12. Higher Order Derivatives

Exercise 12.1

26. Question

If y = tan⁻¹ x, show that
$$
(1 + x^2) \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} = 0
$$
.

Answer

Formula: –

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d(tan^{-1}x)}{dx} = \frac{1}{1 + x^2}$
\n(iii) $\frac{d}{dx}x^n = nx^{n-1}$
\n(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: -

$$
Y = \tan^{-1}x
$$

Differentiating w.r.t x

$$
\frac{dy}{dx} = \frac{d(\tan^{-1}x)}{dx}
$$

Using formula(ii)

$$
\Rightarrow \frac{dy}{dx} = \frac{1}{1 + x^2}
$$

$$
\Rightarrow (1 + x^2) \frac{dy}{dx} =
$$

Again Differentiating w.r.t x

 $\mathbf{1}$

Using formula(iii)

$$
(1+x^2)\frac{\mathrm{d}y}{\mathrm{d}x} + 2x\frac{\mathrm{d}y}{\mathrm{d}x} = 0
$$

Hence proved.

27. Question

If y = {log (x +
$$
\sqrt{x^2 + 1}
$$
)², show that (1 + x^2) $\frac{d^2y}{dx^2}$ + $x \frac{dy}{dx}$ = 2.

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
(ii) $\frac{d(\text{log}x)}{dx} = \frac{1}{x}$

$$
(iii) \frac{d}{dx} x^{n} = n x^{n-1}
$$

(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$

Given: –

$$
y = \left[\log \left(x + \sqrt{1 + x^2} \right) \right]^2
$$

Differentiating w.r.t x

$$
\frac{dy}{dx} = \frac{d[log(x + \sqrt{1 + x^2})]^2}{dx}
$$

Using formula(ii)

$$
\Rightarrow \frac{dy}{dx} = 2\log(x + \sqrt{1 + x^2}) \cdot \frac{1}{(x + \sqrt{1 + x^2})} \cdot \left(1 + \frac{2x}{2\sqrt{1 + x^2}}\right)
$$

Using formula(i)

$$
\Rightarrow y_1 = \frac{2 \log(x + \sqrt{1 + x^2})}{x + \sqrt{1 + x^2}} \cdot \frac{x + \sqrt{1 + x^2}}{\sqrt{1 + x^2}}
$$

$$
\Rightarrow y_1 = \frac{2 \log(x + \sqrt{1 + x^2})}{\sqrt{1 + x^2}}
$$

Squaring both sides

$$
(y_1)^2 = \frac{4}{1+x^2} [\log \left(x + \sqrt{1+x^2}\right)
$$

Differentiating w.r.t x

$$
\Rightarrow (1 + x^2)y_2y_1 + 2x(y_1)^2 = 4y_1
$$

Using formual(iii)

$$
\Rightarrow (1 + x^2)y_2 + xy_1 = 2
$$

Hence proved

28. Question

If y = $(\tan^{-1} x)^2$, then prove that $(1 - x^2)^2 y_2 + 2x (1 + x^2) y_1 = 2$

Answer

Formula: –

(i)
$$
\frac{dy}{dx} = y_1 \text{ and } \frac{d^2y}{dx^2} = y_2
$$

\n(ii)
$$
\frac{d(\tan^{-1}x)}{dx} = \frac{1}{1 + x^2}
$$

\n(iii)
$$
\frac{d}{dx}x^n = nx^{n-1}
$$

\nGiven:
$$
Y = (\tan^{-1}x)^2
$$

Then

$$
\frac{dy}{dx} = \frac{d(\tan^{-1}x)^2}{dx}
$$

Using formula (ii)&(i)

$$
y_1 = 2 \tan^{-1} x \frac{dy}{dx} (\tan^{-1} x)
$$

\n $\Rightarrow y_1 = 2 \tan^{-1} x \cdot \frac{1}{1 + x^2}$

Again differentiating with respect to x on both the sides,we obtain

$$
(1 + x2)y2 + 2xy1 = 2\left(\frac{1}{1 + x2}\right) using formula(i)\& (iii)
$$

\n
$$
\Rightarrow (1 + x2)2y2 + 2x(1 + x2)y1 = 2
$$

Hence proved.

29. Question

If y = cot x show that
$$
\frac{d^2y}{dx^2} + 2y \frac{dy}{dx} = 0
$$

Answer

Formula: –

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d(cotx)}{dx} = -cosec^2x$
\n(iii) $\frac{d}{dx}x^n = nx^{n-1}$
\n(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: $-Y = cotx$
\nDifferentiating w.r.t. x
\n $\frac{dy}{dx} = \frac{d(cotx)}{dx}$
\nUsing formula (ii)
\n $\Rightarrow \frac{dy}{dx} = -cosec^2x$
\nDifferentiating w.r.t x

ferentiating y

$$
\frac{d^2y}{dx^2} = -[2\cscx(-\cscxcotx)]
$$

Using formual (iii)

$$
\Rightarrow \frac{d^2y}{dx^2} = 2\csc^2x \cot x
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = -2\frac{dy}{dx} \cdot y
$$

$$
\Rightarrow \frac{d^2y}{dx^2} + 2y\frac{dy}{dx} = 0
$$

Hence proved.

30. Question

Find
$$
\frac{d^2y}{dx^2}
$$
, where $y = \log\left(\frac{x^2}{e^2}\right)$.

Answer

Formula: –

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d(e^{ax})}{dx} = ae^{ax}$
\n(iii) $\frac{d}{dx}x^n = nx^{n-1}$

Given: –

$$
y = \log\left(\frac{x^2}{e^2}\right)
$$

Differentiating w.r.t x

$$
\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\frac{x^2}{e^2}} \cdot \frac{1}{e^2} 2x = \frac{2}{x}
$$

Again Differentiating w.r.t x

$$
\frac{d^2y}{dx^2} = 2\left(-\frac{1}{x^2}\right) = -\frac{2}{x^2}
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{-2}{x^2}
$$

31. Question

If y =
$$
e^x(\sin x + \cos x)
$$
 prove that $\frac{d^2y}{dx^2} - 1\frac{dy}{dx} + 2y = 0$.

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d(e^{ax})}{dx} = ae^{ax}$
\n(iii) $\frac{d}{dx}x^n = nx^{n-1}$
\n(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: -

$$
y = ae^{2x} + be^{-2x}
$$

Differentiating w.r.t x

$$
\frac{dy}{dx} = 2ae^{2x} + be^{(-x)}(-1)
$$

$$
\Rightarrow \frac{dy}{dx} = 2ae^{2x} - be^{-x}
$$

Differentiating w.r.t x

$$
\frac{d^2y}{dx^2} = 2ae^{2x}(2) - be^{-x}(-1)
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = 4ae^{2x} + be^{-x}
$$

Adding and subtracting be^{-x} on RHS

$$
\frac{d^2y}{dx^2} = 4ae^{2x} + 2be^{-x}
$$

\n
$$
\Rightarrow \frac{d^2y}{dx^2} = 2(ae^{2x} + be^{-x}) + 2ae^{2x} - be^{-x}
$$

\n
$$
\Rightarrow \frac{d^2y}{dx^2} = 2y + \frac{dy}{dx}
$$

\n
$$
\Rightarrow \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0
$$

32. Question

If
$$
y = e^x (\sin x + \cos x)
$$
 Prove that
$$
\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0
$$

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d(e^{ax})}{dx} = ae^{ax}$
\n(iii) $\frac{d}{dx}x^n = nx^{n-1}$
\n(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: $-y = e^x(\sin x + \cos x)$
\ndifferentiating w.r.t x
\n $\frac{dy}{dx} = e^x(\cos x - \sin x) + (\sin x + \cos x)e^x$
\n $\Rightarrow \frac{dy}{dx} = y + e^x(\cos x - \sin x)$

Differentiating w.r.t x

$$
\frac{d^2y}{dx^2} = \frac{dy}{dx} + e^x(-\sin x - \cos x) + (\cos x - \sin x)e^x
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{dy}{dx} - y + (\cos x - \sin x)e^x
$$

Adding and subtracting y on RHS

$$
\frac{d^2y}{dx^2} = \frac{dy}{dx} - y + (\cos x - \sin x)e^x + y - y
$$

$$
\Rightarrow \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0
$$

Hence proved

33. Question

If
$$
y = \cos^{-1} x
$$
, find $\frac{d^2y}{dx^2}$ in terms of y alone.

Answer

Formula: –

(i) $\frac{dy}{dx} = y_1$ and $\frac{d^2y}{dx^2} = y_2$ (ii) $\frac{d(\cos^{-1}x)}{dx} = \frac{-1}{\sqrt{1 + x^2}}$ (iii) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$ Given: – y = cos ^{– 1}x Then, $\frac{dy}{dx} = \frac{d(\cos^{-1}x)}{dx}$ $\Rightarrow \frac{dy}{dx} = \frac{-1}{\sqrt{1 + x^2}}$ $\Rightarrow \frac{d^2y}{dx^2} = \frac{d[-(\sqrt{1+x^2})]^{-1}}{dx}$ $\Rightarrow \frac{d^2y}{dx^2} = \frac{-1.(1-x^2)^{-\frac{3}{2}}}{2} \cdot \frac{d(1-x^2)}{dx}$ $\Rightarrow \frac{d^2y}{dx^2} = \frac{1}{2\sqrt{(1-x^2)^3}}.(-2x)$ $\frac{d^2y}{dx^2} = \frac{-x}{\sqrt{(1-x^2)^3}} \dots \dots (i)$ $y = cos^{-1} x$ \Rightarrow x = cosy

Putting $x = \cos y$ in equation(i), we obtain

$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{-\cos y}{\sqrt{(1-\cos^2 y)^3}}
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{-\cos y}{\sqrt{(\sin^2 y)^3}}
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{-\cos y}{\sin^3 y}
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{-\cos y}{\sin y} \cdot \frac{1}{\sin^2 y}
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = -\cot y \cdot \csc^2 y
$$

34. Question

$$
\text{If } y = e^{a \cos^{-1} x}, \text{ prove that } \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0
$$

Answer

Formula: –

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d(\log x)}{dx} = \frac{1}{x}$
\n(i) $\frac{d(\cos^{-1}x)}{dx} = \frac{-1}{\sqrt{1 + x^2}}$
\n(iii) $\frac{d}{dx}x^n = nx^{n-1}$
\n(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\n(v)logarithms differentiation $\frac{dy}{dx} = y \left[\frac{v(x)}{u(x)} \cdot u'(x) + v'(x) \cdot \log[u(x)] \right]$

Given: –

$$
y\,=\,e^{acos^{-1}x}
$$

Taking logarithm on both sides we obtain

$$
\frac{1}{y}\frac{dy}{dx} = a\frac{-1}{\sqrt{1-x^2}}
$$

$$
\frac{dy}{dx} = \frac{-ay}{\sqrt{1-x^2}}
$$

By squaring both sides, wee obtain

$$
\left(\frac{dy}{dx}\right)^2 = \frac{a^2y^2}{1-x^2}
$$

$$
\Rightarrow (1-x^2) \cdot \left(\frac{dy}{dx}\right)^2 = a^2y^2
$$

$$
\Rightarrow (1-x^2)\left(\frac{dy}{dx}\right)^2 = a^2y^2
$$

Again differentiating both sides with respect to x,we obtain

$$
\left(\frac{dy}{dx}\right)^2 \cdot \frac{d(1-x^2) + (1-x^2)}{dx} \cdot \frac{d}{dx} \left[\left(\frac{dy}{dx}\right)^2\right] = a^2 \frac{d(y^2)}{dx}
$$

$$
\Rightarrow \left(\frac{dy}{dx}\right)^2 [(-2x) + (1-x^2)]2 \cdot \frac{dy}{dx} \cdot \frac{d^2 y}{dx^2} = a^2 \cdot 2y \cdot \frac{dy}{dx}
$$

$$
\Rightarrow -x \frac{dy}{dx} + (1-x^2) \frac{d^2 y}{dx^2} = a^2 y
$$

$$
\Rightarrow (1-x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0
$$

Hence proved

35. Question

If
$$
y = 500 e^{7x} + 600 e^{-7x}
$$
, show that $\frac{d^2y}{dx^2} = 49y$.

Answer

Formula: –

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d(e^{ax})}{dx} = ae^{ax}$
\n(iii) $\frac{d}{dx}x^n = nx^{n-1}$
\n(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: -
\n $y = 500e^{7x} + 600e^{-7x}$
\n $\frac{dy}{dx} = 500 \cdot \frac{d(e^{7x})}{dx} + 600 \cdot \frac{d(e^{-7x})}{dx}$
\n $\Rightarrow \frac{dy}{dx} = 500e^{7x} \cdot \frac{d(7x)}{dx} + 600 \cdot e^{7x} \cdot \frac{d(-7x)}{dx}$
\n $\Rightarrow \frac{dy}{dx} = 3500e^{7x} - 4200e^{-7x}$
\n $\Rightarrow \frac{dy}{dx} = 49(500e^{7x} + 600e^{-7x})$
\n $\Rightarrow \frac{dy}{dx} = 49y$

Hence proved.

36. Question

If x = 2 cos t - cos 2t, y = 2 sin t - sin 2t, find
$$
\frac{d^2y}{dx^2}at t = \frac{\pi}{2}.
$$

Answer

Formula: –

(i) $\frac{dy}{dx} = y_1$ and $\frac{d^2y}{dx^2} = y_2$ (ii) $\frac{d}{dx}$ cosx = sinx (iii) $\frac{d}{dx}$ sinx = $-\cos x$ $(iv) \frac{d}{dx} x^n = nx^{n-1}$ (v) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$ (vi) parameteric forms $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ Given: – $x = 2\cos t - \cos 2t$ $y = 2\sin t - \sin 2t$ differentiating w.r.t t $\frac{dy}{dx} = 2(-\text{sin}t) - 2(-\text{sin}2t)$ $\Rightarrow \frac{dy}{dt} = 2\cos t - 2\cos 2t$ Dividing both $\frac{dy}{dx} = \frac{2(cost - cos2t)}{2(sin2t - sint)}$ Differentiating w.r.t t $\Rightarrow \frac{d \frac{dy}{dx}}{dt} = \frac{(\sin 2t - \sin t)(-\sin t + 2\sin 2t) - (\cos t - \cos 2t)(2\cos 2t - \cos t)}{(\sin 2t - \sin t)^2}$ Dividing $\frac{d^2y}{dx^2} = \frac{(sin2t - sint)(2sint - sint) - (cost - cos2t)(2cos2t - cost)}{2(sin2t - sint)^3}$ Putting $t = \frac{\pi}{2}$ $\Rightarrow \frac{d^2y}{dx^2} = \frac{1+2}{-2} = -\frac{3}{2}$

37. Question

If x =
$$
4z^2 + 5
$$
, y = $6z^2 + 7z + 3$, find $\frac{d^2y}{dx^2}$.

Answer

Formula: –

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d}{dx}x^n = nx^{n-1}$
\n(iii) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\n(iv) parameteric forms $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

Given: –

$$
x = 4z^2 + 5, y = 6z^2 + 72 + 3
$$

 $\overline{7}$

Differentiating both w.r.t z

$$
\frac{dx}{dz} = 8z + 0
$$

$$
\Rightarrow \frac{dx}{dz} = \frac{12z + 7}{8z}
$$

and
$$
\Rightarrow \frac{dy}{dz} = 12z +
$$

differentiating w.r.t z

$$
\frac{d\left(\frac{dy}{dx}\right)}{dz} = 0 + \frac{7}{8}\left(\frac{-1}{z^2}\right)
$$

Dividing

$$
\Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{-7}{8z^2 \times 8z} = \frac{-7}{64z^3}
$$

38. Question

If y = log (1 + cos x), prove that
$$
\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} \cdot \frac{dy}{dx} = 0
$$

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d}{dx} \cos x = \sin x$
\n(iii) $\frac{d}{dx} \sin x = -\cos x$

(iv)
$$
\frac{d}{dx}x^n = nx^{n-1}
$$

\n(v) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: $-Y = log(1 + cosx)$

Differentiating w.r.t x

$$
\frac{dy}{dx} = \frac{1}{1 + \cos x} \cdot (-\sin x)
$$

$$
\Rightarrow \frac{dy}{dx} = \frac{-\sin x}{1 + \cos x}
$$

Differentiating w.r.t.x

$$
\frac{d^2 y}{dx^2} = -\left[\frac{(1 + \cos x)\cos x - \sin x(-\sin x)}{(1 + \cos x)^2}\right]
$$

$$
\Rightarrow \frac{d^2 y}{dx^2} = -\left[\frac{(\cos x) + \cos^2 x + \sin^2 x}{(1 + \cos x)^2}\right]
$$

$$
\Rightarrow \frac{d^2 y}{dx^2} = -\left[\frac{1 + \cos x}{(1 + \cos x)^2}\right]
$$

$$
\Rightarrow \frac{d^2 y}{dx^2} = -\frac{1}{1 + \cos x}
$$

Differentiating w.r.t x

$$
\frac{d^3y}{dx^3} = -\left(\frac{1}{(1 + \cos x)^2} \times -\sin x\right)
$$

$$
\Rightarrow \frac{d^3y}{dx^3} = -\left(\frac{-\sin x}{1 + \cos x}\right) \times \left(\frac{-1}{1 + \cos x}\right)
$$

$$
\Rightarrow \frac{d^3y}{dx^3} = -\frac{dy}{dx} \cdot \frac{d^2y}{dx^2}
$$

$$
\Rightarrow \frac{d^3y}{dx^3} + \frac{dy}{dx} \cdot \frac{d^2y}{dx^2} = 0
$$

39. Question

If y = sin (log x), prove that
$$
x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0
$$

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d(\text{logy})}{dx} = \frac{1}{x}$
\n(iii) $\frac{d}{dx} \text{cos}x = \text{sin}x$

(iv)
$$
\frac{d}{dx} \sin x = -\cos x
$$

\n(v) $\frac{d}{dx} x^n = nx^{n-1}$
\n(vi) chain rule $\frac{df}{dx} = \frac{d(vou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: -
\ny = sin(logx)
\n $\frac{dy}{dx} = \cos(\log x) \frac{1}{x}$
\n $\Rightarrow x \frac{dy}{dx} = \cos(\log x)$
\n $\Rightarrow x \frac{d^2 y}{dx^2} + \frac{dy}{dx} = -\sin(\log x) \frac{1}{x}$
\n $\Rightarrow x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} = -y$
\n $\Rightarrow x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = 0$

Hence proved.

40. Question

If
$$
y = 3 e^{2x} + 2 e^{3x}
$$
, prove that $\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = 0$.

 \mathbf{y}_2

Answer

Formula: –

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} =$
\n(ii) $\frac{d(e^{ax})}{dx} = ae^{ax}$
\n(iii) $\frac{d}{dx}x^n = nx^{n-1}$
\nGiven: $-\frac{1}{x} = 3e^{2x} + 2e^{3x}$

$$
y = 3e^{2x} + 2e^{3x}
$$

\n
$$
\Rightarrow \frac{dy}{dx} = 6e^{2x} + 6e^{3x}
$$

\n
$$
\Rightarrow \frac{d^2y}{dx^2} = 12e^{2x} + 18e^{3x}
$$

Hence

$$
\Rightarrow \frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 6(2e^{2x} + 3e^{3x}) - 30(e^{2x} + e^{3x}) + 6(3e^{2x} + 2e^{3x})
$$

= 0

41. Question

If
$$
y = (cot^{-1}x)^2
$$
, prove that $y_2(x^2 + 1)^2 + 2x(x^2 + 1)y_1 = 2$.

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d}{dx} \cot^{-1} x = \frac{-1}{1 + x^2}$
\n(iii) $\frac{d}{dx} x^n = nx^{n-1}$
\n(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: $-y = (\cot^{-1}x)^2$

differentiating w.r.t x

$$
\frac{dy}{dx} = y_1 = 2 \cot^{-1} x \left[\frac{-1}{1 + x^2} \right]
$$

$$
\Rightarrow y_1 = \frac{-2 \cot^{-1} x}{1 + x^2}
$$

Differentiating w.r.t x

$$
\Rightarrow (1 + x^2)y_2 + 2xy_1 = 2\left(\frac{1}{1 + x^2}\right)
$$

$$
\Rightarrow (1 + x^2)^2 y_2 + 2x(1 + x^2)y_1 = 2
$$

Hence proved

42. Question

If
$$
y = \csc^{-1}x
$$
, $x > 1$, then show that $x(x^2 - 1)\frac{d^2y}{dx^2} + (2x^2 - 1)\frac{dy}{dx} = 0$

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d(\csc^{-1}x)}{dx} = \frac{-1}{|x|\sqrt{x^2 - 1}}$
\n(iii) $\frac{d}{dx}x^n = nx^{n-1}$
\n(iv) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: $-\gamma = \csc^{-1}x$
\nWe know that

$$
\frac{d(\csc^{-1}x)}{dx} = \frac{-1}{|x|\sqrt{x^2 - 1}}
$$

Let $y = \csc^{-1}x$

$$
\frac{dy}{dx} = \frac{-1}{|x|\sqrt{x^2 - 1}}
$$

Since $x > 1, |x| = x$

$$
dy = -1
$$

$$
\frac{d}{dx} = \frac{1}{x\sqrt{x^2 - 1}}
$$

Differentiating the above function with respect to x

$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{x\frac{2x}{2\sqrt{x^2 - 1}} + \sqrt{x^2 - 1}}{x^2(x^2 - 1)}
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{x^2}{\sqrt{x^2 - 1}} + \sqrt{x^2 - 1}}{x^2(x^2 - 1)}
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{x^2 + x^2 - 1}{x^2(x^2 - 1)^{\frac{3}{2}}}
$$

$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{2x^2 - 1}{x^2(x^2 - 1)^{\frac{3}{2}}}
$$

Thus

$$
x(x^{2}-1)\frac{d^{2}y}{dx^{2}} = \frac{2x^{2}-1}{x\sqrt{x^{2}-1}} \dots \dots (2)
$$

Similarly

$$
\Rightarrow [2x^2 - 1] \frac{dy}{dx} = \frac{-2x^2 + 1}{x\sqrt{x^2 - 1}}
$$

\n
$$
\Rightarrow x(x^2 - 1) \frac{d^2y}{dx^2} + [2x^2 - 1] \frac{dy}{dx} = \frac{2x^2 - 1}{x\sqrt{x^2 - 1}} + \frac{-2x^2 + 1}{x\sqrt{x^2 - 1}} = 0
$$

Hence proved.

43. Question

If x = cos t + log tan
$$
\frac{t}{2}
$$
, y = sin t, then find the value of $\frac{d^2y}{dt^2}$ and $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{4}$.

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d}{dx} \cos x = \sin x$
\n(iii) $\frac{d}{dx} \sin x = -\cos x$

(iv)
$$
\frac{d}{dx} \log x = \frac{1}{x}
$$

\n(v) $\frac{d}{dx} \tan x = \sec^2 x$
\n(vi) $\frac{d}{dx} x^n = nx^{n-1}$
\n(v) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\n(vi) parameteric forms $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

Given: –

$$
x = \text{cost} + \text{logtan} \frac{t}{2}y = \text{sin} t
$$

Differentiating with respect to t ,we have

$$
\frac{dx}{dt} = -\sin t + \frac{1}{\tan \frac{t}{2}} \times \sec^2 \left(\frac{t}{2}\right) \times \frac{1}{2}
$$
\n
$$
\Rightarrow \frac{dx}{dt} = -\sin t + \frac{1}{\frac{\sin \left(\frac{t}{2}\right)}{\cos \left(\frac{t}{2}\right)}} \times \frac{1}{\cos^2 \frac{t}{2}} \times \frac{1}{2}
$$
\n
$$
\Rightarrow \frac{dx}{dt} = -\sin t + \frac{1}{2 \sin \left(\frac{t}{2}\right) \cos \left(\frac{t}{2}\right)}
$$
\n
$$
\Rightarrow \frac{dx}{dt} = -\sin t + \frac{1}{\sin t}
$$
\n
$$
\Rightarrow \frac{dx}{dt} = \frac{1 - \sin^2 t}{\sin t}
$$
\n
$$
\Rightarrow \frac{dx}{dt} = \frac{\cos^2 t}{\sin t}
$$
\n
$$
\Rightarrow \frac{dx}{dt} = \csc t \cot t
$$
\nNow find the value of $\frac{dy}{dt}$

$$
\frac{dy}{dt} = cost
$$

Now

$$
\Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}
$$

$$
\Rightarrow \frac{dy}{dx} = \cos t \times \frac{1}{\cos t \cdot \cot t}
$$

$$
\Rightarrow \frac{dy}{dx} = \tan t
$$

We have

$$
\frac{dy}{dt} = \text{cost}
$$

Differentiating with w.r.t t

$$
\frac{d^2y}{dt^2} = -\sin t
$$
\n
$$
At \ t = \frac{\pi}{4}
$$
\n
$$
\left(\frac{d^2y}{dt^2}\right)_{t = \frac{\pi}{4}} = -\sin\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}
$$
\n
$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}
$$
\n
$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\tanh)}{\csc t}
$$
\n
$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{\sec^2 t}{\cos t \cdot \cot t}
$$
\n
$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{\sec^2 t}{\cos^2 t} \cdot \sin t
$$
\n
$$
\Rightarrow \frac{d^2y}{dx^2} = \sec^4 t \times \sin t
$$
\n
$$
\text{Now putting } t = \frac{\pi}{4}
$$

$$
\left(\frac{d^2y}{dx^2}\right)_{t=\frac{\pi}{4}} = \sec^4\frac{\pi}{4} \cdot \sin\left(\frac{\pi}{4}\right) = 2
$$

44. Question

If x = a sin t and y =
$$
a \left(\cos t + \log \tan \frac{t}{2} \right)
$$
, find $\frac{d^2y}{dx^2}$.

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d}{dx} \cos x = \sin x$
\n(iii) $\frac{d}{dx} \sin x = -\cos x$
\n(iv) $\frac{d}{dx} x^n = nx^{n-1}$
\n(v) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$

(vi) parameteric forms
$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
$$

 $\overline{}$

Given:
\n
$$
x = \text{at} \text{sin} \text{ and } y = a \left(\text{cost} + \text{log} \tan \left(\frac{t}{2} \right) \right)
$$

\n $\frac{dx}{dt} = a \text{cost}$
\n $\Rightarrow \frac{d^2y}{dt^2} = -a \text{sin}t$
\n $\Rightarrow \frac{dy}{dt} = -a \text{sin}t + \frac{a}{\tan \left(\frac{t}{2} \right)} \times \sec^2 \frac{t}{2} \times \frac{1}{2}$
\n $\Rightarrow \frac{dy}{dt} = -a \text{sin}t + \frac{a}{2 \sin \left(\frac{t}{2} \right) \cos \left(\frac{t}{2} \right)}$
\n $\Rightarrow \frac{dy}{dt} = -a \text{sin}t + a \text{cosect}$
\n $\Rightarrow \frac{d^2y}{dt^2} = -a \text{cost} - a \text{cosect} \text{cot}t$
\n $\frac{d^2y}{dx^2} = \frac{\frac{dx}{dt} \frac{d^2y}{dt^2} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt} \right)^3}$
\n $\Rightarrow \frac{d^2y}{dx^2} = \frac{a \text{cost}(-a \text{cost} - a \text{cosect} \text{cot}t) - (-a \text{sin}t + a \text{cosect})(-a \text{sin}t)}{(a \text{cost})^3}$
\n $\Rightarrow \frac{d^2y}{dx^2} = \frac{-a^2 (\text{cos}^2 t + \text{sin}^2 t) - a^2 \text{cot}^2 t + a^2}{a^3 \text{cos}^3 t}$
\n $\Rightarrow \frac{d^2y}{dx^2} = \frac{1}{a \text{sin}^2 t \text{ cost}}$

45. Question

If x = a (cos t + t sin t) and y = a (sin t - t cos t), then find the value of $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{4}$

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d}{dx} \cos x = \sin x$
\n(iii) $\frac{d}{dx} \sin x = -\cos x$
\n(iv) $\frac{d}{dx} x^n = nx^{n-1}$

(v) chain rule
$$
\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}
$$

\n(vi) parameteric forms $\frac{dy}{dx} = \frac{\frac{dy}{dx}}{\frac{dx}{dt}}$
\nGiven: -
\nx = a (cost + t sin t) and y = a (sin t - t cos t)
\n $\frac{dy}{dt} = acost - acost + at sint = at sint$
\n $\Rightarrow \frac{d^2y}{dt^2} = atcost + asint$
\n $\Rightarrow \frac{d^2x}{dt^2} = -asint + acost$
\n $\Rightarrow \frac{d^2y}{dt^2} = -at sint + acost$
\n $\Rightarrow \frac{d^2y}{dx^2} = \frac{\frac{dx}{dt} \frac{d^2y}{dt^2} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}$
\n $\Rightarrow \frac{d^2y}{dx^2} = \frac{atcost(atcost + asint) - (-atsint + acost)(atsint)}{(acost)^3}$
\nPutting $t = \frac{\pi}{4}$

$$
\left(\frac{d^2y}{dx^2}\right)_{t=\frac{\pi}{4}} = \frac{1}{a\cos^3\frac{\pi}{4}\cdot a\frac{\pi}{4}} = \frac{8\sqrt{2}}{\pi a}
$$

46. Question

If
$$
x = a \left(\cos t + \log \tan \frac{t}{2} \right)
$$
, $y = a \sin t$, evaluate $\frac{d^2y}{dx^2}$ at $t = \frac{\pi}{3}$

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d}{dx} \cos x = \sin x$
\n(iii) $\frac{d}{dx} \sin x = -\cos x$
\n(iv) $\frac{d}{dx} x^n = nx^{n-1}$
\n(v) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$

(vi) parameteric forms
$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
$$

Given: –

$$
x = a(\text{cost} + \log \tan \frac{t}{2}), y = \text{sin}t
$$

Differentiating with respect to t ,we have

$$
\Rightarrow \frac{dx}{dt} = -a\sin t + a\frac{1}{\tan\frac{t}{2}} \times \sec^2\left(\frac{t}{2}\right) \times \frac{1}{2}
$$

\n
$$
\Rightarrow \frac{dx}{dt} = -a\sin t + a\frac{1}{\frac{\sin(\frac{t}{2})}{\cos(\frac{t}{2})}} \times \frac{1}{\cos^2\frac{t}{2}} \times \frac{1}{2}
$$

\n
$$
\Rightarrow \frac{dx}{dt} = -a\sin t + a\frac{1}{2\sin(\frac{t}{2})\cos(\frac{t}{2})}
$$

\n
$$
\Rightarrow \frac{dx}{dt} = -a\sin t + a\frac{1}{\sin t} = -a\sin t + a\csc t
$$

\nNow find the value of $\frac{dy}{dt}$
\n
$$
\frac{dy}{dt} = a\cos t
$$

\n
$$
\Rightarrow \frac{d^2y}{dt^2} = -a\sin t
$$

\n
$$
\Rightarrow \frac{d^2y}{dt^2} = \frac{\frac{dx}{dt} \frac{d^2y}{dt^2} - \frac{dy}{dt} \frac{d^2x}{dt^2}}{\left(\frac{dx}{dt}\right)^3}
$$

\n
$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{-a\sin t(-a\sin t + a\csc t) - (-a\cos t - a\csc t\cot t)(-a\cost)}{(a\csc t - a\sin t)^3}
$$

\n
$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{a^2(\cos^2 t + \sin^2 t) + a^2\cot^2 t - a^2}{(a\csc t - a\sin t)^3}
$$

\n
$$
\Rightarrow \frac{d^2y}{dx^2} = \frac{\sin t}{a\cos^4 t}
$$

\n
$$
\left(\frac{d^2y}{dx^2}\right)_{t = \frac{\pi}{3}} = \frac{\sin \frac{\pi}{3}}{a\cos^4 \frac{\pi}{3}} = \frac{8\sqrt{3}}{a}
$$

47. Question

If x = a (cos 2t + 2t sin 2t) and y = a (sin 2t - 2t cos 2t), then find $\frac{d^2y}{dx^2}$.

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d}{dx} \cos x = \sin x$
\n(iii) $\frac{d}{dx} \sin x = -\cos x$
\n(iv) $\frac{d}{dx} x^n = nx^{n-1}$
\n(v) chain rule $\frac{df}{dx} = \frac{d(vou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\n(vi) parameteric forms $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
\nGiven: $-x = a (\cos 2t + 2t \sin 2t)$
\n $\Rightarrow \frac{dx}{dt} = -2a \sin 2t + 2a \sin 2t + 4a \cos 2t = 4a \cos 2t$
\nand $y = a (\sin 2t - 2t \cos 2t)$
\n $\Rightarrow \frac{dy}{dt} = 2a \cos 2t - 2a \cos 2t + 4a \sin 2t = 4a \sin 2t$
\n $\Rightarrow \frac{dy}{dx} = \frac{dt}{dx} \times \frac{dy}{dt} = \frac{\sin 2t}{\cos 2t} = \tan 2t$
\n $\Rightarrow \frac{d^2y}{dx^2} = \frac{d(\tan 2t)}{dx}$
\n $\Rightarrow \frac{d^2y}{dx^2} = 2 \sec^2 2t \frac{d(2t)}{dx}$
\n $\Rightarrow \frac{d^2y}{dx^2} = \frac{\sec^3 2t}{2a}$

48. Question

If x = 3 cot t - 2 cos³ t, y = 3 sin t - 2 sin³ t, find
$$
\frac{d^2y}{dx^2}
$$
.

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d}{dx} \cos x = \sin x$
\n(iii) $\frac{d}{dx} \sin x = -\cos x$

(iv)
$$
\frac{d(cotx)}{dx} = -cosec^2x
$$

\n(v) $\frac{d}{dx}x^n = nx^{n-1}$
\n(vi) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\n(vii) parameteric forms $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$

given: –

$$
x = 3 \cot t - 2 \cos^3 t
$$
, $y = 3 \sin t - 2 \sin^3 t$

differentiating both w.r.t t

$$
\frac{dx}{dt} = -3\sin t - 6\cos^2 t (-\sin t)
$$

 $\frac{dx}{dt} = -3\sin t + 6\cos^2 t \sin t$

And $y = 3\sin t - 2\sin^3 t$

differentiating both w.r.t t

$$
\frac{dy}{dt} = 3\cos t - 6\sin^2 t \cos t
$$

Now,

$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
$$
\n
$$
\Rightarrow \frac{dy}{dx} = \frac{\cos t - 2\sin^2 t \cos t}{-\sin t + 2\cos^2 t \sin t}
$$
\n
$$
\Rightarrow \frac{dy}{dx} = \frac{\cos t [1 - 2\sin^2 t]}{\sin t [2\cos^2 t - 1]}
$$
\n
$$
\Rightarrow \frac{dy}{dx} = \cot t
$$

differentiating both w.r.t x

$$
\frac{d^2 y}{dx^2} = \frac{d(cot x)}{dx} = -cosec^2 x
$$

49. Question

If x = a sin t - b cos t, y = a cos t + b sin t, prove that $\frac{d^2y}{dx^2} = -\frac{x^2 + y^2}{y^3}$.

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$

(ii)
$$
\frac{d}{dx} \cos x = \sin x
$$

\n(iii) $\frac{d}{dx} \sin x = -\cos x$
\n(iv) $\frac{d}{dx} x^n = nx^{n-1}$
\n(v) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\n(vi) parameteric forms $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
\nGiven: -

 $x =$ asint - bcost, $y =$ accost + bsint

differentiating both w.r.t t

$$
\frac{dx}{dt} = acost + b sint \frac{dy}{dt} = -asint + bcost
$$

$$
\Rightarrow \frac{dx}{dt} = y, \Rightarrow \frac{dy}{dt} = x
$$

Dividing both

$$
\Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = -\frac{x}{y}
$$

Differentiating w.r.t t

$$
\Rightarrow \frac{\mathrm{d}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)}{\mathrm{d}t} = -\frac{y\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) - x\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)}{y^2}
$$

Putting the value

$$
\Rightarrow \frac{d\left(\frac{dy}{dx}\right)}{dt} = -\frac{\{y^2 + x^2\}}{y^2}
$$

Dividing them

$$
\Rightarrow \frac{d^2y}{dx^2} = -\frac{\{y^2 + x^2\}}{y^2 \cdot y} = -\frac{\{x^2 + y^2\}}{y^3}
$$

Hence proved.

50. Question

Find A and B so that y = A sin 3x + Bcos 3x satisfies the equation $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 10 \cos 3x$.

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
(ii) $\frac{d}{dx} \cos x = \sin x$

(iii)
$$
\frac{d}{dx} \sin x = -\cos x
$$

\n(iv) chain rule $\frac{df}{dx} = \frac{d(wu)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: -
\n $y = A\sin 3x + B\cos 3x$
\ndifferentiating w.r.t x
\n $\frac{dy}{dx} = 3A\cos 3x + 3B(-\sin 3x)$
\nAgain differentiating w.r.t x
\n $\frac{d^2y}{dx^2} = 3A(-\sin 3x).3 - 3B(\cos 3x).3$
\n $\Rightarrow \frac{d^2y}{dx^2} = -9(A\sin 3x + B\cos 3x) = -9y$
\nNow adding
\n $\frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y$
\n $\Rightarrow \frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y = -9y + 4(3A\cos 3x - 3B\sin 3x) + 3y$
\n $\Rightarrow \frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y = 12(A\cos 3x - b\sin 3x) - 6(A\sin 3x + B\cos 3x)$
\n $\Rightarrow \frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y = (12A - 6B)\cos 3x - (12B + 6A)\sin 3x$
\nBut given,
\n $\frac{d^2y}{dx^2} + \frac{4dy}{dx} + 3y = 10\cos 3x$
\n $\Rightarrow 12A - 6B = 10$
\n $\Rightarrow -(12B + 6A) = 0$
\n $\Rightarrow 6A = -12B$
\nPutting A
\n $\Rightarrow 12(-2B) - 63 = 10$
\n $\Rightarrow 2AB = -2B$
\nPutting A
\n $\Rightarrow 12(-2B) - 63 = 10$
\n $\Rightarrow B = -\frac{1}{3}$
\n $A = -2 \times -\frac{1}{3} = \frac{2}{3}$
\nAnd A = $\frac{2}{3}B = -\frac{1}{3}$

51. Question

If
$$
y = Ae^{-kt} \cos(pt + c)
$$
, prove that $\frac{d^2y}{dt^2} + 2k \frac{dy}{dt} + n^2y = 0$, where $n^2 = p^2 + k^2$.

Answer

Formula: –

(i) $\frac{dy}{dx}$ = y₁ and $\frac{d^2y}{dx^2}$ = y₂ (ii) $\frac{d}{dx}e^{ax} = ae^{ax}$ (iii) $\frac{d}{dx}$ cosx = sinx $(iv) \frac{d}{dx} \sin x = -\cos x$ (v) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$ (vi) parameteric forms $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ Given: – $y = A e^{-kt} \cos(pt + c)$ Differentiating w.r.t t $\frac{dy}{dt} = A (e^{-kt}(-sin(pt + c).p) + (cos(pt + c))(-re^{-kt})$ $\Rightarrow \frac{dy}{dt} = -Ape^{-kt}(pt + c) - kAe^{-kt}\cos(pt + c)$ $\Rightarrow \frac{dy}{dt} = -Ape^{-kt}\sin(pt + c) - ky$ Differentiating w.r.t t $\frac{d^2y}{dt^2} = Apke^{-kt}\sin(pt + c) - p^2y - 2ky_1 + ky_1$ $\Rightarrow \frac{d^2y}{dt^2} = Apke^{-kt}\sin(pt + c) - p^2y - 2ky_1 - kApe^{-kt}\sin(pt + c) - k^2y$ $\Rightarrow \frac{d^2y}{dt^2} = -(p^2 + k^2)y - 2k\frac{dy}{dx}$ $\Rightarrow \frac{d^2y}{dt^2} + 2k\frac{dy}{dx} + n^2y = 0$ Hence proved

52. Question

If
$$
y = x^n
$$
 { $a cos (log x) + b sin (log x)$ }, prove that $x^2 \frac{d^2y}{dx^2} + (1-2n) \frac{dy}{dx} + (1+n^2)y = 0$

Answer

Formula: –

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
\n(ii) $\frac{d}{dx} \cos x = \sin x$
\n(iii) $\frac{d}{dx} \sin x = -\cos x$
\n(iv) $\frac{d(\log x)}{dx} = \frac{1}{x}$
\n(v) $\frac{d}{dx} x^n = nx^{n-1}$
\n(vi) chain rule $\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
\nGiven: $-y = x^n(\arccos(\log x) + \sin(\log x))$
\n $\Rightarrow y = ax^n \cos(\log x) + bx^n \sin(\log x)$
\n $\frac{dy}{dx} = \arctan x^{n-1} \cos(\log x) - ax^{n-1} \sin(\log x) + bx^{n-1} \sin(\log x) + bx^{n-1} \cos(\log x)$
\n $\Rightarrow \frac{dy}{dx} = x^{n-1} \cos(\log x) (\ln x) + x^{n-1} \sin(\log x) (\ln x) - \sin(\log x) (\ln x)$
\n $\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}(x^{n-1} \cos(\log x) (\ln x) + x^{n-1} \sin(\log x) (\ln x) - \sin(\log x) (\ln x)$
\n $\Rightarrow \frac{d^2y}{dx^2} = (\ln x + b)[(n-1)x^{n-2} \cos(\log x) - x^{n-2} \sin(\log x)] + (\ln x - \ln x) \frac{dy}{dx} + (1 + \ln^2)y$

 $= x^{n}$ (na + b)[(n - 1) cos(logx) - sin (logx)] + (bn - a) x^{n} [(n - 1) sin(logx) + cos(logx)] + (1 - 2n) x^{n} - $\frac{1}{1}$ cos(logx)(na + b) + (1 - 2n)x^{n - 1}sin(logx)(bn - a) + a(1 + n²)xⁿcos(logx) + bxⁿ(1 + n²)sin(logx)

$$
\Rightarrow x^2 \frac{d^2y}{dx^2} + (1 - 2n) \frac{dy}{dx} + (1 + n^2)y = 0
$$

53. Question

If
$$
y = a \{x + \sqrt{x^2 + 1}\}^n + b\{x - \sqrt{x^2 + 1}\}^{-n}
$$
, prove that $(x^2 - 1) \frac{d^2y}{dx^2} + x \frac{dy}{dx} - n^2 = 0$.

Answer

(i)
$$
\frac{dy}{dx} = y_1
$$
 and $\frac{d^2y}{dx^2} = y_2$
(ii) $\frac{d}{dx}x^n = nx^{n-1}$

(iii) chain rule
$$
\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}
$$

\nGiven: -
\n $y = a \{x + \sqrt{x^2 + 1}\}^n + b \{x - \sqrt{x^2 + 1}\}^{-n}$
\n $\frac{dy}{dx} = na\{x + x^2 + 1\}^{n-1} \left[1 + x(x^2 + 1)^{-\frac{1}{2}}\right]$
\n $- nb \{x - \sqrt{x^2 + 1}\}^{-n-1} \left[1 - x(x^2 + 1)^{-\frac{1}{2}}\right]$
\n $\Rightarrow \frac{dy}{dx} = \frac{na\{x + x^2 + 1\}^n}{\sqrt{x^2 + 1}} + \frac{nb\{x + x^2 + 1\}^{-n}}{\sqrt{x^2 + 1}}$
\n $\Rightarrow \frac{xdy}{dx} = \frac{nx}{\sqrt{x^2 + 1}} \frac{dy}{x}$
\n $\Rightarrow \frac{d^2y}{dx^2} = \frac{nx}{\sqrt{x^2 + 1}} \frac{dy}{dx} + y \left[\frac{\sqrt{x^2 + 1} - x^2(x^2 + 1)^{-\frac{1}{2}}}{x^2 + 1}\right]$
\n $\Rightarrow \frac{d^2y}{dx^2} = \frac{n^2x^2}{x^2 + 1} + y \left[\frac{1}{(x^2 + 1)\sqrt{x^2 + 1}}\right]$
\n $\Rightarrow (x^2 - 1) \frac{d^2y}{dx^2} = \frac{n^2x^4(\sqrt{x^2 + 1}) + x^2y}{x^2 + 1\sqrt{x^2 + 1}} - \frac{n^2x^2(\sqrt{x^2 + 1}) + y}{x^2 + 1(\sqrt{x^2 + 1})}$

Now

$$
\Rightarrow (x^{2} - 1)\frac{d^{2}y}{dx^{2}} + \frac{xdy}{dx} - ny
$$

=
$$
\frac{n^{2}x^{4}(\sqrt{x^{2} + 1}) + x^{2}y}{(x^{2} + 1)\sqrt{x^{2} + 1}} - \frac{n^{2}x^{2}(\sqrt{x^{2} + 1}) + y}{(x^{2} + 1)(\sqrt{x^{2} + 1})} - ny = 0
$$

1 A. Question

Find the second order derivatives of each of the following functions:

x³ + tan x

Answer

Basic idea:

√Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = x^3 + \tan x$

We have to find $\frac{d^2y}{dx^2}$

$$
As\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So lets first find $\frac{dy}{dx}$ and differentiate it again.

$$
\therefore \frac{dy}{dx} = \frac{d}{dx}(x^3 + \tan x) = \frac{d}{dx}(x^3) + \frac{d}{dx}(\tan x)
$$

[$\because \frac{d}{dx}(\tan x) = \sec^2 x \& \frac{d}{dx}(x^n) = \ln x^{n-1}]$
= $3x^2 + \sec^2 x$
 $\therefore \frac{dy}{dx} = 3x^2 + \sec^2 x$

Differentiating again with respect to x :

 $\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(3x^2 + \sec^2 x\right) = \frac{d}{dx} (3x^2) + \frac{d}{dx} (\sec^2 x)$ $\frac{d^2y}{dx^2} = 6x + 2 \sec x \sec x \tan x$

[differentiated sec²x using chain rule, let t = sec x and z = $t^2 \cdot \frac{dz}{dt} = \frac{dz}{dt} \times \frac{dt}{dt}$]

$$
\frac{d^2y}{dx^2} = 6x + 2\sec^2 x \tan x
$$

1 B. Question

Find the second order derivatives of each of the following functions:

sin (log x)

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = \sin(\log x)$

We have to find $\frac{d^2y}{dx^2}$

$$
\mathsf{AS}\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=\frac{\mathrm{d}}{\mathrm{d}x}\big(\frac{\mathrm{d}y}{\mathrm{d}x}\big)
$$

So lets first find dy/dx and differentiate it again.

 $\therefore \frac{dy}{dx} = \frac{d}{dx}(\sin(\log x))$

differentiating $sin(logx)$ using the chain rule,

let, t = log x and y = sin t
\n
$$
\therefore \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}
$$
 [using chain rule]
\n
$$
\frac{dy}{dx} = \cos t \times \frac{1}{x}
$$

\n
$$
\frac{dy}{dx} = \cos(\log x) \times \frac{1}{x} [\because \frac{d}{dx} (\log x) = \frac{1}{x} \& \frac{d}{dx} (\sin x) = \cos x]
$$

\nDifferentiating again with respect to x:

 $rac{d}{dx}$ $\left(\frac{dy}{dx}\right) = \frac{d}{dx}$ (cos(logx) $\times \frac{1}{x}$) $\frac{d^2y}{dx^2} = \cos(\log x) \times \frac{-1}{x^2} + \frac{1}{x} \times \frac{1}{x} (-\sin(\log x))$

[using product rule of differentiation]

$$
=\frac{-1}{x^2}\cos(\log x)-\frac{1}{x^2}\sin{(\log x)}
$$

$$
\frac{d^2y}{dx^2} = \frac{-1}{x^2}\cos(\log x) - \frac{1}{x^2}\sin(\log x)
$$

1 C. Question

Find the second order derivatives of each of the following functions:

log (sin x)

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = log (sin x)$

We have to find $\frac{d^2y}{dx^2}$

$$
\mathsf{AS}\, \frac{\mathsf{d}^2 y}{\mathsf{d} x^2} = \frac{\mathsf{d}}{\mathsf{d} x} \big(\frac{\mathsf{d} y}{\mathsf{d} x} \big)
$$

So lets first find dy/dx and differentiate it again.

$$
\frac{dy}{dx} = \frac{d}{dx} (\log (\sin x))
$$

differentiating $sin(logx)$ using cthe hain rule,

let, $t = \sin x$ and $y = \log t$

$$
\therefore \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} \text{ [using chain rule]}
$$

$$
\frac{dy}{dx} = \cos x \times \frac{1}{t}
$$

$$
\left[\because \frac{d}{dx} \log x = \frac{1}{x} \& \frac{d}{dx} (\sin x) = \cos x \right]
$$

$$
\frac{dy}{dx} = \frac{\cos x}{\sin x} = \cot x
$$

Differentiating again with respect to x:

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(cot x\right)
$$
\n
$$
\frac{d^2y}{dx^2} = -cosec^2x \left[\because \frac{d}{dx}cot x = -cosec^2x \right]
$$
\n
$$
\frac{d^2y}{dx^2} = -cosec^2x
$$

1 D. Question

Find the second order derivatives of each of the following functions:

e ^x sin 5x

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = e^x \sin 5x$

We have to find $\frac{d^2y}{dx^2}$

As,
$$
\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So lets first find dy/dx and differentiate it again.

 $\therefore \frac{dy}{dx} = \frac{d}{dx} (e^x \sin 5x)$

Let $u = e^x$ and $v = \sin 5x$

As, $y = uv$

∴ Using product rule of differentiation:

 $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

$$
\therefore \frac{dy}{dx} = e^{x} \frac{d}{dx} (\sin 5x) + \sin 5x \frac{d}{dx} e^{x}
$$

$$
\frac{dy}{dx} = 5e^{x} \cos 5x + e^{x} \sin 5x
$$

[$\because \frac{d}{dx} (\sin ax) = a \cos ax$, where a is any constant $8\frac{d}{dx} e^{x} = e^{x}$]

Again differentiating w.r.t x:

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} (5e^x \cos 5x + e^x \sin 5x)
$$

$$
= \frac{d}{dx} (5e^x \cos 5x) + \frac{d}{dx} (e^x \sin 5x)
$$

Again using the product rule :

$$
\frac{d^2y}{dx^2} = e^x \frac{d}{dx} (\sin 5x) + \sin 5x \frac{d}{dx} e^x + 5e^x \frac{d}{dx} (\cos 5x) + \cos 5x \frac{d}{dx} (5e^x)
$$

$$
\frac{d^2y}{dx^2} = 5e^x \cos 5x - 25e^x \sin 5x + e^x \sin 5x + 5e^x \cos 5x \left[\because \frac{d}{dx} (\cos ax) = -a \sin ax, a \text{ is any constant} \right]
$$

 $\frac{d^2y}{dx^2} = 10e^x \cos 5x - 24e^x \sin 5x$

1 E. Question

Find the second order derivatives of each of the following functions:

e^{6x} cos 3x

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, y = e^{6x} cos 3x

We have to find $\frac{d^2y}{dx^2}$

As,
$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So lets first find dy/dx and differentiate it again.

$$
\therefore \frac{dy}{dx} = \frac{d}{dx} (e^{6x} \cos 3x)
$$

Let $u = e^{6x}$ and $v = \cos 3x$

As,
$$
y = uv
$$

∴ Using product rule of differentiation:

$$
\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}
$$

\n
$$
\therefore \frac{dy}{dx} = e^{6x} \frac{d}{dx} (\cos 3x) + \cos 3x \frac{d}{dx} e^{6x}
$$

\n
$$
\frac{dy}{dx} = -3e^{6x} \sin 3x + 6e^{6x} \cos 3x \left[\because \frac{d}{dx} (\cos ax) = -a \sin ax, a \text{ is any constant } \& \frac{d}{dx} e^{ax} = ae^{x} \right]
$$

Again differentiating w.r.t x:

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(-3e^{6x} \sin 3x + 6e^{6x} \cos 3x\right)
$$

$$
= \frac{d}{dx} \left(-3e^{6x} \sin 3x\right) + \frac{d}{dx} \left(6e^{6x} \cos 3x\right)
$$

Again using the product rule :

$$
\frac{d^2y}{dx^2} = -3e^{6x}\frac{d}{dx}(\sin 3x) -3\sin 3x\frac{d}{dx}e^{6x} + 6e^{6x}\frac{d}{dx}(\cos 3x) + \cos 3x\frac{d}{dx}(\cos^6 x)
$$

$$
\frac{d^2y}{dx^2} = -9e^{6x}\cos 3x - 18e^{6x}\sin 3x - 18e^{6x}\sin 3x + 36e^{6x}\cos 3x
$$

$$
\frac{d^2y}{dx^2} = 27e^{6x}\cos 3x - 36e^{6x}\sin 3x
$$

1 F. Question

Find the second order derivatives of each of the following functions:

x ³ log x

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx} (uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = x^3 \log x$

We have to find $\frac{d^2y}{dx^2}$

$$
\mathsf{AS}\, \frac{\mathsf{d}^2 y}{\mathsf{d} x^2} = \frac{\mathsf{d}}{\mathsf{d} x} \big(\frac{\mathsf{d} y}{\mathsf{d} x} \big)
$$

So lets first find dy/dx and differentiate it again.

$$
\therefore \frac{dy}{dx} = \frac{d}{dx}(x^3 \log x)
$$

Let $u = x^3$ and $v = \log x$

∴ Using product rule of differentiation:

$$
\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}
$$

$$
\therefore \frac{dy}{dx} = x^3 \frac{d}{dx} (\log x) + \log x \frac{d}{dx} x^3
$$

$$
\frac{dy}{dx} = 3x^2 \log x + \frac{x^3}{x}
$$

$$
[\because \frac{d}{dx} (\log x) = \frac{1}{x} \text{ and } \frac{d}{dx} (x^n) = nx^{n-1}]
$$

Again differentiating w.r.t x:

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} (3x^2 \log x + x^2)
$$

$$
= \frac{d}{dx} (3x^2 \log x) + \frac{d}{dx} (x^2)
$$

Again using the product rule :

$$
\frac{d^2y}{dx^2} = 3\log x \frac{d}{dx} x^2 + 3x^2 \frac{d}{dx} \log x + \frac{d}{dx} x^2
$$

\n
$$
[\because \frac{d}{dx} (\log x) = \frac{1}{x} \text{ and } \frac{d}{dx} (x^n) = nx^{n-1}]
$$

\n
$$
\frac{d^2y}{dx^2} = 6x \log x + \frac{3x^2}{x} + 2x
$$

\n
$$
\frac{d^2y}{dx^2} = 6x \log x + 5x
$$

1 G. Question

Find the second order derivatives of each of the following functions:

tan⁻¹ x

Answer

Basic idea:

√Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = tan^{-1} x$

We have to find $\frac{d^2y}{dx^2}$

$$
\mathsf{AS}\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=\frac{\mathrm{d}}{\mathrm{d}x}\big(\frac{\mathrm{d}y}{\mathrm{d}x}\big)
$$

So lets first find dy/dx and differentiate it again.

$$
\therefore \frac{dy}{dx} = \frac{d}{dx} (\tan^{-1} x) \left[\because \frac{d}{dx} (\tan^{-1} x) = \frac{1}{1 + x^2} \right]
$$

$$
\therefore \frac{dy}{dx} = \frac{1}{1 + x^2} \left[\because \frac{d}{dx} (\tan^{-1} x) = \frac{1}{1 + x^2} \right]
$$

Differentiating again with respect to x :

$$
\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{1}{1+x^2}\right)
$$

Differentiating $\frac{1}{1+x^2}$ using chain rule,

let $t = 1 + x^2$ and $z = 1/t$

$$
\frac{dz}{dx} = \frac{dz}{dt} \times \frac{dt}{dx} \text{ [from chain rule of differentiation]}
$$
\n
$$
\frac{dz}{dx} = \frac{-1}{t^2} \times 2x = -\frac{2x}{1+x^2} \left[\because \frac{d}{dx} (x^n) = nx^{n-1} \right]
$$
\n
$$
\frac{d^2y}{dx^2} = -\frac{2x}{(1+x^2)^2}
$$

1 H. Question

Find the second order derivatives of each of the following functions:

x cos x

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = x \cos x$

We have to find $\frac{d^2y}{dx^2}$

$$
As \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So lets first find dy/dx and differentiate it again.

$$
\frac{dy}{dx} = \frac{d}{dx} (X \cos X)
$$

Let $u = x$ and $v = \cos x$

As, $y = uv$

∴ Using product rule of differentiation:

$$
\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}
$$

$$
\therefore \frac{dy}{dx} = x \frac{d}{dx} (\cos x) + \cos x \frac{d}{dx} x
$$

$$
\frac{dy}{dx} = -x \sin x + \cos x
$$

$$
[\because \frac{d}{dx} (\cos x) = -\sin x \text{ and } \frac{d}{dx} (x^n) = nx^{n-1}]
$$

Again differentiating w.r.t x:

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} (-x\sin x + \cos x)
$$

$$
= \frac{d}{dx} (-x\sin x) + \frac{d}{dx}\cos x
$$

Again using the product rule :

$$
\frac{d^2y}{dx^2} = -x \frac{d}{dx} \sin x + \sin x \frac{d}{dx}(-x) + \frac{d}{dx} \cos x
$$

\n
$$
[\because \frac{d}{dx}(\sin x) = \cos x \text{ and } \frac{d}{dx}(x^n) = nx^{n-1}]
$$

\n
$$
\frac{d^2y}{dx^2} = -x \cos x - \sin x - \sin x
$$

\n
$$
\frac{d^2y}{dx^2} = -x \cos x - 2 \sin x
$$

1 I. Question

Find the second order derivatives of each of the following functions:

log (log x)

Answer

√Basic Idea: Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = log (log x)$

We have to find $\frac{d^2y}{dx^2}$

As,
$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So lets first find dy/dx and differentiate it again.

$$
\therefore \frac{dy}{dx} = \frac{d}{dx}(\log \log x)
$$

Let $y = log t$ and $t = log x$

Using chain rule of differentiation:

$$
\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}
$$
\n
$$
\therefore \frac{dy}{dx} = \frac{1}{t} \times \frac{1}{x} = \frac{1}{x \log x} \left[\because \frac{d}{dx} (\log x) = \frac{1}{x} \right]
$$

Again differentiating w.r.t x:

As, $\frac{dy}{dx} = u \times v$

Where $u = \frac{1}{x}$ and $v = \frac{1}{\log x}$

∴ using product rule of differentiation:

$$
\frac{d^2y}{dx^2} = u \frac{dv}{dx} + v \frac{du}{dx}
$$

\n
$$
\frac{d^2y}{dx^2} = \frac{1}{x} \frac{d}{dx} \left(\frac{1}{\log x}\right) + \frac{1}{\log x} \frac{d}{dx} \left(\frac{1}{x}\right) \left[\text{ use chain rule to find } \frac{d}{dx} \left(\frac{1}{\log x}\right)\right]
$$

\n
$$
\frac{d^2y}{dx^2} = -\frac{1}{x^2 (\log x)^2} - \frac{1}{x^2 \log x} \left[\frac{d}{dx} (\log x) = \frac{1}{x} \text{ and } \frac{d}{dx} (x^n) = nx^{n-1}\right]
$$

\n
$$
\therefore \frac{d^2y}{dx^2} = -\frac{1}{x^2 (\log x)^2} - \frac{1}{x^2 \log x}
$$

2. Question

If y=e^{-x} cos x, show that :
$$
\frac{d^2y}{dx^2} = 2e^{-x} \sin x.
$$

Answer

Basic idea:

√Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,

y=e^{-x} cos x

TO prove :

$$
\frac{d^2y}{dx^2} = 2e^{-x} \sin x.
$$

Clearly from the expression to be proved we can easily observe that we need to just find the second derivative of given function.

Given, $y = e^{-x} \cos x$

We have to find $\frac{d^2y}{dx^2}$

As,
$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So lets first find dy/dx and differentiate it again.

 $\therefore \frac{dy}{dx} = \frac{d}{dx} (e^{-x} \cos x)$

Let $u = e^{-x}$ and $v = \cos x$

As,
$$
y = u * v
$$

∴ using product rule of differentiation:

$$
\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}
$$

\n
$$
\therefore \frac{dy}{dx} = e^{-x} \frac{d}{dx} (\cos x) + \cos x \frac{dy}{dx} e^{-x}
$$

\n
$$
\frac{dy}{dx} = -e^{-x} \sin x - e^{-x} \cos x
$$

\n
$$
[\because \frac{d}{dx} (\cos x) = -\sin x \& \frac{d}{dx} e^{-x} = -e^{-x}]
$$

Again differentiating w.r.t x:

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(-e^{-x} \sin x - e^{-x} \cos x\right)
$$

$$
= \frac{d}{dx} \left(-e^{-x} \sin x\right) - \frac{d}{dx} \left(e^{-x} \cos x\right)
$$

Again using the product rule :

$$
\frac{d^2y}{dx^2} = -e^{-x}\frac{d}{dx}(\sin x) - \sin x\frac{d}{dx}e^{-x} - e^{-x}\frac{d}{dx}(\cos x) - \cos x\frac{d}{dx}(e^{-x})
$$

$$
\frac{d^2y}{dx^2} = -e^{-x}\cos x + e^{-x}\sin x + e^{-x}\sin x + e^{-x}\cos x
$$

$$
[\because \frac{d}{dx}(\cos x) = -\sin x, \frac{d}{dx}e^{-x} = -e^{-x}]
$$

$$
\frac{d^2y}{dx^2} = 2e^{-x}\sin x \dots \text{proved}
$$

3. Question

If y = x + tan x, show that:
$$
\cos^2 x \frac{d^2 y}{dx^2} - 2y - 2x = 0
$$

Answer

Basic idea:
√Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = x + \tan x$ equation 1

As we have to prove: cos^2

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

$$
\mathsf{AS}\, \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{\mathrm{d}}{\mathrm{d} x} \Big(\frac{\mathrm{d} y}{\mathrm{d} x} \Big)
$$

So lets first find dy/dx and differentiate it again.

$$
\therefore \frac{dy}{dx} = \frac{d}{dx}(x + \tan x) = \frac{d}{dx}(x) + \frac{d}{dx}(\tan x) \quad [\because \frac{d}{dx}(\tan x) = \sec^2 x \& \frac{d}{dx}(x^n) = nx^{n-1}]
$$
\n
$$
= 1 + \sec^2 x
$$
\n
$$
\therefore \frac{dy}{dx} = 1 + \sec^2 x
$$

Differentiating again with respect to x :

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(1 + \sec^2 x\right) = \frac{d}{dx} (1) + \frac{d}{dx} (\sec^2 x)
$$

$$
\frac{d^2y}{dx^2} = 0 + 2 \sec x \sec x \tan x
$$

[differentiated sec²x using chain rule, let t = sec x and z = \hat{f} $\therefore \frac{dz}{f} = \frac{dz}{f} \times \frac{dt}{f}$]

$$
\frac{d^2y}{dx^2} = 2\sec^2 x \tan x \quad \dots \dots \dots \text{equation 2}
$$

As we got an expression for the second order, as we need cos²x term with $\frac{1}{2}$

Multiply both sides of equation 1 with $cos²x$:

∴ we have,

$$
\cos^{2} x \frac{d^{2} y}{dx^{2}} = 2 \cos^{2} x \sec^{2} x \tan x \quad [\because \cos x \times \sec x = 1]
$$

$$
\cos^{2} x \frac{d^{2} y}{dx^{2}} = 2 \tan x
$$

From equation 1:

tan x = y - x_x.
$$
\cos^2 x \frac{d^2 y}{dx^2} = 2(y - x)
$$

\n $\therefore \cos^2 x \frac{d^2 y}{dx^2} - 2y + 2x = 0$ proved

If
$$
y = x^3 \log x
$$
, prove that
$$
\frac{d^4y}{dx^4} = \frac{6}{x}.
$$

Answer

Basic idea:

√Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

As we have to prove : $\frac{d^4y}{dx^4} = \frac{6}{x}$

We notice a third order derivative in the expression to be proved so first take the step to find the third order derivative.

Given, $y = x^3 \log x$

Let's find $-\frac{d^4y}{dx^4}$

$$
\mathsf{AS}\,\frac{\mathrm{d}^4y}{\mathrm{d}x^4}=\frac{\mathrm{d}}{\mathrm{d}x}\big(\,\frac{\mathrm{d}^3y}{\mathrm{d}x^3}\big)=\frac{\mathrm{d}}{\mathrm{d}x}\frac{\mathrm{d}}{\mathrm{d}x}\bigg(\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\bigg)=\frac{\mathrm{d}}{\mathrm{d}x}\Bigg(\frac{\mathrm{d}}{\mathrm{d}x}\bigg(\frac{\mathrm{d}}{\mathrm{d}x}\bigg(\frac{\mathrm{d}y}{\mathrm{d}x}\bigg)\bigg)\Bigg)
$$

So lets first find dy/dx and differentiate it again.

$$
\frac{dy}{dx} = \frac{d}{dx} (x^3 \log x)
$$

differentiating using product rule:

$$
\frac{dy}{dx} = x^3 \frac{d}{dx} \log x + \log x \frac{d}{dx} x^3
$$

$$
\frac{dy}{dx} = \frac{x^3}{x} + 3x^2 \log x
$$

$$
[\frac{d}{dx}(x^n) = nx^{n-1} \& \frac{d}{dx}(\log x) = \frac{1}{x}]
$$

$$
\frac{dy}{dx} = x^2 (1 + 3 \log x)
$$

Again differentiating using product rule:

$$
\frac{d^2y}{dx^2} = x^2 \frac{d}{dx} (1 + 3\log x) + (1 + 3\log x) \frac{d}{dx} x^2
$$

$$
\frac{d^2y}{dx^2} = x^2 \times \frac{3}{x} + (1 + 3\log x) \times 2x
$$

$$
[\frac{d}{dx}(x^n) = nx^{n-1} \& \frac{d}{dx}(\log x) = \frac{1}{x}]
$$

$$
\frac{d^2y}{dx^2} = x(5 + 6\log x)
$$

Again differentiating using product rule:

$$
\frac{d^3y}{dx^3} = x\frac{d}{dx}(5 + 6\log x) + (5 + 6\log x)\frac{d}{dx}x
$$

$$
\frac{d^3y}{dx^3} = x \times \frac{6}{x} + (5 + 6\log x)
$$

$$
[\frac{d}{dx}(x^n) = nx^{n-1} \& \frac{d}{dx}(\log x) = \frac{1}{x}]
$$

$$
\frac{d^3y}{dx^3} = 11 + 6\log x
$$

Again differentiating w.r.t x :

$$
\frac{d^4y}{dx^4} = \frac{6}{x} \dots \dots \text{ proved}
$$

5. Question

If y = log (sin x), prove that:
$$
\frac{d^3y}{dx^2} = 2\cos x \csc^3 x.
$$

Answer

Basic idea:

√Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx} (uv) = u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

As we have to prove:
$$
\frac{d^3y}{dx^2} = 2\cos x \csc^3 x
$$

We notice a third order derivative in the expression to be proved so first take the step to find the third order derivative.

Given, $y = log (sin x)$

Let's find $-\frac{d^3y}{dx^3}$

$$
\mathsf{AS}\,\frac{\text{d}^ay}{\text{d}x^3}=\frac{\text{d}}{\text{d}x}\!\!\left(\!\frac{\text{d}^2y}{\text{d}x^2}\!\right)\!=\frac{\text{d}}{\text{d}x}\!\!\left(\!\frac{\text{d}}{\text{d}x}\!\!\left(\!\frac{\text{d}y}{\text{d}x}\!\right)\!\right)
$$

So lets first find dy/dx and differentiate it again.

$$
\therefore \frac{dy}{dx} = \frac{d}{dx} (\log (\sin x))
$$

differentiating $sin(logx)$ using the chain rule,

let,
$$
t = \sin x
$$
 and $y = \log t$

$$
\therefore \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} \text{ [using chain rule]}
$$

$$
\frac{dy}{dx} = \cos x \times \frac{1}{t}
$$

$$
[\because \frac{d}{dx} \log x = \frac{1}{x} \& \frac{d}{dx} (\sin x) = \cos x]
$$

$$
\frac{dy}{dx} = \frac{\cos x}{\sin x} = \cot x
$$

Differentiating again with respect to x :

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \text{ (cotx)}
$$
\n
$$
\frac{d^2y}{dx^2} = -\csc^2x
$$
\n
$$
[\because \frac{d}{dx}\cot x = -\csc^2 x]
$$
\n
$$
\frac{d^2y}{dx^2} = -\csc^2 x
$$

Differentiating again with respect to x:

$$
\frac{d}{dx}\left(\frac{d^2y}{dx^2}\right) = \frac{d}{dx} (-\csc^2 x)
$$

using the chain rule and $\frac{d}{dx}$ cosec x = -cosec x cot x

$$
\frac{d^3y}{dx^3} = -2\csc x(-\csc x \cot x)
$$

= 2\csc²x \cot x = 2 \csc²x \frac{\cos x}{\sin x} [:: \cot x = \cos x/\sin x]
:.
$$
\frac{d^3y}{dx^3} = 2\csc^3 x \cos x \quad \quad \text{proved}
$$

6. Question

If y = 2 sin x + 3 cos x, show that:
$$
\frac{d^2y}{dx^2} + y = 0
$$

Answer

Basic idea:

√Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = 2\sin x + 3\cos x$ equation 1

As we have to prove : $\frac{d^2y}{dx^2} + y = 0$.

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

$$
\mathsf{AS}\,\frac{\mathrm{d}^2\,y}{\mathrm{d} x^2}=\frac{\mathrm{d}}{\mathrm{d} x}\big(\frac{\mathrm{d} y}{\mathrm{d} x}\big)
$$

So lets first find dy/dx and differentiate it again.

$$
\frac{dy}{dx} = \frac{d}{dx}(2\sin x + 3\cos x) = 2\frac{d}{dx}(\sin x) + 3\frac{d}{dx}(\cos x)
$$

[$\frac{d}{dx}(\sin x) = \cos x \& \frac{d}{dx}(\cos x) = -\sin x$]
= 2 cos x - 3 sin x

$$
\therefore \frac{dy}{dx} = 2\cos x - 3\sin x
$$

Differentiating again with respect to x :

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} (2\cos x - 3\sin x) = \frac{2d}{dx} \cos x - 3\frac{d}{dx} \sin x
$$

$$
\frac{d^2y}{dx^2} = -2\sin x - 3\cos x
$$

From equation 1 we have :

$$
y = 2 \sin x + 3 \cos x
$$

\n
$$
\therefore \frac{d^2 y}{dx^2} = -(2 \sin x + 3 \cos x) = -y
$$

\n
$$
\therefore \frac{d^2 y}{dx^2} + y = 0 \quad \dots \text{ proved}
$$

7. Question

If
$$
y = \frac{\log x}{x}
$$
, show that $\frac{d^2y}{dx^2} = \frac{2\log x - 3}{x^3}$.

Answer

Basic idea:

√Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given, $y = \frac{\log x}{x}$ equation 1

As we have to prove : $\frac{d^2y}{dx^2} = \frac{2\log x - 3}{x^2}$.

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

$$
As\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

k.

So, lets first find dy/dx and differentiate it again.

As y is the product of two functions u and v

Let $u = \log x$ and $v = 1/x$

Using product rule of differentiation:

$$
\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}
$$
\n
$$
\frac{d}{dx}\left(\frac{\log x}{x}\right) = \log x \frac{d}{dx} \frac{1}{x} + \frac{1}{x} \frac{d}{dx}\log x
$$
\n
$$
[\because \frac{d}{dx}(\log x) = \frac{1}{x} \& \frac{d}{dx}(x^n) = nx^{n-1}]
$$
\n
$$
\frac{dy}{dx} = -\frac{1}{x^2}\log x + \frac{1}{x^2}
$$
\n
$$
\frac{dy}{dx} = \frac{1}{x^2}(1 - \log x)
$$

Again using the product rule to find $\frac{d^2y}{dx^2}$:

$$
\frac{d^2y}{dx^2} = (1 - \log x) \frac{d}{dx} \frac{1}{x^2} + \frac{1}{x^2} \frac{d}{dx} (1 - \log x)
$$

\n[$\frac{d}{dx} (\log x) = \frac{1}{x} \& \frac{d}{dx} (x^n) = nx^{n-1}$]\n
\n= -2 $\left(\frac{1 - \log x}{x^3}\right) - \frac{1}{x^3}$
\n $\frac{d^2y}{dx^2} = \frac{2 \log x - 3}{x^3}$ proved

8. Question

If x = a sec
$$
\theta
$$
, y = b tan θ , prove that
$$
\frac{d^2y}{dx^2} = -\frac{b^4}{a^2y^3}.
$$

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then dy/d $\theta = f'(\theta)$ and dx/d $\theta = g'(\theta)$

We can write:
$$
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
$$

Given,

 $x = a$ sec θ equation 1

 $y = b \tan \theta$ equation 2

to prove:
$$
\frac{d^2y}{dx^2} = -\frac{b^4}{a^2y^2}.
$$

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$

As,
$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$
\frac{dx}{d\theta} = \frac{d}{d\theta} a \sec \theta = a \sec \theta \tan \theta \dots \text{.} \text{equation 3}
$$
\nSimilarly, $\frac{dy}{d\theta} = b \sec^2 \theta \dots \text{.} \text{equation 4}$

\n[$\frac{d}{dx} \sec x = \sec x \tan x, \frac{d}{dx} \tan x = \sec^2 x$]

\n $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} = \frac{b}{a} \csc \theta$

Differentiating again w.r.t x :

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(\frac{b}{a} \csc \theta\right)
$$
\n
$$
\frac{d^2y}{dx^2} = -\frac{b}{a} \csc \theta \cot \theta \frac{d\theta}{dx} \dots \text{equation 5 [using chain rule]}
$$

From equation 3:

 $rac{dx}{dθ}$ = a secθ tan θ $\overline{18}$

$$
\frac{d\theta}{dx} = \frac{1}{a \sec \theta \tan \theta}
$$

Putting the value in equation 5 :

$$
\frac{d^2y}{dx^2} = -\frac{b}{a}\csc\theta \cot\theta \frac{1}{a\sec\theta \tan\theta}
$$

$$
\frac{d^2y}{dx^2} = \frac{-b}{a^2\tan^3\theta}
$$

From equation 1:

 $y = b \tan θ$

$$
\therefore \frac{d^2y}{dx^2} = \frac{-b}{\frac{a^2y^2}{h^2}} = -\frac{b^4}{a^2y^2} \dots \text{proved}.
$$

9. Question

If $x = a$ (cos $θ + θ sin θ$), $y=a$ (sin $θ - θ cos θ$) prove that

$$
\frac{d^2x}{d\theta^2} = a(\cos\theta - \theta\sin\theta), \frac{d^2y}{d\theta^2} = a(\sin\theta + \theta\cos\theta) \text{ and } \frac{d^2y}{dx^2} = \frac{\sec^2\theta}{a\theta}
$$

Answer

Basic idea:

√Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

The idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$, i.e. y is a function of θ and x is also some other function of θ .

Then dy/d $\theta = f'(\theta)$ and dx/d $\theta = g'(\theta)$

We can write : $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$

Given,

 $x = a$ (cos $\theta + \theta$ sin θ) equation 1

y =a (sin θ – θ cos θ) ……equation 2

to prove :

i)
$$
\frac{d^2x}{d\theta^2} = a(\cos\theta - \theta \sin\theta)
$$

ii)
$$
\frac{d^2y}{d\theta^2} = a \left(\sin \theta + \theta \cos \theta\right)
$$

$$
iii) \frac{d^2y}{dx^2} = \frac{\sec^2\theta}{a\theta}.
$$

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$ As $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$ $\frac{dx}{d\theta} = \frac{d}{d\theta} a(\cos\theta + \theta \sin\theta)$ $= a(-\sin \theta + \theta \cos \theta + \sin \theta)$

[differentiated using product rule for θsinθ]

 $=$ a θ cos θ . eqn 4

Again differentiating w.r.t θ using product rule:-

$$
\frac{d^2x}{d\theta^2} = a(-\theta \sin \theta + \cos \theta)
$$

$$
\therefore \frac{d^2x}{d\theta^2} = a(\cos \theta - \theta \sin \theta) \dots \text{proved (i)}
$$

Similarly,

$$
\frac{dy}{d\theta} = \frac{d}{d\theta} a(\sin\theta - \theta\cos\theta) = a\frac{d}{d\theta}\sin\theta - a\frac{d}{d\theta}(\theta\cos\theta)
$$

 $= a \cos \theta + a \theta \sin \theta - a \cos \theta$

∴ ………….equation 5

Again differentiating w.r.t θ using product rule:-

$$
\frac{d^2x}{d\theta^2} = a(\theta\cos\theta + \sin\theta)
$$

$$
\therefore \frac{d^2x}{d\theta^2} = a(\sin\theta + \theta\cos\theta) \quad \dots \text{proved (ii)}
$$

$$
\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{d\theta}{d\theta}}
$$

Using equation 4 and 5 :

 $\frac{dy}{dx} = \frac{a\theta \sin \theta}{a\theta \cos \theta} = \tan \theta$ As $\frac{d^2y}{dx^2} = \frac{d}{dx} (\frac{dy}{dx})$

∴ again differentiating w.r.t x :-

$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \tan \theta
$$

= $\sec^2 \theta \frac{d\theta}{dx}$ [using chain rule]
...^{dx} = θ = $\sec^2 \theta$ = $\frac{d\theta}{dx}$ = 1

 $\frac{dS}{d\theta} = a\theta \cos \theta \implies \frac{dS}{dx} = \frac{1}{a\theta \cos \theta}$

Putting a value in the above equation-

We have :

$$
\frac{d^2y}{dx^2} = \sec^2 \theta \times \frac{1}{a\theta \cos \theta}
$$

$$
\frac{d^2y}{dx^2} = \frac{\sec^3 \theta}{a\theta} \dots \text{ proved (iii)}
$$

10. Question

If y = e^x cosx, prove that
$$
\frac{d^2y}{dx^2} = 2e^x \cos\left(x + \frac{\pi}{2}\right)
$$

Answer

Basic idea:

√Second order derivative is nothing but derivative of derivative i.e. $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$

√The idea of chain rule of differentiation: If f is any real-valued function which is the composition of two functions u and v, i.e. $f = v(u(x))$. For the sake of simplicity just assume $t = u(x)$

Then $f = v(t)$. By chain rule, we can write the derivative of f w.r.t to x as:

 $\frac{df}{dx} = \frac{dv}{dt} \times \frac{dt}{dx}$

√Product rule of differentiation- $\frac{d}{dx}$ (uv) = $u \frac{dv}{dx} + v \frac{du}{dx}$

√Apart from these remember the derivatives of some important functions like exponential, logarithmic, trigonometric etc..

Let's solve now:

Given,

y=e ^x cos x

TO prove :

$$
\frac{d^2y}{dx^2} = 2e^x \cos\left(x + \frac{\pi}{2}\right)
$$

Clearly from the expression to be proved we can easily observe that we need to just find the second derivative of given function.

Given, $y = e^x \cos x$

We have to find $\frac{d^2y}{dx^2}$

As
$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So lets first find dy/dx and differentiate it again.

$$
\therefore \frac{dy}{dx} = \frac{d}{dx} (e^x \cos x)
$$

Let $u = e^x$ and $v = \cos x$

As,
$$
y = u * v
$$

∴ Using product rule of differentiation:

$$
\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}
$$

$$
\therefore \frac{dy}{dx} = e^{x} \frac{d}{dx} (\cos x) + \cos x \frac{dy}{dx} e^{x}
$$

$$
\frac{dy}{dx} = -e^{x} \sin x + e^{x} \cos x \left[\frac{d}{dx} (\cos x) \right] = -\sin x \& \frac{d}{dx} e^{x} = e^{x}
$$

Again differentiating w.r.t x:

$$
\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} \left(-e^{x} \sin x + e^{x} \cos x\right)
$$

$$
= \frac{d}{dx} \left(-e^{x} \sin x\right) + \frac{d}{dx} \left(e^{x} \cos x\right)
$$

Again using the product rule :

$$
\frac{d^2y}{dx^2} = -e^x \frac{d}{dx} (\sin x) - \sin x \frac{d}{dx} e^x + e^x \frac{d}{dx} (\cos x) + \cos x \frac{d}{dx} (e^x)
$$

$$
\frac{d^2y}{dx^2} = -e^x \cos x - e^x \sin x - e^x \sin x + e^x \cos x
$$

$$
[\because \frac{d}{dx} (\cos x) = -\sin x, \frac{d}{dx} e^{-x} = -e^{-x}]
$$

$$
\frac{d^2y}{dx^2} = -2e^x \sin x [\because -\sin x = \cos (x + \pi/2)]
$$

$$
\frac{d^2y}{dx^2} = -2e^x \cos(x + \frac{\pi}{2}) \text{ ... proved}
$$

If x = a cos
$$
\theta
$$
, y = b sin θ , show that
$$
\frac{d^2y}{dx^2} = -\frac{b^4}{a^2y^3}.
$$

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then dy/d $\theta = f'(\theta)$ and dx/d $\theta = g'(\theta)$

We can write:
$$
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
$$

Given,

 $x = a \cos \theta$ equation 1

 $y = b \sin \theta$ equation 2

to prove $: \frac{d^2y}{dx^2} = -\frac{b^4}{a^2y^3}$.

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$

$$
\mathsf{As}\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=\frac{\mathrm{d}}{\mathrm{d}x}\big(\frac{\mathrm{d}y}{\mathrm{d}x}\big)
$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$
\frac{dx}{d\theta} = \frac{d}{d\theta} a \cos \theta = -a \sin \theta \dots \text{.equation 3}
$$
\nSimilarly,
$$
\frac{dy}{d\theta} = b \cos \theta \dots \text{.equation 4}
$$
\n
$$
[\because \frac{d}{dx} \cos x = -\sin x \tan x, \frac{d}{dx} \sin x = \cos x
$$
\n
$$
\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = -\frac{b \cos \theta}{a \sin \theta} = -\frac{b}{a} \cot \theta
$$

Differentiating again w.r.t x :

 $rac{d}{dx}$ $\left(\frac{dy}{dx}\right) = \frac{d}{dx}(-\frac{b}{a}cot \theta)$

 $\frac{d^2y}{dx^2} = \frac{b}{a}cosec^2\theta \frac{d\theta}{dx} \dots \text{.}equation 5$

[using chain rule and $\frac{d}{dx}$ cotx = $-cosec^2x$]

From equation 3:

 $\frac{dx}{d\theta} = -a\sin\theta$ $\frac{d\theta}{dx} = \frac{-1}{a\sin\theta}$

Putting the value in equation 5 :

 $\frac{d^2y}{dx^2} = -\frac{b}{a}cosec^2\theta \frac{1}{a sin \theta}$ $\frac{d^2y}{dx^2} = \frac{-b}{a^2 \sin^3 \theta}$

From equation 1:

 $y = b \sin \theta$

$$
\therefore \frac{d^2y}{dx^2} = \frac{-b}{\frac{a^2y^2}{h^2}} = -\frac{b^4}{a^2y^2} \dots \text{proved}.
$$

12. Question

If x = a (1 - cos (3θ) , y = a sin (3θ) , Prove that $\frac{d^2y}{dx^2} = \frac{32}{x^2}$ at $\theta = \frac{\pi}{2}$.

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then dy/d $\theta = f'(\theta)$ and dx/d $\theta = g'(\theta)$

We can write:
$$
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
$$

Given,

 $x = a (1 - \cos^{3} \theta) \dots$ equation 1

y = a sin 3 θ,equation 2

to prove : $\frac{d^2y}{dx^2} = \frac{32}{27a}at \theta = \frac{\pi}{6}$

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$ As $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$

So, lets first find dy/dx using parametric form and differentiate it again.

 $\frac{dx}{d\theta} = \frac{d}{d\theta} a (1 - \cos^3 \theta) = 3 a \cos^2 \theta \sin \theta \dots$.equation 3 [using chain rule]

Similarly,

$$
\frac{dy}{d\theta} = \frac{d}{d\theta} a \sin^3 \theta = 3 a \sin^2 \theta \cos \theta \dots \text{.} \text{equation 4}
$$

$$
[\because \frac{d}{dx} \cos x = -\sin x \& \frac{d}{dx} \cos x = \sin x]
$$

$$
\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{3 a \sin^2 \theta \cos \theta}{3 a \cos^2 \theta \sin \theta} = \tan \theta
$$

Differentiating again w.r.t x :

$$
\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}(\tan \theta)
$$

$$
\frac{d^2y}{dx^2} = \sec^2 \theta \frac{d\theta}{dx} \dots \text{ equation 5}
$$

[using chain rule and $\frac{d}{dx} \tan x = \sec^2 x$]

From equation 3:

$$
\frac{dx}{d\theta} = 3 \arccos^2 \theta \sin \theta
$$

$$
\therefore \frac{d\theta}{dx} = \frac{1}{3 \arccos^2 \theta \sin \theta}
$$

Putting the value in equation 5 :

$$
\frac{d^2y}{dx^2} = \sec^2\theta \frac{1}{3\cos^2\theta \sin \theta}
$$

$$
\frac{d^2y}{dx^2} = \frac{1}{3\cos^4\theta \sin \theta}
$$

Put $\theta = \pi/6$

$$
\left(\frac{d^2y}{dx^2}\right) \text{at } \left(x = \frac{\pi}{6}\right) = \frac{1}{3\cos^4\frac{\pi}{6}\sin\frac{\pi}{6}} = \frac{1}{3a\left(\frac{\sqrt{3}}{2}\right)^4\frac{1}{2}}
$$

$$
\therefore \left(\frac{d^2y}{dx^2}\right) \text{at } \left(x = \frac{\pi}{6}\right) = \frac{32}{27a} \text{ ... proved}
$$

13. Question

If x = a (
$$
\theta
$$
 + sin θ), y = a (1 + cos θ), prove that
$$
\frac{d^2y}{dx^2} = -\frac{a}{y^2}.
$$

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then dy/d $\theta = f'(\theta)$ and dx/d $\theta = g'(\theta)$

We can write:
$$
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
$$

Given,

 $x = a (\theta + \sin \theta)$ equation 1 $y = a(1 + \cos \theta)$ equation 2

to prove:
$$
\frac{d^2y}{dx^2} = -\frac{a}{y^2}
$$

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

As, $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$

So, lets first find dy/dx using parametric form and differentiate it again.

$$
\frac{dx}{d\theta} = \frac{d}{d\theta} a (\theta + \sin \theta) = a(1 + \cos \theta) = y
$$
 [:: from equation 2] equation 3

Similarly,

$$
\frac{dy}{d\theta} = \frac{d}{d\theta} a (1 + \cos \theta) = -a \sin \theta \dots \text{.} \text{ equation 4}
$$

\n
$$
\left[\because \frac{d}{dx} \cos x = -\sin x, \frac{d}{dx} \sin x = \cos x\right]
$$

\n
$$
\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{d\theta}{d\theta}} = \frac{-a \sin \theta}{a(1 + \cos \theta)} = \frac{-\sin \theta}{(1 + \cos \theta)} = \frac{-a \sin \theta}{y} [\because \text{ from equation 2}] \dots \text{.} \text{ equation 5}
$$

Differentiating again w.r.t x :

 $\frac{d}{dx} \left(\frac{dy}{dx} \right) = -a \frac{d}{dx} \left(\frac{\sin \theta}{y} \right)$

Using product rule and chain rule of differentiation together:

$$
\frac{d^2y}{dx^2} = -a(\frac{\sin\theta}{-y^2}\frac{dy}{dx} + \frac{1}{y}\cos\theta\frac{d\theta}{dx})
$$
\n
$$
\frac{d^2y}{dx^2} = -a(\frac{\sin\theta}{-y^2}\frac{(-\sin\theta)}{y} + \frac{1}{y}\cos\theta\frac{1}{y})
$$
[using equation 3 and 5]
\n
$$
\frac{d^2y}{dx^2} = -a(\frac{\sin^2\theta}{y^3} + \frac{1}{y^2}\cos\theta)
$$
\n
$$
\frac{d^2y}{dx^2} = -\frac{a}{y^2}(\frac{\sin^2\theta}{a(1+\cos\theta)} + \cos\theta)
$$
[from equation 1]
\n
$$
\frac{d^2y}{dx^2} = -\frac{a}{y^2}(\frac{1-\cos^2\theta}{(1+\cos\theta)} + \cos\theta)
$$
\n
$$
\frac{d^2y}{dx^2} = -\frac{a}{y^2}(\frac{(1-\cos\theta)(1+\cos\theta)}{(1+\cos\theta)} + \cos\theta)
$$
\n
$$
\frac{d^2y}{dx^2} = -\frac{a}{y^2}(1-\cos\theta + \cos\theta)
$$
\n
$$
\therefore \frac{d^2y}{dx^2} = -\frac{a}{y^2} \dots \text{proved}
$$

14. Question

If x = a (θ – sin θ), y = a (1 + cos θ) find $\frac{d^2y}{dx^2}$.

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then dy/d $\theta = f'(\theta)$ and dx/d $\theta = g'(\theta)$

We can write:
$$
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
$$

Given,

 $x = a (\theta - \sin \theta)$ equation 1 $y = a (1 + \cos \theta)$ equation 2 to find : $\frac{d^2y}{dx^2}$ As, $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$

So, lets first find dy/dx using parametric form and differentiate it again.

$$
\frac{dx}{d\theta} = \frac{d}{d\theta} a (\theta - \sin \theta) = a(1 - \cos \theta) \dots \text{.equation 3}
$$

Similarly,

L.

$$
\frac{dy}{d\theta} = \frac{d}{d\theta} a (1 + \cos \theta) = -a \sin \theta \dots \text{.} \text{equation 4}
$$

\n
$$
\left[\frac{d}{dx} \cos x \right] = -\sin x, \frac{d}{dx} \sin x \right] = \cos x
$$

\n
$$
\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{-a \sin \theta}{a(1 - \cos \theta)} = \frac{-\sin \theta}{(1 - \cos \theta)} \dots \text{.} \text{equation 5}
$$

Differentiating again w.r.t x :

$$
\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = -\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\sin \theta}{1 - \cos \theta} \right)
$$

Using product rule and chain rule of differentiation together:

$$
\frac{d^2y}{dx^2} = \{-\frac{1}{1-\cos\theta}\frac{d}{d\theta}\sin\theta - \sin\theta\frac{d}{d\theta}\frac{1}{(1-\cos\theta)^3}\frac{d\theta}{dx}\}
$$

Apply chain rule to determine $\frac{d}{d\theta} \frac{1}{(1-\cos\theta)}$

$$
\frac{d^2y}{dx^2} = \left\{ \frac{-\cos\theta}{1-\cos\theta} + \frac{\sin^2\theta}{(1-\cos\theta)^2} \right\} \frac{1}{a(1-\cos\theta)} \text{ [using equation 3]}
$$
\n
$$
\frac{d^2y}{dx^2} = \left\{ \frac{-\cos\theta(1-\cos\theta) + \sin^2\theta}{(1-\cos\theta)^2} \right\} \frac{1}{a(1-\cos\theta)}
$$
\n
$$
\frac{d^2y}{dx^2} = \left\{ \frac{-\cos\theta + \cos^2\theta + \sin^2\theta}{(1-\cos\theta)^2} \right\} \frac{1}{a(1-\cos\theta)}
$$
\n
$$
\frac{d^2y}{dx^2} = \left\{ \frac{1-\cos\theta}{(1-\cos\theta)^2} \right\} \frac{1}{a(1-\cos\theta)} \text{ [} \cos^2\theta + \sin^2\theta = 1 \text{]}
$$
\n
$$
\frac{d^2y}{dx^2} = \frac{1}{a(1-\cos\theta)^2}
$$
\n
$$
\frac{d^2y}{dx^2} = \frac{1}{a(2\sin^2\frac{\theta}{2})^2} \text{ [} \cdot 1-\cos\theta = 2\sin^2\theta/2 \text{]}
$$
\n
$$
\frac{d^2y}{dx^2} = \frac{1}{a(2\sin^2\frac{\theta}{2})^2} \text{ [} \cdot 1-\cos\theta = 2\sin^2\theta/2 \text{]}
$$

If x = a (1 - cos
$$
\theta
$$
), y = a (θ + sin θ), prove that $\frac{d^2y}{dx^2} = -\frac{1}{a}at \theta = \frac{\pi}{2}$

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then dy/d $\theta = f'(\theta)$ and dx/d $\theta = g'(\theta)$

We can write : $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$

Given,

 $y = a (\theta + \sin \theta)$ equation 1

 $x = a (1 - \cos \theta)$ equation 2

to prove : $\frac{d^2y}{dx^2} = -\frac{1}{a}at \theta = \frac{\pi}{2}$

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$

$$
\mathsf{AS}\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=\frac{\mathrm{d}}{\mathrm{d}x}\big(\frac{\mathrm{d}y}{\mathrm{d}x}\big)
$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$
\frac{dy}{d\theta} = \frac{d}{d\theta} a (\theta + \sin \theta) = a(1 + \cos \theta) \dots \text{equation 3}
$$

Similarly,

$$
\frac{dx}{d\theta} = \frac{d}{d\theta} a (1 - \cos \theta) = a \sin \theta \dots . \text{ equation 4}
$$

\n
$$
[\because \frac{d}{dx} \cos x = -\sin x, \frac{d}{dx} \sin x = \cos x]
$$

\n
$$
\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a(1 + \cos \theta)}{\sin \theta} = \frac{(1 + \cos \theta)}{\sin \theta} \dots . \text{ equation 5}
$$

Differentiating again w.r.t x :

 $rac{d}{dx}$ $\left(\frac{dy}{dx}\right) = \frac{d}{dx}$ $\left(\frac{(1 + \cos \theta)}{\sin \theta}\right) = \frac{d}{dx}(1 + \cos \theta)\csc \theta$

Using product rule and chain rule of differentiation together:

$$
\frac{d^2y}{dx^2} = \{\csc \theta \frac{d}{d\theta} (1 + \cos \theta) + (1 + \cos \theta) \frac{d}{d\theta} \csc \theta\} \frac{d\theta}{dx}
$$

$$
\frac{d^2y}{dx^2} = \{\csc \theta(-\sin \theta) + (1 + \cos \theta)(-\csc \theta \cot \theta)\} \frac{1}{\sin \theta} \text{ [using equation 4]}
$$

$$
\frac{d^2y}{dx^2} = \{-1 - \csc \theta \cot \theta - \cot^2 \theta\} \frac{1}{\sin \theta}
$$

As we have to find $\frac{d^2y}{dx^2} = -\frac{1}{a} \text{ at } \theta = \frac{\pi}{2}$

∴ put θ = π/2 in above equation:

$$
\frac{d^2y}{dx^2} = \{-1 - \csc{\frac{\pi}{2}} \cot{\frac{\pi}{2}} - \cot{\frac{\pi}{2}}\frac{1}{a^{\sin{\frac{\pi}{2}}}} = \frac{\{-1 - 0 - 0\}i}{a}
$$

$$
\frac{d^2y}{dx^2} = -\frac{1}{a} \dots \text{ans}
$$

If x = a (1 + cos θ), y = a (θ+ sinθ) Prove that $\frac{d^2y}{dx^2} = -\frac{1}{a}$ at $\theta = \frac{\pi}{2}$.

Answer

Idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$ i.e. y is a function of θ and x is also some other function of θ .

Then dy/d $\theta = f'(\theta)$ and dx/d $\theta = g'(\theta)$

We can write : $\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$

Given,

```
y = a (\theta + \sin \theta) ......equation 1
```
 $x = a (1 + \cos \theta)$ equation 2

to prove:
$$
\frac{d^2y}{dx^2} = -\frac{1}{a}at \theta = \frac{\pi}{2}
$$

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$

$$
\text{AS, }\frac{\text{d}^2\text{y}}{\text{dx}^2} = \frac{\text{d}}{\text{dx}}\left(\frac{\text{dy}}{\text{dx}}\right)
$$

So, lets first find dy/dx using parametric form and differentiate it again.

$$
\frac{dy}{d\theta} = \frac{d}{d\theta}a(\theta + \sin \theta) = a(1 + \cos \theta) \dots \text{.equation 3}
$$

Similarly,

$$
\frac{dx}{d\theta} = \frac{d}{d\theta} a (1 + \cos \theta) = -a \sin \theta \dots . \text{ equation 4}
$$

\n
$$
\left[\frac{d}{dx} \cos x = -\sin x, \frac{d}{dx} \sin x = \cos x \right]
$$

\n
$$
\therefore \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a(1 + \cos \theta)}{-a \sin \theta} = -\frac{(1 + \cos \theta)}{\sin \theta} \dots . \text{ equation 5}
$$

Differentiating again w.r.t x :

$$
\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(-\frac{(1+\cos\theta)}{\sin\theta}\right) = -\frac{d}{dx}(1+\cos\theta)\text{cosec }\theta
$$

Using product rule and chain rule of differentiation together:

$$
\frac{d^2y}{dx^2} = -\{\csc \theta \frac{d}{d\theta} (1 + \cos \theta) + (1 + \cos \theta) \frac{d}{d\theta} \csc \theta\} \frac{d\theta}{dx}
$$

$$
\frac{d^2y}{dx^2} = -\{\csc \theta(-\sin \theta) + (1 + \cos \theta)(-\csc \theta \cot \theta)\} \frac{1}{(-\text{asin}\theta)}
$$

[using equation 4]

$$
\frac{d^2y}{dx^2} = \{-1 - \csc\theta \cot\theta - \cot^2\theta\} \frac{1}{a\sin\theta}
$$

As we have to find $\frac{d^2y}{dx^2} = -\frac{1}{a}at\theta = \frac{\pi}{2}$
: put $\theta = \pi/2$ in above equation:

$$
\frac{d^2y}{dx^2} = \frac{\pi}{2} \frac{\pi}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \{-1, -0\}
$$

$$
\frac{d^2y}{dx^2} = \{-1 - \csc{\frac{\pi}{2}} \cot{\frac{\pi}{2}} - \cot{\frac{\pi}{2}}\frac{1}{a^{\sin{\frac{\pi}{2}}}} = \frac{\{-1 - 0 - 0\}i}{a}
$$

$$
\frac{d^2y}{dx^2} = -\frac{1}{a}
$$

If x = cos
$$
\theta
$$
, y = sin³ θ . Prove that $y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\sin^2\theta(5\cos^2\theta - 1)$

Answer

The idea of parametric form of differentiation:

If $y = f(\theta)$ and $x = g(\theta)$, i.e. y is a function of θ and x is also some other function of θ .

Then dy/d $\theta = f'(\theta)$ and dx/d $\theta = g'(\theta)$

We can write:
$$
\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}
$$

Given,

y = sin³θ ……equation 1

 $x = \cos \theta$ equation 2

To prove:
$$
y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3 \sin^2 \theta \left(5 \cos^2 \theta - 1\right)
$$

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

As,
$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So, lets first find dy/dx using parametric form and differentiate it again.

………….equation 3

Applying chain rule to differentiate sin³θ:

…………..equation 4 ………..equation 5

Again differentiating w.r.t x:

$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(-3\sin\theta\cos\theta\right)
$$

Applying product rule and chain rule to differentiate:

$$
\frac{d^2y}{dx^2} = -3\{\sin\theta \frac{d}{d\theta}\cos\theta + \cos\theta \frac{d}{d\theta}\sin\theta\}\frac{d\theta}{dx}
$$

$$
\frac{d^2y}{dx^2} = 3\{-\sin^2\theta + \cos^2\theta\}\frac{1}{\sin\theta}
$$

[using equation 3 to put the value of dθ/dx]

Multiplying y both sides to approach towards the expression we want to prove-

$$
y\frac{d^2y}{dx^2} = 3\{-\sin^2\theta + \cos^2\theta\}\frac{y}{\sin\theta}
$$

$$
y\frac{d^2y}{dx^2} = 3\{-\sin^2\theta + \cos^2\theta\}\sin^2\theta
$$

[from equation 1, substituting for y]

Adding equation 5 after squaring it:

$$
y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\{-\sin^2\theta + \cos^2\theta\}\sin^2\theta + 9\sin^2\theta\cos^2\theta
$$

$$
y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\sin^2\theta\{-\sin^2\theta + \cos^2\theta + 3\cos^2\theta\}
$$

$$
y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 3\sin^2\theta\{5\cos^2\theta - 1\} \dots \dots \text{proved}
$$

18. Question

If y = sin (sin x), prove that :
$$
\frac{d^2y}{dx^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0
$$

Answer

Given,

 $y = \sin(\sin x)$ equation 1

To prove:
$$
\frac{d^2y}{dx^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0
$$

We notice a second-order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

$$
\mathsf{AS}\,\frac{\mathsf{d}^2\boldsymbol{y}}{\mathsf{d}\boldsymbol{x}^2}=\frac{\mathsf{d}}{\mathsf{d}\boldsymbol{x}}\big(\frac{\mathsf{d}\boldsymbol{y}}{\mathsf{d}\boldsymbol{x}}\big)
$$

So, lets first find dy/dx

 \overline{a}

$$
\frac{dy}{dx} = \frac{d}{dx} \sin(\sin x)
$$

Using chain rule, we will differentiate the above expression

Let
$$
t = \sin x \implies \frac{dt}{dx} = \cos x
$$

$$
\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}
$$

 $\frac{dy}{dx} = \cos t \cos x = \cos(\sin x) \cos x \dots \dots$ equation 2

Again differentiating with respect to x applying product rule:

$$
\frac{d^2y}{dx^2} = \cos x \frac{d}{dx} \cos(\sin x) + \cos(\sin x) \frac{d}{dx} \cos x
$$

Using chain rule again in the next step-

$$
\frac{d^2y}{dx^2} = -\cos x \cos x \sin(\sin x) - \sin x \cos(\sin x)
$$

$$
\frac{d^2y}{dx^2} = -\cos x \cos x \sin(\sin x) - \sin x \cos(\sin x)
$$

$$
\frac{v}{dx^2} = -y\cos^2 x - \tan x \cos x \cos(\sin x)
$$

[using equation $1 : y = sin (sin x)$]

And using equation 2, we have:

$$
\frac{d^2y}{dx^2} = -y\cos^2 x - \tan x \frac{dy}{dx}
$$

$$
d^2y + y = \cos^2 y + y = \cos y \frac{dy}{dx}
$$

$$
\frac{d^{2}y}{dx^{2}} + y\cos^{2}x + \tan x \frac{dy}{dx} = 0 \dots \dots \text{ proved}
$$

19. Question

If $y = (\sin^{-1} x)^2$, prove that: $(1-x^2) y_2 - xy_1 - 2=0$

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

$$
y = (\sin^{-1} x)^2
$$
 equation 1

to prove : $(1-x^2)$ y₂-xy₁-2=0

We notice a second–order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

$$
\mathsf{As}\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x}\big(\frac{\mathrm{d}y}{\mathrm{d}x}\big)
$$

So, lets first find dy/dx

$$
\frac{dy}{dx} = \frac{d}{dx}(\sin^{-1}x)^2
$$

Using chain rule we will differentiate the above expression

Let t = sin⁻¹ x => $\frac{at}{1}$ = $\frac{1}{\sqrt{2}}$ [using formula for derivative of sin⁻¹x]

And $y = t^2$

 $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$ $\frac{dy}{dx} = 2t \frac{1}{\sqrt{(1-x^2)}} = 2 \sin^{-1} x \frac{1}{\sqrt{(1-x^2)}} \dots \dots$ equation 2

Again differentiating with respect to x applying product rule:

$$
\frac{d^2y}{dx^2} = 2 \sin^{-1} x \frac{d}{dx} \left(\frac{1}{\sqrt{1 - x^2}} \right) + \frac{2}{\sqrt{1 - x^2}} \frac{d}{dx} \sin^{-1} x
$$

$$
\frac{d^2y}{dx^2} = -\frac{2 \sin^{-1} x}{2(1 - x^2)\sqrt{1 - x^2}} (-2x) + \frac{2}{(1 - x^2)} [\text{using } \frac{d}{dx}(x^n) = nx^{n-1} \frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}]
$$

$$
\frac{d^2y}{dx^2} = \frac{2x \sin^{-1} x}{(1 - x^2)\sqrt{1 - x^2}} + \frac{2}{(1 - x^2)}
$$

$$
(1 - x^2) \frac{d^2y}{dx^2} = 2 - \frac{2x \sin^{-1} x}{\sqrt{1 - x^2}}
$$

 $(1-x^2)\frac{d^2y}{dx^2} = 2-x\frac{dy}{dx}$

 \therefore (1–x²) y₂–xy₁–2=0 ……proved

20. Question

If $y = (\sin^{-1} x)^2$, prove that: $(1-x^2) y_2 - xy_1 - 2 = 0$

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

 $y = (sin^{-1} x)^2$ equation 1

to prove : $(1-x^2)$ y₂-xy₁-2=0

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$

$$
\text{As, }\frac{\text{d}^2\text{y}}{\text{d}x^2}=\frac{\text{d}}{\text{d}x}\big(\frac{\text{d}y}{\text{d}x}\big)
$$

So, lets first find dy/dx

$$
\frac{dy}{dx} = \frac{d}{dx}(\sin^{-1}x)^2
$$

Using chain rule we will differentiate the above expression

Let
$$
t = \sin^{-1} x = \frac{dt}{dx} = \frac{1}{\sqrt{(1-x^2)}}
$$
 [using formula for derivative of $\sin^{-1}x$]

And $y = t^2$

 $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$

 $\frac{dy}{dx} = 2t \frac{1}{\sqrt{(1-x^2)}} = 2 \sin^{-1} x \frac{1}{\sqrt{(1-x^2)}} \dots \dots$ equation 2

Again differentiating with respect to x applying product rule:

$$
\begin{aligned} &\frac{d^2y}{dx^2} = \ 2\sin^{-1}x\,\frac{d}{dx}\left(\frac{1}{\sqrt{1-x^2}}\right) + \frac{2}{\sqrt{(1-x^2)}}\frac{d}{dx}\sin^{-1}x \\ &\frac{d^2y}{dx^2} = -\frac{2\sin^{-1}x}{2(1-x^2)\sqrt{1-x^2}}(-2x) + \frac{2}{(1-x^2)}\left[\text{using } \frac{d}{dx}(x^n) = nx^{n-1}\,\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{(1-x^2)}}\right] \end{aligned}
$$

$$
\frac{d^2y}{dx^2} = \frac{2x\sin^{-1}x}{(1-x^2)\sqrt{1-x^2}} + \frac{2}{(1-x^2)}
$$

$$
(1-x^2)\frac{d^2y}{dx^2} = 2 + \frac{2x\sin^{-1}x}{\sqrt{1-x^2}}
$$

$$
(1-x^2)\frac{d^2y}{dx^2} = 2 + x\frac{dy}{dx}
$$

 $(1-x^2)$ y₂-xy₁-2=0 ……proved

21. Question

If y = e^{tan-1x} , Prove that: $(1+x^2)y_2+(2x-1)y_1=0$

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

$$
y = e^{\tan^{-1}x}
$$
equation 1

to prove : $(1+x^2)y_2+(2x-1)y_1=0$

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

As,
$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So, lets first find dy/dx

$$
\frac{dy}{dx} = \frac{d}{dx} e^{\tan^{-1} x}
$$

Using chain rule we will differentiate the above expression

Let
$$
t = \tan^{-1} x = \frac{dt}{dx} = \frac{1}{1+x^2} [\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}]
$$

\nAnd $y = e^t$
\n $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$
\n $\frac{dy}{dx} = e^t \frac{1}{1+x^2} = \frac{e^{\tan^{-1}x}}{1+x^2}$equation 2
\nAgain differentiating with respect to x applying product rule:

$$
\frac{d^2y}{dx^2} = e^{\tan^{-1}x} \frac{d}{dx} \left(\frac{1}{1+x^2} \right) + \frac{1}{1+x^2} \frac{d}{dx} e^{\tan^{-1}x}
$$

Using chain rule we will differentiate the above expression-

$$
\frac{d^2y}{dx^2} = \left(\frac{e^{\tan^{-1}x}}{(1+x^2)^2}\right) - \frac{2xe^{\tan^{-1}x}}{(1+x^2)^2} \text{ [using equation 2]}; \frac{d}{dx}(x^n) = nx^{n-1} \& \frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2} \text{]}
$$
\n
$$
(1+x^2)\frac{d^2y}{dx^2} = \frac{e^{\tan^{-1}x}}{1+x^2} - \frac{2xe^{\tan^{-1}x}}{1+x^2}
$$

$$
(1+x^2)\frac{d^2y}{dx^2} = \frac{e^{\tan^{-1}x}}{1+x^2} (1-2x)
$$

$$
(1+x^2)\frac{d^2y}{dx^2} = \frac{dy}{dx} (1-2x)
$$

 $(1+x^2)y_2+(2x-1)y_1=0$ ……proved

22. Question

If $y = 3 \cos (\log x) + 4 \sin (\log x)$, prove that: $x^2y_2 + xy_1 + y = 0$.

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

Ä,

 $y = 3 \cos(\log x) + 4 \sin(\log x)$ equation 1

to prove: $x^2y_2+xy_1+y=0$

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

\nAs, $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx})$
\nSo, lets first find dy/dx
\n $\frac{dy}{dx} = \frac{d}{dx}(3 \cos(\log x) + 4 \sin(\log x))$
\nLet, $\log x = t$
\n $\therefore y = 3 \cos t + 4 \sin t$ equation 2
\n $\frac{dy}{dt} = -3 \sin t + 4 \cos t$
\n $\frac{dt}{dx} = \frac{1}{x}$ equation 3
\n $\therefore \frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$
\n $\frac{dy}{dx} = (-3 \sin t + 4 \cos t) \frac{1}{x}$equation 4
\nAgain differentiating w.r.t x:

Using product rule of differentiation we have

$$
\frac{d^2y}{dx^2} = (-3\sin t + 4\cos t)\frac{d}{dx}\frac{1}{x} + \frac{1}{x}\frac{d}{dx}(-3\sin t + 4\cos t)
$$

$$
\frac{d^2y}{dx^2} = -\frac{1}{x^2}(-3\sin t + 4\cos t) + \frac{1}{x}\frac{dt}{dx}(-3\cos t - 4\sin t)
$$

Using equation 2,3 and 4 we can substitute above equation as:

 $\frac{d^2y}{dx^2} = -\frac{1}{x^2}x\frac{dy}{dx} + \frac{1}{x}\frac{1}{x}(-y)$

$$
\frac{d^2y}{dx^2} = -\frac{1}{x}\frac{dy}{dx} - \frac{y}{x^2}
$$

Multiplying x^2 both sides:

$$
x^2 \frac{d^2 y}{dx^2} = -x \frac{dy}{dx} - y
$$

 \therefore x²y₂+xy₁+ y =0 …………proved

23. Question

If $y=e^{2x}(ax + b)$, show that $y_2-4y_1+4y = 0$.

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

 $y = e^{2x}$ (ax + b)equation 1

to prove: $y_2-4y_1+4y = 0$

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find $\frac{d^2y}{dx^2}$

As,
$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So, lets first find dy/dx

 \therefore y = e^{2x}(ax + b)

Using product rule to find dy/dx:

$$
\frac{dy}{dx} = e^{2x} \frac{dy}{dx} (ax + b) + (ax + b) \frac{d}{dx} e^{2x}
$$

$$
\frac{dy}{dx} = ae^{2x} + 2(ax + b)e^{2x}
$$

$$
\frac{dy}{dx} = e^{2x} (a + 2ax + 2b) \dots
$$

Again differentiating w.r.t x using product rule:

…….equation 3

In order to prove the expression try to get the required form: Subtracting 4*equation 2 from equation 3:

$$
\frac{d^2y}{dx^2} - 4\frac{dy}{dx} = 2ae^{2x} + 2(a + 2ax + 2b)e^{2x} - 4e^{2x}(a + 2ax + 2b)
$$

$$
\frac{d^2y}{dx^2} - 4\frac{dy}{dx} = 2ae^{2x} - 2e^{2x}(a + 2ax + 2b)
$$

$$
\frac{d^2y}{dx^2} - 4\frac{dy}{dx} = -4e^{2x}(ax + b)
$$

$$
\frac{d^2y}{dx^2} - 4\frac{dy}{dx} = -4y
$$

$$
\therefore y_2 - 4y_1 + 4y = 0 \dots \dots \text{proved}
$$

24. Question

If
$$
x = \sin\left(\frac{1}{a}\log y\right)
$$
, show that $(1-x^2)y_2 - xy_1 - a^2 y = 0$

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

 $x = \sin\left(\frac{1}{a} \log y\right)$

 $(log y) = a sin⁻¹ x$

 $y = e^{asin^{-1}x}$ equation 1

to prove: $(1-x^2)y_2-xy_1-a^2 y = 0$

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

As,
$$
\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right)
$$

So, lets first find dy/dx

$$
\because y = e^{asin^{-1} x}
$$

Let $t = asin^{-1} x = \frac{dt}{dx} = \frac{a}{\sqrt{(1-x^2)}} \left[\frac{d}{dx} sin^{-1} x = \frac{1}{\sqrt{(1-x^2)}} \right]$

And $y = e^t$

 $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$

$$
\frac{dy}{dx} = e^t \frac{a}{\sqrt{(1-x^2)}} = \frac{ae^{asin^{-1}x}}{\sqrt{(1-x^2)}} \dots \dots \text{.equation 2}
$$

Again differentiating with respect to x applying product rule:

$$
\frac{d^2y}{dx^2} = ae^{asin^{-1}x} \frac{d}{dx} \left(\frac{1}{\sqrt{1-x^2}} \right) + \frac{a}{\sqrt{1-x^2}} \frac{d}{dx} e^{asin^{-1}x}
$$

Using chain rule and equation 2:

$$
\frac{d^2y}{dx^2} = -\frac{ae^{asin^{-1}x}}{2(1-x^2)\sqrt{1-x^2}}(-2x) + \frac{a^2e^{asin^{-1}x}}{(1-x^2)}[using\frac{d}{dx}(x^n) = nx^{n-1}\frac{d}{dx}sin^{-1}x = \frac{1}{\sqrt{(1-x^2)}}]
$$

$$
\frac{d^2y}{dx^2} = \frac{xa e^{asin^{-1}x}}{(1-x^2)\sqrt{1-x^2}} + \frac{a^2e^{asin^{-1}x}}{(1-x^2)}
$$

$$
(1-x^2)\frac{d^2y}{dx^2} = a^2e^{asin^{-1}x} + \frac{xae^{asin^{-1}x}}{\sqrt{1-x^2}}
$$

Using equation 1 and equation 2 :

$$
(1-x^2)\frac{d^2y}{dx^2} = a^2y + x\frac{dy}{dx}
$$

 $(1-x^2)y_2$ -xy₁-a²y = 0......proved

25. Question

If log $y = \tan^{-1} X$, show that : $(1+x^2)y_2 + (2x-1)y_1 = 0$.

Answer

Note: y_2 represents second order derivative i.e. $\frac{d^2y}{dx^2}$ and $y_1 = dy/dx$

Given,

log y = $\tan^{-1} X$

 \therefore y = $e^{tan^{-1} x}$ equation 1

to prove : $(1+x^2)y_2+(2x-1)y_1=0$

We notice a second order derivative in the expression to be proved so first take the step to find the second order derivative.

Let's find
$$
\frac{d^2y}{dx^2}
$$

$$
\mathsf{AS}\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2}=\frac{\mathrm{d}}{\mathrm{d}x}\big(\frac{\mathrm{d}y}{\mathrm{d}x}\big)
$$

So, lets first find dy/dx

$$
\frac{dy}{dx} = \frac{d}{dx} e^{\tan^{-1} x}
$$

Using chain rule, we will differentiate the above expression

Let
$$
t = \tan^{-1} x = \frac{dt}{dx} = \frac{1}{1+x^2} [\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}]
$$

And $y = e^t$

$$
\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}
$$

$$
\frac{dy}{dx}=e^t\frac{1}{1+x^2}=\frac{e^{tan^{-1}x}}{1+x^2}........equation~2
$$

Again differentiating with respect to x applying product rule:

$$
\frac{d^2y}{dx^2} = e^{\tan^{-1}x} \frac{d}{dx} \left(\frac{1}{1+x^2} \right) + \frac{1}{1+x^2} \frac{d}{dx} e^{\tan^{-1}x}
$$

Using chain rule we will differentiate the above expression-

$$
\frac{d^2y}{dx^2} = \left(\frac{e^{\tan^{-1}x}}{(1+x^2)^2}\right) - \frac{2xe^{\tan^{-1}x}}{(1+x^2)^2}
$$

[using equation 2 ; $\frac{d}{dx}(x^n) = nx^{n-1}$ & $\frac{d}{dx}tan^{-1}x = \frac{1}{1+x^2}$]

$$
(1+x^2)\frac{d^2y}{dx^2} = \frac{e^{\tan^{-1}x}}{1+x^2} - \frac{2xe^{\tan^{-1}x}}{1+x^2}
$$

$$
(1+x^2)\frac{d^2y}{dx^2} = \frac{e^{\tan^{-1}x}}{1+x^2} (1-2x)
$$

$$
(1+x^2)\frac{d^2y}{dx^2} = \frac{dy}{dx} (1-2x)
$$

 $(1+x^2)y_2+(2x-1)y_1=0$ ……proved

MCQ

1. Question

Write the correct alternative in the following:

If x = a cos nt - b sin nt, then
$$
\frac{d^2x}{dt^2}
$$
 is

A. n^2x

B. – n^2x

C. –nx

D. nx

Answer

Given:

x=a cos nt-b sin nt

$$
\frac{dx}{dt} = -an \sin nt - bn \cos nt
$$

 $\frac{d^2x}{dt^2} = -an^2 \cos nt + bn^2 \sin nt$

 $= -n^2$ (a cos nt-b sin nt)

$$
= - n^2 x
$$

2. Question

Write the correct alternative in the following:

If x = at², y = 2at, then
$$
\frac{d^2y}{dx^2} =
$$

\nA.
$$
-\frac{1}{t^2}
$$

\nB.
$$
\frac{1}{2at^3}
$$

\nC.
$$
-\frac{1}{t^3}
$$

\nD.
$$
-\frac{1}{2at^3}
$$

Answer

Given:

 $y = 2at$, $x = at^2$

$$
\frac{dx}{dt} = 2at; \frac{dy}{dt} = 2a
$$

$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
$$

$$
= \frac{1}{t}
$$

$$
\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}
$$

$$
= \frac{-1}{2at^2}
$$

$$
= \frac{-1}{2at^3}
$$

Write the correct alternative in the following:

If
$$
y = ax^{n+1} + b x^{-n}
$$
, then $x^2 \frac{d^2 y}{dx^2} =$
A. $n(n - 1)y$

B. $n(n + 1)y$

C. ny

D. n^2y

Answer

Given:

```
y = ax^{n+1} + bx^{-n}\frac{dy}{dx} = (n+1)ax^{n} + (-n)bx^{-n-1}\frac{d^2y}{dx^2} = n(n+1)ax^{n-1} + (-n)(-n-1)bx^{-n-2}x^{2} \frac{d^{2}y}{dx^{2}} = x^{2} \{ n(n+1)ax^{n-1} + (-n)(-n-1)bx^{-n-2} \}= n(n + 1)a x^{n-1+2} + n(n + 1)b x^{-n-2+2}=n(n+1)[a x^{n+1} + bx^{-n}]=n(n+1)y
```
4. Question

Write the correct alternative in the following:

$$
\frac{d^{20}}{dx^{20}}(2\cos x \cos 3x) =
$$

A. 2²⁰(cos2x – 2²⁰ cos 4x)

B. 2^{20} (cos2x + 2^{20} cos 4x)

C. 2^{20} (sin2x – 2^{20} sin 4x)

D. 2^{20} (sin2x – 2^{20} sin 4x)

Answer

Given:

Let y=2 cos x cos 3x

$$
2\cos A \cos B = \cos\left(\frac{A+B}{2}\right) + \cos\left(\frac{A-B}{2}\right)
$$

So y=cos 2x+cos 4x

 $\frac{dy}{dx} = -2 \sin 2x - 4 \sin 4x$ $=(-2)^{1}$ (sin 2x+2¹ sin 4x)

 $\frac{d^2y}{dx^2} = -4 \cos 2x - 16 \cos 4x$

 $=(-2)^{2}$ (cos $2x+2^{2}$ cos $4x$)

 $\frac{d^3y}{dx^3} = 8 \sin 2x + 64 \sin 4x$

 $=(-2)^3$ (cos $2x+2^3$ cos $4x$)

 $\frac{d^4y}{dx^4} = 16 \cos 2x + 256 \cos 4x$

 $=(-2)^4$ (cos $2x+2^4$ cos $4x$)

For every odd degree; differential = $=(-2)^n$ (cos $2x+2^n$ cos $4x$);n= $\{1,3,5...\}$

For every even degree; differential =(-2)ⁿ (cos $2x+2^n$ cos $4x$);n={0,2,4...}

So,
$$
\frac{d^{20}y}{dx^{20}} = (-2)^{20} (\cos 2x + 2^{20} \cos 4x)
$$

 $=(-2)^{20}$ (cos 2x+2²⁰ cos 4x);

5. Question

Answer

Write the correct alternative in the following:

If x = t², y = t³, then
$$
\frac{d^2y}{dx^2} =
$$

\nA.
$$
\frac{3}{2}
$$

\nB.
$$
\frac{3}{4t}
$$

\nC.
$$
\frac{3}{2t}
$$

\nD.
$$
\frac{3t}{2}
$$

Given:

$$
x = t2; y = t3
$$

\n
$$
\frac{dy}{dt} = 3t2; \frac{dx}{dt} = 2t
$$

\n
$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t}{2}
$$

\n
$$
\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}} = \frac{\frac{3t}{2}}{2t}
$$

\n
$$
= \frac{3}{4}
$$

6. Question

Write the correct alternative in the following:

If
$$
y = a + bx^2
$$
, a, b arbitrary constants, then

A.
$$
\frac{d^2y}{dx^2} = 2xy
$$

\nB.
$$
x \frac{d^2y}{dx^2} = y_1
$$

\nC.
$$
x \frac{d^2y}{dx^2} - \frac{dy}{dx} + y = 0
$$

\nD.
$$
x \frac{d^2y}{dx^2} = 2xy
$$

Answer

Given:

 $y = a + bx^2$

$$
\frac{dy}{dx} = 2bx
$$

$$
\frac{d^2y}{dx^2} = 2b \neq 2xy
$$

$$
x \frac{d^2y}{dx^2} = 2bx
$$

$$
= \frac{dy}{dx}
$$

$$
x \frac{d^2y}{dx^2} - \frac{dy}{dx} + y = 2bx - 2bx + y
$$

$$
= y
$$

7. Question

Write the correct alternative in the following:

If $f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) (cos nx + i sin nx) and $f(1) = 1$, then f'' (1) is$ equal to

A.
$$
\frac{n(n+1)}{2}
$$

B.
$$
\left\{\frac{n(n+1)}{2}\right\}^2
$$

C.
$$
-\left\{\frac{n(n+1)}{2}\right\}^2
$$

D. none of these

Answer

Given:

 $f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) (cos nx + i sin nx)$

Since $e^{ix} = cos x + i sin x$

- So, $f(x) = e^{ix} \times e^{i2x} \times e^{i3x} \times e^{i4x} \times ... \times e^{inx}$
- $f(x) = e^{ix(1+2+3+4+\cdots+n)}$

$$
=e^{ix\frac{n(n+1)}{2}}\\
$$

$$
f(1)=e^{\frac{i n(n+1)}{2}}\,
$$

$$
f'(x) = ix \frac{n(n+1)}{2} e^{ix \frac{n(n+1)}{2}}
$$

$$
f'(x) = i^2 x^2 \left(\frac{n(n+1)}{2}\right)^2 e^{ix \frac{n(n+1)}{2}}
$$

$$
f'(x) = -x^2 \left(\frac{n(n+1)}{2}\right)^2 e^{ix \frac{n(n+1)}{2}}
$$

$$
f''(1) = -12 \left(\frac{n(n+1)}{2}\right)^2 \times 1
$$

$$
= -\left(\frac{n(n+1)}{2}\right)^2
$$

8. Question

Write the correct alternative in the following:

If y = a sin mx + b cos mx, then
$$
\frac{d^2y}{dx^2}
$$
 is equal to

A. $-m²y$

B. $m²y$

C. –my

D. my

Answer

Given:

$$
y = a \sin mx + b \cos mx
$$

\n
$$
\frac{dy}{dx} = ma \cos mx - mb \sin mx
$$

\n
$$
\frac{d^2y}{dx^2} = -m^2 a \sin mx - m^2 b \cos mx
$$

\n
$$
= -m^2 [a \sin mx + b \cos mx]
$$

\n
$$
= -m^2 y
$$

Write the correct alternative in the following:

If
$$
f(x) = \frac{\sin^{-1} x}{\sqrt{(1 - x^2)}}
$$
 then $(1 - x^2)$ f' $(x) - xf(x) =$

A. 1

B. –1

C. 0

D. none of these

Answer

Given:

$$
y = f(x) = \frac{\sin^{-1} x}{\sqrt{(1 - x^2)}}
$$

\n
$$
\frac{dy}{dx} = \frac{1}{(\sqrt{(1 - x^2)})^2} \left\{ \frac{1}{\sqrt{(1 - x^2)}} \sqrt{(1 - x^2)} - \sin^{-1} x \frac{(-2x)}{2\sqrt{(1 - x^2)}} \right\}
$$

\n
$$
= \frac{1}{(\sqrt{(1 - x^2)})^2} \left\{ 1 + \frac{x \sin^{-1} x}{\sqrt{(1 - x^2)}} \right\}
$$

\n
$$
= \frac{1 + xy}{(1 - x^2)}
$$

\n
$$
f'(x) = \frac{1 + xf(x)}{(1 - x^2)}
$$

\n
$$
(1 - x^2)f'(x) = 1 + xf(x)
$$

\n
$$
(1 - x^2)f'(x) - xf(x) = 1
$$

10. Question

Write the correct alternative in the following:

If
$$
y = \tan^{-1} \left\{ \frac{\log_e (e/x^2)}{\log_e (ex^2)} \right\} + \tan^{-1} \left(\frac{3 + 2\log_e x}{1 - 6\log_e x} \right)
$$
, then $\frac{d^2y}{dx^2} =$
A. 2
B. 1

- C. 0
- D. –1

Answer

Given:

$$
y = \tan^{-1} \left\{ \frac{\log_e \left(\frac{e}{x^2}\right)}{\log_e (e x^2)} \right\} + \tan^{-1} \left\{ \frac{3 + 2 \log_e x}{1 - 6 \log_e x} \right\}
$$

\n
$$
y = \tan^{-1} \left\{ \frac{\log_e e - \log_e x^2}{\log_e e + \log_e x^2} \right\} + \tan^{-1} \left\{ \frac{3 \log_e e + 2 \log_e x}{1 - 3 \log_e e \times 2 \log_e x} \right\}
$$

\n
$$
y = \tan^{-1} \left\{ \frac{1 - \log_e x^2}{1 + \log_e x^2} \right\} + \tan^{-1} (3 \log_e e) + \tan^{-1} (2 \log_e x)
$$

\n
$$
y = \tan^{-1} \left\{ \frac{\log_e e - 2 \log_e x}{1 + \log_e e \times 2 \log_e x} \right\} + \tan^{-1} (3 \log_e e) + \tan^{-1} (2 \log_e x)
$$

\n
$$
y = \tan^{-1} (\log_e e) - \tan^{-1} (2 \log_e x) + \tan^{-1} (3 \log_e e) + \tan^{-1} (2 \log_e x)
$$

\n
$$
y = \tan^{-1} (1) + \tan^{-1} (3)
$$

\n
$$
y = \tan^{-1} \left(\frac{1 + 3}{1 - 3} \right) = \tan^{-1} (-2)
$$

\n
$$
\frac{dy}{dx} = 0
$$

11. Question

Write the correct alternative in the following:

Let $f(x)$ be a polynomial. Then, the second order derivative of $f(e^x)$ is

A. f'' (e^x) e^{2x} + f'(e^x) e^x B. f'' (e^x) e^x + f'(e^x) C. f'' (e^x) $e^{2x} + f'$ ' (e^x) e^{x} D. f'' (e^x) **Answer**

Given:

$$
\frac{d}{dx} \left[\frac{d}{dx} f(e^x) \right] = ?
$$
\nSince, $\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$
\nSo, $\frac{d}{dx} f(e^x) = f'(e^x) e^x$
\nAlso, $\frac{d}{dx} [f(x)g(x)] = f'(x)g(x) + g'(x)f(x)$
\nSo, $\frac{d}{dx} f'(e^x) e^x = f''(x) e^x e^x + e^x f'(x)$
\n $= f''(x) e^{2x} + e^x f'(x)$

12. Question

Write the correct alternative in the following:

If $y = a \cos(\log_e x) + b \sin(\log_e x)$, then $x^2 y_2 + xy_1 =$

B. y

C. –y

D. none of these

Answer

Given:

 $y = a \cos(\log_e x) + b \sin(\log_e x)$ $\frac{dy}{dx} = -a \sin(\log_e x) \frac{1}{x} + b \cos(\log_e x) \frac{1}{x}$ $xy_1 = -a \sin(\log_e x) + b \cos(\log_e x)$ $\frac{d^2y}{dx^2} = -a\cos(\log_e x)\frac{1}{x^2} + \frac{1}{x^2}a\sin(\log_e x) - b\sin(\log_e x)\frac{1}{x^2} + b\cos(\log_e x)\frac{1}{x^2}$ x^2 y₂: $x^2 y_2 + xy_1 =$ $= -a \sin(\log_e x) - b \cos(\log_e x)$ $= -y$

13. Question

Write the correct alternative in the following:

If x = 2at, y = at², where a is a constant, then
$$
\frac{d^2y}{dx^2}
$$
 at x= $\frac{1}{2}$ is

A. 1/2a

B. 1

C. 2a

D. none of these

Answer

Given:

 $x = 2at$, $y = at^2$

$$
\frac{dx}{dt} = 2a; \frac{dy}{dt} = 2at
$$

$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = t
$$

$$
\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{1}{2a}
$$

14. Question

Write the correct alternative in the following:

If x = f(t) and y = g(t), then
$$
\frac{d^2y}{dx^2}
$$
 is equal to

A.
$$
\frac{f'g''-g'f''}{(f')^3}
$$

B.
$$
\frac{f'g''-g'f''}{(f')^2}
$$

C.
$$
\frac{g''}{f''}
$$

D.
$$
\frac{f''g'-g''f'}{(g')^3}
$$

Answer

Given:

$$
x = f(t) \text{ and } y = g(t)
$$
\n
$$
\frac{dx}{dt} = f'(t); \frac{dy}{dt} = g'(t)
$$
\n
$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}
$$
\n
$$
\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}
$$
\n
$$
= \frac{1}{f'(t)} \left\{ \frac{1}{f'(t)^2} (g''(t)f'(t) - f''(t)g'(t)) \right\}
$$
\n
$$
= \frac{(g''(t)f'(t) - f''(t)g'(t))}{(f'(t))^3}
$$

15. Question

Write the correct alternative in the following:

If $y = \sin(m \sin^{-1} x)$, then $(1 - x^2) y_2 - xy_1$ is equal to

A. $m²y$

B. my

C. $-m²y$

D. none of these

Answer

Given:

$$
y = \sin(m \sin^{-1} x)
$$

\n
$$
\frac{dy}{dx} = m \cos(m \sin^{-1} x) \frac{1}{\sqrt{(1 - x^2)}}
$$

\n
$$
x \frac{dy}{dx} = \cos(m \sin^{-1} x) \frac{mx}{\sqrt{(1 - x^2)}}
$$

$$
\frac{d^2y}{dx^2}
$$
\n
$$
= m \left\{ \frac{-m \sin(m \sin^{-1} x)\sqrt{1 - x^2} \frac{1}{\sqrt{1 - x^2}} - \frac{1}{2\sqrt{(1 - x^2)}} (-2x) \cos(m \sin^{-1} x)}{(\sqrt{(1 - x^2)})^2} \right\}
$$
\n
$$
= \frac{m}{(1 - x^2)} \left\{ -m \sin(m \sin^{-1} x) + \frac{x}{\sqrt{(1 - x^2)}} \cos(m \sin^{-1} x) \right\}
$$
\n
$$
(1 - x^2) y_2 = m \left\{ -m \sin(m \sin^{-1} x) + \frac{x}{\sqrt{(1 - x^2)}} \cos(m \sin^{-1} x) \right\}
$$
\n
$$
= -m^2 \sin(m \sin^{-1} x) + \frac{mx}{\sqrt{(1 - x^2)}} \cos(m \sin^{-1} x) - \cos(m \sin^{-1} x) \frac{mx}{\sqrt{(1 - x^2)}}
$$
\n
$$
= -m^2 \sin(m \sin^{-1} x) + \frac{mx}{\sqrt{(1 - x^2)}} \cos(m \sin^{-1} x) - \cos(m \sin^{-1} x) \frac{mx}{\sqrt{(1 - x^2)}}
$$
\n
$$
= -m^2 \sin(m \sin^{-1} x)
$$
\n
$$
= -m^2 y
$$

Write the correct alternative in the following:

If $y = (\sin^{-1} x)^2$, then $(1 - x^2)$ y_2 is equal to

A. $xy_1 + 2$

B. $xy_1 - 2$

C. $-xy_1 + 2$

D. none of these

Answer

Given:

$$
y = (\sin^{-1} x)^2
$$

\n
$$
\frac{dy}{dx} = 2 \sin^{-1} x \frac{1}{\sqrt{1 - x^2}}
$$

\n
$$
\frac{d^2y}{dx^2} = 2 \left\{ \left(\frac{1}{\sqrt{1 - x^2}} \right)^2 + \sin^{-1} x \frac{2\sqrt{1 - x^2}}{(\sqrt{1 - x^2})^2} \right\}
$$

\n
$$
= 2 \left\{ \frac{1}{1 - x^2} + \sin^{-1} x \frac{x}{(\sqrt{1 - x^2})^{3/2}} \right\}
$$

\n
$$
(1 - x^2) y_2 = 2 \left\{ 1 + \sin^{-1} x \frac{x}{\sqrt{1 - x^2}} \right\}
$$

\n
$$
= 2 + x \left\{ 2 \sin^{-1} x \frac{1}{\sqrt{1 - x^2}} \right\}
$$

\n
$$
= 2 + xy_1
$$

17. Question

Write the correct alternative in the following:
If $y = e^{tan x}$, then $(cos² x)y₂ =$

A. $(1 - \sin 2x)$ y_1

B. $-(1 + \sin 2x) y_1$

C. $(1 + \sin 2x) y_1$

D. none of these

Answer

Given:

 $y = e^{tan x}$ $\frac{dy}{dx} = e^{\tan x}(\sec x)^2$ $\frac{d^2y}{dx^2} = e^{\tan x} (\sec x)^2 (\sec x)^2 + e^{\tan x} \times 2 \sec x \times \tan x \times \sec x$ $= e^{\tan x}(\sec x)^2[(\sec x)^2 + 2\tan x]$ (cos² x)y₂₌ $= e^{\tan x} \left[\frac{1 + 2 \sin x \cos x}{(\cos x)^2} \right]$ $= e^{\tan x}(\sec x)^2[1 + 2\sin x \cos x]$ $= e^{\tan x}(\sec x)^2[1 + \sin 2x]$ $=[1 + \sin 2x]$

18. Question

Write the correct alternative in the following:

If
$$
y = \frac{2}{\sqrt{a^2 - b^2}} \tan^{-1} \left(\frac{a - b}{a + b} \tan \frac{x}{2} \right)
$$
, $a > b > 0$, then
\nA. $y_1 = \frac{-1}{a + b \cos x}$
\nB. $y_2 = \frac{b \sin x}{(a + b \cos x)^2}$
\nC. $y_1 = \frac{1}{a - b \cos x}$
\nD. $y_2 = \frac{-b \sin x}{(a - b \cos x)^2}$

Answer

$$
y = \frac{2}{\sqrt{(a^2 - b^2)}} \tan^{-1} \left(\frac{a - b}{a + b} \tan \frac{x}{2} \right)
$$

$$
\frac{dy}{dx} = \frac{2}{\sqrt{(a^2 - b^2)}} \left(\frac{1}{1 + \left(\frac{a - b}{a + b} \tan \frac{x}{2}\right)^2} \right) \left(\frac{a - b}{a + b}\right) \left(\sec \frac{x}{2}\right)^2
$$
\n
$$
= \frac{2}{\sqrt{(a^2 - b^2)}} \left(\frac{(a + b)^2}{(a + b)^2 + (a - b)^2 \left(\tan \frac{x}{2}\right)^2} \right) \left(\frac{a - b}{a + b}\right) \left(\sec \frac{x}{2}\right)^2
$$
\n
$$
= \frac{2}{\sqrt{(a^2 - b^2)}} \left(\frac{(a + b)}{a^2 (1 + (\tan x)^2) + b^2 (1 + (\tan x)^2) + 2ab(1 - (\tan x)^2)} \right) (a - b) \left(\sec \frac{x}{2}\right)^2
$$
\n
$$
= 2 \left(\frac{1}{a^2 \left(1 + \left(\tan \frac{x}{2}\right)^2\right) + b^2 \left(1 + \left(\tan \frac{x}{2}\right)^2\right) + 2ab \left(1 - \left(\tan \frac{x}{2}\right)^2\right)} \right) \sqrt{(a^2 - b^2)} \left(\sec \frac{x}{2}\right)^2
$$

Divide numerator and denominator by $\left(1+\left(\tan\frac{x}{2}\right)^2\right)$;

We get:

$$
= 2\left(\frac{1}{a^2 + b^2 + 2ab\left(\frac{1 - \left(\tan\frac{x}{2}\right)^2}{1 + \left(\tan\frac{x}{2}\right)^2}\right)}\right)\sqrt{(a^2 - b^2)\left(\sec\frac{x}{2}\right)^2} \frac{1}{1 + \left(\tan\frac{x}{2}\right)^2}
$$

$$
= 2\left(\frac{1}{a^2 + b^2 + 2ab\cos x}\right)\sqrt{(a^2 - b^2)\left(\sec\frac{x}{2}\right)^2} \frac{1}{\left(\sec\frac{x}{2}\right)^2}
$$

$$
= 2\left(\frac{1}{a^2 + b^2 + 2ab\cos x}\right)\sqrt{(a^2 - b^2)}
$$

$$
\frac{d^2y}{dx^2} = 2\sqrt{(a^2 - b^2)\left(\frac{1}{a^2 + b^2 + 2ab\cos x}\right)^2} \{-2ab\sin x\}
$$

19. Question

Write the correct alternative in the following:

If
$$
y = \frac{ax + b}{x^2 + c}
$$
, then $(2xy_1 + y)y_3 =$

A. $3(xy_2 + y_1)y_2$

B. $3(xy_2 + y_2)y_2$

C. $3(xy_2 + y_1)y_1$

D. none of these

Answer

Given:

 $y = \frac{ax + b}{x^2 + c}$

$$
\frac{dy}{dx} = \frac{a(x^2 + c) - 2x(ax + b)}{(x^2 + c)^2}
$$
\n
$$
= \frac{-ax^2 - 2bx + ac}{(x^2 + c)^2}
$$
\n
$$
2xy_1 = \frac{-ax^2 - 2bx^2 + acx}{(x^2 + c)^2}
$$
\n
$$
\frac{d^2y}{dx^2} = \frac{(-2ax - 2b)(x^2 + c)^2 - 2(2x)(x^2 + c)(-ax^2 - 2bx + ac)}{(x^2 + c)^4}
$$

Write the correct alternative in the following:

If
$$
y = log_e \left(\frac{x}{a + bx}\right)^2
$$
, then $x^3 y_2 =$

A. $(xy_1 - y)^2$

B. $(x + y)^2$

$$
C.\left(\frac{y - xy_1}{y_1}\right)^2
$$

D. none of these

Answer

Given:

$$
y = \left(\log_e\left(\frac{x}{a + bx}\right)\right)^2
$$

= $2\log_e\left(\frac{x}{a + bx}\right)$

$$
\frac{dy}{dx} = 2\left(\frac{1}{\frac{x}{a + bx}}\right)\left[\frac{a + bx - bx}{(a + bx)^2}\right]
$$

= $2\left(\frac{a + bx}{x}\right)\left[\frac{a}{(a + bx)^2}\right]$
= $\frac{2a}{x(a + bx)}$
= $\frac{2a}{(ax + bx^2)}$

$$
x\frac{dy}{dx} = \frac{2ax}{(ax + bx^2)}
$$

$$
\frac{d^2y}{dx^2} = 2a\left\{\frac{-(a + 2bx)}{(ax + bx^2)^2}\right\}
$$

= $(-a - 2bx)\frac{dy}{dx}$

$$
x^3\frac{d^2y}{dx^2} = -x^3(a + 2bx)\frac{dy}{dx}
$$

21. Question

Write the correct alternative in the following:

If x = f(t) cos t - f'(t) sin t and y = f(t) sin t + f'(t) cos t, then $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2$ =

A. $f(t) - f''(t)$

B. {f(t) – f''(t)}²

C. $\{f(t) + f''(t)\}^2$

D. none of these

Answer

Given:

 $x = f(t) \cos t - f'(t) \sin t$ $y = f(t) \sin t + f'(t) \cos t$ $\frac{dx}{dt} = f'(t)\cos t - f(t)\sin t - f'(t)\sin t - f'(t)\cos t$ $= -f(t) \sin t - f'(t) \sin t$ $= -\sin t [f(t) + f'(t)]$ $\left(\frac{dx}{dt}\right)^2 = \{-\sin t [f(t) + f'(t)]\}^2$ $= (\sin t)^2 \{f(t) + f'(t)\}^2$ $\frac{dy}{dt} = f'(t)\sin t + f(t)\cos t + f'(t)\cos t - f'(t)\sin t$ $= f(t) \cos t + f'(t) \cos t$ $= \cos t [f(t) + f'(t)]$ $\left(\frac{dy}{dt}\right)^2 = \{\cos t [f(t) + f'(t)]\}^2$ $= (\cos t)^2 \{f(t) + f'(t)\}^2$ $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = (\sin t)^2 \{f(t) + f'(t)\}^2 + (\cos t)^2 \{f(t) + f'(t)\}^2$ $= \{f(t) + f'(t)\}^2$

22. Question

Write the correct alternative in the following:

If $y^{1/n} + y^{-1/n} = 2x$, then $(x^2 - 1)y_2 + xy_1 =$ A. –n ²y B. n²y C. 0 D. none of these

Answer

$$
y^{1/n} + y^{-1/n} = 2x
$$

\n
$$
\frac{1}{n}y^{\frac{1}{n}-1} \frac{dy}{dx} + \frac{-1}{n}y^{\frac{-1}{n}-1} \frac{dy}{dx} = 2
$$

\n
$$
\frac{1}{n} \frac{dy}{dx} \left\{ y^{\frac{1}{n}-1} - y^{\frac{-1}{n}-1} \right\} = 2
$$

Write the correct alternative in the following:

$$
\int_{\text{If } \frac{dx}{dx}} \left\{ x^n - a_1 x^{n-1} + a_2 x^{n-2} + \dots + (-1)^n a_n \right\}
$$

$$
e^x = x^n e^x,
$$

Then the value of a_r , $0 < r \le n$, is equal to

A.
$$
\frac{n!}{r!}
$$

B.
$$
\frac{(n-r)!}{r!}
$$

C.
$$
\frac{n!}{(n-r)!}
$$

D. none of these

Answer

Given:

$$
\frac{d}{dx} \{x^n - a_1 x^{n-1} + a_2 x^{n-2} + \dots + (-1)^n a_n\} e^x = x^n e^x
$$

\n
$$
\frac{d}{dx} \{a_0 (-1)^0 x^n + a_1 (-1)^1 x^{n-1} + a_2 (-1)^2 x^{n-2} + \dots + (-1)^n a_n\} e^x
$$

\n
$$
\frac{d}{dx} (x - 1)^n
$$

\n
$$
(x - 1)^n = \sum_{k=0}^n {n \choose k} x^{n-k} (-1)^k
$$

\nSo, at k=r;

 $a_r = {n \choose r}$ Also, $\binom{n}{r} = \binom{n}{n-r}$ So, $a_r = {n \choose n-r}$

24. Question

Write the correct alternative in the following:

If $y = x^{n-1}$ log x, then $x^2 y_2 + (3 - 2n) xy_1$ is equal to A. – $(n - 1)^2$ y B. $(n - 1)^2$ y

C. – n^2y

D. n^2y

Answer

Given:

 $y = x^{n-1} \log x$ $\frac{dy}{dx} = (n-1)x^{n-2} \log x + \frac{1}{x} x^{n-1}$ $= (n-1)x^{n-2} \log x + x^{n-2}$ $=x^{n-2}[(n-1)\log x + 1]$ $xy_1 = x^{n-1}[(n-1)\log x + 1]$ $= (n-1)v + x^{n-1}$ $(3-2n)xy_1 = (3-2n)[(n-1)y + x^{n-1}]$ $=(3n-3-2n^2+2n)v+3x^{n-1}-2nx^{n-1}$ (1) $\frac{d^2y}{dx^2} = (n-1)(n-2)x^{n-3}\log x + \frac{1}{x}(n-1)x^{n-2} + (n-2)x^{n-3}$ $= (n-1)(n-2)x^{n-3}\log x + (n-1)x^{n-3} + (n-2)x^{n-3}$ $= x^{n-3}[(n-1)(n-2)logx + (n-1) + (n-2)]$ x^2 y₂: $=$ $(n^2 - 3n + 2)v + 2nx^{n-1} - 3x^{n-1}$ (2) x^2 y₂ + (3 – 2n) xy₁ $= (n^2 - 3n + 2)y + 2nx^{n-1} - 3x^{n-1} + (3n - 3 - 2n^2 + 2n)y + 3x^{n-1} - 2nx^{n-1}$ $= (-n^2 + 2n - 1)v$ $=-(n-1)^2y$

25. Question

Write the correct alternative in the following:

If xy - log_e y = 1 satisfies the equation $x(yy_2 + y_1^2)$ - $y_2 + \lambda yy_1 = 0$, then $\lambda =$

A. –3

B. 1

C. 3

D. none of these

Answer

Given:

 $xy - log_a y = 1$

 $xy = log_e y + 1$

Differentiate w.r.t. 'x' on both sides;

$$
y + x \frac{dy}{dx} = \frac{1}{y} \frac{dy}{dx}
$$

\n
$$
\frac{dy}{dx} \left(\frac{1}{y} - x\right) = y
$$

\n
$$
\frac{dy}{dx} = \frac{y^2}{(1 - xy)^2}
$$

\n
$$
\left(\frac{dy}{dx}\right)^2 = \left[\frac{y^2}{(1 - xy)^2}\right]^2
$$

\n
$$
= \frac{y^4}{(1 - xy)^2}
$$

\n
$$
\frac{d}{dx} \left[\frac{dy}{dx}\right] = \frac{d}{dx} \left[\frac{y^2}{(1 - xy)^2}\right]
$$

\n
$$
= \frac{1}{(1 - xy)^2} \left\{2y \frac{dy}{dx}(1 - xy) - y^2\left(-y + x \frac{dy}{dx}\right)\right\}
$$

\n
$$
= \frac{1}{(1 - xy)^2} \left\{2y \frac{dy}{dx} \frac{dy}{dx} + y^3 + xy^2 \frac{dy}{dx}\right\}
$$

\n
$$
= \frac{1}{(1 - xy)^2} \left\{2y^3 + y^3 + xy^2 \frac{dy}{dx}\right\}
$$

\n
$$
= \frac{1}{(1 - xy)^2} \left\{2y^3 + y^3 + xy^2 \frac{dy}{dx}\right\}
$$

\n
$$
= \frac{1}{(1 - xy)^2} \left\{3y^3 + xy^2 \frac{dy}{dx}\right\}
$$

\n
$$
= \frac{y^2}{(1 - xy)^2} \left\{3y^3 + xy^2 \frac{dy}{dx}\right\}
$$

\n
$$
= \frac{y^2}{(1 - xy)^2} \left\{3y + x \frac{dy}{dx}\right\}
$$

\n
$$
y \frac{d^2y}{dy^2} = \frac{y^3}{(1 - xy)^2} \left\{3y + x \frac{dy}{dx}\right\}
$$

\n
$$
y \frac{d^2y}{dy^2} + \left(\frac{dy}{dx}\right)^2 = \frac{y^3}{(1 - xy)^2} \left\{3y + x \frac{dy}{dx}\right\}
$$

\n
$$
= \frac{y^3}{(1 - xy)^2} \left\{4y + x \frac{dy}{dx}\right\}
$$

\n

$$
= \frac{y^2}{(1-xy)^2} \left\{ y(4xy-3) + x \frac{dy}{dx} (xy-1) \right\}
$$

\n
$$
= \frac{y^2}{(1-xy)^2} \left\{ y(xy+3xy-3) - x \frac{dy}{dx} (1-xy) \right\}
$$

\n
$$
= \frac{y^2}{(1-xy)^2} \left\{ y(xy-3(1-xy)) - x \frac{dy}{dx} \frac{y^2}{\frac{dy}{dx}} \right\}
$$

\n
$$
= \frac{y^2}{(1-xy)^2} \left\{ y \left(xy - 3 \frac{y^2}{\frac{dy}{dx}} \right) - xy^2 \right\}
$$

\n
$$
= \frac{y^2}{(1-xy)^2} \left\{ xy^2 - 3 \frac{y^3}{\frac{dy}{dx}} - xy^2 \right\}
$$

\n
$$
= -\frac{y^2}{(1-xy)^2} \left\{ 3 \frac{y^3}{\frac{dy}{dx}} \right\}
$$

\nSince $x \left[y \frac{d^2y}{dy^2} + \left(\frac{dy}{dx} \right)^2 \right] - \frac{d^2y}{dy^2} + \lambda y \frac{dy}{dx} = 0$
\nSo, $x \left[y \frac{d^2y}{dy^2} + \left(\frac{dy}{dx} \right)^2 \right] - \frac{d^2y}{dy^2} = -\lambda y \frac{dy}{dx}$
\n
$$
- \lambda y \frac{dy}{dx} = -\frac{y^2}{(1-xy)^2} \left\{ 3 \frac{y^3}{\frac{dy}{dx}} \right\}
$$

\n
$$
- \lambda y \frac{y^2}{(1-xy)} = -\frac{y^2}{(1-xy)^2} \left\{ 3 \frac{y^3}{\frac{dy}{dx}} \right\}
$$

\n
$$
\lambda = \frac{3y^2}{(1-xy)\frac{dy}{dx}}
$$

\n
$$
\lambda = \frac{3\frac{dy}{dx}}{\frac{dy}{dx}}
$$

 $\lambda=3$

26. Question

Write the correct alternative in the following:

If
$$
y^2 = ax^2 + bx + c
$$
, then $y^3 \frac{d^2y}{dx^2}$ is

A. a constant

B. a function of x only

C. a function of y only

D. a function of x and y

Answer

Given:

$$
y^{2} = ax^{2} + bx + c
$$
\n
$$
y = \sqrt{(ax^{2} + bx + c)}
$$
\n
$$
\frac{dy}{dx} = \frac{1}{2\sqrt{(ax^{2} + bx + c)}} \times (2ax + b)
$$
\n
$$
\frac{d^{2}y}{dx^{2}}
$$
\n
$$
= \frac{1}{2} \sqrt{\frac{(2a \times \sqrt{ax^{2} + bx + c}) - ((2ax + b) \times \frac{1}{2\sqrt{(ax^{2} + bx + c)}} \times (2ax + b))}{(\sqrt{(ax^{2} + bx + c)})^{2}}}
$$
\n
$$
= \frac{1}{2} \sqrt{\frac{4a(ax^{2} + bx + c) - (2ax + b)^{2}}{(x(ax^{2} + bx + c))^{2}}}
$$
\n
$$
= \frac{1}{2} \sqrt{\frac{4a^{2}x^{2} + 4abx + 4ac - 4a^{2}x^{2} - b^{2} - 4abx}{(\sqrt{(ax^{2} + bx + c)})^{2} \times 2\sqrt{(ax^{2} + bx + c)}}}
$$
\n
$$
= \frac{1}{4} \sqrt{\frac{4ac - b^{2}}{(\sqrt{(ax^{2} + bx + c)})^{2}}}
$$
\n
$$
y^{3} \frac{d^{2}y}{dx^{2}} = \frac{1}{4} \left(\frac{4ac - b^{2}}{(\sqrt{(ax^{2} + bx + c)})^{3}}\right) \times (\sqrt{(ax^{2} + bx + c)})^{3}
$$
\n
$$
= \frac{4ac - b^{2}}{4}
$$

Hence, y is a constant.

Very short answer

1. Question

If
$$
y = a x^{n+1} + bx^{-n}
$$
 and $x^2 \frac{d^2 y}{dx^2} = \lambda y$, then write the value of λ .

Answer

Given:

y=axⁿ⁺¹ +bx⁻ⁿ $\frac{dy}{dx} = (n+1)ax^{n} + (-n)bx^{-n-1}$ $\frac{d^2y}{dx^2} = n(n+1)ax^{n-1} + (-n)(-n-1)bx^{-n-2}$ $x^{2} \frac{d^{2}y}{dx^{2}} = x^{2} \{n(n+1)ax^{n-1} + (-n)(-n-1)bx^{-n-2}\} = \lambda y$ λ y=n(n+1)a xⁿ⁻¹⁺² +n(n+1)bx⁻ⁿ⁻²⁺²

 λ y=n(n+1)[a x^(n+1)+bx^(-n)]

 $λy=n(n+1)$

 $\lambda = n(n+1)$

2. Question

If x = a cos nt - b sin nt and $\frac{d^2y}{dt^2} = \lambda x$, then find the value of λ .

Answer

Given:

y=a cos nt-b sin nt

$$
\frac{dy}{dt} = -an \sin nt - bn \cos nt
$$

$$
\frac{d^2y}{dt^2} = -an^2 \cos nt + bn^2 \sin nt = \lambda y
$$

$$
\lambda y = -n^2 (a \cos nt - b \sin nt)
$$

$$
\lambda y = - n^2 \, y
$$

λ= - n^2

3. Question

If $x = t^2$ and $y = t^3$, where a is a constant, then find $\frac{d^2y}{dx^2}$ at $x = \frac{1}{2}$.

Answer

Given:

$$
x=t^2; y=t^3
$$

\n
$$
\frac{dy}{dt} = 3t^2; \frac{dx}{dt} = 2t
$$

\n
$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t}{2}
$$

\n
$$
\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}} = \frac{\frac{3t}{2}}{2t}
$$

\n
$$
= \frac{3}{4}
$$

4. Question

If x = 2at, y = at², where a is a constant, then find $\frac{d^2y}{dx^2}$ at $x = \frac{1}{2}$.

Answer

$$
x = 2at, y = at^{2}
$$
\n
$$
\frac{dx}{dt} = 2at, \frac{dy}{dt} = 2at
$$
\n
$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
$$
\n
$$
= t
$$
\n
$$
\frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}
$$
\n
$$
= \frac{1}{2a}
$$

If $x = f(t)$ and $y = g(t)$, then write the value of $\frac{d^2y}{dx^2}$.

Answer

Given:

$$
x = f(t) \text{ and } y = g(t)
$$
\n
$$
\frac{dx}{dt} = f'(t); \frac{dy}{dt} = g'(t)
$$
\n
$$
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}
$$
\n
$$
\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}}
$$
\n
$$
= \frac{1}{f'(t)} \left\{ \frac{1}{f'(t)^2} (g''(t)f'(t) - f''(t)g'(t)) \right\}
$$
\n
$$
= \frac{(g''(t)f'(t) - f''(t)g'(t))}{(f'(t))^3}
$$

6. Question

If y = 1 - x +
$$
\frac{x^2}{2!}
$$
 - $\frac{x^3}{3!}$ + $\frac{x^4}{4!}$ to ∞ , then write $\frac{d^2y}{dx^2}$ in terms of y.

Answer

$$
y = 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots \infty
$$

$$
\frac{dy}{dx} = 0 - 1 + \frac{2x}{2!} - \frac{3x^2}{3!} - \frac{4x^3}{4!} + \dots \infty
$$

$$
\frac{d^2y}{dx^2} = 0 - 0 + 1 - \frac{2x}{2!} + \frac{3x^2}{3!} - \frac{4x^3}{4!} + \dots \infty
$$

$$
= 1 - \frac{x}{1!} + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots \infty
$$

$$
\frac{d^2y}{dx^2} = y
$$

If $y = x + e^x$, find

Answer

Given:

$$
y = x + e^{x}
$$

$$
\frac{d^{2}x}{d^{2}y} = \frac{1}{\frac{d^{2}y}{dx^{2}}}
$$

$$
\frac{dy}{dx} = 1 + e^{x}
$$

$$
\frac{d^{2}y}{dx^{2}} = e^{x}
$$

$$
\frac{d^{2}x}{d^{2}y} = \frac{1}{e^{x}}
$$

 $=e^{-x}$

8. Question

If
$$
y = |x - x^2|
$$
, then find $\frac{d^2y}{dx^2}$.

Answer

Given:

 $y = |x - x^2|$ $y = \begin{cases} x - x^2; x \ge 0 \\ x^2 - x; x \le 0 \end{cases}$ $\frac{dy}{dx} = \begin{cases} 1 - 2x; x \ge 0 \\ 2x - 1; x \le 0 \end{cases}$ $\frac{d^2y}{dx^2} = \begin{cases} -2; x \geq 0\\ 2; x \leq 0 \end{cases}$

9. Question

If $y = |log_e x|$, find $\frac{d^2y}{dx^2}$.

Answer

Given:

 $y = |log_e x| \forall x > 0$

 $y = log_e x$

 $\frac{dy}{dx} = \frac{1}{x} = x^{-1}$ $\frac{d^2y}{dx^2} = (-1)x^{-2}$