

Parachute Science Baking Soda and Vinegar Reaction

The Magic of Baking Soda and Vinegar

Overview:

This classic STEM experiment is a fantastic way to explore chemical reactions, gas expansion, and physics—all with simple household ingredients!

🧖 Supplies & Equipment Needed:

- Plastic Bottle (12-16 oz) A water or soda bottle works best
- Baking Soda About 2 tablespoons
- White Vinegar About ½ cup
- Balloon Standard latex balloon
- Plastic Funnel Helps pour baking soda into the balloon
- Measuring Spoons & Cup For accuracy
- Tray or Paper Towels To catch spills

Step-by-Step Instructions:

Step 1: Set Up Your Experiment

- 1. Place your empty plastic bottle on a tray or a stable surface.
- 2. Stretch out the balloon a few times to loosen it up.
- 3. Use a funnel to pour 2 tablespoons of baking soda into the balloon.

Step 2: Create the Chemical Reaction

- 4. Pour 1/2 cup of vinegar into the plastic bottle.
- Carefully stretch the balloon opening over the bottle's mouth, making sure the baking soda stays inside the balloon.
- 6. Once the balloon is secured, lift the balloon upright, allowing the baking soda to fall into the vinegar inside the bottle.

Step 3: Observe the Reaction!

- 7. Watch as the baking soda reacts with the vinegar, creating bubbles and gas!
- 8. The balloon begins to inflate as carbon dioxide (CO₂) is produced.
 - © 2025 YapYap & Howler. All rights reserved.

Parachute Science Baking Soda and Vinegar Reaction

Step 4: Take it to the Next Level – Add a Parachute! Supplies:

- String For attaching a parachute
- Plastic Bag or Coffee Filter Used as a parachute
- Rubber Bands For securing the parachute

Directions:

- If you want to test parachute science, attach string to the top of the balloon and secure a plastic bag or coffee filter as a parachute.
- Drop the inflated balloon from a safe height and observe how the parachute affects its descent.

Taking It to the Next Level - Experiment Variables

Want to explore further? Try these variations:

- Change the Ratio of Baking Soda & Vinegar
- Does more baking soda or vinegar make the balloon inflate bigger or faster?
 Use Different Bottle Sizes
 - Does a bigger or smaller bottle affect the gas buildup and inflation speed?
 Experiment with Different Parachute Materials
 - Test parachutes made of plastic bags, coffee filters, or fabric—which slows the descent best?
- Test Balloon Size & Shape
 - Do larger balloons inflate more? Do longer balloons stretch differently than round ones?
- Measure the Reaction Speed
 - Use a stopwatch to time how quickly the balloon inflates when you change the amount of baking soda or vinegar.

Parachute Science **Baking Soda and Vinegar Reaction**

The Science Behind the Experiment

This experiment demonstrates two key scientific concepts:

- 1. Chemical Reactions & Gas Production
 - Baking soda (sodium bicarbonate) + Vinegar (acetic acid) → Carbon dioxide gas (CO₂), water, and salt.
 - The fizzing bubbles you see are CO₂ gas escaping. Since gases expand, they take up more space, inflating the balloon!
- 2. Parachute Science & Air Resistance
 - · If you attach a parachute to the balloon, it slows down as it falls due to air resistance (drag).
 - The larger the parachute, the slower the descent, because more air pushes against the parachute's surface.

Additional Reading & Information

Want to learn more about the science behind this experiment? Check out these sources:

- American Chemical Society (ACS): www.acs.org A deep dive into the chemistry behind acid-base reactions and why CO₂ is produced.
- NASA STEM Activities: https://www.nasa.gov/stem-content/challenger-centerstem-at-home/- Learn about air resistance and parachute dynamics through hands-on experiments and NASA-backed insights.
- Science Buddies: https://www.sciencebuddies.org/science-fairprojects/project-ideas/Chem_p086/chemistry/rocketology-baking-sodavinegar-lift-off - A breakdown of the chemical reaction, with additional variations and experimental methods to try.

Ready to give it a try? Share your results and tag us with your experiments!

