Series : TYM/C

कोड नं.

Code No.

30/3
परीक्षार्थी कोड को उत्तर-पुस्तिका के मुखपृष्ठ पर अवश्य लिखें।
Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 8 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 30 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains $\mathbf{8}$ printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains $\mathbf{3 0}$ questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित
 MATHEMATICS

निर्धारित समय : 3 घंटे
अधिकतम अंक : 80
Time allowed : $\mathbf{3}$ hours

सामान्य निर्देश :

(i) सभी प्रश्न अनिवार्य हैं।
(ii) इस प्रश्न-पत्र में 30 प्रश्न हैं जो चार खण्डों - अ, ब, स और द में विभाजित हैं।
(iii) खण्ड अ में एक-एक अंक वाले 6 प्रश्न हैं। खण्ड ब में 6 प्रश्न हैं जिनमें से प्रत्येक 2 अंक का है। खण्ड स में 10 प्रश्न तीन-तीन अंकों के हैं । खण्ड द में 8 प्रश्न हैं जिनमें से प्रत्येक 4 अंक का है।
(iv) प्रश्न-पत्र में कोई समग्र विकल्प नहीं है । तथापि 3 अंकों वाले 4 प्रश्नों में और 4 अंकों वाले 3 प्रश्नों में आंतरिक विकल्प प्रदान किए गए हैं। ऐसे प्रश्नों में आपको दिए गए विकल्पों में से केवल एक प्रश्न ही करना है।
(v) कैलकुलेटर के प्रयोग की अनुमति नहीं है ।

General Instructions :

(i) All questions are compulsory.
(ii) This question paper consists of $\mathbf{3 0}$ questions divided into four Sections $-A, B, C$ and D.
(iii) Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each. Section D contains 8 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in four questions of $\mathbf{3}$ marks each and $\mathbf{3}$ questions of $\mathbf{4}$ marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

खण्ड - अ

SECTION - A
प्रश्न संख्या 1 से 6 तक प्रत्येक प्रश्न 1 अंक का है।
Question numbers 1 to 6 carry 1 mark each.

1. दो घनों के आयतनों का अनुपात $1: 27$ है। इनके पृष्ठ क्षेत्रफलों का अनुपात ज्ञात कीजिए।

Two cubes have their volumes in the ratio $1: 27$. Find the ratio of their surface areas.
2. यदि $5 x^{2}+13 x+\mathrm{k}=0$ का एक मूल दूसरे मूल का व्युत्क्रम हो तो k का मान ज्ञात कीजिए।

If one root of $5 x^{2}+13 x+\mathrm{k}=0$ is the reciprocal of the other root, then find value of k .
3. यदि $\triangle \mathrm{ABC}$ के शीर्ष बिन्दु $\mathrm{A}(5,1) \mathrm{B}(1,5)$ तथा $\mathrm{C}(-3,-1)$ हों तो माध्यिका AD की लम्बाई ज्ञात कीजिए।
$\mathrm{A}(5,1) ; \mathrm{B}(1,5)$ and $\mathrm{C}(-3,-1)$ are the vertices of $\triangle \mathrm{ABC}$. Find the length of median AD .
4. यदि $x=\mathrm{a}, \mathrm{y}=\mathrm{b}$ समीकरण युग्म $x-\mathrm{y}=2$ तथा $x+\mathrm{y}=4$ का एक हल हो तो a तथा b के मान ज्ञात कीजिए।
If $x=\mathrm{a}, \mathrm{y}=\mathrm{b}$ is the solution of the pair of equations $x-\mathrm{y}=2$ and $x+\mathrm{y}=4$, find the values of a and b.
5. यदि $\triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}$ तथा $\frac{\operatorname{ar}(\Delta \mathrm{ABC})}{\operatorname{ar}(\Delta \mathrm{QRP})}=\frac{9}{4}$ तथा $\mathrm{BC}=15$ से.मी. हो तो PR ज्ञात कीजिए ।

If $\Delta \mathrm{ABC} \sim \Delta \mathrm{QRP}, \frac{\operatorname{ar}(\Delta \mathrm{ABC})}{\operatorname{ar}(\Delta \mathrm{QRP})}=\frac{9}{4}$, and $\mathrm{BC}=15 \mathrm{~cm}$, then find PR .
6. लिखिए कि $\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}}$ को सरल करने पर अपरिमेय अथवा परिमेय संख्या में से कौन सी संख्या प्राप्त होती है ?
Write whether $\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}}$ on simplification gives an irrational or a rational number.

खण्ड - ब

SECTION - B
प्रश्न संख्या 7 से 12 तक प्रत्येक प्रश्न 2 अंकों का है।
Question numbers 7 to $\mathbf{1 2}$ carry 2 marks each.
7. एक लंब वृत्तीय बेलन तथा शंकु के आधार समान हैं तथा ऊँचाइयाँ भी समान हैं। यदि इनके वक्र पृष्ठीय क्षेत्रफलों का अनुपात $8: 5$ हो तो दर्शाइए कि इनकी त्रिज्या तथा ऊँचाई का अनुपात $3: 4$ है।
A right circular cylinder and a cone have equal bases and equal heights. If their curved surface areas are in the ratio $8: 5$, show that the ratio between radius of their bases to their height is $3: 4$.
8. x तथा y में रैखिक सम्बन्ध ज्ञात कीजिए जिसके बिन्दु $\mathrm{P}(x, \mathrm{y})$ बिन्दु $\mathrm{A}(1,4)$ तथा $\mathrm{B}(-1,2)$ से समान दूरी पर हों।
Find the linear relation between x and y such that $\mathrm{P}(x, y)$ is equidistant from the points $\mathrm{A}(1,4)$ and $\mathrm{B}(-1,2)$.
9. $\triangle \mathrm{ABC}$ की भुजा BC पर X एक बिन्दु है । XM तथा XN क्रमशः भुजा AB तथा AC के समान्तर इस प्रकार खींचे गए हैं कि AB को N तथा AC को M पर काटते हैं । MN तथा CB बढ़ाने पर T दर मिलती हैं। सिद्ध कीजिए कि $\mathrm{TX}^{2}=\mathrm{TB} \times \mathrm{TC}$.
X is a point on the side BC of $\triangle \mathrm{ABC}$. XM and XN are drawn parallel to AB and AC respectively meeting AB in N and AC in M . MN produced meets CB produced at T . Prove that $\mathrm{TX}^{2}=\mathrm{TB} \times \mathrm{TC}$
10. दिया है कि $\sqrt{3}$ एक अपरिमेय संख्या है, तो सिद्ध कीजिए कि $(2+\sqrt{3})$ एक अपरिमेय संख्या हैं।

Given that $\sqrt{3}$ is an irrational number, prove that $(2+\sqrt{3})$ is an irrational number.
11. आकृति 1 में $\triangle \mathrm{ABC}$ में $\angle \mathrm{B}=90^{\circ}$ जिसमें $\mathrm{BC}=48$ से.मी. तथा $\mathrm{AB}=14$ से.मी. है। त्रिभुज में एक अन्तःवृत खींचा गया, जिसका केन्द्र O है। अन्तःवृत की त्रिज्या r ज्ञात कीजिए।

In Fig. (1), ABC is a triangle in which $\angle \mathrm{B}=90^{\circ}, \mathrm{BC}=48 \mathrm{~cm}$ and $\mathrm{AB}=14 \mathrm{~cm}$. A circle is inscribed in the triangle, whose centre is O. Find radius r of in-circle.

Fig. 1
12. यदि A, B और C एक त्रिभुज ABC के अंतःकोण हैं, तो सिद्ध कीजिए $\operatorname{cosec}\left(\frac{\mathrm{A}+\mathrm{B}}{2}\right)=\sec \frac{\mathrm{C}}{2}$
A, B, C are interior angles of $\triangle A B C$. Prove that $\operatorname{cosec}\left(\frac{A+B}{2}\right)=\sec \frac{C}{2}$

खण्ड-स

SECTION - C

प्रश्न संख्या 13 से 22 तक प्रत्येक प्रश्न 3 अंकों का है।
Question numbers $\mathbf{1 3}$ to $\mathbf{2 2}$ carry $\mathbf{3}$ marks each.
13. एक त्रिभुज की रचना कीजिए जिसकी भुजाएँ 6 से.मी., 8 से.मी. तथा 10 से.मी. हैं। फिर एक अन्य त्रिभुज की रचना कीजिए। जिसकी भुजाएँ मूल त्रिभुज की संगत भुजाओं का $\frac{3}{5}$ हों।
Construct a triangle with sides $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . Construct another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of original triangle.
14. यदि $\sin (\mathrm{A}+2 \mathrm{~B})=\frac{\sqrt{3}}{2}$ तथा $\cos (\mathrm{A}+4 \mathrm{~B})=0, \mathrm{~A}>\mathrm{B}$ है तथा $\mathrm{A}+4 \mathrm{~B} \leq 90^{\circ}$ तो A तथा B ज्ञात कीजिए।
If $\sin (A+2 B)=\frac{\sqrt{3}}{2}$ and $\cos (A+4 B)=0, A>B$, and $A+4 B \leq 90^{\circ}$, then find A and B.
15. निम्न बारम्बारता बंटन को ‘से कम प्रकार' के बंटन में बदल कर इसका तोरण खींचिए :

वर्ग	$0-15$	$15-30$	$30-45$	$45-60$	$60-75$
बारंबारता	6	8	10	6	4

By changing the following frequency distribution 'to less than type' distribution, draw its ogive.

Classes	$0-15$	$15-30$	$30-45$	$45-60$	$60-75$
Frequency	6	8	10	6	4

16. आकृति 2 में 5 से.मी. त्रिज्या वाले वृत्त की एक जीवा AB की लम्बाई 8 से.मी. है। बिन्दु A तथा B पर खींची गई स्पर्श-रेखाएँ परस्पर बिन्दु P पर मिलती है। AP की लम्बाई ज्ञात कीजिए।

आकृति 2
अथवा
सिद्ध कीजिए कि किसी बाह्य बिंदु से वृत्त पर खींची गई स्पर्श-रेखाओं की लंबाइयाँ बराबर होती हैं।
In fig. (2) AB is a chord of length 8 cm of a circle of radius 5 cm . The tangents to the circle at A and B intersect at P. Find the length of AP.

Fig. (2)

OR

Prove that the lengths of tangents drawn from an external point to a circle are equal.
17. यूक्लिड विभाजन एलगोरिथ्म के प्रयोग से संख्याओं 867 और 255 का HCF ज्ञात कीजिए।

Using Euclid's division algorithm find the HCF of the numbers 867 and 255.
18. एक घडी की छोटी तथा बड़ी सुईयों की लम्बाइयाँ क्रमशः 4 से.मी. तथा 6 से.मी. हैं। ज्ञात कीजिए कि इन सुईयों के शीर्ष बिन्दुओं द्वारा 48 घण्टों में तय की जाने वाली दूरियों का योग क्या है।

अथवा
एक वर्ग की भुजा 10 से.मी. है । इस वर्ग के परिवृत्त तथा अन्त:वृत्त के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
The short and long hands of a clock are 4 cm and 6 cm long respectively. Find the sum of distances travelled by their tips in 48 hours.

OR

The side of a square is 10 cm . Find the area between inscribed and circumscribed circles of the square.
19. किसी समान्तर श्रेढी में यदि प्रथम n पदों का योग $3 n^{2}+5 n$ तथा k वाँ पद 164 हो, तो k का मान ज्ञात कीजिए।
In an A.P if sum of its first n terms is $3 n^{2}+5 n$ and its $k^{\text {th }}$ term is 164 , find the value of k.
20. 27 को दो भागों में इस प्रकार बाँटिए कि उनके व्युत्क्रमों का योग $\frac{3}{20}$ हो।

Divide 27 into two parts such that the sum of their reciprocals is $\frac{3}{20}$.
21. सिद्ध कीजिए :

$$
\left(\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}\right)=\left(\frac{1-\tan \mathrm{A}}{1-\cot \mathrm{A}}\right)^{2}=\tan ^{2} \mathrm{~A}
$$

अथवा
मान ज्ञात कीजिए :

$$
\frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\sqrt{3}\left(\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}\right)}
$$

Prove that

$$
\left(\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}\right)=\left(\frac{1-\tan \mathrm{A}}{1-\cot \mathrm{A}}\right)^{2}=\tan ^{2} \mathrm{~A}
$$

OR

Evaluate
$\frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\sqrt{3}\left(\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}\right)}$
22. यदि किसी समान्तरचतुर्भुज के दो आसन्न शीर्षों के निर्देशांक $(3,2)$ तथा $(1,0)$ हों तथा दोनों विकर्ण परस्पर बिन्दु $(2,-5)$ पर समद्विभाजित करते हैं, तो दोनों अन्य शीर्ष बिन्दुओं के निर्देशांक ज्ञात कीजिए।

अथवा

यदि एक त्रिभुज जिसके शीर्ष $(x, 3),(4,4)$ तथा $(3,5)$ हैं, का क्षेत्रफल 4 वर्ग इकाई है, तो x ज्ञात कीजिए। If coordinates of two adjacent vertices of a parallelogram are (3, 2), (1,0) and diagonals bisect each other at $(2,-5)$, find coordinates of the other two vertices.

OR
If the area of triangle with vertices $(x, 3),(4,4)$ and $(3,5)$ is 4 square units, find x.

खण्ड - द

SECTION - D
प्रश्न संख्या 23 से 30 तक प्रत्येक प्रश्न 4 अंकों का है।
Question numbers $\mathbf{2 3}$ to 30 carry $\mathbf{4}$ marks each.
23. एक तेज़ चाल वाली रेलगाड़ी एक धीमी चाल वाली रेलगाड़ी से 200 किलोमीटर चलने में 1 घंटा कम समय लेती है। यदि धीमी चाल की गाड़ी की चाल तेज़ चाल की गाड़ी से 10 किलोमीटर/घंटा कम हो तो दोनों रेलगाड़ियों की चाल ज्ञात कीजिए।

अथवा

x का मान ज्ञात कीजिए :
$\frac{1}{\mathrm{a}+\mathrm{b}+x}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{x}, \quad \mathrm{a} \neq 0, \mathrm{~b} \neq 0, x \neq 0$
A faster train takes one hour less than a slower train for a journey of 200 km . If the speed of slower train is $10 \mathrm{~km} / \mathrm{hr}$ less than that of faster train, find the speeds of two trains.

OR

Solve for x
$\frac{1}{\mathrm{a}+\mathrm{b}+x}=\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{x}, \quad \mathrm{a} \neq 0, \mathrm{~b} \neq 0, x \neq 0$
24. एक पहाड़ी के शीर्ष बिन्दु का एक टावर के पाद बिन्दु से उन्नयन कोण 60° है तथा टावर के शीर्ष बिन्दु से पहाड़ी के पाद का अवनमन कोण 30° का है। यदि टावर की ऊँचाई 50 मीटर हो तो पहाड़ी की ऊँचाई ज्ञात कीजिए।

अथवा

एक 80 मी. चौड़ी सड़क के दोनों ओर आमने-सामने समान लंबाई वाले दो खंभे लगे हुए हैं। इन दो खंभों के बीच सड़क के एक बिंदु से खंभों के शिखर के उन्नयन कोण क्रमशः 60° और 30° हैं । खंभों की ऊँचाई और खंभों से बिंदु की दूरियाँ ज्ञात कीजिए।
The angle of elevation of the top of a hill at the foot of a tower is 60° and the angle of depression from the top of tower to the foot of hill is 30°. If tower is 50 metre high, find the height of the hill.

OR

Two poles of equal heights are standing opposite to each other on either side of the road which is 80 m wide. From a point in between them on the road, the angles of elevation of the top of poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.
25. बहुपद $3 x^{4}-15 x^{3}+13 x^{2}+25 x-30$ के सभी शून्यक ज्ञात कीजिए यदि इसके दो शून्यक $\sqrt{\frac{5}{3}}$ तथा $-\sqrt{\frac{5}{3}}$ हो ।
Obtain all zeroes of $3 x^{4}-15 x^{3}+13 x^{2}+25 x-30$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
26. एक मनुष्य एक अनाथालय को 10 एल्युमिनियम की बाल्टियाँ दान में देता है। प्रत्येक बाल्टी की ऊँचाई 20 से.मी. है। इसके ऊपरी तथा निचले सिरों के अर्धव्यास क्रमशः 36 से.मी. तथा 21 से.मी. हैं। 10 बाल्टियों का खर्च ज्ञात कीजिए यदि एल्युमिनियम शीट का मूल्य ₹ 42 प्रति 100 वर्ग से.मी. हो। मनुष्य के कार्य पर अपने विचार लिखें।
A man donates 10 aluminum buckets to an orphanage. A bucket made of aluminum is of height 20 cm and has its upper and lowest ends of radius 36 cm and 21 cm respectively. Find the cost of preparing 10 buckets if the cost of aluminum sheet is ₹ 42 per $100 \mathrm{~cm}^{2}$. Write your comments on the act of the man.
27. निम्न आँकड़ों का माध्य, तथा बहुलक ज्ञात कजिए :

वर्ग	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
बारम्बारता	4	8	10	12	10	4	2

Find the mean and mode for the following data :

Classes	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	4	8	10	12	10	4	2

28. m तथा n के किन मानों के लिए रैखिक समीकरणों
$3 x+4 y=12$
$(\mathrm{m}+\mathrm{n}) x+2(\mathrm{~m}-\mathrm{n}) \mathrm{y}=5 \mathrm{~m}-1$ के अपरिमित रूप में असंख्य हल हैं।
For what values of m and n the following system of linear equations has infinitely many solutions.

$$
\begin{aligned}
& 3 x+4 y=12 \\
& (\mathrm{~m}+\mathrm{n}) x+2(\mathrm{~m}-\mathrm{n}) \mathrm{y}=5 \mathrm{~m}-1
\end{aligned}
$$

29. एक सन्दुक में 1 से 20 तक की संख्याओं से अंकित कार्ड रखे हैं । (प्रत्येक कार्ड पर एक संख्या) इनमें से एक कार्ड यादृच्छया निकाला गया। प्रायिकता ज्ञात कीजिए कि निकाले गए कार्ड पर की संख्या
(i) अभाज्य है।
(ii) संयुक्त संख्या है।
(iii) 3 से भाग होने वाली संख्या है।

अथवा

52 पत्तों की ताश की गड्डी से चिड़ी का बादशाह, बेगम तथा गुलाम हटा दिए गये । शेष ताश की गड्डी को अच्छी प्रकार फेंटा गया। इसमें से एक पत्ता निकाला गया। प्रायिकता ज्ञात कीजिए कि निकाला गया पत्ता
(i) हुकम का पत्ता है।
(ii) एक काला बादशाह है।
(iii) एक चिड़ी का पत्ता है।
(iv) एक गुलाम है।

A box contains cards numbered from 1 to 20 . A card is drawn at random from the box. Find the probability that number on the drawn card is
(i) a prime number
(ii) a composite number
(iii) a number divisible by 3

OR

The King, Queen and Jack of clubs are removed from a pack of 52 cards and then the remaining cards are well shuffled. A card is selected from the remaining cards. Find the probability of getting a card
(i) of spade
(ii) of black king
(iii) of club
(iv) of jacks
30. सिद्ध कीजिए कि दो समरूप त्रिभुजों के क्षेत्रफलों का अनुपात उनकी संगत भुजाओं के अनुपात के वर्ग के बराबर होता है।
Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

QUESTION PAPER CODE 30/3 EXPECTED ANSWER/VALUE POINTS SECTION A

1. $\frac{\mathrm{a}^{3}}{\mathrm{~A}^{3}}=\frac{1}{27}$

$$
\Rightarrow \quad \frac{\mathrm{a}}{\mathrm{~A}}=\frac{1}{3}
$$

Ratio of sufrace area $=\frac{6 \mathrm{a}^{2}}{6 \mathrm{~A}^{2}}=\frac{1}{3}^{2}=\frac{1}{9}$
2. Let α and $\frac{1}{\alpha}$ be the root
$\therefore \quad \alpha \cdot \frac{1}{\alpha}=\frac{\mathrm{k}}{5}=1$
$\Rightarrow \quad \mathrm{k}=5$
3. Coordinates of D are $(-1,2)$

$$
\begin{aligned}
\mathrm{AD} & =\sqrt{(5+1)^{2}+(1+2)^{2}} \\
& =\sqrt{37} \text { units }
\end{aligned}
$$

4. Solving for x and y and getting $\mathrm{x}=3, \mathrm{y}=1$

$$
\therefore \quad a=3, b=1
$$

5. $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{QRP})}=\left(\frac{\mathrm{BC}}{\mathrm{RP}}\right)^{2}$

$$
\Rightarrow \quad \frac{9}{4}=\left(\frac{15}{\mathrm{PR}}\right)^{2} \Rightarrow \mathrm{PR}=10 \mathrm{~cm}
$$

6. For writing $\frac{6 \sqrt{5}+6 \sqrt{5}}{2 \sqrt{5}}$
$=6$ which is rational

SECTION B

7. Let r be the radii of bases of cylinder and cone and h be the height

$$
\begin{array}{lr}
\text { Slant height of cone }=\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}} & \frac{1}{2} \\
\therefore & \frac{2 \pi \mathrm{rh}}{\pi \mathrm{r} \sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}}=\frac{8}{5} \\
& \frac{\mathrm{~h}}{\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}}=\frac{4}{5} \\
\Rightarrow \quad \frac{\mathrm{~h}^{2}}{\mathrm{r}^{2}+\mathrm{h}^{2}}=\frac{16}{25} \\
\Rightarrow & 25 \mathrm{~h}^{2}=16 \mathrm{r}^{2}+16 \mathrm{~h}^{2} \\
\Rightarrow & 9 \mathrm{~h}^{2}=16 \mathrm{r}^{2} \\
\Rightarrow \frac{\mathrm{r}^{2}}{\mathrm{~h}^{2}}=\frac{9}{16} \Rightarrow \frac{\mathrm{r}}{\mathrm{~h}}=\frac{3}{4} & \frac{1}{2} \\
\Rightarrow
\end{array}
$$

8. $\mathrm{PA}=\mathrm{PB} \Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}$

$$
\begin{aligned}
& \Rightarrow \quad(x-1)^{2}+(y-4)^{2}=(x+1)^{2}+(y-2)^{2} \\
& \Rightarrow \quad x^{2}+1-2 x+y+16-8 y=x^{2}+1+2 x+y^{2}+4-4 y
\end{aligned}
$$

$$
\Rightarrow \quad x+y-3=0
$$

9. $\triangle \mathrm{TXN} \sim \Delta \mathrm{TCM}$

$\Rightarrow \quad \frac{\mathrm{TX}}{\mathrm{TC}}=\frac{\mathrm{XN}}{\mathrm{CM}}=\frac{\mathrm{TN}}{\mathrm{TM}}$
$\Rightarrow \quad \mathrm{TX} \times \mathrm{TM}=\mathrm{TC} \times \mathrm{TN}$

Again, $\Delta \mathrm{TBN} \sim \Delta \mathrm{TXM}$
$\Rightarrow \quad \frac{\mathrm{TB}}{\mathrm{TX}}=\frac{\mathrm{BN}}{\mathrm{XM}}=\frac{\mathrm{TN}}{\mathrm{TM}}$
$\Rightarrow \quad \mathrm{TM}=\frac{\mathrm{TN} \times \mathrm{TX}}{\mathrm{TB}}$
using (ii) in (i), we get

$$
\begin{aligned}
& \mathrm{TX}^{2} \times \frac{\mathrm{TN}}{\mathrm{~TB}}=\mathrm{TC} \times \mathrm{TN} \\
\Rightarrow \quad & \mathrm{TX}^{2}=\mathrm{TC} \times \mathrm{TB}
\end{aligned}
$$

10. Let $2+\sqrt{3}$ be a rational number.

$$
\begin{aligned}
& \Rightarrow \quad 2+\sqrt{3}=\frac{p}{q}, p, q \in I, q \neq 0 \\
& \Rightarrow \quad \sqrt{3}=\frac{p}{q}-2=\frac{p-2 q}{q} \\
& \frac{\mathrm{p}-2 \mathrm{q}}{\mathrm{q}} \text { is rational } \Rightarrow \sqrt{3} \text { is rational number }
\end{aligned}
$$

which is a contraduction
$2+\sqrt{3}$ is irrational number
11. $\mathrm{AC}=\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}}$

$$
=\sqrt{14^{2}+48^{2}}=\sqrt{2500}=50 \mathrm{~cm}
$$

$\angle \mathrm{OQB}=90^{\circ} \Rightarrow \mathrm{OPBQ}$ is a square
$\Rightarrow \quad \mathrm{BQ}=\mathrm{r}, \mathrm{QA}=14-\mathrm{r}=\mathrm{AR}$

Again $\mathrm{PB}=\mathrm{r}$,

$$
\begin{aligned}
& \mathrm{PC}=48-\mathrm{r} \Rightarrow \mathrm{RC}=48-\mathrm{r} \\
& \mathrm{AR}+\mathrm{RC}=\mathrm{AC} \Rightarrow 14-\mathrm{r}+48-\mathrm{r}=50 \\
\Rightarrow \quad & \mathrm{r}=6 \mathrm{~cm}
\end{aligned}
$$

12. $\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$

$$
\begin{align*}
& \Rightarrow \quad \frac{\mathrm{A}+\mathrm{B}}{2}=90^{\circ}-\frac{\mathrm{C}}{2} \tag{1}\\
& \Rightarrow \quad \operatorname{cosec}\left(\frac{\mathrm{~A}+\mathrm{B}}{2}\right)=\operatorname{cosec}\left(90^{\circ}-\frac{\mathrm{C}}{2}\right)=\sec \frac{\mathrm{C}}{2} \tag{1}
\end{align*}
$$

SECTION C

13. Construction of $\triangle \mathrm{ABC}$ with sides $6 \mathrm{~cm}, 8 \mathrm{~cm}, 4 \mathrm{~cm}$.

Construction of similar triangle
14. $\quad \sin (A+2 B)=\frac{\sqrt{3}}{2} \Rightarrow A+2 B=60^{\circ}$
$\cos (\mathrm{A}+4 \mathrm{~B})=\Rightarrow \mathrm{A}+4 \mathrm{~B}=90^{\circ}$

Solving, we get $\mathrm{A}=30^{\circ}, \mathrm{B}=15^{\circ}$

Classes

Less than 15
Less than 30
Less than 45
Less than 60
$4 \quad$ Less than 75

34
6 14

$$
24
$$

$$
30
$$

.

Cumulative frequency

$0-15$	6	Less than 15	6
$15-30$	8	Less than 30	14
$30-45$	10	Less than 45	24
$45-60$	6	Less than 60	30
$60-75$	4	Less than 75	34

16. $\mathrm{AB}=8 \mathrm{~cm} \Rightarrow \mathrm{AM}=4 \mathrm{~cm}$

$\therefore \quad \mathrm{OM}=\sqrt{5^{2}-4^{2}}=3 \mathrm{~cm}$
Let $\mathrm{AP}=\mathrm{ycm}, \mathrm{PM}=\mathrm{xcm}$
$\therefore \quad \Delta \mathrm{OPP}$ is a right angle triangle
$\therefore \quad \mathrm{OP}^{2}=\mathrm{OA}^{2}=\mathrm{AP}^{2}$

$$
\begin{equation*}
(x+3)^{2}=y^{2}+25 \tag{i}
\end{equation*}
$$

$\Rightarrow \quad x^{2}+9+6 x=y^{2}+25$
Also $x^{2}+4^{2}=y^{2}$
$\Rightarrow \quad x^{2}+6 x+9=x^{2}+16+25$
$\Rightarrow \quad 6 x=32 \Rightarrow x=\frac{32}{6}$ i.e. $\frac{16}{3} \mathrm{~cm}$
$\therefore \quad \mathrm{y}^{2}=\mathrm{x}^{2}+16=\frac{256}{9}+16=\frac{400}{9}$
$\Rightarrow \quad \mathrm{y}=\frac{20}{3} \mathrm{~cm}$ or $6 \frac{2}{3} \mathrm{~cm}$
OR

Correct given, to prove, figure and construction

$$
\frac{1}{2} \times 4=2
$$

Correct proof
17. $867=255 \times 3+102$

$$
102=51 \times 2+0
$$

$$
\Rightarrow \quad \mathrm{HCF}=51
$$

18. Distance travelled by short hand in 48 hours $=4 \times 2 \pi \times 4 \mathrm{~cm}=32 \pi \mathrm{~cm}$

Distance travelled by long hand in 48 hours $=48 \times 2 \pi \times 6 \mathrm{~cm}=576 \pi \mathrm{~cm}$
Total distance travelled $=(32 \pi+576 \pi) \mathrm{cm}$

$$
=608 \pi \mathrm{~cm}
$$

OR

Radius of inner circle $=5 \mathrm{~cm}$

Radius of outer circle $=5 \sqrt{2} \mathrm{~cm}$
Required area $=$ Area of outer circle - Area of inner circle

$\Rightarrow \quad\left[(5 \sqrt{2})^{2}-5^{2}\right]=25 \pi \mathrm{~cm}^{2}$
19. Here, $S_{n}=3 n^{2}+5 n$

$$
\begin{aligned}
\Rightarrow & \mathrm{S}_{1}=3.1^{2}+5.1=8=\mathrm{a}_{1} \\
& \mathrm{~S}_{2}=3.2^{2}+5.2=22=\mathrm{a}_{1}+\mathrm{a}_{2} \\
& \mathrm{a}_{2}=22-8=14 \Rightarrow \mathrm{~d}=6 \\
& \mathrm{t}_{\mathrm{k}}=164 \Rightarrow 8+(\mathrm{k}-1) 6=164 \\
\Rightarrow & \mathrm{k}=27
\end{aligned}
$$

20. Let two parts be x and $27-x$

$$
\begin{aligned}
& \therefore \quad \frac{1}{\mathrm{x}}+\frac{1}{27-\mathrm{x}}=\frac{3}{20} \\
& \Rightarrow \quad \mathrm{x}^{2}-27 \mathrm{x}+150=0 \\
& \Rightarrow \quad(\mathrm{x}-15)(\mathrm{x}-12)=0 \\
& \Rightarrow \quad \mathrm{x}=12 \text { or } 15
\end{aligned}
$$

\therefore The two parts are 12 and 15
21. $\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}=\frac{1+\tan ^{2} \mathrm{~A}}{1+\frac{1}{\tan ^{2} \mathrm{~A}}}=\tan ^{2} \mathrm{~A}$

$$
\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\left(\frac{1-\tan A}{\frac{\tan A-1}{\tan A}}\right)^{2}=(-\tan A)^{2}=\tan ^{2} A
$$

Hence $\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}=\left(\frac{1-\tan \mathrm{A}}{1-\cot \mathrm{A}}\right)^{2}=\tan ^{2} \mathrm{~A}$
OR

$$
\begin{aligned}
& \frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}-\frac{\cos 38^{\circ} \operatorname{cosec} 52^{\circ}}{\sqrt{3}\left(\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}\right)} \\
& =\left(\frac{\cos 58^{\circ}}{\sin \left(90-58^{\circ}\right)}+\frac{\sin 22^{\circ}}{\cos \left(90-22^{\circ}\right)}\right)-\frac{\cos 38^{\circ} \operatorname{cosec}(90-38)^{\circ}}{\sqrt{3}\left(\tan 18^{\circ} \tan 35^{\circ} \cdot \sqrt{3} \cdot \cot 18^{\circ} \cot 35^{\circ}\right)} \\
& =1+1-\frac{\cos 38^{\circ} \sec 38^{\circ}}{3.1} \\
& =2-\frac{1}{3}=\frac{5}{3}
\end{aligned}
$$

22. Let the coordinates of C and D be (a, b) and (c, d)

(8)
$\therefore \quad \frac{3+\mathrm{a}}{2}=2 \Rightarrow \mathrm{a}=1$
and $\frac{2+\mathrm{b}}{2}=-5 \Rightarrow \mathrm{~b}=-12$

Also $\frac{c+1}{2}=-5 \Rightarrow c=3$
and $\frac{d+0}{2}=-5 \Rightarrow d=-10$
$\therefore \quad$ Coordinate of C and D are $(1,-12)$ and $(3,-10)$
OR
$\operatorname{Ar}(\Delta \mathrm{ABC})=4$
$\Rightarrow \quad \frac{1}{2}[x(4-5)+4(5-3)+3(3-4)]=4$
$\Rightarrow \quad(-x+5)=8$
$\Rightarrow \quad-\mathrm{x}+5=8$
$\Rightarrow \quad x=-3$

SECTION D

23. Let the speed of faster train be $x \mathrm{~km} / \mathrm{hr}$
$\therefore \quad$ Speed of slower train $=(x-10) \mathrm{km} / \mathrm{hr}$

$$
\frac{200}{\mathrm{x}-10}-\frac{200}{\mathrm{x}}=1
$$

$$
\Rightarrow \quad x^{2}-10 x-2000=0
$$

$$
\Rightarrow \quad(x-50)(x+40)=0
$$

$$
x=50,-40 \text { rejected }
$$

$\left.\begin{array}{ll}\therefore \quad & \left.\begin{array}{l}\text { Speed of faster train }=50 \mathrm{~km} / \mathrm{hr} \\ \\ \\ \text { Speed of slower train }=40 \mathrm{~km} / \mathrm{hr}\end{array}\right\}\end{array}\right\}$
OR
$\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}$
$\Rightarrow \quad \frac{1}{a+b+c}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}$
$\frac{-(a+b)}{x(a+b+x)}=\frac{a+b}{a b}$
$\Rightarrow \quad \mathrm{x}^{2}+(\mathrm{a}+\mathrm{b}) \mathrm{x}+\mathrm{ab}=0$
$(x+a)(x+b)=0 \Rightarrow x=-a,-b$
24.

$\ln \triangle \mathrm{ABC}, \frac{\mathrm{h}}{\mathrm{x}}=\tan 60^{\circ}$
$\Rightarrow \quad \mathrm{h}=\mathrm{x} \sqrt{3}$
$\ln \triangle \mathrm{BCD}, \frac{50}{\mathrm{x}}=\tan 30^{\circ}$
$\Rightarrow \quad \mathrm{x}=50 \sqrt{3}$
$\therefore \quad h=150$
$\therefore \quad$ height of hill $=150 \mathrm{~m}$

1

OR

$\ln \triangle \mathrm{ABC}, \frac{\mathrm{h}}{\mathrm{x}}=\tan 60^{\circ}$
$\Rightarrow \quad \mathrm{h}=\mathrm{x} \sqrt{3}$
$\ln \triangle \mathrm{ECD}, \frac{\mathrm{h}}{80-\mathrm{x}}=\tan 30^{\circ}$
$\Rightarrow \quad \mathrm{h} \sqrt{3}=80-\mathrm{x}$
From (1), $x \sqrt{3} \times \sqrt{3}=80-x$

$$
\begin{aligned}
& \Rightarrow \quad x=20 \\
& \therefore \quad h=20 \sqrt{3}
\end{aligned}
$$

$$
\therefore \quad \text { height of poles }=20 \sqrt{3} \mathrm{~m}
$$

Distances of poles from the point are 20 m and 60 m

25. $p(x)=3 x^{4}-15 x^{3}+13 x+25 x-30$

$$
\begin{aligned}
& \mathrm{x}-\sqrt{\frac{5}{3}} \text { and } \mathrm{x}+\sqrt{\frac{5}{3}} \text { are factors of } \mathrm{p}(\mathrm{x}) \\
\Rightarrow & \mathrm{x}^{2}-\frac{5}{3} \text { or } \frac{\left(3 \mathrm{x}^{2}-5\right)}{3} \text { is a factor of } \mathrm{p}(\mathrm{x}) \\
& \mathrm{p}(\mathrm{x})=\frac{\left(3 \mathrm{x}^{2}-5\right)}{3}\left(\mathrm{x}^{2}-5 \mathrm{x}+6\right) \\
& =\frac{1}{3}\left(3 \mathrm{x}^{2}-5\right)(\mathrm{x}-3)(\mathrm{x}-2)
\end{aligned}
$$

$$
\therefore \quad \text { Zeroes of } \mathrm{p}(\mathrm{x}) \text { are } \sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}}, 2 \text { and } 3
$$

26. Surface area of bucket $=\pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) l+\pi \mathrm{r}_{1}{ }^{2}$

$$
\begin{align*}
& 1=\sqrt{h^{2}+\left(r_{2}-r_{1}\right)^{2}}=\sqrt{20^{2}+(36-21)^{2}} \\
& =\sqrt{625}=25 \mathrm{~cm} \\
& \therefore \quad \text { Surface area of } 1 \text { bucket }=\frac{22}{7}\left[(36+21) \times 25+21^{2}\right] \\
& =\frac{22}{7} \times 1866 \mathrm{~cm}^{2} \tag{1}
\end{align*}
$$

Surface area of 10 buckets $=\frac{22}{7} \times 18660 \mathrm{~cm}^{2}$
27.

Classes	Frequency	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$
$10-20$	4	15	60
$20-30$	8	25	200
$30-40$	10	35	350
$40-50$	12	45	540
$50-60$	10	55	550
$60-70$	4	65	260
$70-80$	2	75	150
Total	50		2110

$$
\begin{equation*}
\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{2110}{50}=42.2 \tag{1}
\end{equation*}
$$

40-50 is modal class

$$
\begin{aligned}
\text { Mode } & =l+\frac{\left(\mathrm{f}_{1}-\mathrm{f}_{0}\right)}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =40+\frac{12-10}{24-10-10} \times 10=45
\end{aligned}
$$

28. For infinitely many solutions.

$$
\begin{align*}
& \frac{3}{m+n}=\frac{4}{2(m-n)}=\frac{-12}{-(5 m-1)} \\
& \frac{3}{m+n}=\frac{4}{2(m-n)} \Rightarrow m-5 n=0 \tag{1}\\
& \frac{4}{2(m-n)}=\frac{12}{5 m-1} \Rightarrow m-6 n=-1 \tag{2}
\end{align*}
$$

Solving (1) and (2) we get, $m=5, n=1$
29. (i) Prime numbers from 1 to 20 are 2, 3, 5, 7, 11, 13, 17, 19 i.e. 8
$\mathrm{P}($ prime number $)=\frac{8}{20}$ or $\frac{2}{5}$
(ii) Composite number from 1 to 20 are
$4,6,8,9,10,12,14,15,16,18,20$ i.e. 11
$\mathrm{P}($ Composite number $)=\frac{11}{20}$
(iii) Number divisible by 3 from 1 to 20 are
$3,6,9,12,15,18$ i.e 6
$P($ number divisible by 3$)=\frac{6}{20}$ or $\frac{3}{10}$

OR

Total number of cards $=52-3=49$
(i) $\mathrm{P}($ spade $)=\frac{13}{49}$
(ii) $\mathrm{P}($ black king $)=\frac{1}{49}$
(iii) $\mathrm{P}($ club $)=\frac{10}{49}$
(iv) $\mathrm{P}($ Jack $)=\frac{3}{49}$
30. Correct figure, given to prove and construction

Correct proof

