

Recombinant Human Perlecan Domain-V Laminin-like Globulin Domain 3 (rhPDVLG3):

A Novel Basement Membrane-Derived Matrikine Targeting Neurovascular Injury and Repair

William D. Schwieterman, M.D. CEO, Stream Biomedical Inc.

March 13th, 2025 ASENT, Bethesda MD

www.streambiomedical.com

Perlecan Domain V - LG3

A First-in-Class Matrikine Therapeutic: Designed by Evolution, Developed by Stream

- 550M year-old protein
- 21 kDa c-terminus of Perlecan Domain V
- Elevated in brain of stroke and TBI patients
- Paracrine signal: 40nm distance
- Pleiotropic and antiapoptotic: Interacts with all cell types of the NVU (through integrin R's)

LG3 is Acutely Neuroprotective

Quantification & Imaging of infarct volume following severe stroke (MCAo) in mice.

Drug Selection Study: LG3 only shown. 7 days after 60 min transient MCAO filament stroke in mice. Single 6 mg/kg IP dose of LG3 at reperfusion

Stroke: Mouse MCAO

LG3 Preserves Peri-infarct Vasculature

Tissue Clearing + Light Sheet Microscopy 72hr Post CCA-MCA Stroke

Stroke - PBS

Stroke - LG3

Focus: Penumbral Core 3D Vasculature Tracing

LG3 Improves CNS Pericyte Coverage

Isolated Capillaries + Confocal Microscopy 72hr Post CCA-MCA Stroke

Labeling: PDGFR-B Claudin-5

Summary: LG3 – Novel Neurotherapeutic

- Novel, first in class (matrikine) investigational protein
 - Structurally derived from Perlecan within the extracellular matrix of NVU
- Endogenously released in response to traumatic or ischemic injury
 - 21kDa matrikine evolutionarily primed for NVU signaling
- Homes to and persists at sites of neurovascular injury
 - Drug tracing demonstrates ~48hr parenchymal residence
- Restores NVU homeostasis: Pleiotropic action \rightarrow all cell types
 - Reduces endothelial apoptosis
 - Modulates pericyte-microvessel dynamics
 - Downregulates glial inflammatory signaling
 - Directly neuroprotective and anti-apoptotic
- Is acutely neuroprotective and functionally restorative
 - In multiple species and CNS injury models (Stroke, TBI, Alzheimer's)
- Clinical trials to be initiated soon
 - Ultimately across a wide range of acute and chronic neurodegenerative diseases

Acknowledgements

Support for this work was provided by NINDS SBIR Award R44 NS107152, and NIA SBIR Award R43 AG063619, and internal funding.

Special thanks to:
University of Kentucky Stroke Core
Hubbard Lab – University of Kentucky
McCreedy Lab – Texas A&M University
Soto Lab – University of Texas Health Science Center