

Laguna Valley 2020 Consumer Confidence Report (CCR) Public Water System #: 063503111

Pueblo of Laguna Utility Authority

Is my water safe?

We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791

Where does my water come from?

Your water comes from a well field located in the Western Rio San Jose Valley. The well field consists of four ground water wells which are utilized on a rotating schedule to provide the water supply for the Laguna valley. In addition, you also receive water from Encinal Springs which supplements the Rio San Jose valley well field supply.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming;
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and
- radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Water Conservation Tips

Did you know that the average U.S. household uses approximately 400 gallons of water per day or 100 gallons per person per day? Luckily, there are many low-cost and no-cost ways to conserve water. Small changes can make a big difference - try one today and soon it will become second nature.

- Take short showers a 5-minute shower uses 4 to 5 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair and shaving and save up to 500 gallons a month.
- Use a water-efficient showerhead. They're inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary.

• Fix leaky toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.

• Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.

• Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill! Visit www.epa.gov/watersense for more information.

In order to ensure that tap water is afe to drink, EPA prescribes regulations which imit the amount of contaminants in water provided by public water systems. The table below lists all he drinking water contaminants that we deere tested, only those substances listed below were found in your water. All sources of drinking water 📖 ain some naturally occurring contaminants. tected during the calendar year of this report. Although many more contaminants At low levels, these substances are generally not harmful in our drinking water. ving all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the tasks of drinking water and have nut value at low levels. Unless otherwise noted, the data presented in this table is from string done in the calendar year of the report. The EPA or the ints do not vary significantly from year to year the system is not considered witherable to this type of con-State requires us to monitor for certain cont nants less than once per year beca se the concentrations of these contamin representative, may be more than one year old. In this table you will fin and abbreviations that might not be fam you. To help you better und tamination. As such, some of our data, thou d these terms, we have 💽 provided the definitions below the table

	MCLG	MCL,		Range				
	or	TT, or	Detected In			Sample		
Contaminants	MRDLG	MRDL	Your Water	Low	High	Date	Violation	Typical Source

Disinfectants & Disinfection By-Products

(There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants)

Chlorine (as Cl2) (ppm)	4	4	0.82	0.26	0.82	2020	No	Water additive used to control microbes
Haloacetic Acids (HAA5) (ppb)	NA	60	2.0 Avg	1.64	3.1	2020	No	By-product of drinking water chlorination
TTHMs [Total Trihalomethanes] (ppb)	NA	80	15	9.67	21.2	2020	No	By-product of drinking water disinfection

Inorganic Contaminants

Barium (ppm)	2	2	0.05	0.05	0.05	2020	No	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Fluoride (ppm)	4	4	0.83	0.83	0.83	2020	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fert
Selenium (ppb)	50	50	2.9	2.9	2.9	2020	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from n

Radioactive Contaminants

-									
ALL N.	Alpha emitters (pCi/L)	0	15	7.65	2	7.65	2020	No	Erosion of natural deposits
0.00	Beta/photon emitters (pCi/L)	0	50	11.9	7.48	11.9	2020	No	Decay of natural and man-made deposits. The EPA considers 50 pCi/L to be the level of conce
No. of Contraction of	Uranium (ug/L)	0	30	19	5.3	19	2020	No	Erosion of natural deposits
-		all and a	A Star Can	the second	12254	- A		A COLORED TO A	

ilizer and aluminum factories

Gavin Romero

Lead Operator

Raymond Luarkie

Water Operator

nines

rn for Beta particles.

Contaminants				ALG	ALG AL 90th Percentile		rcentile	tile Sample		mples ding AL	Exc	eeds AL		Typical Source
Inorganic Contar	minants					<u> </u>			_	I				
Copper – 90 % action levels at consumer taps (ppm)			1.3	1.3	0.1	.62	2019		0		No	Corrosion	of household plumbing systems; Erosion of natural deposits	
Lead – 90 %action levels at consumer taps (ppb)			ppb)	0	15	2		2019		0		No	Corrosion of household plumbing systems; Erosion of natural deposits	
Total Organic Ca	rbon													
The percentage of	Total Organio	c Carbon (TC	C) remov	al was r	neasur	ed each m	nonth and	the syste	em met	all TOC r	emov	al requirem	nents set.	
Inorganic Cor	ntaminan	ts												
		MCLG	MCL,											
		or	TT, or) o fo o fo ol			LB h	Sam	ple	Violetion		
		WIRDLG		Hig			LOW		High	ign Date		violation		i Source
Arsenic (ppb)		0	10		1.4	+	1.4	, ,	1.4	202	20	NO	Discharg	of natural deposits; Runoff from orchards; Runoff from glass and electron
Eluorido (ppm)		2	2		0.013		0.013		0.015	202	20	No	Erosion	of natural denosits: Water additive which promotes strong tooth: Dischar
Selenium (nnh)		50	50		0.13		1.6		1.6	202	20	No	Discharg	ze from netroleum and metal refineries: Erosion of natural denosits: Discharge
Badioactive Cont	taminants	50	50		1.0	,	1.0		1.0	202	.0	110	Discharg	
Beta/photon emitt	ters (pCi/L)	0	50		3 5 3		3.53		3.53	201	8	No	Decay o	f natural and man-made deposits. The EPA considers 50 pCi/L to be the lev
Uranium (ug/L)	ranium (ug/L) 0 30		30		1.6		1.6		1.6	201	.8	No	Erosion	of natural deposits
Combined rad 226/228 (pCi/L) 0 5				0.1	.17 (0.17	201	.8	No	Erosion	of natural deposits	
	20													Important Drinking Water Definitions
Term			De	finition							т	orm		Defini
	ug/l·N	Upennition								renn				MCL G: Maximum Contaminant Loval Goal: The loval of a conta
ppm	npm: narts per million, or milligrams per liter (mg/l)									MCLG				expected risk to health. MCLGs allow for a margin of safety.
dqq		b: parts per	billion, or	microg	grams p	er liter (μ	g/L)							MCL: Maximum Contaminant Level: The highest level of a cont
pCi/L	pCi/L pCi/L: picocuries per liter (a measure of radioactivity)										N	ACL		close to the MCLGs as feasible using the best available treatme
NA			NA: not	tapplica	able					TT				TT: Treatment Technique: A required process intended to redu
ND			ND: No	ot detec	ted							AL		AL: Action Level: The concentration of a contaminant which, if water system must follow.
NR NR: Monitoring not required, but recommended.										ALG				The level of a contaminant in drinking water below which there margin of safety
For more infor	mation pleas	e								90 th Percentile				A value at which 90% of all samples collected tested at or below this
Contact Name: Kyle A. Leon Address: 6 Arrowhead Rd										Variances and Exemptions			otions	Variances and Exemptions: State or EPA permission not to me tions.
Laguna, NM 87026 Phone: 505-285-1170								5	101		MF	RDLG		MRDLG: Maximum residual disinfection level goal. The level of or expected risk to health. MRDLGs do not reflect the benefits nants.
									MRDL				MRDL: Maximum residual disinfectant level. The highest level of ing evidence that addition of a disinfectant is necessary for con	
	1			a gran	-			Mart-	-		- N	INR	1	MNR: Monitored Not Regulated
- And -				-	F		1000	a and		7	N	IPL		MPL: State Assigned Maximum Permissible Level

- CITATAN

ics production wastes

eposits

ge from fertilizer and aluminum factories

arge from mines

vel of concern for Beta particles.

tion

minant in drinking water below which there is no known or

aminant that is allowed in drinking water. MCLs are set as ent technology.

ce the level of a contaminant in drinking water.

exceeded, triggers treatment or other requirements which a

is no known or expected risk to health. ALGs allow for a

value

et an MCL or a treatment technique under certain condi-

a drinking water disinfectant below which there is no known of the use of disinfectants to control microbial contami-

of a disinfectant allowed in drinking water. There is convincntrol of microbial contaminants.