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Background
Endoscopic Spine Surgery (ESS) offers minimally invasive 
techniques for spinal procedures and is performed by making a small 
incision at the desired vertebral level, separating soft tissue from 
vertebrae to create a cavity for endoscopic instruments, creating a 
port for the instruments, and continuously filling the cavity with saline 
to ensure patency of the cavity [1]. Compared to conventional and 
other minimally invasive techniques, ESS shows advantages in 
recovery times, tissue damage, and infection rates, but presents 
challenges such as longer operating times and limited visualization 
due to bleeding [2]. When a bleed occurs, the field of view becomes 
compromised.

Needs Statement
Neurosurgeons performing endoscopic spine surgery often 
lose visualization due to bleeding and require a method to maintain 
a clear visual field and decrease procedure time.

Existing Solutions and their Limitations
Gel immersion endoscopy: facilitates clear visualization by displacing 
blood during surgeries within the gastrointestinal tract. Not suitable 
within spinal cavity due to differing anatomy and surgical techniques; 
dedicated gel not proven safe for use outside of GI tract [3].
Radiofrequency bipolar hemostatic sealer: provides hemostasis by 
sealing bone and soft tissue. Helps control bleeding and reduce 
surgical time, but does not assist in detecting bleed point or 
maintaining clear visual field [4].

Design Objective
Design an effective visualization tool that enhances the surgeon's 
ability to identify bleeding point(s) in real time during endoscopic 
spinal surgery.

Most Critical PRDs
Detect bleed point location within 5mm radius.
Indicate location of bleed point within 120 seconds.
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The model correctly labeled the bleeding point in 16 out of the 
20 test frames. We defined cases that qualitatively categorize the 
verification results:

Case A:  Only the correct region labeled.
Case B:  Multiple regions labeled (including the correct region).
Case C:  Correct region NOT labeled.
Case D: No regions labeled; or the region is a straight line.

12 of the 16 frames correctly labeled frames were Case A, 
whereas in the other 4, the model also labeled one or 
more incorrect regions in addition to the correct one (Case B).

The model labeled the bleeding point within 5mm from the center 
of the true bleeding point with statistical significance (Fig. 4, p = 
9.74E-09 < 0.05, from t = -9.21 < 2.086). The average error across 
all frames was 1.9423mm. The average error across Case A 
frames only was 1.247mm.

We normalized the prediction centroid to the true centroid in 
cartesian coordinates and plotted the mean x and y coordinates to 
determine if there was a directional bias. Our finding suggests that 
the model may overshoot along the positive y-axis and x-axis.

Device Design
Bill of materials:
1. MATLAB 2023 license
2. Machine learning toolbox

The semantic segmentation network assigns each pixel in the 
image a categorical label. Our designed convolutional neural 
network (CNN) works on an “encoder-decoder” structure, where 
the encoder down-samples the image and performs non-linear 
optimization while the decoder uses learnable filters to reconstruct 
the image. The final product is an image with each pixel labeled 
either "background" or "bleed".

We used MATLAB to run the program and tested 20 frames. We 
marked the actual bleeding points on the 20 test images. We then 
used ImageJ to set a true scale using the known size of various 
surgical tools. We then inputted the actual bleeding points 
in ImageJ from the analyzed frames in MATLAB. Lastly, we found 
the distance between the true and predicted bleeding point in mm.

We performed a one-sided T-Test calculation on the two sets of 
data i.e. the actual bleeding point coordinates and analyzed 
(calculated) bleeding point coordinates.

H0: μ  ≥ 5 mm
HA: μ < 5 mm

Neural Network Design

Neural Network Output
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Fig 3. The output of the network which uses the input image (left) 
and returns the labeled image (right).

 = background,          = bleed

Fig 4. Test frame with calibration stick of known length. Actual and 
analyzed bleeding point shown as 1. 2. (left)

Fig 1. Surgeon with endoscopy apparatus & saline irrigation (left). 
Occluded surgical bleed (right).

Fig 5. Error plots. Top plot depicts normalized distance error in 
cartesian format. Each point represents the centroid of the predicted 
location of the bleeding point normalized to the centroid of the true 

bleeding point. Bottom plot depicts magnitude. The far left 
represents the centroid of the true bleeding point (i.e., zero error).

Conclusion and Next Steps
The use of neural network models to identify bleeding 
endoscopic surgery shows promising results. Our verification 
method indicated that the model can correctly identify the 
bleeding point in vast majority of test frames. However, the 
model has room for improvement, as it occasionally labels non-
target regions or fails to identify the relevant region entirely. The 
significance of this project lies in its potential to shorten surgical 
time and enhance patient recovery through better detection of 
the bleed. This project highlights how combining cutting-edge 
computing with medical expertise can tackle major health 
challenges.

Moving forward, the project will aim to incorporate a wider range 
of endoscopic video footage from diverse patient groups. 
We have recently demonstrated the model’s ability to analyze 
an entire video and predict the center of the bleeding point based 
on a fast retrospective analysis of the persistence of blood in 
each pixel in the frame (Fig. 6). Additionally, we intend to conduct 
validation testing in a controlled, simulated environment to 
compare the performance of the model against traditional 
methods of bleed point detection.

Upon completion of the testing phase, we will collaborate with 
clinicians to receive feedback on the usability of the model in a 
live surgical setting and adjust the user interface accordingly. We 
will explore the integration of the model into existing endoscopic 
systems to test its functionality in real-time during surgeries. 
Lastly, we will investigate the model's scalability to other types of 
surgeries.

Fig 2. Layers and output of neural network

Fig. 6 Overlayed label indicating the bleeding point during the video of 
model simulation (left). The neurosurgeon also has the option of 
pressing a physical button that toggles an arrow to further assist in 
identifying the bleeding point (right).
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