Coordinate Geometry

- Distance formula

The distance between the points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ is given by
$P Q=x 2-x 12+y 2-y 12$

Example 1:

Find the values of l, if the distance between the points $(-5,3)$ and $(l, 6)$ is 5 units.

Solution:

The given points are $\mathrm{A}(-5,3)$ and $\mathrm{B}(l, 6)$.
It is given that $\mathrm{AB}=5$ units
By distance formula we have
$\lambda-52+6-32=5 \Rightarrow \lambda+52+9=25 \Rightarrow \lambda 2+25+10 \lambda+9=25 \Rightarrow \lambda 2+10 \lambda+9=0 \Rightarrow \lambda+9 \lambda+1=0 \Rightarrow \lambda=-1$, or $\lambda=-9$
Required values of l are -1 or -9 .

- The distance of a point (x, y) from the origin $\mathrm{O}(0,0)$ is given by $\mathrm{OP}=\mathrm{x} 2+\mathrm{y} 2$.
- Section formula:

The co-ordinates of the point $\mathrm{P}(x, y)$, which divides the line segment joining the points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ internally in the ratio $m: n$, are given by:
$P x, y=m x 2+n x 1 m+n, m y 2+n y 1 m+n$
Example: In what ratio does the point $(-4,7)$ divide the line segment joining the points $P(-1,1)$ and $Q(-6,11)$.

Solution: Let the point $(-4,7)$ divide the line segment joining the points $P(-1,1)$ and $Q(-6,11)$ in the ratio $\lambda: 1$.
Thus, by section formula, we have:
$-6 \lambda+-1 \lambda+1,11 \lambda+1 \lambda+1=-4,7 \Rightarrow-6 \lambda-1 \lambda+1=-4,11 \lambda+1 \lambda+1=7 \Rightarrow-6 \lambda-1=-4 \lambda-4 \Rightarrow 2 \lambda=3 \Rightarrow \lambda=32$
Therefore, the required ratio is $3: 2$.

- The mid-point of the line segment joining the points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is $\mathrm{x} 1+\mathrm{x} 22, \mathrm{y} 1+\mathrm{y} 22$.
[Note: Here, $m=n=1$]
- If $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$ are the vertices of $\triangle \mathrm{ABC}$, then the coordinates of its centroid are given by the point $x 1+x 2+x 33, y 1+y 2+y 33$.
- Area of a triangle

The area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is given by the numerical value of the expression
$12 x 1 y 2-y 3+x 2 y 3-y 1+x 3 y 1-y 2$

Example 1:

Find the area of the triangle whose vertices are $\mathrm{P}(-2,2), \mathrm{Q}(2,0)$ and $\mathrm{R}(8,5)$.

Solution:

We have $\mathrm{P}(-2,2), \mathrm{Q}(2,0)$ and $\mathrm{R}(8,5)$ as the given points.
Let $\left(x_{1}, y_{1}\right)=(-2,2) ;\left(x_{2}, y_{2}\right)=(2,0) ;\left(x_{3}, y_{3}\right)=(8,5)$
area of $\Delta \mathrm{PQR}=12 \mathrm{x} 1 \mathrm{y} 2-\mathrm{y} 3+\mathrm{x} 2 \mathrm{y} 3-\mathrm{y} 1+\mathrm{x} 3 \mathrm{y} 1-\mathrm{y} 2 \Rightarrow$ area of $\triangle \mathrm{PQR}=12-20-5+25-$ 2+82-
$0 \Rightarrow$ area of $\triangle \mathrm{PQR}=1210+6+16 \Rightarrow$ area of $\triangle \mathrm{PQR}=12 \times 32 \Rightarrow$ area of $\Delta \mathrm{PQR}=16$ squ are units

Example 2:

If the points $(-4,1),(2,4)$ and $(p, 6)$ are collinear, then find the value of p.

Solution:

Since $(-4,1),(2,4),(p, 6)$ are collinear, the area of the triangle formed by these points is zero.
$\therefore 12-44-6+26-1+\mathrm{p} 1-4=0 \Rightarrow 8+10-3 \mathrm{p}=0 \Rightarrow 18-3 \mathrm{p}=0 \Rightarrow 3 \mathrm{p}=18 \Rightarrow \mathrm{p}=183 \Rightarrow \mathrm{p}=6$

