XCELL Implant System: Powerball Evolution Chart

Feature / Specification	Powerball 1.0	Powerball 2.0	Powerball 3.0
Generation Overview	The original, revolutionary screw designed to eliminate the need for a tie base , introducing the Powerball system.	Second-generation improvement maintaining all 1.0 features with added mechanical optimization.	A major engineering evolution featuring a double-screw system for maximum retention and stability.
Design Purpose	Universal screw for multi- material applications.	Enhanced anti- loosening capability.	Engineered specifically for titanium bars and high-load restorations.
Head Design	Powerball head with biaxial geometry, virtually impossible to strip.	Same Powerball biaxial head for torque precision and antistripping.	Reinforced Powerball head with dual- threaded internal locking.
Shaft Design	Parallel shaft for universal compatibility.	Conical shaft to create a wedging effect, reducing screw loosening.	Double-screw mechanism—inner and outer threads engage for advanced preload retention.
Angle Correction	Up to 30° correction capability.	Up to 30° correction maintained.	Up to 30° correction maintained with reinforced seating stability.
Primary Materials Compatibility	Zirconia, 3D-printed resins, PMMA, and titanium.	Full zirconia, full PMMA, and titanium.	Titanium bars (primary), also compatible with PMMA or temporary resins.
Best Recommended Use	Zirconia and resin restorations.	Full zirconia and full PMMA restorations.	Titanium substructures and PMMA temporaries.
Key Innovation	First screw to skip tie base, with biaxial antistrip design.	Introduction of conical compression zone for anti-loosening.	Dual-thread PowerLock™ system for unmatched torque stability.

Feature / Specification	Powerball 1.0	Powerball 2.0	Powerball 3.0
Screw Loosening Resistance	High (biaxial head design).	Very high (conical shaft compression).	Exceptional (double-screw engagement prevents micromovement).
Clinical Objective	Simplify workflows across digital and analog restorations.	Increase long-term stability and screw retention.	Deliver ultimate fixation strength for metal frameworks and hybrid prosthetics.
Ideal Clinical Application	Universal screw for mixed-material prostheses.	Long-term zirconia or PMMA restorations needing extra stability.	Titanium bars, full-arch frameworks, or temporary PMMA hybrids.

XCELL Implant System • Powerball 1.0 | 2.0 | 3.0

Innovating the future of restorative implant stability.

Brand Styling Notes for PDF / PowerPoint:

- Background: gradient **XCELL blue** → **XCELL purple**
- Table headers: metallic silver with white bold text
- Font: Montserrat Bold / Regular
- XCELL logo at top-right corner
- Footer: "© Dr. Jonathan Abenaim, DMD XCELL Implant Process"