# Class X <br> (CBSE 2019) <br> Mathematics <br> Abroad (Set-3) 

## General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of $\mathbf{3 0}$ questions divided into four sections - $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and $\mathbf{D}$.
(iii) Section $\mathbf{A}$ comprises $\mathbf{6}$ questions of $\mathbf{1}$ mark each. Section $\mathbf{B}$ contains $\mathbf{6}$ questions of $\mathbf{2}$ marks each. Section C contains 10 questions of $\mathbf{3}$ marks each. Section D contains $\mathbf{8}$ questions of 4 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in two questions of $\mathbf{1}$ mark, two questions of $\mathbf{2}$ marks, four questions of $\mathbf{3}$ marks each and three questions of 4 marks each. You have to attempt only one of the alternative in all such questions.
(v) Use of calculators is not permitted.

## Question 1

Which term of the A.P. $-4,-1,2, \ldots$ is 101 ?

## SOLUTION:

We have been given an arithmetic progression where
$a=-4, d=-1-(-4)=3$ and $a_{n}=101$
We need to find which term of the given AP is 101 so, we need to find $n$.
Using $a_{n}=a+(n-1) d$
Substituting the values in the formula we get
$101=-4+(n-1) 3$
$101+7=3 n$
$3 n=108$
$n=36$
Therefore, 36th term of given A.P is 101.

## Question 2

Evaluate:
$\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$

## OR

Express $\left(\sin 67^{\circ}+\cos 75^{\circ}\right)$ in terms of trigonometric ratios of the angle between $0^{\circ}$ and $45^{\circ}$.

## SOLUTION:

$$
\begin{aligned}
& \frac{\tan 65^{\circ}}{\cot 25^{\circ}} \\
& =\frac{\tan \left(90^{\circ}-25^{\circ}\right)}{\cot 25^{\circ}} \quad\left(\because \tan \left(90^{\circ}-\theta\right)=\cot \theta\right) \\
& =\frac{\cot 25^{\circ}}{\cot 25^{\circ}} \\
& =1
\end{aligned}
$$

## OR

$\left(\sin 67^{\circ}+\cos 75^{\circ}\right)$
$=\left(\sin \left(90^{\circ}-23^{\circ}\right)+\cos \left(90^{\circ}-25^{\circ}\right)\right) \quad\left(\because \sin \left(90^{\circ}-\theta\right)=\cos \theta\right.$ and $\cos \left(90^{\circ}-\theta\right)=$ $\sin \theta)=\left(\cos 23^{\circ}+\sin 25^{\circ}\right)$

Question 3
Find the value of $k$ for which the quadratic equation $k x(x-2)+6=0$ has two equal roots.

## SOLUTION:

Given quadratic equation is:
$k x(x-2)+6=0$
$\Rightarrow k x^{2}-2 k x+6=0$
For a quadratic equation to have equal roots,
$b^{2}-4 a c=0$
Comparing the given equation with general equation $a x^{2}+b x+c=0$
We get $a=k, b=-2 k$ and $c=6$
$(-2 k)^{2}-4(k)(6)=0$
$\Rightarrow 4 k^{2}-24 k=0$
$\Rightarrow 4 k(k-6)=0$
Therefore, $k=0$ and $k=6$

Find a rational number between $\sqrt{2}$ and $\sqrt{7}$.
OR
Write the number of zeroes in the end of a number whose prime factorization is $2^{2} \times 5^{3} \times$ $3^{2} \times 17$.

## SOLUTION:

We know
$\sqrt{2}=1.414$
$\sqrt{7}=1.732$
So, rational number between $\sqrt{2}$ and $\sqrt{7}$ will be $1.5=\frac{3}{2}$.
OR
Given prime factorisation is $2^{2} \times 5^{3} \times 3^{2} \times 17$.
A number will have zero at the end when we have $2 \times 5$.
In $2^{2} \times 5^{3} \times 3^{2} \times 17$ we will have 2 zeroes as $\left(2^{2} \times 5^{2}\right) \times 5 \times 3^{2} \times 17$.

## Question 5

Find the distance between the points $(a, b)$ and $(-a,-b)$.

## SOLUTION:

Using distance formula:
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Here, $x_{1}=a, y_{1}=b, x_{2}=-a$ and $y_{2}=-b$
On substituting the values in the formula we get

$$
\begin{aligned}
& \sqrt{(-a-a)^{2}+(-b-b)^{2}} \\
& =\sqrt{(-2 a)^{2}+(-2 b)^{2}} \\
& =\sqrt{4 a^{2}+4 b^{2}} \\
& =2 \sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Therefore, the distance between $(a, b)$ and $(-a,-b)$ is $2 \sqrt{(a)^{2}+(b)^{2}}$
Question 6
Let $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$ and their areas be respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15 \cdot 4$ cm , find $B C$.

## SOLUTION:

Given: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
We know ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
$\frac{\operatorname{ar} \triangle \mathrm{ABC}}{\mathrm{ar} \triangle \mathrm{DEF}}=\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2}$
$\Rightarrow \frac{64}{121}=\left(\frac{\mathrm{BC}}{15.4}\right)^{2}$
$\Rightarrow\left(\frac{8}{11}\right)^{2}=\left(\frac{\mathrm{BC}}{15.4}\right)^{2}$
$\Rightarrow \frac{8}{11}=\frac{\mathrm{BC}}{15.4}$
$\Rightarrow \mathrm{BC}=\frac{8 \times 15.4}{11}=11.2 \mathrm{~cm}$
Thus, $B C=11.2 \mathrm{~cm}$.

## Question 7

Find the solution of the pair of equation:
$\frac{3}{x}+\frac{8}{y}=-1 ; \frac{1}{x}-\frac{2}{y}=2, x, y \neq 0$
Find the value(s) of $k$ for which the pair of equations $\left\{\begin{array}{l}k x+2 y=3 \\ 3 x+6 y=10\end{array}\right.$ has a unique solution.

## SOLUTION:

The given equations are
$\frac{3}{x}+\frac{8}{y}=-1 \quad \ldots . .(1)$
$\frac{1}{x}-\frac{2}{y}=2$
Let $\frac{1}{x}=u$ and $\frac{1}{y}=v$
(1) and (2) will become
$3 u+8 v=-1$
$u-2 v=2$
Multiply (4) with 4
$4 u-8 v=8$
Adding (3) and (5) we get
$7 u=7$
$\Rightarrow u=1$
Putting this value in (4)
$1-2 v=2$
$\Rightarrow v=\frac{-1}{2}$

Now
$\frac{1}{x}=u$
$\Rightarrow \frac{1}{x}=1$
$\Rightarrow x=1$
And
$\frac{1}{y}=v$
$\Rightarrow \frac{1}{y}=\frac{-1}{2}$
$\Rightarrow y=-2$

## OR

The given equations are
$k x+2 y=3$
$3 x+6 y=10$
For a unique solution,
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
where $a_{1}=k, a_{2}=3, b_{1}=2, b_{2}=6$
$\frac{k}{3} \neq \frac{2}{6}$
$\Rightarrow k \neq 1$
For all values of $k$ except 1 , the given linear equations will have unique solution.

## Question 8

Use Euclid's division algorithm to find the HCF of 255 and 867.

## SOLUTION:

The given numbers are 255 and 867.
Now $867>255$. So, on applying Euclid's algorithm we get
$867=255 \times 3+102$
Now the remainder is not 0 so, we repeat the process again on 255 and 102
$255=102 \times 2+51$
The algorithm is applied again but this time on the numbers 102 and 51
$102=51 \times 2+0$

Thus, the HCF obtained is 51 .
Question 9
The point $R$ divides the line segment AB , where $\mathrm{A}(-4,0)$ and $\mathrm{B}(0,6)$ such that $A R=$ $\frac{3}{4} A B$. Find the coordinates of $R$.

## SOLUTION:

We have given that $R$ divides the line segment $A B$
$A R+R B=A B$
$\frac{3}{4} \mathrm{AB}+\mathrm{RB}=\mathrm{AB}$
$\Rightarrow \mathrm{RB}=\frac{\mathrm{AB}}{4}$
$\Rightarrow \mathrm{AR}: \mathrm{RB}=3: 1$
Using section formula:
$x=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}\right), y=\left(\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
$m_{1}=3, m_{2}=1$
$x_{1}=-4, y_{1}=0$
$x_{2}=0, y_{2}=6$
Plugging values in the formula we get
$x=\frac{3 \times 0+1 \times(-4)}{3+1}, y=\frac{3 \times 6+1 \times 0}{3+1}$
$x=\frac{-4}{4}, y=\frac{18}{4}$
$\Rightarrow x=-1, y=\frac{9}{2}$
Therefore, the coordinates of $\mathrm{R}\left(-1, \frac{9}{2}\right)$.

## Question 10

How many multiples of 4 lie between 10 and 205 ?

## OR

Determine the A.P. whose third term is 16 and $7^{\text {th }}$ term exceeds the $5^{\text {th }}$ by 12 .

## SOLUTION:

We need to find the number of multiples of 4 between 10 and 205 .
So, multiples of 4 gives the sequence $12,16, \ldots, 204$
$a=12, d=4$ and $a_{n}=204$
Using the formula $a_{n}=a+(n-1) d$
Plugging values in the formula we get
$204=12+(n-1) 4$
$204=12+4 n-4$
$4 n=196$
$n=49$
Thus, there are 49 multiples of 4 between 10 and 205.

OR
Given: 3rd term of the AP is 16.
$a_{3}=16$
$a+(3-1) d=16$
$a+2 d=16$
Also, 7th term exceeds the 5th term by 12.
$a_{7}-a_{5}=12$
$[a+(7-1) d]-[a+(5-1) d]=12$
$(a+6 d)-(a+4 d)=12$
$2 d=12$
$d=6$
From equation (1), we obtain
$a+2(6)=16$
$a+12=16$
$a=4$
Therefore, A.P. will be $4,10,16,22, \ldots$
Question 11
Three different coins are tossed simultaneously. Find the probability of getting exactly one head.

## SOLUTION:

Total possible outcomes of tossing three coins simultaneously are \{TTT,TTH,THT,THH,HTT,HTH,HHT,HHH\}
that is 8
We have to find the probability of getting exactly one head.

Cases of exactly one head are \{TTH,THT,HTT\}
that is 3

Probability of getting exactly on head is $\frac{3}{8}$.

## Question 12

A die is thrown once. Find the probability of getting.
(a) a prime number.
(b) an odd number

## SOLUTION:

Total outcomes of throwing a dice once are 1,2,3,4,5 and 6
(1) Probability of getting a prime number

Prime numbers are 2,3 and 5 in throwing a die once
Probability of getting a prime number $=\frac{3}{6}=\frac{1}{2}$
(2) Probability of getting an odd number
odd numbers are those that are not divisible by 2 .
So, there three odd numbers in throwing a dice once which is 1,3 and 5 .
Probability of getting an odd number $=\frac{3}{6}=\frac{1}{2}$

Question 13
In Figure 1, $B L$ and $C M$ are medians of a $\triangle A B C$ right-angled at $A$. Prove that $4\left(B^{2}+\right.$ $\left.C M^{2}\right)=5 \mathrm{BC}^{2}$.


OR
Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

## SOLUTION:

To prove: $4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$
Proof: In $\triangle C A B$,
Applying Pythagoras theorem,
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}$
In $\triangle A B L$,
$\mathrm{AL}^{2}+\mathrm{AB}^{2}=\mathrm{BL}^{2}$
$\Rightarrow\left(\frac{\mathrm{AC}}{2}\right)^{2}+\mathrm{AB}^{2}=\mathrm{BL}^{2}$
$\Rightarrow \mathrm{AC}^{2}+4 \mathrm{AB}^{2}=4 \mathrm{BL}^{2}$
In $\triangle C A M$,
$\mathrm{CA}^{2}+\mathrm{MA}^{2}=\mathrm{CM}^{2}$
$\Rightarrow\left(\frac{\mathrm{BA}}{2}\right)^{2}+\mathrm{CA}^{2}=\mathrm{CM}^{2}$
$\Rightarrow \mathrm{BA}^{2}+4 \mathrm{CA}^{2}=4 \mathrm{CM}^{2}$
Adding (2) and (3)
$\mathrm{AC}^{2}+4 \mathrm{AB}^{2}+\mathrm{BA}^{2}+4 \mathrm{CA}^{2}=4 \mathrm{BL}^{2}+4 \mathrm{CM}^{2}$
$\Rightarrow 5 \mathrm{AC}^{2}+5 \mathrm{AB}^{2}=4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)$
$\Rightarrow 5\left(\mathrm{AC}^{2}+\mathrm{AB}^{2}\right)=4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)$
$\Rightarrow 5\left(\mathrm{BC}^{2}\right)=4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)$
(From (1))
Hence Proved.


In $\triangle A O B, \triangle B O C, \triangle C O D, \triangle A O D$,
Applying Pythagoras theorem, we obtain

$$
\begin{align*}
& \mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2}  \tag{1}\\
& \mathrm{BC}^{2}=\mathrm{BO}^{2}+\mathrm{OC}^{2}  \tag{2}\\
& \mathrm{CD}^{2}=\mathrm{CO}^{2}+\mathrm{OD}^{2}  \tag{3}\\
& \mathrm{AD}^{2}=\mathrm{AO}^{2}+\mathrm{OD}^{2} \tag{4}
\end{align*}
$$

Adding all these equations, we obtain

$$
\begin{aligned}
& \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=2\left(\mathrm{AO}^{2}+\mathrm{OB}^{2}+\mathrm{OC}^{2}+\mathrm{OD}^{2}\right) \\
& =2\left(\left(\frac{\mathrm{AC}}{2}\right)^{2}+\left(\frac{\mathrm{BD}}{2}\right)^{2}+\left(\frac{\mathrm{AC}}{2}\right)^{2}+\left(\frac{\mathrm{BD}}{2}\right)^{2}\right)
\end{aligned}
$$

(Diagonals bisect each other)

$$
\begin{aligned}
& =2\left(\frac{(\mathrm{AC})^{2}}{2}+\frac{(\mathrm{BD})^{2}}{2}\right) \\
& =(\mathrm{AC})^{2}+(\mathrm{BD})^{2}
\end{aligned}
$$

Question 14
In Figure 2, two concentric circles with centre $O$, have radii 21 cm and 42 cm . If $\angle A O B=$ $60^{\circ}$, find the area of the shaded region.


## SOLUTION:



Radius of inner circle, $O C=21 \mathrm{~cm}$
Radius of outer circle, $O A=42 \mathrm{~cm}$

Area of circle with radius $R=\pi R^{2}=\pi(42)^{2}$
Area of circle with radius $r=\pi r^{2}=\pi(21)^{2}$
Area of sector $\mathrm{AOB}=\frac{\theta}{360} \times \pi R^{2}=\frac{60}{360} \times \pi(42)^{2}=\frac{\pi(42)^{2}}{6}$
Area of sector COD $=\frac{\theta}{360} \times \pi r^{2}=\frac{60}{360} \times \pi(21)^{2}=\frac{\pi(21)^{2}}{6}$
Area of shaded portion $=$ Area of circle with radius $\mathrm{R}-$ Area of circle with radius $r$ - [Area of sector AOB - Area of sector COD]

$$
\begin{aligned}
& =\pi(42)^{2}-\pi(21)^{2}-\left[\frac{\pi(42)^{2}}{6}-\frac{\pi(21)^{2}}{6}\right] \\
& =\pi\left[(42)^{2}-(21)^{2}-\frac{1}{6}\left[(42)^{2}-(21)^{2}\right]\right] \\
& =\pi\left[\left((42)^{2}-(21)^{2}\right)\left(1-\frac{1}{6}\right)\right] \\
& =\pi\left[(42-21)(42+21) \frac{5}{6}\right] \\
& =\frac{22}{7} \times \frac{5}{6} \times 21 \times 63 \\
& =3465 \mathrm{~cm}^{2}
\end{aligned}
$$

## Question 15

A cone of height 24 cm and radius of base 6 cm is made up of modelling clay. A child reshapes it in the form of a sphere. Find the radius of the sphere and hence find the surface area of this sphere.

## OR

A farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank in his field which is 10 m in diameter and 2 m deep. If water flows through the pipe at the rate of $3 \mathrm{~km} / \mathrm{hr}$, how much time will the tank be filled?

## SOLUTION:

A cone has been reshaped in sphere
Height of cone is 24 cm and radius of base is 6 cm
Volume of sphere = volume of cone
Volume of cone $=\frac{1}{3} \pi r^{2} h$
Plugging the values in the formula we get
volume of cone $=\frac{1}{3} \pi(6)^{2} 24$

$$
=288 \pi \mathrm{~cm}^{3}
$$

Let the radius of sphere be $r$
Volume of sphere $=\frac{4}{3} \pi r^{3}$

Since, volume of cone $=$ volume of sphere
Volume of sphere $=288 \pi \mathrm{~cm}^{3}$
So,
$288 \pi=\frac{4}{3} \pi r^{3}$
$\Rightarrow 288=\frac{4}{3} r^{3}$
$\Rightarrow r^{3}=216$
$\Rightarrow r=6 \mathrm{~cm}$
Hence, radius of reshaped sphere is 6 cm
Now, surface area of sphere $=4 \pi r^{2}$
$=4 \pi(6)^{2}$
$=144 \times \frac{22}{7}$
$=452.5 \mathrm{~cm}^{2}$
Therefore, surface area of sphere is $452.57 \mathrm{~cm}^{2}$.

## OR



Consider an area of cross-section of pipe as shown in the figure.
Radius $\left(r_{1}\right)$ of circular end of pipe $=\frac{20}{200}=0.1 \mathrm{~m}$
Area of cross-section $=\pi \times r_{1}^{2}=\pi \times(0.1)^{2}=0.01 \pi \mathrm{~m}^{2}$
Speed of water $=3 \mathrm{~km} / \mathrm{h}=\frac{\frac{3000}{60}}{60}=50 \mathrm{metre} / \mathrm{min}$
Volume of water that flows in 1 minute from pipe $=50 \times 0.01 \pi=0.5 \pi \mathrm{~m}^{3}$
Volume of water that flows in $t$ minutes from pipe $=t \times 0.5 \pi \mathrm{~m}^{3}$


Radius ( $r_{2}$ ) of circular end of cylindrical tank $=\frac{10}{2}=5 \mathrm{~m}$
Depth $\left(h_{2}\right)$ of cylindrical tank $=2 \mathrm{~m}$
Let the tank be filled completely in $t$ minutes.
Volume of water filled in tank in $t$ minutes is equal to the volume of water flowed in $t$ minutes from the pipe.

Volume of water that flows in $t$ minutes from pipe $=$ Volume of water in tank
$t \times 0.5 \pi=\pi \times\left(r_{2}\right)^{2} \times h_{2}$
$t \times 0.5=5^{2} \times 2$
$t=100$
Therefore, the cylindrical tank will be filled in 100 minutes.
Question 16
Calculate the mode of the following distribution :

| Class : | $10-15$ | $15-20$ | $20-25$ | $25-30$ | $30-35$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency : | 4 | 7 | 20 | 8 | 1 |

## SOLUTION:

Modal class is the class with highest frequency modal class is 20-25
lower limit of modal class i.e $I=20$
class size i.e $h=5$
frequency of modal class $f_{1}=20$
frequency of preceding class $f_{0}=7$
frequency of succeeding class $f_{2}=8$
Using the formula
mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$
Plugging the values in the formula we get

$$
\begin{aligned}
& \text { mode }=20+\left(\frac{20-7}{2 \times 20-7-8}\right) \times 5 \\
& \text { mode }=20+\left(\frac{13}{25}\right) \times 5 \\
& \text { mode }=20+\frac{13}{5} \\
& \text { mode }=\frac{113}{5}=22.6
\end{aligned}
$$

## Question 17

Show that $\frac{2+3 \sqrt{2}}{7}$ is not a rational number, given that $\sqrt{2}$ is an irrational number.

## SOLUTION:

To prove: $\frac{2+3 \sqrt{2}}{7}$ is irrational, let us assume that $\frac{2+3 \sqrt{2}}{7}$ is rational.
$\frac{2+3 \sqrt{2}}{7}=\frac{a}{b} ; b \neq 0$ and $a$ and $b$ are integers.
$\Rightarrow 2 b+3 \sqrt{2} b=7 a$
$\Rightarrow 3 \sqrt{2} b=7 a-2 b$
$\Rightarrow \sqrt{2}=\frac{7 a-2 b}{3 b}$
Since $a$ and $b$ are integers so, $7 a-2 b$ will also be an integer.
So, $\frac{7 a-2 b}{3 b}$ will be rational which means $\sqrt{2}$ is also rational.
But we know $\sqrt{2}$ is irrational(given).
Thus, a contradiction has risen because of incorrect assumption.
Thus, $\frac{2+3 \sqrt{2}}{7}$ is irrational.
Question 18
Obtain all the zeroes of the polynomial $2 x^{4}-5 x^{3}-11 x^{2}+20 x+12$ when 2 and -2 are two zeroes of the above polynomial

## SOLUTION:

We know that if $x=\alpha$ is a zero of a polynomial, and then $x-\alpha$ is a factor of $f(x)$.
Since 2 and -2 are zeros of $f(x)$.
Therefore
$(x-2)(x+2)=x^{2}-4$
$\left(x^{2}-4\right)$ is a factor of $f(x)$. Now, we divide $2 x^{4}-5 x^{3}-11 x^{2}+20 x+12$ by $g(x)=\left(x^{2}-4\right)$ to find the zero of $f(x)$.

$$
\begin{array}{r}
2 x^{2}-5 x-3 \\
x^{2}-4 \begin{array}{l}
2 x^{4}-5 x^{3}-11 x^{2}+20 x+12 \\
2 x^{4}+0 x^{3}-8 x^{2}
\end{array} \\
\begin{array}{l}
-5 x^{3}-3 x^{2}+20 x+12 \\
-5 x^{3}+0 x^{2}+20 x \\
+\quad- \\
\hline \begin{array}{ll}
-3 x^{2} \\
-3 x^{2} & +12 \\
+12
\end{array} \\
\hline
\end{array}
\end{array}
$$

By using division algorithm we have $f(x)=g(x) \times q(x)-r(x)$
$2 x^{4}-5 x^{3}-11 x^{2}+20 x+12=\left(x^{2}-4\right)\left(2 x^{2}-5 x-3\right)$
$=(x-2)(x+2)[2 x(x-3)+(x-3)]$
$=(x-2)(x+2)(x-3)(2 x+1)$
Hence, the zeros of the given polynomial are $2,-2,3, \frac{-1}{2}$.

## Question 19

A motorboat whose speed is $18 \mathrm{~km} / \mathrm{hr}$ in still water takes on hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.

## SOLUTION:

Speed of the motorboat is $18 \mathrm{~km} / \mathrm{h}$
Let us assume the speed of th stream be $x \mathrm{~km} / \mathrm{h}$ speed of motorboat upstream is $(18-x) \mathrm{km} / \mathrm{h}$
speed of motorboat downstream is $(18+x) \mathrm{km} / \mathrm{h}$
Time taken to go downstream is $\left(\frac{24}{18+x}\right) \mathrm{hr}$
Time taken to go upstream is $\left(\frac{24}{18-x}\right) \mathrm{hr}$
Equation becomes:
$\frac{24}{18-x}-\frac{24}{18+x}=1$
Solving the above equation

$$
\begin{aligned}
& \frac{24(18+x)-24(18-x)}{(18-x)(18+x)}=1 \\
& \frac{432+24 x-432+24 x}{324-x^{2}}=1 \\
& \frac{48 \mathrm{x}}{324-x^{2}}=1
\end{aligned}
$$

$48 x=324-x^{2}$
$x^{2}+48 x-324=0$
Solving for the value of $x$
using $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-48 \pm \sqrt{(48)^{2}-4(1)(-324)}}{2}$
$x=\frac{-48 \pm \sqrt{2304+1296}}{2}$
$x=\frac{-48 \pm \sqrt{3600}}{2}$
$x=\frac{-48 \pm 60}{2}$
$x=\frac{12}{2}, \frac{-108}{2}$
$x=6,-54$
Since, speed can not be negative
So, the speed of the stream is $6 \mathrm{~km} / \mathrm{h}$.
Question 20
Prove that:
$(\sin \theta+1+\cos \theta)(\sin \theta-1+\cos \theta) \cdot \sec \theta \operatorname{cosec} \theta=2$

## or

Prove that:


## SOLUTION:

LHS $=(\sin \theta+1+\cos \theta)(\sin \theta-1+\cos \theta) \cdot \sec \theta \operatorname{cosec} \theta$
$=\left[\sin ^{2} \theta-\sin \theta+\sin \theta \cos \theta+\sin \theta-1+\cos \theta+\sin \theta \cos \theta-\cos \theta+\cos ^{2} \theta\right] \frac{1}{\cos \theta} \frac{1}{\sin \theta} \quad\left(\because \sec \theta=\frac{1}{\cos \theta}\right.$ and $\left.\operatorname{cosec} \theta=\frac{1}{\sin \theta}\right)$
$=[1+2 \sin \theta \cos \theta-1] \frac{1}{\cos \theta} \frac{1}{\sin \theta}$
$=[2 \sin \theta \cos \theta] \frac{1}{\cos \theta} \frac{1}{\sin \theta}$
$=2=$ RHS
Hence proved

$$
\begin{aligned}
\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}} & =\frac{\sqrt{\sec \theta-1}}{\sqrt{\sec \theta+1}}+\frac{\sqrt{\sec \theta+1}}{\sqrt{\sec \theta-1}} \\
& =\frac{\sqrt{\sec \theta-1} \sqrt{\sec \theta-1}+\sqrt{\sec \theta+1} \sqrt{\sec \theta+1}}{\sqrt{\sec \theta+1} \sqrt{\sec \theta-1}} \\
& =\frac{(\sqrt{\sec \theta-1})^{2}+(\sqrt{\sec \theta+1})^{2}}{\sqrt{(\sec \theta-1)(\sec \theta+1)}} \\
& =\frac{\sec \theta-1+\sec \theta+1}{\sqrt{\sec ^{2} \theta-1}} \\
& =\frac{2 \sec \theta}{\sqrt{\tan { }^{2} \theta}} \\
& =\frac{2 \sec \theta}{\tan \theta} \\
& =\frac{2 \frac{1}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}} \\
& =2 \frac{1}{\sin \theta} \\
& =2 \operatorname{cosec} \theta
\end{aligned}
$$

Question 21
In what ratio does the point $P(-4, y)$ divide the line segment joining the points $A(-6,10)$ and $B(3,-8)$ ? Hence find the value of $y$.

## OR

Find the value of $p$ for which the points $(-5,1),(1, p)$ and $(4,-2)$ are collinear.

## SOLUTION:

Let $P$ divides the line segment $A B$ in the ratio $k: 1$
Using section formula
$x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$
$\mathrm{A}(-6,10)$ and $\mathrm{B}(3,-8)$
$m_{1}: m_{2}=k: 1$
plugging values in the formula we get
$-4=\frac{k \times 3+1 \times(-6)}{\mathrm{k}+1}, y=\frac{k \times(-8)+1 \times 10}{k+1}$
$-4=\frac{3 k-6}{k+1}, \mathrm{y}=\frac{-8 k+10}{k+1}$
Considering only $x$ coordinate to find the value of $k$
$-4 k-4=3 k-6$
$-7 k=-2$
$k=\frac{2}{7}$

$$
k: 1=2: 7
$$

Now, we have to find the value of $y$
so, we will use section formula only in $y$ coordinate to find the value of $y$
$y=\frac{2 \times(-8)+7 \times 10}{2+7}$
$y=\frac{-16+70}{9}$
$y=6$
Therefore, $P$ divides the line segment $A B$ in 2:7 ratio
And value of $y$ is 6 .

Points are collinear means the area of triangle formed by the collinear points is 0 .
Using
area of triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=\frac{1}{2}[-5(p-(-2))+1(-2-1)+4(1-p)]$
$=\frac{1}{2}[-5(p+2)+1(-3)+4(1-p)]$
$=\frac{1}{2}[-5 p-10-3+4-4 p]$
$=\frac{1}{2}[-5 p-9-4 p]$
Area of triangle will be zero points being collinear
$\frac{1}{2}[-5 p-4 p-9]=0$
$\frac{1}{2}[-9 p-9]=0$
$9 p+9=0$
$p=-1$
Therefore, the value of $p=-1$.

## Question 22

$A B C$ is a right triangle in which $\angle B=90^{\circ}$. If $A B=8 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find the diameter of the circle inscribed in the triangle.

## SOLUTION:



We have given that a circle is inscribed in a triangle Using pythagoras theorem
$(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}$
$(\mathrm{AC})^{2}=(8)^{2}+(6)^{2}$
$(\mathrm{AC})^{2}=64+36$
$(\mathrm{AC})^{2}=100$
$\Rightarrow \mathrm{AC}=10$
$\overrightarrow{\text { Area of }} \bar{\triangle} \mathrm{ABC}=$ area of $\triangle \mathrm{APB}+$ area of $\triangle \mathrm{BPC}+$ area of $\triangle \mathrm{APC}$
$\frac{1}{2} \times b \times h=\frac{1}{2} \times b_{1} \times h_{1}+\frac{1}{2} \times b_{2} \times h_{2}+\frac{1}{2} \times b_{3} \times h_{3}$
$\frac{1}{2} \times 6 \times 8=\frac{1}{2} \times 8 \times r+\frac{1}{2} \times 6 \times r+\frac{1}{2} \times 10 \times r$
$24=4 r+3 r+5 r$
$24=12 r$
$\Rightarrow r=2$
$\because d=2 r$
$\Rightarrow d=2 \times 2$
$\Rightarrow d=4 \mathrm{~cm}$

In an A.P., the first term is -4 , the last term is 29 and the sum of all its terms is 150 . Find its common difference

## SOLUTION:

$$
a=-4, l=29 \text { and } S_{n}=150
$$

Using
$S_{n}=\frac{n}{2}[a+l]$
$150=\frac{n}{2}[-4+29]$
$300=25 n$
$n=12$
Now, we will find $d$
using $a_{n}=a+(n-1) d$
Plugging the values in the formula we get
$29=-4+(12-1) d$
$33=11 d$
$d=3$
Therefore, the common difference is 3 .

Question 24
Draw a circle of radius 4 cm . From a point 6 cm away from its centre, construct a pair of tangents to the circle and measure their lengths

## SOLUTION:



## Step of construction

Step: I- First of all we draw a circle of radius $A B=4 \mathrm{~cm}$.
Step: II- Mark a point $P$ from the centre at a distance of 6 cm from the point O .
Step: III -Draw a perpendicular bisector of OP, intersecting OP at Q.

Step: IV- Taking $Q$ as centre and radius $O Q=P Q$, draw a circle to intersect the given circle at T and T'.

Step: V- Join PT and PT' to obtain the required tangents.
Thus, PT and PT' are the required tangents.
The length of $\mathrm{PT}=\mathrm{PT}^{\prime} \approx 4.5 \mathrm{~cm}$
Question 26
Solve for $x: \frac{1}{2 a+b+2 x}=\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x} ; x \neq 0, x \neq \frac{-2 a-b}{2}, a, b \neq 0$ OR

The sum of the areas of two squares is $640 \mathrm{~m}^{2}$. If the difference of their perimeters is 64 m , find the sides of the square.

## SOLUTION:

$$
\begin{aligned}
& \frac{1}{2 a+b+2 x}=\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x} \\
& \frac{1}{2 a+b+2 x}-\frac{1}{2 x}=\frac{1}{2 a}+\frac{1}{b} \\
& \frac{2 x-2 a-b-2 x}{4 a x+2 b x+4 x^{2}}=\frac{b+2 a}{2 a b} \\
& (-2 a-b)(2 a b)=(b+2 a)\left(4 a x+2 b x+4 x^{2}\right) \\
& \frac{-(b+2 a)(2 a b)}{(b+2 a)}=\left(4 a x+2 b x+4 x^{2}\right) \\
& -(2 a b)=\left(4 a x+2 b x+4 x^{2}\right) \\
& 4 x^{2}+2 b x+4 a x+2 a b=0 \\
& 2 x(2 x+b)+2 a(2 x+b)=0 \\
& (2 x+2 a)(2 x+b)=0 \\
& \Rightarrow(2 x+2 a)=0 \\
& \Rightarrow x=-a \\
& \text { or } \\
& (2 x+b)=0 \\
& \Rightarrow x=\frac{-b}{2}
\end{aligned}
$$

Therefore, values of $x$ are $-a$ and $\frac{-b}{2}$

## OR

Let the side of one square be $x$
And the side of other square be $y$
Sum of area of two square is 640
Equation becomes
$x^{2}+y^{2}=640 \quad\left(\because\right.$ area of square is side $\left.{ }^{2}\right)$
Now, difference of their perimeters is 64
Equation becomes
$4 x-4 y=64 \quad(\because$ perimeter of square is $4 \times$ side $)$
$x-y=16$
$\Rightarrow x=y+16$
Solving the two equation by substitution method
Substitute (2) in (1)
$(16+y)^{2}+y^{2}=640$
$256+y^{2}+32 y+y^{2}=640$
$2 y^{2}+32 y-384=0$
$y^{2}+16 y-192=0$
Using $y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Plugging the values in the formula we get
$y=\frac{-16 \pm \sqrt{256-4(-192)}}{2}$
$y=\frac{-16 \pm \sqrt{1024}}{2}$
$y=\frac{-16 \pm 32}{2}$
$y=\frac{-48}{2}, \frac{16}{2}$
$y=-24,8$
Since, sides can not be negative
Therefore, $y=8$
Put $y=8$ in (2)
$x=8+16$
$x=24$
Therefore, the sides of square are 24 m and 8 m .

In $\triangle \mathrm{ABC}$ (Figure 3), $\mathrm{AD} \perp \mathrm{BC}$. Prove that $A C^{2}=A B^{2}+B C^{2}-2 B C \times B D$


## SOLUTION:

Applying Pythagoras theorem in $\triangle A D B$, we obtain

$$
A D^{2}+D B^{2}=A B^{2}
$$

$$
\begin{equation*}
\Rightarrow A D^{2}=A B^{2}-D B^{2} \tag{1}
\end{equation*}
$$

Applying Pythagoras theorem in $\triangle A D C$, we obtain
$A D^{2}+D C^{2}=A C^{2}$
$A B^{2}-B D^{2}+D C^{2}=A C^{2}[$ Using equation (1)]
$A B^{2}-B D^{2}+(B C-B D)^{2}=A C^{2}$
$A C^{2}=A B^{2}-B D^{2}+B C^{2}+B D^{2}-2 B C \times B D$
$A C^{2}=A B^{2}+B C^{2}-2 B C \times B D$
Question 28
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from $60^{\circ}$ to $45^{\circ}$ in 2 minutes. Find the speed of the boat in $\mathrm{m} / \mathrm{min}$.

## OR

There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are $30^{\circ}$ and $60^{\circ}$ respectively. Find the width of the river and height of the other pole.

## SOLUTION:



Let AO be the cliff of height 150 m .
Let the speed of boat be $x$ metres per minute.
And $B C$ be the distance which man travelled.
So, $\mathrm{BC}=2 x \quad[\because$ Distance $=$ Speed $\times$ Time $]$
$\tan \left(60^{\circ}\right)=\frac{\mathrm{AO}}{\mathrm{OB}}$
$\sqrt{3}=\frac{150}{\mathrm{OB}}$
$\Rightarrow \mathrm{OB}=\frac{150 \sqrt{3}}{3}=50 \sqrt{3}$
$\tan \left(45^{\circ}\right)=\frac{\mathrm{AO}}{\mathrm{OC}}$
$\Rightarrow 1=\frac{150}{\mathrm{OC}}$
$\Rightarrow \mathrm{OC}=150$
Now $O C=O B+B C$
$\Rightarrow 150=50 \sqrt{3}+2 x$
$\Rightarrow x=\frac{150-50 \sqrt{3}}{2}$
$\Rightarrow x=75-25 \sqrt{3}$
Using $\sqrt{3}=1.73$
$x=75-25 \times 1.732 \approx 32 \mathrm{~m} / \mathrm{min}$
Hence, the speed of the boat is 32 metres per minute.


Let the width of the river be $w$.
In $\triangle \mathrm{ABC}$,
$\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \sqrt{3}=\frac{60}{w}$
$\Rightarrow w=\frac{60}{\sqrt{3}}=\frac{60 \sqrt{3}}{3}=20 \sqrt{3}$
In $\triangle \mathrm{AED}$,
$\tan 30^{\circ}=\frac{\mathrm{AE}}{\mathrm{ED}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AE}}{w}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AE}}{20 \sqrt{3}}$
$\Rightarrow \mathrm{AE}=20$
Height of pole $C D=A B-A E$
$=60-20=40 \mathrm{~m}$
Thus, width of river is $20 \sqrt{3}=20 \times 1.732=34.64 \mathrm{~m}$
Height of pole $=40 \mathrm{~m}$

## Question 29

Calculate the mean of the following frequency distribution :

| Class: | $10-30$ | $30-50$ | $50-70$ | $70-90$ | $90-110$ | $110-130$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency: | 5 | 8 | 12 | 20 | 3 | 2 |

The following table gives production yield in kg per hectare of wheat of 100 farms of a village :

| Production yield <br> (kg/hectare) : | $40-45$ | $45-50$ | $50-55$ | $55-60$ | $60-65$ | $65-70$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of farms | 4 | 6 | 16 | 20 | 30 | 24 |

Change the distribution to a 'more than type' distribution, and draw its ogive.

SOLUTION:

| Class | frequency $\left(f_{i}\right)$ | Class mark $\left(x_{i}\right)$ | $f_{i} x_{i}$ |
| :---: | :---: | :---: | :---: |
| $10-30$ | 5 | $\frac{10+30}{2}=20$ | 100 |
| $30-50$ | 8 | $\frac{30+50}{2}=40$ | 320 |
| $50-70$ | 12 | $\frac{50+70}{2}=60$ | 720 |
| $70-90$ | 20 | $\frac{70+90}{2}=80$ | 1600 |
| $90-110$ | 3 | $\frac{90+110}{2}=100$ | 300 |
| $110-130$ | 2 | $\frac{110+130}{2}=120$ | 240 |
|  | $\sum f_{i}=50$ |  | $\sum f_{i} x_{i}=3280$ |

Using: mean $=\frac{\sum f_{1} x_{i}}{\sum f_{1}}$
substituting the values in the formula
mean $=\frac{3280}{50}=65.6$
OR

| Production yield | Cumulative frequency |
| :---: | :---: |
| more than 40 | 100 |
| more than 45 | 96 |
| more than 50 | 90 |
| more than 55 | 74 |
| more than 60 | 54 |
| more than 65 | 24 |



Question 30
A container opened at the top and made up of a metal sheet, is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find the cost of milk which can completely fill the container, at the rate of ₹ 50 per litre. Also find the cost of metal sheet used to make the container, if it costs ₹ 10 per $100 \mathrm{~cm}^{2}$. (Take $\pi=3 \cdot 14$ )

## SOLUTION:

We have to find the cost of milk which can completely fill the container Volume of container $=$ Volume of frustum
$=\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$
Here,
height $=16 \mathrm{~cm}$
radius of upper end $=20 \mathrm{~cm}$
And radius of lower end $=8 \mathrm{~cm}$
Plugging the values in the formula we get

Volume of container $=\frac{1}{3} \times 3.14 \times 16\left((20)^{2}+(8)^{2}+20 \times 8\right)$
$=\frac{1}{3} \times 50.24(400+64+160)$
$=\frac{1}{3} \times 50.24(624)$
$=10449.92 \mathrm{~cm}^{3}$
$=10.449$ litre $\quad\left(\because\right.$ 1 litre $\left.=1000 \mathrm{~cm}^{3}\right)$
Cost of 1 litre milk is Rs 50
Cost of 10.449 litre milk $=50 \times 10.449=$ Rs 522.45
We will find the cost of metal sheet to make the container
Firstly, we will find the area of container
Area of container $=$ Curved surface area of the frustum + area of bottom
circle ( $\because$ container is closed from bottom)
Area of container $=\pi\left(r_{1}+r_{2}\right) l+\pi r^{2}$
Now, we will find $/$
$l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}$
$l=\sqrt{(16)^{2}+(20-8)^{2}}$
$l=\sqrt{(16)^{2}+(12)^{2}}$
$l=\sqrt{256+144}$
$l=\sqrt{400}$
$l=20 \mathrm{~cm}$
Area of frustum $=3.14 \times 20(20+8)$

$$
=1758.4 \mathrm{~cm}^{2}
$$

Area of bottom circle $=3.14 \times 8^{2}=200.96 \mathrm{~cm}^{2}$
Area of container $=1758.4+200.96$

$$
=1959.36 \mathrm{~cm}^{2}
$$

Cost of making $100 \mathrm{~cm}^{2}=$ Rs 10
Cost of making $1 \mathrm{~cm}^{2}=\frac{10}{100}=$ Rs $\frac{1}{10}$
Cost of making $1959.36 \mathrm{~cm}^{2}=\frac{1}{10} \times 1959.36=195.936$
Hence, cost of milk is Rs 522.45
And cost of metal sheet is Rs 195.936

