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Optogenetic rejuvenation of mitochondrial 
membrane potential extends C. elegans 
lifespan

Brandon J. Berry    1, Anežka Vodičková2, Annika Müller-Eigner3, Chen Meng4, 
Christina Ludwig    4, Matt Kaeberlein    1, Shahaf Peleg    3  & 
Andrew P. Wojtovich    2 

Mitochondrial dysfunction plays a central role in aging but the exact 
biological causes are still being determined. Here, we show that 
optogenetically increasing mitochondrial membrane potential during 
adulthood using a light-activated proton pump improves age-associated 
phenotypes and extends lifespan in Caenorhabditis elegans. Our findings 
provide direct causal evidence that rescuing the age-related decline in 
mitochondrial membrane potential is sufficient to slow the rate of aging and 
extend healthspan and lifespan.

The causal role of mitochondrial dysfunction and metabolic decline are 
central questions of aging research1,2. The voltage potential across the 
inner membrane of mitochondria (membrane potential Δψm) decreases 
with age in many model systems3–6. Δψm is a fundamental driver of 
diverse mitochondrial functions, including adenosine triphosphate 
(ATP) production, immune signaling and genetic and epigenetic regu-
lation7. Decreased Δψm is an attractive explanation for the complex 
dysfunctions of aging; however, it is unclear whether decreased Δψm 
is a cause or a consequence of cellular aging.

To test these questions in a metazoan, we used optogenetics to har-
ness light energy using a mitochondria-targeted light-activated proton 
pump to increase ∆ψm. Using a mitochondrial targeting sequence, we 
previously expressed a rhodopsin-related proton-specific pump8 in the 
inner membrane of mitochondria9. We called this tool ‘mitochondria-
ON’ (mtON) (Fig. 1a) and previously characterized its optogenetic 
function9. mtON isolates Δψm as a single experimental variable in vivo 
and requires both light activation and a cofactor, all-trans-retinal (ATR), 
for proton pumping activity9. Caenorhabditis elegans does not produce 
ATR, allowing for control conditions of light exposure alone (which can 
be damaging10), mtON protein expression alone and ATR supplementa-
tion alone (which does not affect lifespan or physiology in this context; 
Supplementary Table 1 and previously11). Only animals supplemented 

with ATR and illuminated will have mtON activity and increased ∆ψm 
(Supplementary Fig. 1)9.

We found that Δψm naturally declines with age in C. elegans  
(Fig. 1b,c), as expected2,3,5. mtON activation reversed that decline in two 
different genetic backgrounds (Fig. 1d and Supplementary Figs 2 and 
3). mtON activation did not impact mitochondrial mass observed by 
mitochondrial staining and quantitative proteomics (Supplementary 
Fig. 3d and Supplementary Fig. 4a). Respiration rates were similar 
across conditions (Fig. 1e,f) as expected, given mtON’s specificity for 
Δψm alone9.

We activated mtON throughout lifespan beginning in adulthood 
and found an increase in lifespan compared to controls (Fig. 2a,b and 
Supplementary Fig. 1). Lifespan extension was replicated indepen-
dently across three different strains, different light intensities and in 
different laboratories (Supplementary Table 1) and was sensitive to 
the mitochondrial uncoupler, carbonyl cyanide p-(trifluoromethoxy) 
phenylhydrazone (FCCP) (Fig. 2c), which dissipates Δψm. FCCP had no 
effect on lifespan on its own (Fig. 2c) and ATR and light did not affect 
lifespan in wild-type animals (Supplementary Table 1). When exposed 
to light below the threshold to maximally activate mtON9 lifespan was 
not extended (Supplementary Fig. 6a). These data together indicate 
that increasing Δψm causes increased lifespan.
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mitochondrial function during development can increase lifespan and 
our results extend the role of mitochondrial function in aging to adult 
intervention. Despite limitations, we show that preserved ∆ψm during 
adulthood is sufficient to slow normative aging and improve at least 
some functional measures of health. This work provides important 
context for understanding the role of mitochondrial function during 
aging and suggests the potential of new approaches to delay aging by 
targeting ∆ψm specifically.

Methods
All research was approved by the University of Rochester Institutional 
Biosafety Committee.

C. elegans strains and maintenance
Nematode growth medium (NGM) was used for C. elegans culture 
and all maintenance and experiments were carried out at 20 °C. 
OP50 Escherichia coli was used as a food source for all experi-
ments. Where indicated, ATR and/or FCCP was added to food at a 
final concentration of 100 μM and 10 μM, respectively, accounting 
for the volume of the NGM. Egg-lay-synchronized day 1 adult her-
maphrodite animals were used for all experiments unless otherwise 
noted. APW32 (genotype pha-1(e2123ts) III; jbmEx11 (pBJB20(Peft-
3::Mitofilin(N′ 187 aa)::Mac::GFP), pC1 (pha-1(+))) expresses mtON 
as an extrachromosomal array9. APW273 (genotype jbmSi10(eft-
3p::Mitofilin(187 N′aa)::Mac:mKate::unc-54 3′ UTR *cxTi10816) IV) 
was created using a Mos1 element-mediated CRISPR integration 
approach21. Briefly, PCR fragments (Supplementary Table 3) were 
amplified and incorporated into a Mos1 element on chromosome 

Mild inhibition of mitochondrial function during development 
(but not during adulthood) extends C. elegans lifespan12,13; conversely, 
here, we show that attenuating the age-associated decrease in ∆ψm in 
adults can extend lifespan. Accordingly, targets of the mitochondrial 
unfolded protein response did not change after mtON activation (Sup-
plementary Fig. 4b). These differences may reflect a lifespan-extending 
hormetic response from mitochondrial perturbation during develop-
ment14–16 versus the beneficial effects from directly sustaining mito-
chondrial function during adulthood2.

Organisms, including humans and C. elegans, have trouble moving 
as they age due to physiological decline17–19. This functional decline was 
mitigated by mtON activation in worms thrashing in liquid, but not 
on solid media (Fig. 2d,e and Supplementary Fig. 5a–c). These results 
show that age-associated physiological dysfunction can be improved 
by reversing the loss of Δψm that occurs with age. How improving 
Δψm may influence redox metabolites, including NAD+/NADH, which 
are known to impact biological aging, should be further assessed. To 
probe a potential signaling pathway, we tested the effect of mtON in 
long-lived worms with constitutively active AMPK signaling20. mtON 
further increased lifespan in this model (Supplementary Fig. 6b and 
Supplementary Table 1), indicating that increased Δψm can additionally 
contribute to longevity in parallel with a canonical signaling pathway.

In summary, we used a technology that harnesses light energy 
to generate ∆ψm to test the hypothesis that ∆ψm causally determines 
longevity in C. elegans (Fig. 2f). A limitation of this study relates to 
the concept of optogenetic control over mitochondria; it is unclear 
whether this mechanism of lifespan extension is involved in other 
longevity paradigms. Previous studies reported that inhibition of 
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Fig. 1 | Mitochondria-ON increased ∆ψm in vivo. a, The mitochondrial inner 
membrane (IM) contains the electron transport chain (ETC), which pumps 
protons to generate mitochondrial membrane potential (∆ψm). mtON is an 
engineered light-activated proton pump and, in response to light and ATR 
supplementation, pumps protons across the IM to generate ∆ψm. b, Adult worms 
stained with the ∆ψm indicator, TMRE. Scale bar, 250 μm. c, Quantification of 
relative TMRE fluorescence. One-way analysis of variance (ANOVA) with Tukey’s 
multiple comparisons test, day 1 versus day 4, P = 0.0001, day 1 versus day 10, 
P = 0.0002, n = 44, 18 and 30. Data are median ± quartiles (dotted lines).  

d, Pharynx TMRE fluorescence normalized to mitochondrial mass in day 
4 worms. One-way ANOVA with Tukey’s test, all significant differences, 
P = 0.0001, n = 33, 34, 26 and 35 animals for each bar from left to right. Data 
are median ± quartiles. e, Basal oxygen consumption of day 1 (left) and day 4 
(right) animals, no ATR n = 5 populations and ATR n = 6 populations. Data are 
mean ± s.e.m. Dots are individual populations. f, Maximal oxygen consumption 
(induced by FCCP) of the same populations (no ATR n = 5 populations and ATR 
n = 6 populations) in h. Data are mean ± s.e.m. Dots are individual populations.
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IV using CRISPR/Cas9 homology-directed repair22. C. elegans were 
injected with a mix containing 25 mM KCl, 7.5 mM HEPES, 4 μg μl−1 
tracrRNA, 0.8 μg μl−1 Mos1 crRNA2 (target sequence GTCCGCGTTT-
GCTCTTTATT), 0.8 μg μl−1 dpy-10 crRNA, 50 ng μl−1 dpy-10 ssODN, 
2.5 μg μl−1 purified Cas9 and 300–400 pmol μl−1 of each PCR repair 
template fragment. APW312 (genotype jbmSi10 IV; uthIs248) expresses 
a constitutively active AAK-2 with mtON and was generated by cross-
ing WBM60 (genotype uthIs248 (Paak-2::aak-2 genomic(aa 1–321 with 
T181D)::GFP::unc-54 3′ UTR, Pmyo-2::tdTomato) with APW273.

In vivo mitochondrial membrane potential measurement
Animals were stained for 24 h with both 100 nM TMRE and 12 μM 
MitoTracker Green FM. Tetramethylrhodamine ethyl ester (TMRE) was 
dissolved in ethanol and placed onto seeded plates and MitoTracker 
Green FM was dissolved in dimethylsulfoxide (DMSO) and added to the 
OP50 food. Final concentrations accounted for the entire plate NGM 
volume. TMRE and MitoTracker Green FM were used to measure mito-
chondrial membrane potential and mitochondrial mass, respectively. 
Staining began at day 4 of adulthood and animals were transferred to 
plates without dye for 1 h before imaging to clear the gut of residual 
dye. Animals were mounted on 2% agarose pads under tetramisole (0.1% 
w/v) anesthesia. Texas Red and green fluorescent protein filter sets 
were used to record images on an epifluorescence microscope (Nikon 
MVX10). Images were recorded with a Lumenera camera and associated 
software (Infinity Analyze). Fluorescence intensity was quantified 
using ImageJ by drawing regions of interest around individual animals, 
around the head region alone or around individual pharynxes where 
indicated to determine their fluorescence intensity. Head region analy-
sis served to quantify pharynx fluorescence and to specifically exclude 
intestinal staining as previously described23. Background signal was 
averaged and manually subtracted using ImageJ. Data are from three 
different experimental days. Confocal images were acquired using 

a Leica SP8X DMI6000 confocal microscope using a ×63 oil immer-
sion objective and a tunable white light laser (470–670 nm). Confocal 
images were single optical slices and not from z-stacks or maximum 
projections. Images were analyzed and prepared using Leica LASX 
Expert software and ImageJ.

mtON activation
Illumination was carried out with a 590 nm LED array with STOmk-
II stimulator by Amuza placed 2 cm away from the surface of NGM 
plates. Intensity was measured using a calibrated optical power meter 
(1916-R, Newport Corporation). Animals were exposed to 1 Hz, 0.01–
2.1 mW mm−2 light to help maintain temperature across experiments. 
Under all lighting conditions mtON was maximally activated (lower limit 
of 0.01 mW mm−2 (ref. 9) unless otherwise noted. Lifespans were carried 
out starting at day 1 of adulthood until death or until they were removed 
to measure mitochondrial parameters. A digital temperature probe 
was used to report temperature variability across different incubators 
and different light sources to ensure data comparability across lifespan 
experiments. This was necessary due to light sources causing small 
local increases in temperature. All incubators were always set to 20 °C.

Whole organism respiration
Oxygen consumption rate was measured using a Clark-type oxygen 
electrode (S1 electrode disk, DW2/2 electrode chamber and Oxy-Lab 
control unit, Hansatech Instruments). Around 1,000 animals per con-
dition, per replicate were collected in M9, allowed to settle by gravity, 
rinsed in M9 buffer, settled again and finally added to the electrode 
chamber in 0.5 ml of continuously stirred M9 buffer. FCCP was added 
at 160 μM final concentration in the chamber to induce maximal res-
piration. Respiration rates were measured for 10 min or until stable. 
Animals were then collected in M9 buffer for protein quantification 
using the Folin-phenol method.
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Fig. 2 | mtON extended lifespan and healthspan. Light treatment began at day 1 
of adulthood for all experiments. a, Survival curves of mtON-expressing animals 
(extrachromosomal array). Only mtON activation (+ATR +light) significantly 
extended lifespan, log-rank (Mantel–Cox) test, *P = 0.019. Detailed statistical 
information for all lifespans is presented in Supplementary Table 1. b, Survival 
curves of mtON-expressing animals (CRISPR insertion). mtON activation 
significantly extended lifespan compared to the light control by log-rank (Mantel–
Cox) test, *P = 0.0001, gray and light-green curves. c, Increased lifespan by mtON 
activation was sensitive to FCCP, log-rank (Mantel–Cox) test, P = 0.0001. d, mtON 

activation did not affect locomotion on solid media. One-way ANOVA with Tukey’s 
test; n = 30 animals for day 4 conditions and 40 animals for day 10. Data are 
median ± quartiles (dotted lines). e, mtON activation improved mobility in liquid 
with age. One-way ANOVA with Tukey’s test, day 10 no ATR light versus day 10 ATR 
light; P = 0.002, all other significant comparisons, P = 0.0001; n = 32, 32, 40 and 40 
animals for each violin from left to right. Data are median ± quartiles. All statistical 
comparisons are presented in Supplementary Table 2. f, Model showing effects of 
mtON activation in vivo. The dotted arrow represents the molecular mechanisms 
to be investigated that link Δψm to aged physiology.
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Lifespan analysis
Animals were transferred to new plates every 2 d until reproduction 
ceased and as necessary to replenish food. Where indicated, 50 μM 
floxuridine was used in the NGM to prevent progeny from developing. 
Animals that did not move in response to a light touch to the head with 
a platinum wire were scored as dead and removed from assay plates. 
The 1–3 plates for each condition were scored concurrently with ~15–70 
animals per plate. All experiments were performed to maintain 20 °C, 
which sometimes required adjustment of light intensity (noted in Sup-
plementary Table 1). Animals were illuminated only during adulthood. 
FCCP was added to plates at 10 μM final concentration. This dose did 
not affect lifespan on its own (Supplementary Table 1; FCCP lifespan). 
All lifespans consisted of three biological replicates pooled for each 
experiment.

Locomotion assays
Synchronized animals were observed and locomotion was scored by 
counting body bends according to previous methods24. Locomotion 
was scored in the presence of food on solid media. Thrashing was 
similarly analyzed with animals placed in M9 buffer to move freely in 
liquid. Body bends were counted for 30 s for each animal in all cases 
and multiplied by two to represent body bends per min in accordance 
with previously used protocols9,25. Data are from at least three different 
experimental days.

Protein extraction from C. elegans
C. elegans were washed and stored in water after 4 d of illumination. 
Worms were centrifuged for 5 min at 200g at 4 °C and supernatant was 
discarded. The worm pellet was then resuspended in 100 μl Lyse (iST 
Sample Preparation kit, Preomics, Planegg/Martinsried), incubated 
at 95 °C for 10 min at 500 r.p.m. shaking and sonicated for 10 × 10 s at 
30% amplitude. The sample was then centrifuged at 8,000g for 15 min 
at 4 °C and the supernatant was transferred to a new vial. The protein 
concentration was measured with a NanoDrop 2000.

Proteomics sample preparation
A starting material of 100 μg protein in 50 μl Lyse was recommended for 
the sample preparation with the Preomics iST Sample Preparation kit. In 
cases where protein concentration was higher than 2 μg μl−1, the sample 
was diluted with Lyse. The preparation was performed according to 
supplier guidelines (iST Sample Preparation kit, Preomics, P.O.00001).

LC–MS/MS data acquisition
Liquid chromatography tandem mass spectrometry (LC–MS/MS) 
measurements were performed on an Ultimate 3000 RSLCnano sys-
tem coupled to a Q-Exactive HF-X mass spectrometer (Thermo Fisher 
Scientific). Peptides were delivered to a trap column (ReproSil-pur 
C18-AQ, 5 μm, Dr Maisch, 20 mm × 75 μm, self-packed) at a flow rate 
of 5 μl min−1 in 100% solvent A (0.1% formic acid in HPLC-grade water). 
After 10 min of loading, peptides were transferred to an analytical 
column (ReproSil Gold C18-AQ, 3 μm, Dr Maisch, 450 mm × 75 μm, 
self-packed) and separated using a 110 min gradient from 4% to 32% 
of solvent B (0.1% formic acid in acetonitrile and 5% (v/v) DMSO) at 
300 nl min−1 flow rate. The Q-Exactive HF-X mass spectrometer was 
operated in data dependent acquisition and positive ionization mode. 
MS1 spectra (360–1,300 m/z) were recorded at a resolution of 60,000 
using an automatic gain control target value of 3 × 106 and maximum 
injection time of 45 ms. Up to 18 peptide precursors were selected for 
fragmentation for the full proteome analyses. Only precursors with 
charge states 2–6 were selected and dynamic exclusion of 30 s was 
enabled. Peptide fragmentation was performed using higher energy 
collision induced dissociation and a normalized collision energy of 
26%. The precursor isolation window width was set to 1.3 m/z. MS2 
resolution was 15,000 with an automatic gain control target value of 
1 × 105 and maximum injection time of 25 ms.

LC–MS/MS data analysis
Peptide identification and quantification was performed using Max-
Quant (v.1.6.3.4). MS2 spectra were searched against the Uniprot 
C. elegans proteome database (UP000001940, 26,672 protein entries, 
downloaded 21 December 2020) supplemented with the mKate-tagged 
proton pump protein plus common contaminants. Trypsin/P was spec-
ified as a proteolytic enzyme. Precursor tolerance was set to 4.5 ppm 
and fragment ion tolerance to 20 ppm. Results were adjusted to 1% 
false discovery rate on peptide spectrum match level and protein level 
employing a target-decoy approach using reversed protein sequences. 
The minimal peptide length was set at seven amino acids and the 
‘match-between-run’ function was disabled. Carbamidomethylated 
cysteine was set as fixed modification and oxidation of methionine 
and N-terminal protein acetylation as variable modifications. The 
label-free quantification26 from MaxQuant was used to represent 
the relative abundance of proteins across samples. ATP synthase, 
HSP6, HSP60, TOM70, VDAC and mitochondrial complex proteins 
were manually selected. The different expressions of these proteins 
between ATR-positive and ATR-negative samples were analyzed using 
a Student’s t-test.

Statistics and reproducibility
Statistics were performed in GraphPad PRISM (v.9.3.0). No data were 
excluded from the analysis. No statistical method was used to pre-
determine sample size. Within experimental groups, animals were 
randomized for each experimental replicate. The investigators were 
not blinded to allocation during experiments and outcome assessment. 
Data distribution was assumed to be normal but this was not formally 
tested, therefore data distributions are visualized in each figure.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All other data supporting the findings of this study are available from 
the corresponding author upon reasonable request. The mass spec-
trometry proteomics data have been deposited to the ProteomeX-
change Consortium (http://proteomecentral.proteomexchange.
org) via the PRIDE27–29 partner repository with the dataset identifier 
PXD033901.
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