$ and $\triangle D E F$,
if $\frac{A B}{D E}=\frac{A C}{D F}$ and $\angle \mathrm{A}=\angle \mathrm{D}$, then $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
So, $\angle A=\angle D$
$\Rightarrow \angle D=57^{\circ}$
Similarly, $\angle B=\angle E$
$\Rightarrow \angle B=73^{\circ}$

We know that the sum of all angles of a triangle is equal to 180°.
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 57^{\circ}+73^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 130^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle C=180^{\circ}-130^{\circ}=50^{\circ}$
$\therefore \angle C=50^{\circ}$

12. Question

If the altitude of two similar triangles are in the ratio $2: 3$, what is the ratio of their areas?

Answer

Given altitudes of two similar triangles are in ratio 2: 3.
Let first triangle be $\triangle A B C$ and second triangle be $\triangle P Q R$.
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{(2)^{2}}{(3)^{2}}$
$\therefore \operatorname{ar}(\triangle \mathrm{ABC}): \operatorname{ar}(\triangle \mathrm{PQR})=4: 9$

13. Question

If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}=\frac{3}{4}$, then write Area ($\triangle A B C$): Area ($\triangle D E F)$.

Answer

Given that $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}=\frac{3}{4}$
Here, the corresponding sides are given proportional.
We know that two triangles are similar if their corresponding sides are proportional.
And we know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{(3)^{2}}{(4)^{2}}$
\therefore Area $(\triangle A B C)$: Area $(\triangle D E F)=9: 16$

14. Question

If $\triangle A B C$ and $\triangle D E F$ are similar triangles such that $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=2 \mathrm{~cm} \mathrm{CA}=2.5 \mathrm{~cm}$ and $\mathrm{EF}=4$ cm , write the perimeter of $\triangle D E F$.

Answer

Given that $\triangle A B C$ and $\triangle D E F$ are similar triangles such that $A B=3 \mathrm{~cm}, B C=2 \mathrm{~cm}, C A=2.5 \mathrm{~cm}$ and $E F$ $=4 \mathrm{~cm}$.

We know that two triangles are similar if their corresponding sides are proportional.
$\Rightarrow \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$
First consider,
$\frac{A B}{B C}=\frac{D E}{E F}$
$\Rightarrow \frac{3}{2}=\frac{D E}{4}$
$\Rightarrow D E=6 \mathrm{~cm}$
Now,
$\frac{C A}{B C}=\frac{D F}{E F}$
$\Rightarrow \frac{2.5}{2}=\frac{D F}{4}$
$\Rightarrow D F=5 \mathrm{~cm}$
Then, perimeter of $\triangle \mathrm{DEF}=\mathrm{DE}+\mathrm{EF}+\mathrm{DF}=6+4+5$
\therefore Perimeter of $\triangle D E F=15 \mathrm{~cm}$

15. Question

State Pythagoras theorem and its converse.

Answer

Pythagoras Theorem: In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Converse of Pythagoras Theorem: In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to first side is a right angle.

16. Question

The lengths of the diagonals of a rhombus are 30 cm and 40 cm . Find the side of the rhombus. [CBSE 2008]

Answer

Given the lengths of the diagonals of a rhombus are 30 cm and 40 cm .
Let the diagonals $A C$ and $B D$ of the rhombus $A B C D$ meet at point O.

We know that the diagonals of the rhombus bisect each other perpendicularly.
Also we know that Pythagoras theorem states that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Consider right triangle AOD,
$\Rightarrow A D^{2}=A O^{2}+O D^{2}$
$=15^{2}+20^{2}$
$=225+400$
$=625$
$\Rightarrow A D=25 \mathrm{~cm}$
\therefore The side of the rhombus is 25 cm .

17. Question

In Fig. 4.236, $P Q \| B C$ and $\mathrm{AP}: \mathrm{PB}=1: 2$. Find $\frac{\text { area }(\triangle A P Q)}{\text { area }(\triangle A B C)}$ [CBSE 2008]

Fig. 4.236

Answer

Given in the given figure $P Q|\mid B C$ and $A P: P B=1: 2$
We know that basic proportionality theorem states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

Since $\triangle \mathrm{APQ}$ and $\triangle \mathrm{ABC}$ are similar, $\frac{A P}{A B}=\frac{A Q}{A C}=\frac{P Q}{B C}$
Given $\frac{A P}{P B}=\frac{1}{2}$
$\Rightarrow P B=2 A P$
So, $\frac{A P}{A B}=\frac{A P}{A P+P B}=\frac{A P}{A P+2 A P}=\frac{1}{3}$
we know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle A P Q)}{\operatorname{ar}(\triangle A B C)}=\frac{(A P)^{2}}{(A B)^{2}}$
$=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$
\therefore Area $(\triangle A P B)$: Area $(\triangle A B C)=1: 9$

18. Question

In Fig. 4.237, $\mathrm{LM}=\mathrm{LN}=46^{\circ}$. Express x in terms of a, b and c where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are lengths of LM, MN and and NK respectively.

Answer

Given $\angle \mathrm{M}=\angle \mathrm{N}=46^{\circ}$
It forms a pair of corresponding angles, hence LM || PN.
In $\triangle \mathrm{LMK}$ and $\triangle \mathrm{PNK}$,
$\angle \mathrm{LMK}=\angle \mathrm{PNK}$ [corresponding angles]
$\angle M L K=\angle N P K$ [corresponding angles]
$\angle \mathrm{K}=\angle \mathrm{K}$ [common angle]
We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.

We know that two triangles are similar if their corresponding sides are proportional.
$\Rightarrow \frac{M L}{N P}=\frac{M K}{N K}$
$\Rightarrow \frac{a}{x}=\frac{b+c}{c}$
$\therefore x=\frac{a c}{b+c}$

19. Question

In Fig. 4.238, S and T are points on the sides $P Q$ and $P R$ respectively of $A P Q R$ such that $P T=2 \mathrm{~cm}$, $T R=4 \mathrm{~cm}$ and ST is parallel to QR . Find the ratio of the areas of $\triangle P S T$ and $\triangle P Q R$. [CBSE 2010]

Fig. 4.238

Answer

Given $\mathrm{ST} \| \mathrm{QR}, \mathrm{TR}=4 \mathrm{~cm}$ and $\mathrm{PT}=2 \mathrm{~cm}$.
So, $P R=6 \mathrm{~cm}$.
In $\triangle P S T$ and $\triangle P Q R$,
$\angle \mathrm{PST}=\angle \mathrm{PQR}$ [corresponding angles]
$\angle \mathrm{PTS}=\angle \mathrm{PRQ}$ [corresponding angles]
$\angle \mathrm{P}=\angle \mathrm{P}$ [common angle]
We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\therefore \triangle \mathrm{PST} \sim \triangle \mathrm{PQR}$
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle P S T)}{\operatorname{ar}(\triangle P Q R)}=\frac{(P T)^{2}}{(P R)^{2}}=\frac{2^{2}}{6^{2}}=\frac{4}{36}=\frac{1}{9}$
$\therefore \operatorname{ar}(\triangle \mathrm{PST}): \operatorname{ar}(\triangle \mathrm{PQR})=1: 9$

20. Question

In Fig. 4.239, $\triangle A H K$ is similar to $\triangle A B C$. If $\mathrm{AK}=10 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{~cm}$ and $\mathrm{HK}=7 \mathrm{~cm}$, find AC . [CBSE 2010]

Fig. 4.239

Answer

Given $\triangle A H K \sim \triangle A B C, A K=10 \mathrm{~cm}, B C=3.5 \mathrm{~cm}$ and $H K=7 \mathrm{~cm}$.
We know that two triangles are similar if their corresponding sides are proportional.
$\Rightarrow \frac{A C}{A K}=\frac{B C}{H K}$
$\Rightarrow \frac{A C}{10}=\frac{3.5}{7}$
$\therefore A C=5 \mathrm{~cm}$

21. Question

In Fig. 4.240, $D E \| B C$ in $\triangle A B C$ such that $\mathrm{BC}=8 \mathrm{~cm}, \mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{DA}=1.5 \mathrm{~cm}$. Find DE .

Fig. 4.240

Answer

Given $D E \| B C, B C=8 \mathrm{~cm}, A B=6 \mathrm{~cm}$ and $D A=1.5 \mathrm{~cm}$.
So, $P R=6 \mathrm{~cm}$.
In $\triangle A B C$ and $\triangle A D E$, $\angle A B C=\angle A D E$ [corresponding angles]
$\angle A C B=\angle A E D$ [corresponding angles]
$\angle A=\angle A$ [common angle]
We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
We know that two triangles are similar if their corresponding sides are proportional.
$\Rightarrow \frac{B C}{D E}=\frac{A B}{D A}$
$\Rightarrow \frac{8}{D E}=\frac{6}{1.5}$
$\therefore \mathrm{DE}=2 \mathrm{~cm}$

22. Question

In Fig. 4.241, $D E \| B C$ and $A D=\frac{1}{2} B D$. If $B C=4.5 \mathrm{~cm}$, find $D E$.

Fig. 4.241

Answer

Given $D E \| B C, A D=1 / 2 B D$ and $B C=4.5 \mathrm{~cm}$
In $\triangle A B C$ and $\triangle A D E$,
$\angle A B C=\angle A D E$ [corresponding angles]
$\angle A C B=\angle A E D$ [corresponding angles]
$\angle \mathrm{A}=\angle \mathrm{A}$ [common angle]
We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
We know that two triangles are similar if their corresponding sides are proportional.
$\Rightarrow \frac{A D}{A B}=\frac{D E}{B C}$
$\Rightarrow \frac{A D}{A D+B D}=\frac{D E}{B C}$
$\Rightarrow \frac{\frac{1}{2} B D}{\frac{1}{2} B D+B D}=\frac{D E}{B C}$
$\Rightarrow \frac{1}{3}=\frac{D E}{B C}$
$\Rightarrow \frac{1}{3}=\frac{D E}{4.5}$
$\therefore \mathrm{DE}=1.5 \mathrm{~cm}$

1. Question

A vertical stick 20 m long casts a shadow 10 m long on the ground. At the same time, a tower casts a shadow 50 m long on the ground. The height of the tower is
A. 100 m
B. 120 m
C. 25 m
D. 200 m .

Answer

Given A vertical stick 20 m long casts a shadow 10 m long on the ground and a tower casts a shadow 50 m long on the ground.

We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.

In $\triangle A B C$ and $\triangle D E F$,
$\angle \mathrm{A}=\angle \mathrm{D}=90^{\circ}, \angle \mathrm{C}=\angle \mathrm{F}$
$\therefore \triangle A B C \sim \triangle D E F$
We know that if two triangles are similar then their sides are proportional.
$\Rightarrow \frac{A B}{D E}=\frac{A C}{D F}$
$\Rightarrow \frac{20}{D E}=\frac{10}{50}$
$\therefore \mathrm{DE}=100 \mathrm{~m}$

2. Question

Sides of two similar triangles are in the ratio $4: 9$. Areas of these triangles are in the ratio.
A. $2: 3$
B. $4: 9$
C. $81: 16$
D. $16: 81$

Answer

Given sides of two similar triangles are in the ratio 4: 9.
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\Delta 1)}{\operatorname{ar}(\Delta 2)}=\frac{(\text { side } 1)^{2}}{(\operatorname{side} 2)^{2}}=\frac{4^{2}}{9^{2}}=\frac{16}{81}$
$\therefore \operatorname{ar}(\Delta 1): \operatorname{ar}(\Delta 2)=16: 81$

3. Question

The areas of two similar triangles are in respectively $9 \mathrm{~cm}^{2}$ and $16 \mathrm{~cm}^{2}$. The ratio of their corresponding sides is
A. $3: 4$
B. $4: 3$
C. $2: 3$
D. $4: 5$

Answer

Given that area of two similar triangles are $9 \mathrm{~cm}^{2}$ and $16 \mathrm{~cm}^{2}$.
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\Delta 1)}{\operatorname{ar}(\Delta 2)}=\frac{(\operatorname{side} 1)^{2}}{(\operatorname{side} 2)^{2}}$
$\Rightarrow \frac{9}{16}=\frac{(\text { side } 1)^{2}}{(\text { side2 })^{2}}$
$\Rightarrow \frac{\text { side } 1}{\text { side } 2}=\frac{3}{4}$
\therefore Ratio of their corresponding sides is 3: 4 .

4. Question

The areas of two similar triangles $\triangle A B C$ and $\triangle D E F$ are $144 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$ respectively. If the longest side of larger A $A B C$ be 36 cm , then. the longest side of the smaller triangle $\triangle D E F$ is
A. 20 cm
B. 26 cm
C. 27 cm
D. 30 cm

Answer

Given that area of two similar triangles $\triangle A B C$ and $\triangle D E F$ are $144 \mathrm{~cm}^{2}$ and $81 \mathrm{~cm}^{2}$. Also the longest side of larger $\triangle A B C$ is 36 cm .

We have to find the longest side of the smaller triangle $\triangle D E F$. Let it be x.
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{(\text { longest side of } \triangle A B C)^{2}}{(\text { longest side of } \triangle D E F)^{2}}$
$\Rightarrow \frac{144}{81}=\frac{(36)^{2}}{(x)^{2}}$
$\Rightarrow \frac{36}{x}=\frac{12}{9}$
$\Rightarrow \mathrm{x}=27 \mathrm{~cm}$
\therefore Longest side of $\triangle D E F$ is 27 cm .

5. Question

$\triangle A B C$ and $\triangle B D E$ are two equilateral triangles such that D is the mid-point of BC . The ratio of the areas of triangles $A B C$ and $B D E$ is
A. $2: 1$
B. $1: 2$
C. $4: 1$
D. 1:4

Answer

Given $\triangle A B C$ and $\triangle B D E$ are two equilateral triangles such that D is the midpoint of $B C$.

Since the given triangles are equilateral, they are similar triangles.
And also since D is the mid-point of $B C, B D=D C$.
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B D E)}=\frac{(B C)^{2}}{(B D)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B D E)}=\frac{(B D+D C)^{2}}{(B D)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B D E)}=\frac{(B D+B D)^{2}}{(B D)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B D E)}=\frac{(2 B D)^{2}}{(B D)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle B D E)}=\frac{4}{1}$
\therefore ar $(\triangle A B C): \operatorname{ar}(\triangle B D E)=4: 1$

6. Question

Two isosceles triangles have equal angles and their areas are in the ratio $16: 25$. The ratio of their corresponding heights is
A. $4: 5$
B. $5: 4$
C. $3: 2$
D. $5: 7$

Answer

Given two isosceles triangles have equal angles and their areas are in the ratio $16: 25$.

We know that SAS similarity criterion states that if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

In $\triangle A B C$ and $\triangle D E F$,
if $\frac{A B}{D E}=\frac{A C}{D F}$ and $\angle \mathrm{A}=\angle \mathrm{D}$, then $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
We know that the ratio of areas of two similar triangles is equal to the ratio of the squares of their corresponding altitudes.
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{A G}{D H}\right)^{2}$
$\Rightarrow \frac{16}{25}=\left(\frac{A G}{D H}\right)^{2}$
$\Rightarrow \frac{A G}{D H}=\frac{4}{5}$
$\therefore \mathrm{AG}: \mathrm{DH}=4: 5$

7. Question

If $\triangle A B C$ and $\triangle D E F$ are similar such that $2 \mathrm{AB}=\mathrm{DE}$ and $\mathrm{BC}=8 \mathrm{~cm}$, then $\mathrm{EF}=$
A. 16 cm
B. 12 cm
C. 8 cm
D. 4 cm .

Answer

Given $\triangle A B C$ and $\triangle D E F$ are similar triangles such that $2 A B=D E$ and $B C=8 \mathrm{~cm}$
We know that if two triangles are similar then their sides are proportional.
For $\triangle A B C$ and $\triangle D E F$,
$\Rightarrow \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$
$\Rightarrow \frac{A B}{D E}=\frac{B C}{E F}$
$\Rightarrow \frac{1}{2}=\frac{8}{E F}$
$\therefore \mathrm{EF}=16 \mathrm{~cm}$

8. Question

If $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}=\frac{2}{5}$, then Area ($\triangle A B C$): Area ($\triangle D E F$) $=$
A. $2: 5$
B. $4: 25$
C. $4: 15$
D. $8: 125$

Answer

Given $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}=\frac{2}{5}$
We know that if two triangles are similar then their sides are proportional.
Since $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}, \triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar.
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{(A B)^{2}}{(D E)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{(2)^{2}}{(5)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{4}{25}$
$\therefore \operatorname{ar}(\triangle A B C): \operatorname{ar}(\triangle D E F)=4: 25$

9. Question

$\triangle A B C$ is such that $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=2 \mathrm{~cm}$ and $\mathrm{CA}=2.5 \mathrm{~cm}$. If $\triangle D E F \sim \triangle A B C$ and $\mathrm{EF}=4 \mathrm{~cm}$, then perimeter of $\triangle D E F$ is
A. 7.5 cm
B. 15 cm
C. 22.5 cm
D. 30 cm .

Answer

Given that $\triangle A B C$ and $\triangle D E F$ are similar triangles such that $A B=3 \mathrm{~cm}, B C=2 \mathrm{~cm}, C A=2.5 \mathrm{~cm}$ and $E F$ $=4 \mathrm{~cm}$.

We know that two triangles are similar if their corresponding sides are proportional.
$\Rightarrow \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$
First consider,
$\frac{A B}{B C}=\frac{D E}{E F}$
$\Rightarrow \frac{3}{2}=\frac{D E}{4}$
$\Rightarrow D E=6 \mathrm{~cm}$
Now,
$\frac{C A}{B C}=\frac{D F}{E F}$
$\Rightarrow \frac{2.5}{2}=\frac{D F}{4}$
$\Rightarrow \mathrm{DF}=5 \mathrm{~cm}$
Then, perimeter of $\triangle D E F=D E+E F+D F=6+4+5$
\therefore Perimeter of $\triangle D E F=15 \mathrm{~cm}$

10. Question

XY is drawn parallel to the base BC of $\triangle A B C$ cutting AB at X and AC at Y . If $\mathrm{AB}=4 \mathrm{BX}$ and $\mathrm{YC}=2$ cm , then $\mathrm{AY}=$
A. 2 cm
B. 4 cm
C. 6 cm
D. 8 cm .

Answer

Given $X Y$ is drawn parallel to the base $B C$ of a $\triangle A B C$ cutting $A B$ at X and $A C$ at Y. $A B=4 B X$ and $Y C=$ 2 cm .

In $\triangle A X Y$ and $\triangle A B C$,
$\angle A X Y=\angle A B C$ [corresponding angles]
$\angle A Y X=\angle A C B$ [corresponding angles]
$\angle A=\angle A$ [common angle]
We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\therefore \triangle \mathrm{AXY} \sim \triangle \mathrm{ABC}$
Let $B X=x$, so $A B=4 x$ and $A X=3 x$.
We know that two triangles are similar if their corresponding sides are proportional.
$\Rightarrow \frac{A X}{B X}=\frac{A Y}{Y C}$
$\Rightarrow \frac{3 x}{x}=\frac{A Y}{2}$
$\therefore A Y=6 \mathrm{~cm}$

11. Question

Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m , the distance between their tops is
A. 12 m
B. 14 m
C. 13 m .
D. 11 m

Answer

Given two poles of heights 6 m and 11 m stand vertically upright on a plane ground. Distance between their foot is 12 m .

Let $C D$ be the pole with height $6 \mathrm{~m} . A B$ is the pole with height 11 m and $\mathrm{DB}=12 \mathrm{~m}$
Let us assume a point E on the pole $A B$ which is 6 m from the base of $A B$.
Hence $A E=A B-6=11-6=5 m$
We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Now, in right triangle AEC,
$\Rightarrow A C^{2}=A E^{2}+E C^{2}$
Since CDEB forms a rectangle and opposite sides of rectangle are equal,
$\Rightarrow A C^{2}=5^{2}+12^{2}$
$=25+144$
$=169$
$\Rightarrow A C=13$
\therefore The distance between their tops is 13 m .

12. Question

In $\triangle A B C$, a line $X Y$ parallel to $B C$ cuts $A B$ at X and $A C$ at Y . If BY bisects $\triangle X Y C$, then
A. $B C=C Y$
B. $B C=B Y$
C. $B C \neq C Y$
D. $B C \neq B Y$

Answer

Given in $\triangle A B C, X Y| | B C$ and $B Y$ is a bisector of $\angle X Y C$.

Since XY || BC,
$\angle Y B C=\angle B Y C$ [alternate angles]
Now, in $\triangle B Y C$, two angles are equal.
Hence, two corresponding sides will be equal.
$\therefore \mathrm{BC}=\mathrm{CY}$

13. Question

In $\triangle A B C, \mathrm{D}$ and E are points on side AB and AC respectively such that $D E \| B C$ and $\mathrm{AD}: \mathrm{DB}=3: 1$. If $\mathrm{EA}=3.3 \mathrm{~cm}$, then $\mathrm{AC}=$
A. 1.1 cm
B. 4 cm
C. 4.4 cm
D. 5.5 cm

Answer

From the given figure $\triangle A B C, D E \| B C$.
Let $A C=x \mathrm{~cm}$.
We know that basic proportionality theorem states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

Then $\frac{A D}{A B}=\frac{A E}{A C}$
$\Rightarrow \frac{A D}{A D+B D}=\frac{3.3}{x}$
$\Rightarrow \frac{A D}{A D+\frac{1}{3} A D}=\frac{3.3}{x}$
$\Rightarrow x=4.4 \mathrm{~cm}$
$\therefore A C=4.4 \mathrm{~cm}$

14. Question

In triangles ABC and $\mathrm{DEF}, \angle A=\angle E=40^{\circ}, \mathrm{AB}: \mathrm{ED}=\mathrm{AC}: \mathrm{EF}$ and $\angle F=65^{\circ}$, then $\angle B=$
A. 35°
B. 65°
C. 75°
D. 85°

Answer

Given in triangles ABC and $\mathrm{DEF}, \angle \mathrm{A}=\angle \mathrm{E}=40^{\circ}, \mathrm{AB}$: $\mathrm{ED}=\mathrm{AC}$: EF and $\angle \mathrm{F}=65^{\circ}$.

We know that SAS similarity criterion states that if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

In $\triangle A B C$ and $\triangle D E F$,
$\angle A=\angle E$ and $A B: E D=A C: E F$ then $\triangle A B C \sim \triangle D E F$
So, $\angle A=\angle E=40^{\circ}$
$\Rightarrow \angle C=\angle F=65^{\circ}$
Similarly, $\angle B=\angle D$
We know that the sum of all angles of a triangle is equal to 180°.
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 40^{\circ}+\angle B+65^{\circ}=180^{\circ}$
$\Rightarrow \angle B+115^{\circ}=180^{\circ}$
$\Rightarrow \angle B=180^{\circ}-115^{\circ}=75^{\circ}$
$\therefore \angle B=75^{\circ}$

15. Question

If ABC and DEF are similar triangles such that $\angle A=47^{\circ}$ and $\angle E=83^{\circ}$, then $\angle C=$
A. 50°
B. 60°
C. 70°
D. 80°

Answer

Given $A B C$ and DEF are two similar triangles, $\angle A=47^{\circ}$ and $\angle E=83^{\circ}$

We know that SAS similarity criterion states that if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

In $\triangle A B C$ and $\triangle D E F$,
if $\frac{A B}{D E}=\frac{A C}{D F}$ and $\angle \mathrm{A}=\angle \mathrm{D}$, then $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
So, $\angle A=\angle D$
$\Rightarrow \angle D=47^{\circ}$
Similarly, $\angle B=\angle E$
$\Rightarrow \angle B=83^{\circ}$..
We know that the sum of all angles of a triangle is equal to 180°.
$\Rightarrow \angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 47^{\circ}+83^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 130^{\circ}+\angle C=180^{\circ}$
$\Rightarrow \angle C=180^{\circ}-130^{\circ}=50^{\circ}$
$\therefore \angle C=50^{\circ}$

16. Question

If D, E, F are the mid-points of sides $B C, C A$ and $A B$ respectively of $A B C$, then the ratio of the areas of triangles DEF and $A B C$ is
A. $1: 4$
B. $1: 2$
C. $2: 3$
D. $4: 5$

Answer

Given D, E and F are the mid-points of sides $B C, C A$ and $A B$ respectively of $\triangle A B C$.

Then DE || $A B$, DE || FA ...
And DF \| CA, DF \| AE ..
From (1) and (2), we get AFDE is a parallelogram.
Similarly, BDEF is a parallelogram.
In $\triangle A D E$ and $\triangle A B C$,
$\Rightarrow \angle F D E=\angle A$ [Opposite angles of ||gm AFDE]
$\Rightarrow \angle D E F=\angle B$ [Opposite angles of ||gm BDEF]
\therefore By AA similarity criterion, $\triangle A B C \sim \triangle D E F$.
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C)}=\frac{(D E)^{2}}{(A B)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C)}=\frac{\left(\frac{1}{2} A B\right)^{2}}{(A B)^{2}}$
$\Rightarrow \frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C)}=\frac{1}{4}$
$\therefore \operatorname{ar}(\triangle \mathrm{DEF}): \operatorname{ar}(\triangle \mathrm{ABC})=1: 4$

17. Question

In a $\triangle A B C, \angle A=90^{\circ}, \mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=12 \mathrm{~cm}$. If $A D \perp B C$, then $\mathrm{AD}=$
A. $\frac{13}{2} \mathrm{~cm}$
B. $\frac{60}{13} \mathrm{~cm}$
C. $\frac{13}{60} \mathrm{~cm}$
D. $\frac{2 \sqrt{15}}{13} \mathrm{~cm} 13$

Answer

Given in $\triangle A B C, \angle A=90^{\circ}, A B=5 \mathrm{~cm}, A C=12 \mathrm{~cm}$ and $A D \perp B C$

In $\triangle A C B$ and $\triangle A D C$,
$\angle \mathrm{CAB}=\angle \mathrm{ADC}\left[90^{\circ}\right]$
$\angle A B C=\angle C A D$ [corresponding angles]
$\angle C=\angle C$ [common angle]
We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\therefore \triangle \mathrm{ACB} \sim \triangle \mathrm{ADC}$
$\Rightarrow \frac{A D}{A B}=\frac{A C}{B C}$
$\Rightarrow A D=\frac{A B(A C)}{B C}$
$\Rightarrow A D=\frac{12(5)}{13}$
$\Rightarrow A D=\frac{60}{13}$
$\therefore A D=60 / 13 \mathrm{~cm}$

18. Question

In an equilateral triangle ABC , if $A D \perp B C$, then
A. $2 A B^{2}=3 A D^{2}$
B. $4 A B^{2}=3 A D^{2}$
C. $3 A^{2}=4 A D 2$
D. $3 A B^{2}=2 A D^{2}$

Answer

Given in equilateral $\triangle A B C, A D \perp B C$.

We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

In $\triangle A B D$,
$\Rightarrow A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow A B^{2}=A D^{2}+(1 / 2 B C)^{2}[\because B D=1 / 2 B C]$
$\Rightarrow A B^{2}=A D^{2}+(1 / 2 A B)^{2}[\because A B=B C]$
$\Rightarrow A B^{2}=A D^{2}+1 / 4 A B^{2}$
$\therefore 3 A B^{2}=4 A D^{2}$
19. Question

If $\triangle A B C$ is an equilateral triangle such that $A D \perp B C$, then $\mathrm{AD}^{2}=$
A. $\frac{3}{2} D C^{2}$
B. $2 D C^{2}$
C. $3 C D^{2}$
D. $4 \mathrm{DC}^{2}$

Answer

Given in an equilateral $\triangle A B C, A D \perp B C$

Since $A D \perp B C, B D=C D=B C / 2$
We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Now, in right triangle ADC,
$\Rightarrow A C^{2}=A D^{2}+D C^{2}$
$\Rightarrow B C^{2}=A D^{2}+D C^{2}$
$\Rightarrow(2 D C)^{2}=A D^{2}+D C^{2}$
$\Rightarrow 4 D C^{2}=A D^{2}+D C^{2}$
$\Rightarrow 3 D C^{2}=A D^{2}$
$\therefore 3 C D^{2}=A D^{2}$

20. Question

In a $\triangle A B C$, perpendicular $A D$ from A on $B C$ meets $B C$ at D. If $B D=8 \mathrm{~cm}, D C=2 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$, then
A. $\triangle A B C$ is isosceles
B. $\triangle A B C$ is equilateral
C. $A C=2 A B$
D. $\triangle A B C$ is right-angled at A.

Answer

Given in $\triangle A B C, A D \perp B C, B D=8 \mathrm{~cm}, D C=2 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$.

We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Now, in right triangle ADC,
$\Rightarrow A C^{2}=A D^{2}+D C^{2}$
$\Rightarrow A C^{2}=(4)^{2}+(2)^{2}$
$=16+4$
$\therefore A C^{2}=20 .$.
In $\triangle A D B$,
$\Rightarrow A B^{2}=A D^{2}+B D^{2}=4^{2}+8^{2}=16+64$
$\therefore \mathrm{AB}^{2}=80 \ldots$
Now, in $\triangle A B C$,
$\Rightarrow B C^{2}=(C D+D B)^{2}=(2+8)^{2}=10^{2}=100$
And $A B^{2}+C A^{2}=80+20=100$
$\therefore A B^{2}+C A^{2}=B C^{2}$
Hence, $\triangle A B C$ is right angled at A.

21. Question

In a $\triangle A B C$, point D is on side AB and point E is on side AC , such that BCED is a trapezium. If $\mathrm{DE}: \mathrm{BC}$ $=3: 5$, then Area ($\triangle A D E$): Area (âBCED) $=$
A. $3: 4$
B. 9: 16
C. 3: 5
D. $9: 25$

Answer

Given in $\triangle A B C$, point D is on side $A B$ and point E is on side $A C$, such that $B C E D$ is a trapezium and $D E: B C=3: 5$.

In $\triangle A B C$ and $\triangle A D E$,
$\angle A B C=\angle A D E$ [corresponding angles]
$\angle A C B=\angle A E D$ [corresponding angles]
$\angle \mathrm{A}=\angle \mathrm{A}$ [common angle]
We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
We know that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A B C)}=\frac{(D E)^{2}}{(B C)^{2}}=\frac{3^{2}}{5^{2}}=\frac{9}{25}$
Let $\operatorname{ar}(\triangle A D E)=9 x$ sq. units and $\operatorname{ar}(\triangle A B C)=25 x$ sq. units
$\Rightarrow \operatorname{ar}(\operatorname{trap} B C E D)=\operatorname{ar}(\triangle A B C)-\operatorname{ar}(\triangle A D E)$
$=25 x-9 x$
$=16 x$ sq. units
Now,
$\Rightarrow \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\operatorname{trap} B C E D)}=\frac{9 x}{16 x}=\frac{9}{16}$
$\therefore \operatorname{ar}(\triangle \mathrm{ADE}): \operatorname{ar}($ trap $B C E D)=9: 16$

22. Question

In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$ and $\mathrm{BD}=3 \mathrm{~cm}$,, then $\mathrm{DC}=$
A. 11.3 cm
B. 2.5 cm
C. 35 cm
D. None of these.

Answer

Given $A D$ is the bisector of $\angle B A C . A B=6 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $B D=3 \mathrm{~cm}$.
We know that the internal bisector of angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.
$\Rightarrow \frac{A B}{A C}=\frac{B D}{D C}$
$\Rightarrow \frac{6}{5}=\frac{3}{D C}$
$\therefore \mathrm{DC}=2.5 \mathrm{~cm}$

23. Question

In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BD}=6 \mathrm{~cm}$ and $\mathrm{DC}=3 \mathrm{~cm}$. Find AC
A. 4 cm
B. 6 cm
C. 3 cm
D. 8 cm

Answer

Given $A D$ is the bisector of $\angle B A C . A B=8 \mathrm{~cm}, D C=3 \mathrm{~cm}$ and $B D=6 \mathrm{~cm}$.
We know that the internal bisector of angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.
$\Rightarrow \frac{A B}{A C}=\frac{B D}{D C}$
$\Rightarrow \frac{8}{A C}=\frac{6}{3}$
$\therefore A C=4 \mathrm{~cm}$

24. Question

ABCD is a trapezium such that $B C \| A D$ and $\mathrm{AB}=4 \mathrm{~cm}$. If the diagonals AC and BD intersect at O such that $\frac{A O}{O C}=\frac{D O}{O B}=\frac{1}{2}$, then $\mathrm{BC}=$
A. 7 cm
B. 8 cm
C. 9 cm
D. 6 cm

Answer

Given $A B C D$ is a trapezium in which $B C \| A D$ and $A D=4 \mathrm{~cm}$.
Also, the diagonals $A C$ and $B D$ intersect at O such that $\frac{A O}{O C}=\frac{D O}{O B}=\frac{1}{2}$

In $\triangle A O D$ and $\triangle C O B$,
$\angle O A D=\angle O C B$ [alternate angles]
$\angle O D A=\angle O B C$ [alternate angles]
$\angle A O D=\angle B O C$ [vertically opposite angles]
We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\therefore \triangle A O D \sim \triangle C O B$
We know that two triangles are similar if their corresponding sides are proportional.
$\Rightarrow \frac{A O}{C O}=\frac{D O}{B O}=\frac{A D}{B C}$
$\Rightarrow \frac{1}{2}=\frac{A D}{B C}$
$\Rightarrow \frac{1}{2}=\frac{4}{B C}$
$\therefore \mathrm{BC}=8 \mathrm{~cm}$

25. Question

If ABC is an isosceles triangle and D is a point on BC such that $A D \perp B C$, then
A. $A B^{2}-A D^{2}=B D . D C$
B. $A B^{2}-A D^{2}=B D^{2}-D C^{2}$
C. $A B^{2}+A D^{2}=B D . D C$
D. $A B^{2}+A D^{2}=B D^{2}-D C^{2}$

Answer

Given $A B C$ is an isosceles triangles and $A D \perp B C$.

We know that in an isosceles triangle, the perpendicular from the vertex bisects the base.
$\therefore B D=D C$
We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Now, in right triangle ABD,
$\Rightarrow A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow A B^{2}-A D^{2}=B D^{2}$
$\Rightarrow A B^{2}-A D^{2}=B D(B D)$
Since BD = DC,
$\therefore A B^{2}-A D^{2}=B D(D C)$

26. Question

$\triangle A B C$ is a right triangle right-angled at A and $A D \perp B C$. Then, $\frac{B D}{D C}=$
A. $\left(\frac{A B}{A C}\right)^{2}$
B. $\frac{A B}{A C}$
C. $\left(\frac{A B}{A D}\right)^{2}$
D. $\frac{A B}{A D}$

Answer

Given $\triangle A B C$ is a right triangle right-angled at A and $A D \perp B C$.

$\Rightarrow \angle C A D+\angle B A D=90^{\circ}$
$\Rightarrow \angle B A D+\angle A B D=90^{\circ}$
From (1) and (2),
$\angle C A D=\angle A B D$
By AA similarity,
In $\triangle A D B$ and $\triangle A D C$,
$\Rightarrow \angle A D B=\angle A D C\left[90^{\circ}\right.$ each $]$
$\Rightarrow \angle A B D=\angle C A D$
$\therefore \triangle A D B \sim \triangle A D C$
We know that if two triangles are similar, their corresponding angles are equal and corresponding sides are proportional.
$\therefore \frac{B D}{D C}=\frac{A B}{A C}$

27. Question

If $A B C$ is a right triangle right-angled at B and M, N are the mid-points of $A B$ and $B C$ respectively, then $4\left(\mathrm{AN}^{2}+C M^{2}\right)=$
A. $4 A C^{2}$
B. $5 A C^{2}$
C. $\frac{5}{4} A C^{2}$
D. $6 \mathrm{AC}^{2}$

Answer

Given $A B C$ is a right triangle right-angled at B and M, N are mid-points of $A B$ and $B C$ respectively.

M is the mid-point of $A B$.
$\Rightarrow B M=\frac{A B}{2}$
And N is the mid-point of $B C$.
$\Rightarrow B N=\frac{B C}{2}$
Now,
$\Rightarrow A N^{2}+C M^{2}=\left(A B^{2}+(\diamond B C)^{2}\right)+\left((\diamond A B)^{2}+B C^{2}\right)$
$=A B^{2}+B C^{2}+1 / 4 A B^{2}+B C^{2}$
$=5 / 4\left(A B^{2}+B C^{2}\right)$
$\therefore 4\left(\mathrm{AN}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{AC}^{2}$
Hence proved.

28. Question

If E is a point on side CA of an equilateral triangle ABC such that $B E \perp C A$, then $\mathrm{AB}^{2}+\mathrm{BC}+\mathrm{CA}^{2}=$
A. $2 B E^{2}$
B. $3 \mathrm{BE}^{2}$
C. $4 B E^{2}$
D. $6 \mathrm{BE}^{2}$

Given in equilateral $\triangle A B C, B E \perp A C$.

We know that in an equilateral triangle, the perpendicular from the vertex bisects the base.
$\therefore C E=A E=A C / 2$
In $\triangle A B E$,
$\Rightarrow A B^{2}=B E^{2}+A E^{2}$
Since $A B=B C=A C$,
$\Rightarrow A B^{2}=B C^{2}=A C^{2}=B E^{2}+A E^{2}$
$\Rightarrow A B^{2}+B C^{2}+A C^{2}=3 B E^{2}+3 A E^{2}$
Since $B E$ is an altitude, $B E=\frac{\sqrt{3}}{2} A B$
$\Rightarrow B E=\frac{\sqrt{3}}{2} A B$
$=\frac{\sqrt{3}}{2} A C=\frac{\sqrt{3}}{2}(2 A E)$
$B E=\sqrt{ } 3 A E$
$\Rightarrow A B^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2}=3 B E^{2}+3\left(\frac{B E}{\sqrt{3}}\right)^{2}$
$=3 B E^{2}+B E^{2}$
$\therefore A B^{2}+B C^{2}+A C^{2}=4 B E^{2}$

29. Question

In a right triangle $A B C$ right-angled at B, if P and Q are points on the sides $A B$ and $A C$ respectively, then
A. $A Q^{2}+C P^{2}=2\left(A C^{2}+P Q^{2}\right)$
B. $2\left(A Q^{2}+C P^{2}\right)=A C^{2}+P Q^{2}$
C. $A Q^{2}+C P^{2}=A C^{2}+P Q^{2}$
D. $A Q+C P=\frac{1}{2}(A C+P Q)$.

Answer

Given in right triangle $A B C$ right-angled at B, P and Q are points on the sides $A B$ and $B C$ respectively.

Applying Pythagoras Theorem,
In $\triangle A Q B$,
$\Rightarrow A Q^{2}=A B^{2}+B Q^{2}$
In $\triangle \mathrm{PBC}$,
$\Rightarrow \mathrm{CP}^{2}=\mathrm{PB}^{2}+\mathrm{BC}^{2}$
Adding (1) and (2),
$\Rightarrow A Q^{2}+C P^{2}=A B^{2}+B Q^{2}+P B^{2}+B C^{2}$
In $\triangle A B C$,
$\Rightarrow A C^{2}=A B^{2}+B C^{2}$.
In $\triangle P B Q$,
$\Rightarrow \mathrm{QP}^{2}=\mathrm{PB}^{2}+\mathrm{BQ}^{2}$.
From (3), (4) and (5),
$\therefore \mathrm{AQ}^{2}+\mathrm{CP}^{2}=\mathrm{AC}^{2}+\mathrm{PQ}^{2}$

30. Question

If in $\triangle A B C$ and $\triangle D E F, \frac{A B}{D E}=\frac{B C}{F D}$, then $\triangle A B C \sim \triangle D E F$ when
A. $\angle A=\angle F$
B. $\angle A=\angle D$
C. $\angle B=\angle D$
D. $\angle B=\angle E$

Answer

Given in $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \frac{A B}{D E}=\frac{B C}{F D}$

We know that if in two triangles, one pair of corresponding sides are proportional and included angles are equal, then the two triangles are similar.

Hence, $\triangle A B C$ is similar to $\triangle D E F$, we should have $\angle B=\angle D$.

31. Question

If in two triangles $A B C$ and DEF, $\frac{A B}{D E}=\frac{B C}{F E}=\frac{C A}{F D}$, then
A. $\triangle F D E \sim \triangle C A B$
B. $\triangle F D E \sim \triangle A B C$
C. $\triangle C B A \sim \triangle F D E$
D. $\triangle B C A \sim \triangle F D E$

Answer

Given that $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are two triangles such that $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$

We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\Rightarrow \angle A=\angle D, \angle B=\angle E, \angle C=\angle F$
$\therefore \triangle \mathrm{CAB} \sim \triangle \mathrm{FDE}$

Hence proved.

32. Question

$\triangle A B C \sim \triangle D E F, \operatorname{ar}(\triangle A B C)=9 \mathrm{~cm}^{2}, \operatorname{ar}(\triangle D E F)=16 \mathrm{~cm}^{2}$. If $\mathrm{BC}=2.1 \mathrm{~cm}$, then the measure of EF is
A. 2.8 cm
B. 4.2 cm
C. 2.5 cm
D. 4.1 cm

Answer

Given $\operatorname{Ar}(\triangle A B C)=9 \mathrm{~cm}^{2}, \operatorname{ar}(\triangle D E F)=16 \mathrm{~cm}^{2}$ and $B C=2.1 \mathrm{~cm}$
We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}}$
$\Rightarrow \frac{9}{16}=\frac{2.1^{2}}{E F^{2}}$
$\Rightarrow \frac{3}{4}=\frac{2.1}{E F}$
$\therefore \mathrm{EF}=2.8 \mathrm{~cm}$

33. Question

The length of the hypotenuse of an isosceles right triangle whose one side is $4 \sqrt{2} \mathrm{~cm}$ is
A. 12 cm
B. 8 cm
C. $8 \sqrt{2} \mathrm{~cm}$
D. $12 \sqrt{2} \mathrm{~cm}$

Answer

Given that one side of isosceles right triangle is $4 \sqrt{ } 2 \mathrm{~cm}$.

We know that in isosceles triangle two sides are equal.
In isosceles triangle $A B C$, let $A B$ and $A C$ be two equal sides of measure $4 \sqrt{ } 2 \mathrm{~cm}$.
We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Now, in right triangle $A B C$,
$\Rightarrow B C^{2}=A B^{2}+A C^{2}$
$\Rightarrow B C^{2}=(4 \sqrt{ } 2)^{2}+(4 \sqrt{ } 2)^{2}$
$=32+32$
$=64$
$\therefore B C=8 \mathrm{~cm}$

34. Question

A man goes 24 m due west and then 7 m due north. How far is he from the starting point?
A. 31 m
B. 17 m
C. 25 m
D. 26 m

Answer

Given a man goes 24 m due west and then 7 m due north.

We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Now, in right triangle $A B C$,
$\Rightarrow B C^{2}=A B^{2}+A C^{2}$
$=24^{2}+7^{2}$
$=576+49$
$=625$
$\therefore \mathrm{BC}=25 \mathrm{~m}$

35. Question

$\triangle A B C \sim \triangle D E F$. If $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and $\operatorname{ar}(\triangle A B C)=54 \mathrm{~cm}^{2}$, then $\operatorname{ar}(\triangle D E F)=$
A. $108 \mathrm{~cm}^{2}$
B. $96 \mathrm{~cm}^{2}$
C. $48 \mathrm{~cm}^{2}$
D. $100 \mathrm{~cm}^{2}$

Answer

Given $\triangle A B C \sim \triangle D E F, B C=3 \mathrm{~cm}, E F=4 \mathrm{~cm}$ and $\operatorname{ar}(\triangle A B C)=54 \mathrm{~cm}^{2}$
We know that ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}}$
$\Rightarrow \frac{54}{\operatorname{ar}(\triangle D E F)}=\frac{3^{2}}{4^{2}}$
$\Rightarrow \frac{54}{\operatorname{ar}(\triangle D E F)}=\frac{9}{16}$
$\Rightarrow \operatorname{ar}(\triangle D E F)=\frac{16(54)}{9}$
$\therefore \operatorname{ar}(\triangle D E F)=96 \mathrm{~cm}^{2}$

36. Question

$\triangle A B C \sim \triangle D E F$. such that $\operatorname{ar}(\triangle A B C)=4 \operatorname{ar}(\triangle P Q R)$. If $\mathrm{BC}=12 \mathrm{~cm}$, then $\mathrm{QR}=$
A. 9 cm
B. 10 cm
C. 6 cm
D. 8 cm

Answer

Given ar $(\triangle A B C) \sim$ ar $(P Q R)$ such that $\operatorname{ar}(\triangle A B C)=4$ ar $(\triangle P Q R)$ and $B C=12 \mathrm{~cm}$
We know that ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle P Q R)}=\frac{B C^{2}}{Q R^{2}}$
$\Rightarrow \frac{4 \operatorname{ar}(\triangle P Q R)}{\operatorname{ar}(\triangle P Q R)}=\frac{12^{2}}{Q R^{2}}$
$\Rightarrow \frac{4}{1}=\frac{12^{2}}{Q R^{2}}$
$\Rightarrow \frac{2}{1}=\frac{12}{Q R}$
$\therefore \mathrm{QR}=6 \mathrm{~cm}$

37. Question

The areas of two similar triangles are $121 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. If the median of the first triangle is 12.1 cm , then the corresponding median of the other triangle is
A. 11 cm
B. 8.8 cm
C. 11.1 cm
D. 8.1 cm

Answer

Given areas of two similar triangles $121 \mathrm{~cm}^{2}$ and $64 \mathrm{~cm}^{2}$ respectively. The median of the first triangle is 12.1 cm .

We know that ratio of areas of two similar triangles is equal to the ratio of squares of their medians.
$\Rightarrow \frac{\operatorname{ar}(\Delta 1)}{\operatorname{ar}(\Delta 2)}=\frac{\text { median }^{2}}{\text { median }^{2}}$
$\Rightarrow \frac{121}{64}=\frac{12.1^{2}}{\text { median }^{2}}$
$\Rightarrow \frac{11}{8}=\frac{12.1}{\text { median } 2}$

38. Question

If $\triangle A B C \sim \triangle D E F$ such that $\mathrm{DE}=3 \mathrm{~cm}, \mathrm{EF}=2 \mathrm{~cm}, \mathrm{DF}=2.5 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$, then perimeter of $\triangle A B C$ is
A. 18 cm
B. 20 cm
C. 12 cm
D. 15 cm

Answer

Given that $\triangle A B C$ and $\triangle D E F$ are similar triangles such that $A B=3 \mathrm{~cm}, D E=3 \mathrm{~cm}, \mathrm{DF}=2.5 \mathrm{~cm}$ and EF $=2 \mathrm{~cm}$.

We know that two triangles are similar if their corresponding sides are proportional.
$\Rightarrow \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$
First consider,
$\frac{A B}{B C}=\frac{D E}{E F}$
$\Rightarrow \frac{A B}{4}=\frac{3}{2}$
$\Rightarrow A B=6 \mathrm{~cm} .$.
Now,
$\frac{C A}{B C}=\frac{D F}{E F}$
$\Rightarrow \frac{C A}{4}=\frac{2.5}{2}$
$\Rightarrow C A=5 \mathrm{~cm}$.
Then, perimeter of $\triangle A B C=A B+B C+C A=6+4+5$
\therefore Perimeter of $\triangle A B C=15 \mathrm{~cm}$

39. Question

In an equilateral triangle ABC if $A D \perp B C$, then $\mathrm{AD}^{2}=$
A. $C D^{2}$
B. $2 C D^{2}$
C. $3 C D^{2}$
D. $4 C D^{2}$

Answer

Given in equilateral triangle $A B C, A D \perp B C$.

We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Now, in right triangle ADC,
$\Rightarrow A C^{2}=A D^{2}+D C^{2}$
$\Rightarrow B C^{2}=A D^{2}+D C^{2}[\because A C=B C]$
$\Rightarrow(2 D C)^{2}=A D^{2}+D C^{2}[\because B C=2 D C]$
$\Rightarrow 4 D C^{2}=A D^{2}+D C^{2}$
$\Rightarrow 3 D C^{2}=A D^{2}$
$\therefore 3 C D^{2}=A D^{2}$

40. Question

In an equilateral triangle ABC if $A D \perp B C$, then
A. $5 A B^{2}=4 A D^{2}$
B. $3 A B^{2}=4 A D^{2}$
C. $4 A B^{2}=3 A D^{2}$
D. $2 A B^{2}=3 A D^{2}$

Answer

Given in equilateral triangle $A B C$ if $A D \perp B C$.

We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Now, in right triangle ABD,
$\Rightarrow A B^{2}=A D^{2}+B D^{2}$
$\Rightarrow A B^{2}=A D^{2}+(\hat{\beta} B)^{2}[\because B D=B C]$
$\Rightarrow A B^{2}=A D^{2}+(B B)^{2}[\because A B=B C]$
$\Rightarrow A B^{2}=A D^{2}+(B B)^{2}$
$\therefore 3 A B^{2}=4 A D^{2}$

41. Question

If $\triangle A B C \sim \triangle D E F$ such that $A B=9.1 \mathrm{~cm}$ and $D E=6.5 \mathrm{~cm}$. If the perimeter of $\triangle D E F$ is 25 cm , then the perimeter of $\triangle A B C$ is
A. 36 cm
B. 30 cm
C. 34 cm
D. 35 cm

Answer

Given $\triangle A B C \sim \triangle D E F$ such that $A B=9.1 \mathrm{~cm}$ and $D E=6.5 \mathrm{~cm}$.
Given that $\triangle A B C$ and $\triangle D E F$ are similar triangles such that $A B=3 \mathrm{~cm}, B C=2 \mathrm{~cm}, C A=2.5 \mathrm{~cm}$ and $E F$ $=4 \mathrm{~cm}$.

We know that ratio of corresponding sides of similar triangles is equal to the ratio of the perimeters.
$\Rightarrow \frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}=\frac{P 1}{P 2}$
Consider,
$\frac{A B}{D E}=\frac{P(\triangle \mathrm{ABC})}{P(\Delta D E F)}$
$\Rightarrow \frac{9.1}{6.5}=\frac{P(\triangle A B C)}{25}$
$\therefore \mathrm{P}(\triangle \mathrm{ABC})=35 \mathrm{~cm}$

42. Question

In an isosceles triangle ABC if $\mathrm{AC}=\mathrm{BC}$ and $\mathrm{AB}^{2}=2 \mathrm{AC}$, then $\angle C=$
A. 30°
B. 45°
C. 90°
D. 60°

Answer

Given in isosceles $\triangle A B C, A C=B C$ and $A B^{2}=2 A C^{2}$

In isosceles $\triangle A B C$,
$A C=B C$, so $\angle B=\angle A$ [Equal sides have equal angles opposite to them]
$\Rightarrow A B^{2}=2 A C^{2}$
$\Rightarrow A B^{2}=A C^{2}+A C^{2}$
$\Rightarrow A B^{2}=A C^{2}+B C^{2}$
$\therefore \triangle \mathrm{ABC}$ is right angle triangle with $\angle \mathrm{C}=90^{\circ}$

43. Question

$\triangle A B C$ is an isosceles triangle in which $\angle C=90^{\circ}$. If $\mathrm{AC}=6 \mathrm{~cm}$, then $\mathrm{AB}=$
A. $6 \sqrt{2} \mathrm{~cm}$
B. 6 cm
C. $2 \sqrt{6} \mathrm{~cm}$
D. $4 \sqrt{2} \mathrm{~cm}$

Answer

Given in an isosceles triangle $A B C, \angle C=90^{\circ}$ and $A C=6 \mathrm{~cm}$.

$\Rightarrow B C=A C=6 \mathrm{~cm}$
We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Now, in right triangle ABC,
$\Rightarrow A B^{2}=A C^{2}+B C^{2}$
$=6^{2}+6^{2}$
$=36+36$
$=72$
$\therefore A B=6 \sqrt{ } 2 \mathrm{~cm}$

44. Question

If in two triangles ABC and $\mathrm{DEF}, \angle A=\angle E, \angle B=\angle F$, then which of the following not true?
A. $\frac{B C}{D F}=\frac{A C}{D E}$
B. $\frac{A B}{D E}=\frac{B C}{D F}$
C. $\frac{A B}{E F}=\frac{A C}{D E}$
D. $\frac{B C}{D F}=\frac{A B}{E F}$

Answer

Given that $\triangle A B C$ and $\triangle D E F$ are two triangles such that $\angle A=\angle E$ and $\angle B=\angle F$.

We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\Rightarrow \frac{A B}{E F}=\frac{B C}{F D}=\frac{C A}{D E}$
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
Hence proved.

45. Question

In an isosceles triangle $A B C$, if $A B=A C=25 \mathrm{~cm}$ and $B C=14 \mathrm{~cm}$, then the measure of altitude from A on $B C$ is
A. 20 cm
B. 22 cm
C. 18 cm
D. 24 cm

Answer

Given in an isosceles $\triangle A B C, A B=A C=25 \mathrm{~cm}$ and $B C=14 \mathrm{~cm}$
Here altitude from A to $B C$ is AD.
We know in isosceles triangle altitude on non-equal sides is also median.
$\Rightarrow B D=C D=B C / 2=7 \mathrm{~cm}$
Applying Pythagoras Theorem,
$\Rightarrow A B^{2}=B D^{2}+A D^{2}$
$\Rightarrow 25^{2}=7^{2}+A D^{2}$
$\Rightarrow A D^{2}=625-49=576$
$\Rightarrow A D=24$
\therefore Measure of altitude from A to $B C$ is 24 cm

46. Question

In Fig. 4.242 the measures of $\angle D$ and $\angle F$ are respectively
A. $50^{\circ}, 40^{\circ}$
B. $20^{\circ}, 30^{\circ}$
C. $40^{\circ}, 50^{\circ}$
D. $30^{\circ}, 20^{\circ}$

Fig. 4.242

Answer

In $\triangle A B C$ and $\triangle D E F$,
$\Rightarrow \frac{A B}{A C}=\frac{E F}{E D}$
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{E}=130^{\circ}$
We know that SAS similarity criterion states that if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.
$\therefore \triangle \mathrm{ABC} \sim \triangle \mathrm{EFD}$
Hence, $\angle \mathrm{F}=\angle \mathrm{B}=30^{\circ}$
And $\angle \mathrm{D}=\angle \mathrm{C}=20^{\circ}$
47. Question

In Fig. 4.243, the value of x for which $D E \| A B$ is
A. 4
B. 1
C. 3
D. 2

Fig. 4.243

Answer

Given in $\triangle A B C, D E \| A B$.
We know that basic proportionality theorem states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

Then $\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{x+3}{3 x+19}=\frac{x}{3 x+4}$
$\Rightarrow(x+3)(3 x+4)=x(3 x+19)$
$\Rightarrow 3 x^{2}+4 x+9 x+12=3 x^{2}+19 x$
$\Rightarrow 19 x-13 x=12$
$\Rightarrow 6 x=12$
$\therefore \mathrm{x}=2 \mathrm{~cm}$

48. Question

In Fig. 4.244, if $\angle A D E=\angle A B C$, then $C E=$
A. 2
B. 5
C. $9 / 2$
D. 3

Fig. 4.244

Answer

Given $\angle A D E=\angle A B C$
We know that basic proportionality theorem states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

Then $\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{2}{3}=\frac{3}{E C}$
$\Rightarrow E C=\frac{3(3)}{2}$
$\therefore E C=9 / 2 \mathrm{~cm}$

49. Question

In Fig. 4.245, $R S\|D B\| P Q$. If $\mathrm{CP}=\mathrm{PD}=11 \mathrm{~cm}$ and $\mathrm{DR}=\mathrm{RA}=3 \mathrm{~cm}$. Then the values of x and y are respectively
A. 12,10
B. 14,6
C. 10, 7
D. 16,8

Fig. 4.245

Answer

Given in figure RS || DB || PQ, CP = PD = 11 cm and $\mathrm{DR}=\mathrm{RA}=3 \mathrm{~cm}$.
In $\triangle A S R$ and $\triangle A B D$,
$\angle A S R=\angle A B D$ [corresponding angles]
$\angle A R S=\angle A D B$ [corresponding angles]
$\angle \mathrm{A}=\angle \mathrm{A}$ [common]
We know that AAA similarity criterion states that in two triangles, if corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar.
$\therefore \triangle \mathrm{ASR} \sim \triangle \mathrm{ABD}$
We know that two triangles are similar if their corresponding sides are proportional.
$\Rightarrow \frac{A R}{A D}=\frac{A S}{A B}=\frac{R S}{D B}$
$\Rightarrow \frac{3}{6}=\frac{R S}{D B}$
$\Rightarrow \frac{1}{2}=\frac{x}{y}$
$\therefore \mathrm{x}=2 \mathrm{y}$
$\therefore \mathrm{x}=16 \mathrm{~cm}$ and $\mathrm{y}=8 \mathrm{~cm}$

50. Question

In Fig. 4.246, if $P B \| C F$ and $D P \| E F$, then $\frac{A D}{D E}=$

Fig. 4.246

Answer

Given $P B\|C F, D P\| E F, A B=2 \mathrm{~cm}$ and $A C=8 \mathrm{~cm}$
We know that basic proportionality theorem states that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

In $\triangle A C F, P B \| C F$,
Then $\frac{A B}{B C}=\frac{A P}{P F}$
$\Rightarrow \frac{A P}{P F}=\frac{2}{8-2}=\frac{2}{6}=\frac{1}{3}$
And DP || EF
$\Rightarrow \frac{A D}{D E}=\frac{A P}{P F}$
$\therefore \frac{A D}{D E}=\frac{1}{3}$

51. Question

A chord of a circle of radius 10 cm subtends a right angle at the centre. The length of the chord (in cm) is
A. $5 \sqrt{2}$
B. $10 \sqrt{2}$
C. $\frac{5}{\sqrt{2}}$
D. $10 \sqrt{3}$ [CBSE 2014]

Answer

Given A chord of a circle of radius 10 cm subtends a right angle at the centre.

We know that the Pythagoras theorem state that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Now, in right triangle OAB,
$\Rightarrow A B^{2}=O A^{2}+O B^{2}$
$=10^{2}+10^{2}$
$=100+100$
$=200$
$\therefore A B=10 \sqrt{ } 2 \mathrm{~cm}$

