Séminaire 2: Innovation dans le secteur alimentaire – Partie 2

30 novembre 2022 (Mise à jour: août 2023)

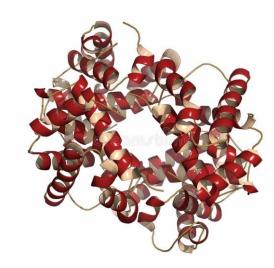
Monique Lacroix

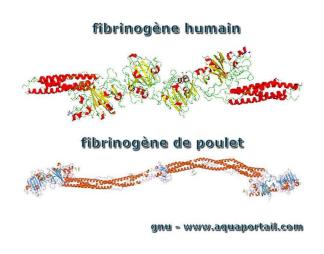
Professeur titulaire

INRS Armand-Frappier Santé Biotechnologie

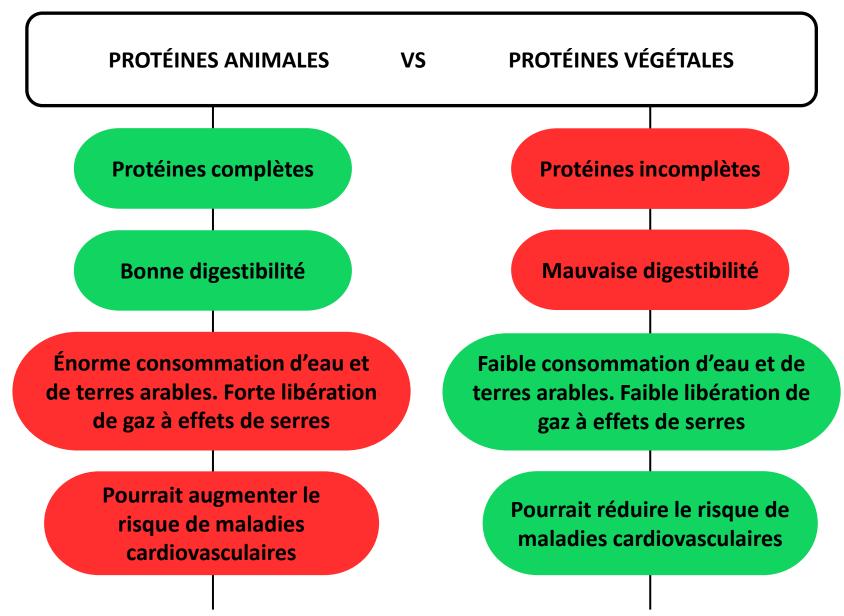
Directrice

Laboratoires de Recherche en Sciences, Appliquées à l'Alimentation


Centre d'Irradiation du Canada



Structure des protéines



Structure des protéines globulaires de protéines végétales

Structure de protéines fibrillaires de viande

La structure globulaire des protéines végétales les rendent moins Facilement attaquable par es enzymes digestives De plus elles sont déficientes en acides aminés essentiels que l'organisme ne peut pas synthétiser et qu'il a besoin pour synthétiser des enzymes, protéines et autres composantes essentielles à la vie.

Composition en acides aminés du riz, chanvre et pois et besoin en acides aminés de la FAO.

Acides aminés (g/100g protéines)	Riz	Pois	Chanvre	FAO / OMS
Cys	2,0	1,7	2,5	0,6
His	2,1	2,6	2,6	1,5
lle	4,2	4,9	4,4	3,0
Leu	7,8	8,6	7,5	5,9
Lys	2,7	7,4	4,1	4,5
Met	2,9	0,9	2,1	1,6
Thr	3,5	3,6	3,6	2,3
Тгр	1,4	0,8	3,8	0,6
Val	5,6	5,1	5,2	3,9
Phe et Tyr	12,9	9,1	8,7	3,8
Total acides aminés essentiels	45,0	44,7	44,5	27,7

Score en acides aminés du riz, chanvre et pois.

Acides aminés	Riz	Pois	Chanvre
Суѕ	3,4	2,8	4,2
His	1,4	1,7	1,7
lle	1,4	1,6	1,5
Leu	1,3	1,5	1,3
Lys	0,6	1,7	0,9
Met	1,8	0,6	1,3
Thr	1,5	1,6	1,6
Trp	2,3	1,3	6,3
Val	1,4	1,3	1,3
Phe et Tyr	3,4	2,4	2,3

> Riz et Chanvre : Pauvre en lysine.

> Pois : Pauvre en méthionine.

Composition de formulations mises au point

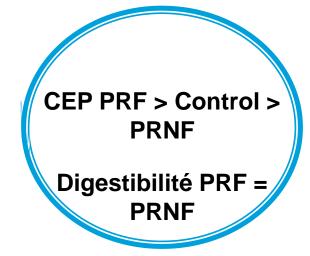
Mélange de protéines	Source de protéines (%)		Protéines (%)	CEP estimé
PR3	Pois	50	16	1,35
FKS	Riz	50	10	
PH1	Pois	30	13	1 52
	Chanvre	70		1,52

Caséine: 2.5

Pois: 1.2

Riz: 1.5

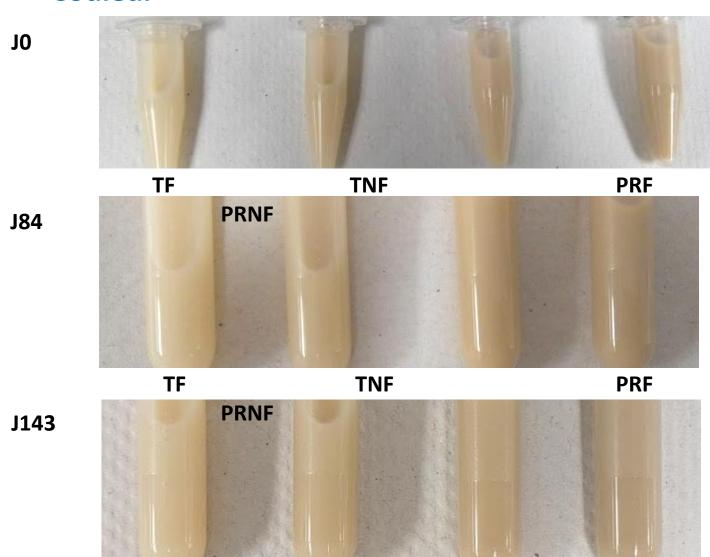
Chanvre : **1.65**



DIGESTION IN VIVO

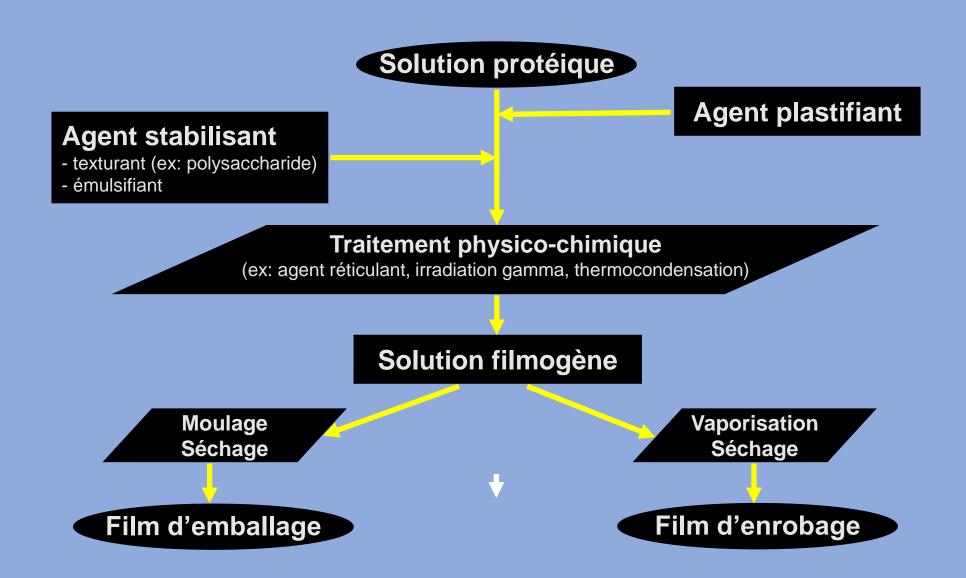
Analyse du Coefficient d'Efficacité Protéique (CEP) et de la digestibilité protéique *In vivo*

Diètes	CEP
Control+	$2,87 \pm 0,16^{a}$
PRF	$3,01 \pm 0,09^a$
PRNF	$2,53 \pm 0,25^{b}$


Les moyennes avec des lettres différentes sont significativement différentes ($P \le 0.05$).

Diètes	DA (%)
Control+	94.42 ± 0.77^{b}
PRF	87.64 ± 0.78 ^a
PRNF	87.03 ± 0.83 ^a

ANALYSES AU COURS DU STOCKAGE - PHYSICO-CHIMIQUES


Couleur

Nouvelles technologies de préservation

Enrobage comestible bioactif

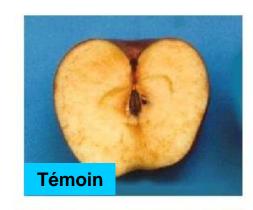
Emballages et enrobages biodégradables Principe de fabrication

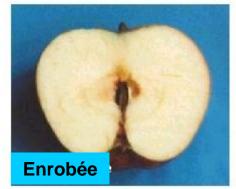
Rôle des films d'emballage et d'enrobage

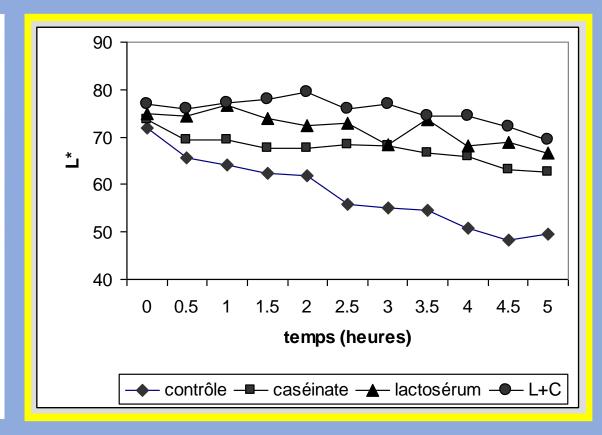
- Limiter le transport des éléments dans un aliment (ex : H₂0, O₂, CO₂)
- Lutter contre la croissance microbienne
- Préserver la bio-activité des nutriments
- Inhiber l'oxydation
- Préserver les propriétés physico-chimiques et organoleptiques des aliments

Emballages et enrobages biodégradables Films bio-actifs

- Films antimicrobiens ou antioxydants dû à la nature des constituants
- Transporteurs d'agents antimicrobiens, antioxydants, de saveur (libération contrôlée)
- Absorbeurs de gaz (CO₂)

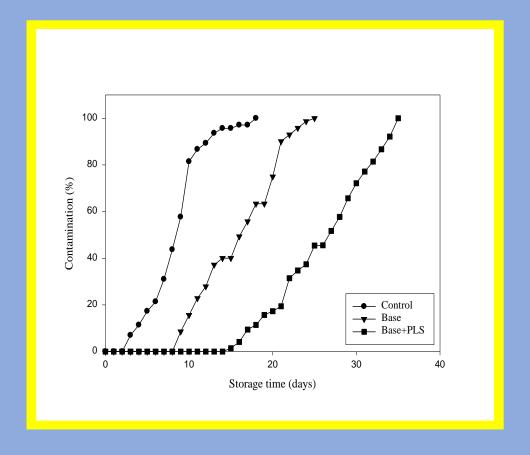

Enrobage des produits alimentaires




Enrobages comestibles et bio-actifs

Application contre le brunissement des végétaux coupés

- ⇒ ↓ du brunissement enzymatique
- ⇒ Stabilisation de la blancheur du produit



Enrobages comestibles et bio-actifs

Application contre la croissance de moisissures sur les fraises.

- ⇒ Barrière protectrice contre l'humidité
- ⇒ ↑ significative de la durée de conservation des fraises

Enrobage pour inhiber le transport d'humidité

Barrière à l'humidité

Enrobage antimicrobien

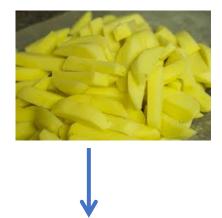
Après 60 jours

Avec enrobage

Sans enrobage

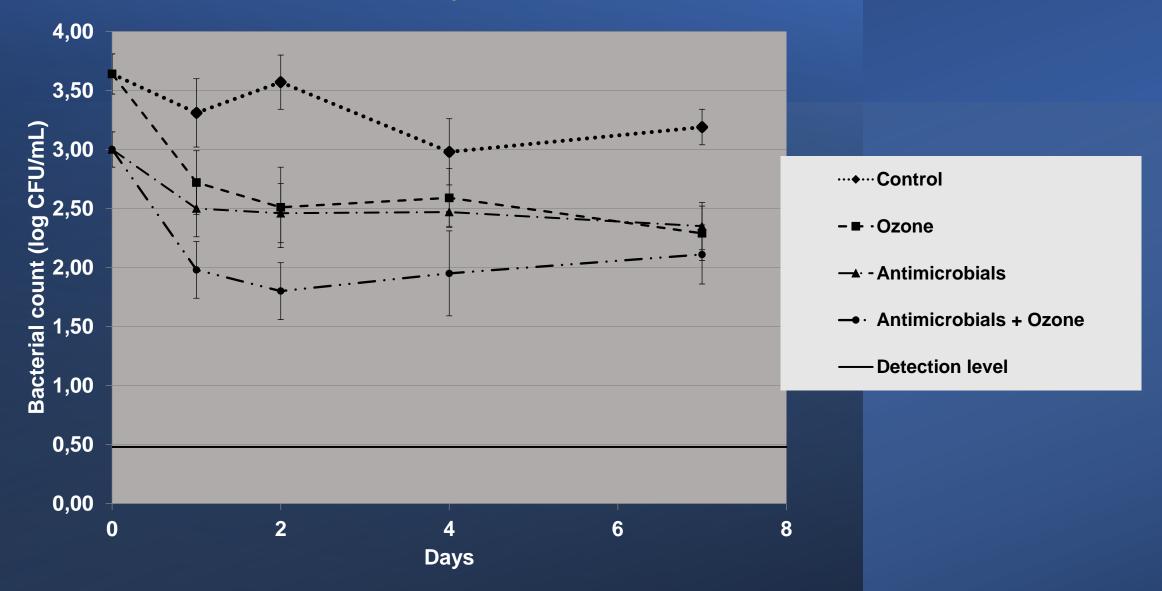
Prolongation de la durée de vie

Enrobage de produits frais



HOMOGENEISATION

SPRAY



Effet de différentes formulations contenant des antimicrobiens naturels sur la flore microbienne totale à la surface de choux-fleurs après 24 hr d'entreposage à 5 ° C

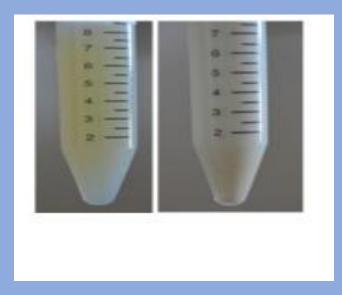
treatment	L. monocytogenes	E. coli	S. Typhimurium	Total count	Yeast and moulds
Contrôle	4.66 ± 0.50e	4,23 ± 0,13 ^e	$4,33 \pm 0,15^{e}$	4,91 ± 0,02 ^e	5,11 ± 0,11 ^c
F1	$\textbf{2.38} \pm \textbf{0.19}^{ab}$	<1,60 ^{a3}	<1,60 ^a	$1,60 \pm 0,01^{b}$	<1,60 ^a
F2	2.07 ± 0.17^{a}	<1,60 ^a	<1,60 ^a	<1,60 ^a	<1,60 ^a

Effet combiné de l'ozonation avec l'enrobage antimicrobien sur les comptes totaux du choux-fleur

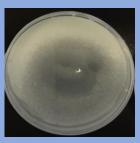
Effet du traitement sur la qualité sensorielle du choux-fleur

	Odeur	Apparence	Texture	Goût
Contrôle	6,76 ± 1,84 ^{bc3}	7,48 ± 1,50 ^a	7,62 ± 1,28 ^{ab}	7,10 ± 1,76 ^b
F1	7,00 ± 1,61 ^{bc}		7,80 ± 1,24 ^{ab}	
F2		8,05 ± 0,92 ^a		7,65 ± 1,17 ^b

Starting Particles It is then effectively cooled, if required, and collected in the output reservoir. Product enters the system via the inlet reservoir. The exclusive fixed-geometry interaction chambers is the heart of our technology, and combines with a constant pressure pumping system to produce unparalleled results.


Product is powered by a high-pressure pump into the interaction chamber at speeds up to 400 m/s.

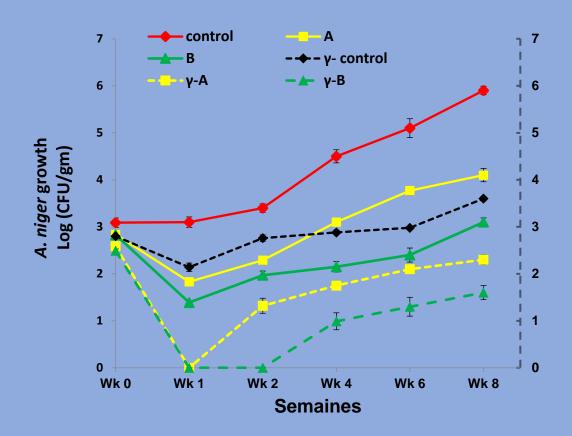
Characteristiques	Nano-emulsion	Émulsion grossière
Grosseur gouttellettes	71 nm	219 nm
PDI	0.20	0.45
Encapsulation Efficacité	83%	37%
Activité antifongique	81%, stable 30 jours	32%, stable 3 jours


polydispersity index (PDI)
Un petit PDI signifies distribution homogène

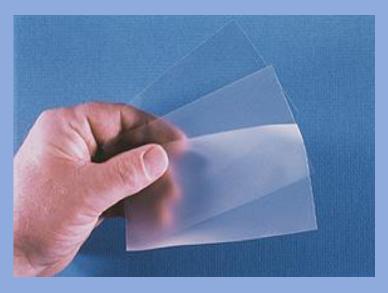
Préparation de la nanoémulsion

Stabilité visuelle de l'emulsion après 2 mois

Nano-

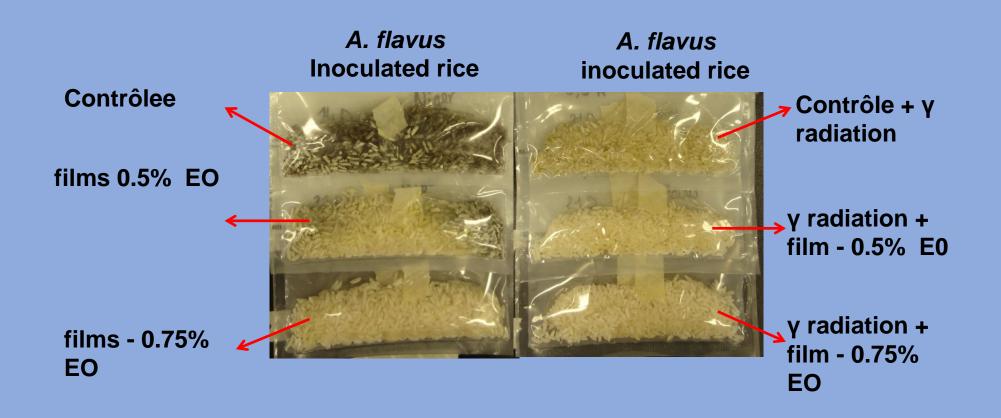


grossière



Propriété antifongique d'un film contenant une formulation antimicrobienne sous forme de nanoémulsion à gauche vs émuldion grossière à droite

Film à base de chitosane A (0.5% EO) et B (0.75% EO)



A. niger

- échantillon traité avec A et B films réduit le niveau de moisissures de 1.80 et 2.80 log CFU/g, respectivement
- Combinaison de traitement avec 750 Gy gamma radiation et film bioactive A et B réduit de 3.60 et 4.30 log CFU/g, respectivement.

Film bioactifs

Formulation antimicrobienne pour réduire l'usage des nitrites

Essential oils

Bacteriocin: Nisine

Développement d'une formulation antimicrobienne efficace contre Clostridium

Independent factors	-1 (low value)	1 (high value)
Nitrite concentration (ppm)	100	200
Nisin concentration (ppm)	12.5	25
Mixture of sodium lactate and sodium diacetate (%)	1.54	3.075
Essential oil mixture (%)	0.025	0.05

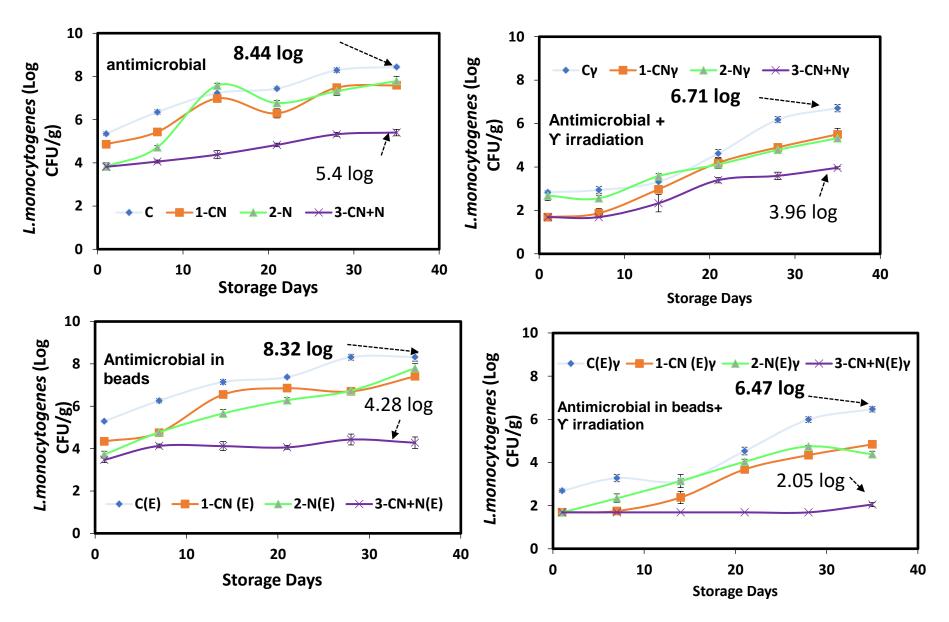
Organoleptically accepted

- High values are the highest acceptable concentration
- Low values are half of them

Reduction de *C. sporogenes* dans La saucisse durant l'entreposage

Formulatio	Nitrite	Nisin	Organic acid	EO	Day 1	Day 7	
ns	(ppm)	(ppm)	salts (%)	(%)	Day I	Day 1	
1	100	12.5	1.55	0.025	1.00 ± 0.11 ab B*	0.75 ± 0.02 a A	Highest effect
	200	12.5	1.55	0.025	1.47 ± 0.37 d AB	1.43 ± 0.07 g A	At 200 ppm of
3	100	25	1.55	0.025	0.86 ± 0.10 a A	0.69 ± 0.06 a A	nitrite
4	200	25	1.55	0.025	1.29 ± 0.18 c A	1.15 ± 0.07 ef A	
5	100	12.5	3.10	0.025	1.06 ± 0.10 abc	1.07 ± 0.19 cdef	Similar effect
	100	12.5	3.10	0.025	Α	AB	at 100 or
6	200	12.5	3.10	0.025	1.31 ± 0.09 cd B	1.05 ± 0.10 abcd A	200 ppm of
7	100	25	3.10	0.025	1.08 ± 0.20 abc A	1.01 ± 0.03 cdef A	nitrite
	200	25	3.10	0.025	1.45 ± 0.07 d A	1.69 ± 0.24 h A	Highest effect at
9	100	12.5	1.55	0.05	0.91 ± 0.11 ab A	1.15 ± 0.04 def B	200 ppm of nitrite
10	200	12.5	1.55	0.05	1.31 ± 0.17 cd A	1.18 ± 0.12 ef A	Similar effect
11	100	25	1.55	0.05	0.91 ± 0.27 ab A	1.03 ± 0.08 cde A	at 100 or 200 ppm of
12	200	25	1.55	0.05	1.00 ± 0.12 ab A	1.28 ± 0.06 fg B	nitrite
13	100	12.5	3.10	0.05	1.13 ± 0.20 bc A	0.89 ± 0.18 abc A	
14	200	12.5	3.10	0.05	0.98 ± 0.23 ab A	1.75 ± 0.35 h B	
15	100	25	3.10	0.05	0.85 ± 0.22 a A	0.79 ± 0.15 ab A	Highest effect at
16	200	25	3.10	0.05	1.15 ± 0.06 bc B	0.93 ± 0.11 abc A	200 ppm of nitrite

Eos: Chinese cinnamon and Cinnamon bark Eos; organic acids: sodium acetate and potassium lactate



Micro billes contenant des antimicrobiens naturels et effet combiné avec l'irradiation pour éliminer *Listeria monocytogenes* dans le jambon

L.Monocytogenes on RTE meat during storage treated with and without microencapsulated cinnamon essential oils /nisin and gamma irradiation (at 1.5 kGy)

Nouvelles technologies de décontamination à froid

Low Energy X-ray

Remerciements

Ce projet est financé par l'entremise du Programme Innov'Action agroalimentaire, en vertu du Partenariat canadien pour l'agriculture, entente conclue entre les gouvernements du Canada et du Québec.

Partenaire de l'INRS: PROX-Industriel

